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ABSTRACT
Nearest neighbor searches in high-dimensional space have
many important applications in domains such as data min-
ing, and multimedia databases. The problem is challenging
due to the phenomenon called “curse of dimensionality”. An
alternative solution is to consider algorithms that returns a
c-approximate nearest neighbor (c-ANN) with guaranteed
probabilities. Locality Sensitive Hashing (LSH) is among
the most widely adopted method, and it achieves high ef-
ficiency both in theory and practice. However, it is known
to require an extremely high amount of space for indexing,
hence limiting its scalability.

In this paper, we propose several surprisingly simple meth-
ods to answer c-ANN queries with theoretical guarantees
requiring only a single tiny index. Our methods are highly
flexible and support a variety of functionalities, such as find-
ing the exact nearest neighbor with any given probability.
In the experiment, our methods demonstrate superior per-
formance against the state-of-the-art LSH-based methods,
and scale up well to 1 billion high-dimensional points on a
single commodity PC.

1. INTRODUCTION
Given a d-dimensional query point q in a Euclidean space,

a nearest neighbor (NN) query returns the point o in a
dataset D such that the Euclidean distance between q and
o is the minimum. It is a fundamental problem and has
wide applications in many domain areas, such as computa-
tional geometry, data mining, information retrieval, multi-
media databases, and data compression.

While efficient solutions exist for NN queries in low di-
mensional space, they are challenging in high-dimensional
space. This is mainly due to the phenomenon of “curse of
dimensionality”, where indexing-based methods are outper-
formed by the brute-force linear scan method [45].

The curse of dimensionality can be largely mitigated by
allowing a small amount of errors. This is the c-ANN query,
which returns a point o′, such that its distance to q is no
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more than c times the distance of the nearest point. Local-
ity sensitive hashing (LSH) [21] is a widely adopted method
that answers such a query in sublinear time with constant
probability. It also enjoys great success in practice, due to
its excellent performance and ease of implementation.

A major limitation of LSH-based methods is that their
indexes are typically very large. The original LSH method
requires indexing space superlinear in the number of data
points [14], and the index typically includes hundreds or
thousands of hash tables in practice. Recently, several LSH-
based variants, such as LSB-forest [42] and C2LSH [17], are
proposed to build a smaller sized index size without los-
ing the performance guarantees of the original LSH method.
However, their index sizes are still superlinear in the number
of points; this prevents their usage for large datasets.1

In this paper, we propose a surprisingly simple algorithm
to solve the c-ANN problem with (1) rigorous theoretical
guarantees, (2) requiring an extremely small index, and (3)
delivering superior empirical performance to existing meth-
ods. Our methods are based on projecting high-dimensional
points into an appropriately chosen low-dimensional space
via 2-stable random projections. The key observation is that
the inter-point distance in the projected space (called pro-
jected distance) over that in the original high-dimensional
space follows a known distribution, which has a sharp con-
centration bound. Therefore, given any threshold on the
projected distance, and for any point o, we can compute
exactly the probability that o’s projected distance is within
the threshold. This observation gives rise to our basic al-
gorithm, which reduces a d-dimensional c-ANN query to a
m-dimensional exact k-NN query equipped with some early-
termination test. It can be shown that the resulting algo-
rithm answers a c-ANN query with at least constant prob-
ability using γ1 · n I/Os in the worst case, using an in-
dex of γ2 · n pages, where γ1 � 1 and γ2 � 1 are two
small constants. For example, in a typical setting, we have
γ1 = 0.0083 and γ2 = 0.0059.2 We also derive several vari-
ants of the basic algorithm, which offer various new function-
alities (as described in Section 5.3.2 and shown in Table 1.
Our proposed algorithms can also be extended to support
returning the c-approximate k-nearest neighbors (i.e., c-k-
ANN queries) with conditional guarantees.

The contributions of the paper are summarized below:

1Note that the data size is always O(n · d).
2As will be pointed out in Section 3, existing methods using
space linear in the number of data points (n) typically
cannot outperform the linear scan method, whose query
complexity is 0.25n in this example.
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Table 1: Comparison of Algorithms

Algorithm Success
Probability

Index Size Query Cost Constraint on Approx-
imation Ratio c

Comment

LSB-forest [42] 1/2− 1/e O((dn/B)1.5) O((dn/B)0.5 logB n) c ≥ 4 and must be the
square of an integer

Index size superlin-
ear in both n and d

C2LSH [17] 1/2− 1/e O((n logn)/B)
(or O(n/B))

O((n logn)/B)
(or O(n/B))

c ≥ 4 and must be the
square of an integer

β = O(1)
(or β = O(1/n))

SRS-12(T, c, pτ ) 1/2− 1/e

γ1n (worst case),
γ1 � 1

γ2n (worst case),
γ2 � 1 c ≥ 1

Fastest

SRS-1(T, c) 1/2− 1/e Better quality

SRS-12+(T, c′, pτ ) 1/2− 1/e Tunable quality

SRS-2(c, p) p O(n/B) Support finding NN

• We proposed a novel solution to answer c-ANN queries for
high-dimensional points. Our methods use a tiny amount
of space for the index, and answer the query with bounded
I/O costs and guaranteed success probability. They also
have excellent empirical performance and allow the user
to fine-tune the tradeoff between query time and result
quality. We present the technical details in Sections 4
and 5 and theoretical analysis in Section 6.
• We obtained several new results with our proposal: (i) Our

SRS-12 algorithm is the first c-ANN query processing algo-
rithm with guarantees, using linear-sized index and work-
ing with any approximation ratio. Previous methods use
superlinear index size and/or cannot work with non-integer
c or c < 2 (See Table 1 for a comparison). (ii) Our SRS-2
algorithm returns exact nearest neighbor with any given
probability, which is not possible for LSH-based methods
since they require c > 1. (iii) There is no approxima-
tion ratio guarantee for c-k-ANN query results by existing
LSH-based methods for k > 1, while our SRS-12 provides
such a guarantee under certain conditions.
• We performed an extensive performance evaluation against

the state-of-the-art LSH-based methods in the external
memory setting. In particular, we used datasets with 8
million and 1 billion points, which is much larger than
those previous reported. Experiments on these large datasets
not only demonstrate the need for linear-sized index, but
also debunk the myth that LSH-based method requires
too much indexing space and hence cannot scale to large
datasets. Sections 8 reports the experiment results and
analyses.

Our methods may have several implications in theory and
in practice. For one thing, using our methods and under
typical settings, high-dimensional c-ANN problems in arbi-
trarily high dimensional space can be reduced to exact k-NN
queries in a low-dimensional space with no more than 10
dimensions. This may spur interest in researching efficient
indexing methods specifically for such a dimensionality-limited
space. For another, our methods use standard multidimen-
sional index (such as the R-tree) for indexing and query
processing. Therefore, our methods are easily implemented
standalone, or be readily integrated into database systems
supporting multidimensional indexes [25].

2. PRELIMINARIES
We first give problem definitions, then introduce some sta-

tistical distributions, and finally the notations used in the
rest of the paper.

2.1 Problem Definition

In this paper, we consider a dataset D which contains
n points in a d dimensional Euclidean space <d. We are
particularly interested in the high-dimensional case where
d is a fairly large number (e.g., d ≥ 50). The coordinate
value of o on the i-th dimension is denoted as o[i]. The
Euclidean distance between two points, dist(o1, o2), is de-

fined as
√∑d

i=1(o1[i]− o2[i])2. Throughout the rest of the

paper, we are concerned with a point’s distance with re-
spect to a query point q, so we use the shorthand notation
dist(o) := dist(o, q), and refer to it as distance of point o.

For simplicity, we assume there is no draw in terms of
distances. This makes the following definitions unique and
deterministic. The results in this paper still hold without
such assumption by a straight-forward extension.

Given a query point q, the nearest neighbor (NN) of q (de-
noted as o∗) is the point in D that has the smallest distance.
We can generalize the concept to the i-th nearest neighbor
(denoted as o∗i ). A k nearest neighbor query, or k-NN query,
returns the ordered set of { o∗1, o∗2, . . . , o∗k }.

Given an approximation ratio c > 1, a c-approximate
nearest neighbor query, or c-ANN query, returns a point
o ∈ D, such that dist(o) ≤ c · dist(o∗); such a point o is
also called a c-ANN point.3 Similarly, a c-approximate k-
nearest neighbor query, or c-k-ANN query, returns k points
oi ∈ D (1 ≤ i ≤ k), such that dist(oi) ≤ c · dist(o∗i ).

In this paper, we consider probabilistic algorithms to cor-
rectly answer c-ANN and c-k-ANN queries with at least a
constant probability, which is called the success probability.
Using the standard boosting trick, we can increase the suc-
cess probability of the algorithm to 1 − δ by repeating the
algorithm O(log δ) times.

We focus on the external memory setting, where both the
dataset and index reside on external memory. The page size
is B machine words. We follow the convention that every
integer or real number is represented by one machine word.

2.2 2-Stable Distribution and χ2 Distribution
p-stable distribution is defined as follows: for any n real

numbers v1, . . . , vn and independently and identically dis-
tributed (i.i.d.) random variables X1, . . . , Xn following the
p-stable distribution,

∑
i viXi has the same distribution as(∑n

i=1 v
p
i

)1/p · X, where X is a random variable with the
p-stable distribution [20]. p-stable distribution exists for
p ∈ (0, 2], and when p = 2, it is the normal distribution.

3We distinguish k-NN, which refers to the k nearest
points, and c-ANN, which refers to a single point whose
approximation ratio is within c.
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Let f(o) := ~v · ~o, where each entry of ~v is i.i.d. random
variable following the standard normal distribution N (0, 1),
then we have the following Lemma (stated as Fact 1 in [35]).

Lemma 1. For any o1, o2 ∈ <d, f(o1)−f(o2) is distributed
according to the normal distribution N (0, dist2(o1, o2)).

IfX1, . . . , Xm are i.i.d. random variables followingN (0, 1),
let S2 =

∑m
i=1 X

2
i , then S2 follows the χ2 distribution with

m degrees of freedom by definition, denoted as S2 ∼ χ2(m).

2.3 Notations
We summarize the notations used in the paper in Table 2,

and the parameters used in our algorithms in Table 3.

Table 2: Notations
Symbol Explanation

n number of points in D

d dimensionality of each point

q the query point

o∗, o∗i the first and i-th nearest point in D to q

dist(oi, oj) the l2 distance between oi and oj
dist(o) the l2 distance between o and q

πm(o) an m-dimensional signature of o, i.e.,
πm(o) := 〈f1(o), f2(o), . . . , fm(o)〉, where fi(o)
is the i-th projected value

∆m(o) the l2 distance between o and q’s signatures, i.e.,
∆m(o) := dist(πm(o), πm(q))

χ2(m) χ2 distribution with m degrees of freedom

Ψm(x),

Ψ−1
m (p)

cumulative distribution function and its inverse
of χ2(m). Ψ−1

m (Ψm(x)) = x

omin the point with the minimum distance (among
points accessed by Algorithm 1)

Table 3: Parameters
Role Symbol Explanation

input n number of data points

input T maximum number of data points to be
accessed

input c approximation ratio

input c′ desirable approximation ratio (optional)

derived m the number of 2-stable random projec-
tions needed, given n, T and c

derived T ′ T ′ ≤ T is the maximum number of data
points to be accessed by our algorithm

derived p′τ threshold of early-termination condition

3. RELATED WORKS
There is a vast amount of related literature given that

(approximate) nearest neighbor search is a classic and fun-
damental problem. We will briefly survey most related areas
below. We refer readers to the excellent book [37] for a com-
prehensive coverage of multidimensional indexes.

3.1 Nearest Neighbor Search
The exact nearest neighbor (NN) problem is also known as

the post office problem in computational geometry and the
distance measure is typically Euclidean distance. Voronoi
diagrams gives the optimal solution for d = 2 with O(n)
space and O(logn) query time. It remains an open problem
to find a solution for d = 3 with linear space and near log-
arithmic query time. The best result is [32], which gives a

data structure with O(d5 logn) query time using O(n2d+δ)
space. The exact NN problem is conjectured to be hard,
though the results on the lower bound complexity are still
weak [10, 7]. [36] showed that the average query time with
an optimal metric indexing scheme is superpolynomial in
dimensionality d.

Given the hardness of solving the exact NN problem, and
the fact that approximate NNs are also desirable in many
applications, the current focus is on efficient solutions for the
(1+ε)-approximate NN problem. We distinguish two cases.
The easy case is when ε is sufficiently large. [11] gives a ran-
domized algorithm with O(d2n) space and O(d2 logn) query

time for O(d3/2)-approximate NN. The other case when ε
is small is much harder. Most early works still require ei-
ther space or query time exponential in d. E.g., [3] gives a
scheme that can tune the trade-off between index space and
query time, which results in an algorithm with O(logn +

1/ε(d−1)/2) query time and O(n log(1/ε)) space, and another
with O(log(n/ε)) query time and O(n/εd−1 log(1/ε)) space.
Later, better results were obtained by using the idea of prob-
abilistic test : Two points with distances r and (1 + ε)r to
a query point have certain probability of having different
test results. Random projections were used in [26, 28, 21],
and p-stable random projections were used in [14], which
results in algorithms whose space and time complexity is
only polynomial in d. Recently, fast JL transformation was
used to answer the query in O(d log d+ε−3 log2 n) time with

O(nmax(2,ε−2)) space [1]. Among them, the Locality Sensi-
tive Hashing (LSH) is the most widely used due to its ex-
cellent theoretical guarantees (it is the most efficient with
sub-quadratic index space [2]) and empirical performance.
More discussions appear in the next section.

To scale up to very large datasets, sub-quadratic space
complexity is still not acceptable; we have to settle with
methods that use space linear in n and d. There are only
few methods that we are aware of. The brute-force linear
scan algorithm has a trivial query time O(dn). [47]’s query
complexity is O(dn1−εd), but εd goes to 0 rapidly with d.
[4]’s query time is O(1/εd logn). Therefore, given n and a
sufficiently large d, the brute-force method will practically
outperform other methods. In contrast, we will show that
the space and time complexities of our methods are both lin-
ear in n (independent of d), and the constant factor is very
small. Furthermore, we can perform exact NN search prob-
abilistically using a fraction of I/Os required by the linear
scan method (Section 8.6).

3.2 Locality Sensitive Hashing
The LSH technique is firstly introduced by Indyk and

Motwani [21]. It employs locality-sensitive hash functions
as the probabilistic test. LSH functions for some commonly
used metrics are known, e.g., minhash for Jaccard [8], simhash
for arccos [12], and p-stable random projection with quan-
tization for lp norms for p ∈ (0, 2] [14].

A key theme in theoretical LSH research is to improve the
bounds. Let c = 1 + ε. LSH methods return a c-ANN point
in time O(dnρ+o(1)) with space complexity of O(n1+ρ+o(1) +
nd). The initial scheme [14] has ρ = 1/c + oc(1).[33] gives
the optimal lower bounds of ρ as 1/c−Od(1). Most recently,
[2] obtains a scheme with ρ ≤ 7/(8c) +O(1/c1.5) + oc(1) by
using two-level LSH.

The main drawback of LSH is that it has to build mul-
tiple indexes with different distance thresholds, resulting in
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indexes of enormous sizes. There are two major directions
to address this weakness: one is to adapt LSH to external
memory, which will be discussed in the next section, and
the other is to trade query time with space by either posing
more queries to the index of reduced sizes [35], or accessing
more buckets [31].

There are many other works that improve or adapt LSH
in various aspects. For example, using a prior [38], using
sampled data [15], on distributed computing platforms [5,
41], and taking advantages from specific hardware [39, 34].
Parameter tuning for LSH is important, and this is discussed
in detail in [40].

3.2.1 LSH for External Memory
There are a few works focusing on adapting LSH to extern

memory. [18] and [48] are two methods based on LSH and
multi-probe LSH, respectively, but do not have any theoret-
ical guarantee [42]. We mainly focus on two state-of-the-art
methods, LSB-forest [42] and C2LSH [17], which achieve
both high quality and efficiency without losing the theo-
retical guarantee, though with different ideas. LSB-forest
adapts to the distance of the nearest point and hence only
needs to build one index that works for all NN distances.
This can be deemed as generalizing the reduction method
in [12] from `1 to `2. Multiple such indexes (each called an
LSB-tree) need to be built to return a c-ANN point with
constant probability. C2LSH has the novel idea of not com-
bining signatures from individual hash functions, hence can
fully utilize the information in each projection. It performs
collision counting with increasing granularities to determine
the candidate points.

3.3 Transformation-based Approaches
A closely related area is related to small distortion em-

bedding of Euclidean norm, with the seminal work in [24]
known as the Johnson-Lindenstrauss Lemma (JL Lemma).
We refer readers to [1] for a recent survey.

While JL transform is data-independent, there also ex-
ist other data-dependent embeddings. PCA and compressed
sensing assume or exploit certain distributional characteris-
tics of the data. Other approaches, such as Spectral Hash-
ing [46], map points into a Hamming cube which maximally
preserves some desirable distances between points.

3.4 Other Methods for NN Queries
There are efficient solutions that assume or exploit the

low intrinsic dimensionalities of the data to answer (approx-
imate) NN queries. Representative methods include those
based on navigating nets [27], cover tree [6], and recently
RBC [9]. There are also heuristic methods that strive to an-
swer NN queries approximately with good empirical perfor-
mance, albeit having no guarantees. Representative meth-
ods include Spill Tree [30], SASH [19], and iDistance [22],
and product quantization [23].

4. OVERVIEW
In this section, we give an informal but intuitive explana-

tion of our method, followed by an overview of our methods.
Our method is based on projecting points from the orig-

inal d-dimensional space to a m-dimensional space. We re-
fer to the former as the original space, and the latter as
the projected space. In both spaces, we are concerned
with Euclidean distances, indicated by different notations

(dist(o) in the original space called simply as distance, and
∆m(o) in the projected space called projected distance). See
Figure 1 for an illustration.

d-dimension: q o

m-dimension: πm(q) πm(o)

f1, f2, . . . , fm

dist(o)

f1, f2, . . . , fm
∆m(o)

Figure 1: Two Distances: dist(o) and ∆m(o).
∆2

m(o)

dist2(o)

follows the χ2(m) distance whose mean is m.

Based on the property of 2-stable random projections, our

key observation is that for any point o,
∆2

m(o)

dist2(o)
(which can be

intuitively interpreted as distance distortions due to the pro-
jection) follows the standard χ2(m) distribution (Lemma 2),
which has sharp concentration bounds around the mean
(which is m).

This observation is exploited in two very different ways in
our methods. (i) Firstly, given two points o1 and o2 whose
distances to the query are r and c · r, respectively, it is less
likely that the projected distance of o2 is smaller than o1. We
can compute the above probability exactly and then upper
bound the total number of such “erroneous” points in the
projected space probabilistically. Therefore, a k-NN search
on the projected space with a carefully chosen k will guaran-
tee us a c-ANN point with the desired probability. (ii) Sec-
ondly, given a point omin that has the minimum distance to
the query among the first i points according to the projected
distance, we want to determine whether it is a c-ANN point.
This is related to the probability that there exists a point
that is c times closer to the query than omin, yet its projected
distance is larger than any of the i points accessed. This
leads to a novel and effective early-termination condition.

The above ideas lead to our basic method to answer a
c-ANN query, which conceptually consists of two steps:
• Obtain an ordered set of candidates by issuing a k-NN

query with k = T ′ (also called a T ′-NN query in the fol-
lowing) on the m-dimensional projections of data points;
• Examine the distance of these candidate points in order

and return the point with the smallest distance so far if
it satisfies the early-termination test or the algorithm has
exhausted the T ′ points.

With carefully chosen parameters (m and T ′), we can show
that the returned point is a c-ANN point with a constant
probability. There are several variants of the basic algorithm
that have distinct features; for example, it can be tuned to
return exact NN with constant probabilities, as well as ob-
taining a different trade-off between I/O cost and approxi-
mation ratio. Finally, the algorithm can easily be extended
to support c-k-ANN queries with a novel conditional quality
guarantee.

5. OUR METHODS
We describe our query processing methods in this section.

We leave the detailed proof and analyses to Section 6.

5.1 Computing Internal Parameters
Our method is designed to use a tiny amount of space to

index high-dimensional data. To this end, it first needs to
compute the best internal parameter setting that achieves
the goal specified by the user, before the indexing and query
processing can be performed. Our methods has a default
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success probability guarantee of pτ := 1/2 − 1/e ≈ 0.1321.
Although it can be changed (hence it appears as a param-
eter of our algorithms), we shall treat it as a constant to
simplify the presentation.

There are three input parameters, (a) n is the number of
points of the data points, (b) c is the approximation ratio
for (future) queries, and (c) T is the maximum number of
data points the query processing algorithm can access in the
worst case. The worst case I/O cost is also bounded by a
linear function of T (See Section 5.3.1.1). The default value
we used in our experimental evaluation is T = 0.005 · n,
which will result in an index whose size is linear in n.

Given the input parameters n, c, and T , we compute our
internal parameters: (a) m is the number of 2-stable random
projections we use, and this is also the dimensionality of the
projected space. (b) T ′ ≤ T is an improved worst case guar-
antee of the number of points accessed by our algorithms,
resulting from our automatic parameter optimization pro-
cedure. (c) p′τ > pτ is the threshold used in the early-
termination test. The detailed introduction to the compu-
tation of m, T ′ and p′τ values is deferred to Section 6.2,
yet no prior knowledge is needed to implement it following
the pseudo-code given in Algorithm 6. For example, with
T = 0.005 ·n and c = 4, we compute m = 6, T ′ = 0.00242 ·n
and p′τ = 0.1809.

5.2 Indexing
The indexing process essentially projects each point from

d-dimensional space into an m-dimensional space (with m
computed from the previous section), and indexes the n m-
dimensional points in a multi-dimensional index that sup-
ports incremental k-NN search.

To perform the projection, we first generate m 2-stable
random projection vector vi, where each of their entries are
randomly and independently sampled from N (0, 1). Given
a point o, we compute its projection πm(o) as πm(o) =
〈f1(o), f2(o), . . . , fm(o)〉, where fi(o) = ~vi · ~o.

We then use a multi-dimensional index to map the m-
dimensional projections to their corresponding point IDs.
The only requirement we need is that the index supports in-
cremental k-NN search, i.e., the (k+1)-th nearest data point
with respect to a query point can be computed efficiently af-
ter it returns the k-th nearest data point. In this paper, we
simply choose R-tree as the index. In the following, we refer
to such an index indexing n m-dimensional projections as
an SRS-tree.

5.3 Algorithms for c-ANN Queries
We first introduce the basic algorithm, named SRS-12, for

answering c-ANN queries, followed by its variants.4

5.3.1 The Basic Algorithm
We give the pseudo-code of SRS-12 in Algorithm 1, which

guarantees to return a c-ANN point with constant probabil-
ity of pτ . The algorithm takes as the T ′ and p′τ precomputed
from input parameters as discussed in Section 5.1. It then
calls the interal function incSearch. Shortly we will see other
variants of the algorithm by passing different parameter val-
ues to incSearch.

Now consider the incSearch function in Algorithm 2. Given
the query q, we firstly project q to the m-dimensional space

4The digital suffix of the algorithm names indicates if the
corresponding stopping conditions are used. Therefore,
SRS-12 means both conditions are used.

Algorithm 1: SRS-12(T, c, pτ )

(T ′, p′τ )← the values precomputed from (n, c, T );1

return incSearch(T ′, c, p′τ );2

Algorithm 2: incSearch(maxPts, c, threshold)

Input: maxPts is the maximum number of nearest points
to access in the projected space, c is the (desired)
approximation ratio, and threshold is the threshold of
early-termination condition.

Output: Returns a c-ANN point with probability at least pτ .
Compute πm(q) using the same m 2-stable random projection1

vectors as those used in indexing;
i← 1;2

omin ← nil; /* assume dist(nil) =∞ */;3

while i ≤ maxPtrs do4

/* get the i-NN point in m-dimensional space */
cand ← ID of the i-th nearest neighbor of πm(q);5

/* early-termination test */

if Ψm

(
c2·∆2

m(cand)

dist2(omin)

)
> threshold then

6

return omin;7

/* Update omin and i */
if dist(cand) ≤ dist(omin) then8

omin ← cand ;9

/* redo the test since omin has changed */

if Ψm

(
c2·∆2

m(cand)

dist2(omin)

)
> threshold then

10

return omin;11

i← i+ 1;12

return omin;13

using the same m 2-stable random projection vectors vi, and
calculate its projection πm(q). Then we perform an exact
k-NN query centered at πm(q) incrementally until we’ve ac-
cessed maxPts points. In each iteration, we obtain the i-th
nearest projections into the variable cand (Line 5). We com-
pute the distance of cand by fetching its coordinates from
the data file. We also maintain the data point, omin, that
has the smallest distance (in the d-dimensional space) to the
query so far. For each newly found cand point, we first check
if early-termination condition for the current omin point is
satisfied (Line 6). If the condition is satisfied, we simply
return omin as the answer. Otherwise, we compute the dis-
tance of cand to the query (in the d dimensional space), and
update omin accordingly (Lines 8–9). If omin has changed,
we perform the early-termination test again. By potentially
performing the same test twice inside a loop makes sure
that we do not waste additional I/Os and stop as early as
possible.

We note that the algorithm has two stopping conditions:
(1) the normal termination condition where it has accessed
maxPts data points, and (2) the early-termination condition
on Lines 6 and 10. We will show that the algorithm stops due
to either stopping condition will return a c-ANN point with
probability at least pτ in Sections 6.1 and 6.3, respectively.
These lead to the main theorem about the SRS-12 algorithm
(Theorem 1). The proof of success probability is given in
Section 6.4, and the cost part is given in Section 5.3.1.1.

Theorem 1. Algorithm 1 returns a c-ANN point with prob-
ability at least pτ = 1/2− 1/e. More specifically, if the algo-
rithm stops due to the early-termination condition, it returns
a c-ANN point with probability at least p′τ . It processes a query
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using γ1 ·n I/Os in the worst case, with an index of size γ2 ·n
pages, where γ1 � 1 and γ2 � 1 are two constants.

5.3.1.1 Index Space and Query Cost Analyses.
First, we analyze the space cost. In our SRS-tree, we in-

dex the m projections of n data points. The fan-out of the
R-tree internal nodes is f = B

2m+1
. Hence the total size of

the R-tree is nm
B−2m−1

pages.As will be shown in Corollary 3,

by choosing T = O(n), we have m = O(1). Therefore, the
space complexity of our index is O(n) disk pages, and the
constant hidden is a small value.

Next, we analyze the I/O cost for the query. In the worst
case, the algorithm stops by the normal termination condi-
tion. Given that maxPts ≤ T , the cost is upper bounded
by the sum of (1) executing a T -NN query on the SRS-tree,
and (2) the cost of fetching T points for distance compu-
tation. The cost of latter is at most T (assuming d ≤ B).
For the former cost, while there are cost models to predict
the T -NN search cost [43], we opt to use a crude worst-case
estimate here: we assume all the R-tree nodes are accessed.
Therefore, the total I/O costs is at most T + nm

B−2m−1
. With

T = O(n) and m = O(1), the worst case I/O cost is O(n),
and the constant hidden is a small value.

We also note that the above is the worst-case analysis.
In addition, the early-termination condition, if used, can be
shown to be both theoretically and empirically effective in
stopping the execution well before T points are examined.

For example, consider the typical setting where B = 1024,
d = 256, c = 4, m = 6, T = 0.00242 ·n, our index is 0.0059n
pages, and the query cost is at most 0.0084n.

5.3.2 Three Variants of SRS-12
The SRS-12 has several interesting variants that have dif-

ferent features or address different but related problems.
In the first variant, called SRS-1, we do not use the

early-termination tests in Lines 6–7 and Lines 10–11 of Al-
gorithm 2. For presentation simplicity, we achieve this by
passing a value greater than 1 to the threshold parameter
(see pseudo-code in Algorithm 3). Obviously, the algorithm
has the same success probability guarantee as Algorithm 1
due to Theorem 1. The average I/O cost will be higher (but
still bounded by Theorem 1), but the approximation ratio
will be better, as it accesses more points.

Algorithm 3: SRS-1(T, c)

threshold ← 1.6180; /* any number > 1 will do */;1

return incSearch(T ′, c, threshold);2

In the second variant, called SRS-2, we allow the algo-
rithm to potentially examine all the points. This can be
implemented as passing the n as the maxPts parameter into
the incSearch function. The algorithm can also take any
success probability p, and just pass it on to the threshold
parameter (see Algorithm 4). Theorem 2 shows that it re-
turns a c-ANN with probability at least p.

This algorithm is flexible in its parameter settings in that
it works with any p ∈ [0, 1) and c ≥ 1. Hence, a perhaps
surprising by-product is that we can find the nearest neigh-
bor point (NN) with constant probability by setting c = 1 ,
albeit the expected I/O cost is Ψm

(
Ψ−1
m (p) /c2

)
·n+ nm

B−2m−1
in the worst case. The actual number according to our ex-
perimental evaluation is much lower. For example, it uses

about 15% of the I/Os used by the linear scan method to
find the NN with about 71% probability in Section 8.6. Note
that LSH-based methods cannot handle the case of c = 1.

Algorithm 4: SRS-2(c, p)

return incSearch(n, c, p);1

Theorem 2. Algorithm 4 called with any c ≥ 1 and p ∈
[0, 1) returns a c-ANN point with probability at least p.

The third variant is to pass a value c′ ∈ [1, c) as the c
parameter when invoking the incSearch function. This in-
structs the algorithm to look for “better” quality approxi-
mate nearest neighbors. If the incSearch function stops due
to the early-termination test with c′, then we can assert the
returned point is a c′-ANN with probability at least p′τ ; oth-
erwise, we can only guarantee the approximation ratio to be
no more than c with probability pτ .This variant allows the
user to have fine-granularity control over the result quality
by paying additional query processing costs (i.e., I/Os). It
has a similar spirit as any-time algorithms [44], and may
be desirable in applications such as interactive sessions or
query processing with a hard time or I/O limit.

Algorithm 5: SRS-12+(T, c′, pτ )

(T ′, p′τ )← the values precomputed from (n, c, T );1

return incSearch(T ′, c′, p′τ );2

5.4 An Example
Consider the four points in 3-dimensional space in Table 4.

Let the query point be (0, 0, 0).

Table 4: Example (Data Points Ordered Based on
∆2
m(oi), πm(q) = (0, 0))

o2 o3 o1 o4

oi (1, 1, 1) (4, 2, 3) (1, 0, 1) (9, 2, 3)

πm(oi) (0.1, -0.2) (0.4, 0.5) (0.5, 0.5) (2.5, 2.5)

∆2
m(oi) 0.05 0.41 0.50 12.50

dist2(oi) 3 29 2 94

User A specifies c = 2 and T = 3. Assume that our pa-
rameter computation gives m = 2, T ′ = T and p′τ = 0.1809,
and we build the index with two 2-stable random projection
vectors (0.3,−0.4, 0.2) and (0.4,−0.7, 0.1). As we compute
πm(q) = (0, 0), the 3-NN points to πm(q) are [o2, o3, o1].

Algorithm 1 will check them in order, and check the early-
termination condition.
• In the first iteration, omin is nil, we initialize it to o2 with

the dist2(o2) = 3, and perform the early-termination test
of it. Since Ψm

(
22 · 0.05/3

)
= 0.0328, which is smaller

than p′τ . So the algorithm continues.
• In the second iteration, we use the current projection dis-

tance to test omin. Since Ψm
(
22 · 0.41/3

)
= 0.2392, which

is larger than p′τ . So the algorithm stops and returns the
current omin, i.e., o2, as the answer. In this case, it is
indeed a 2-ANN.

5.5 Answering c-k-ANN Queries with Partial
Guarantees

Our method can also be easily extended to support c-k-
ANN queries. The major changes to Algorithm 1 are:
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• The maxPts parameter passed in to the incSearch function
needs to be modified to maxPts + k − 1.
• In each iteration of the incSearch function (Algorithm 2),

we need to maintain the k points with the minimum dis-

tances to the query so far. Let the k-th such point be o
(k)
min,

then we use o
(k)
min, instead of omin, in the early-termination

tests.
Unlike existing algorithms that have no guarantee on the

result quality, we can guarantee that we return c-k-ANN
points under the condition specified in Theorem 3.

Theorem 3. If the modified version of Algorithm 1 (ac-
cording to the above description) stops due to the early-termination
condition, the returned k results are the c-k-ANN points with
probability at least pτ .

6. THEORETICAL ANALYSIS
In this section, we illustrate the underlying reasons that

our proposed algorithms can achieve constant success prob-
abilities, and how internal parameters are computed. Note
that all the probabilities are with respect to the random
choices of projections.

6.1 Normal Stopping Condition of Algorithm 1

6.1.1 Probability Distribution Function of Projected
Distances

Lemma 2.
∆2

m(o)

dist2(o)
follows the χ2(m) distribution.

Proof. By definition, ∆2
m(o) =

∑m
i=1(fi(o) − fi(q))

2.
The lemma follows by a simple derivation based on Lemma 1.

Corollary 1. For any x ≥ 0 and o, we have

Pr [∆m(o) ≤ x] = Ψm
(

x2

dist2(o)

)
.

Corollary 2 is the key to our methods. For any r > 0, c >
1, we call data points within distance r from q “near points”,
and those beyond distance c · r “far points”. Then for any
κ > 0, the corollary bounds the probability of near and far
points whose projected distances to the query are within κ·r.

Corollary 2. Given approximation ratio c > 1 and dis-
tance threshold r (in d-dimensional space), for any κ ≥ 0, we
define the following two events for any o ∈ D:
• E1: ∆m(o) ≤ κ · r, given dist(o) ≤ r.
• E2: ∆m(o) ≤ κ · r, given dist(o) > c · r.
Then we have

Pr [E1] ≥ Ψm
(
κ2) and Pr [E2] < Ψm

(
κ2/c2

)
Figure 2 gives an example. We show the probabilistic

distribution function (pdf) of the projected distance of any
near point (e.g., a), as well as that of any far point (e.g.,
b). With a carefully chosen κ, we make a cut at κ · r, and
the areas under the pdf of the two curves to the left of the
cut-off line are the total probability mess, which are at least
Ψm
(
κ2
)

and at most Ψm
(
κ2/c2

)
according to Corollary 2.

6.1.2 Proof of the Normal Stopping Condition

Theorem 4. Assume Algorithm 1 with c > 1 stops due
to the normal condition, i.e., returns omin whose distance is
among the nearest T point projections. With carefully chosen
m, omin is a c-ANN of q with probability probability at least
1/2− 1/e.

a

b

q

r

c · r

distance to πm(q)

probability

m-dimensional spaced-dimensional space

≥ Ψm(κ2)

< Ψm(κ2/c2)

most likely mapping

Figure 2: Illustration of Corollary 2 (Best viewed in
color)

Proof. Recall that o∗ refers to the nearest point. Let
r∗ = dist(o∗). We choose a constant κ whose value is to be
specified at the end of this proof. According to Corollary 2,
we have

Pr [E1] ≥ Ψm
(
κ2) and Pr [E2] < Ψm

(
κ2/c2

)
We define the additional event E2a as follows:
• E2a: |{∆m(o) ≤ κ · r∗ | dist(o) > c · r∗ }| < T
Since there are at most n points whose distances are out-
side c · r∗, using Markov’s inequality, we have Pr [E2a] >

1− Ψm(κ2/c2)·n
T

.
In the following, we only consider the case when both

Events E1 and E2a are true. This occurs with probability
at least p := Pr [E1] + Pr [E2a] − 1. We will show at the
end of the proof that, with appropriate choices of m and κ,
p ≥ 1/2− 1/e.

Let Algorithm 1 access the first T points with respect to
their projection distance to πm(q). Denote these points as
o1, . . . , oT . There are only two possible cases regarding the
relationship between ∆m(oT ) and κ · r∗:
• Case A: ∆m(oT ) > κ · r∗. Since E1 is true, and given
dist(o∗) = r∗, we know ∆m(o∗) ≤ κ · r∗. Based on the
two inequalities above, we have ∆m(o∗) < ∆m(oT ). This
means Algorithm 1 must have accessed o∗, and hence
omin = o∗ and the algorithm returns the NN of the query.
• Case B: ∆m(oT ) ≤ κ · r∗. Since E2a is true, and given

above, we know that

|{∆m(o) ≤ ∆m(oT ) | dist(o) > c · r∗ }| < T

Since the algorithm has accessed exactly T points oi (1 ≤
i ≤ T ) with ∆m(oi) ≤ ∆m(oT ), they must include at least
one point oj which is from the region where dist(oj) ≤ c·r.
Hence dist(omin) ≤ dist(oj) ≤ c · r, and the algorithm re-
turns a c-ANN point.

Therefore, in both cases, omin is a c-ANN of q.
Finally, we only need to show that for any c > 1 and

1 ≤ T ≤ n, we can guarantee Pr [E1] + Pr [E2a] − 1 >
1/2− 1/e. Let X be a random variable following the χ2(m)
distribution, we have the following tail inequalities [29]

Pr
[
X −m ≥ 2

√
t ·m+ 2t

]
≤ exp(−t)

Pr
[
m−X ≥ 2

√
t ·m

]
≤ exp(−t).

Hence, for any T , let ε := min( T
2n
, 1/e), t = ln (1/ε), y1 =

m+ 2
√
t ·m+ 2t, and y2 = m− 2

√
t ·m. Ψm(y1) ≥ 1− ε ≥

1 − 1/e and Ψm(y2) ≤ ε. Now we only need to select a m,
such that y1

y2
≤ c2. By solving the inequality, we can show

that there is always a positive m0 = O(log(n/T )) such that
the above inequality holds for any integer m ≥ m0, provided
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that c > 1. Hence, by choosing m = dmoe and κ =
√
y2 · c,

we have Pr [E1] + Pr [E2a]− 1 > 1/2− 1/e.

Corollary 3. m = Θ(log(n/T )). Specifically, when T =
O(n), m = O(1).

6.2 Computing Parameter Values
In order to find a set of feasible parameters for our method,

the first step is to find the smallest m value that satisfies the
two constraints (so that both events E1 and E2a defined in
the proof in Section 6.1 are true). It can be shown that m is

min{ i ∈ Z+ | ∃κ,Ψi
(
κ2) ≥ 1− 1/e ∧Ψi

(
κ2/c2

)
≤ T/(2n) }.

We give the pseudo-code in Algorithm 6. We perform the
search from m = 1 going upwards. For each m value consid-
ered, we use the second constraint to find the κ value and
then test whether the first constraint is satisfied. We stop
at the first m value where both constraints are satisfied.

Consider the m value chosen above, and it corresponds to
a κ value. It is likely that the first probability (i.e., Ψm

(
κ2
)
)

is more than 1− 1/e. A further optimization (Lines 6–9) is
is to set κ to Ψ−1

m (1− 1/e), and this gives us a smaller value
for T , and this is the T ′ value we return and the value to be
fed into Algorithm 1.

Finally we also need to compute p′τ value, which can be
shown to be

min{ p ∈ [0, 1] | p−Ψm
(
Ψ−1
m (p) /c2

)
· n/T ≥ 1/2− 1/e }.

The above optimization problem can be solved numerically
(we use MATLAB), and is referred to as calcThreshold in
Algorithm 6.

Algorithm 6: Calc-m(T, c)

m← 1, T ′ ← T ;1

while true do2

κ2 ← Ψ−1
m (T/(2n)) · c2;3

p1 ← Ψ−1
m

(
κ2

)
;4

if p1 = 1− 1/e then break;5

else if p1 > 1− 1/e then6

κ2 ← Ψ−1
m (1− 1/e);7

T ′ ← n ·Ψm
(
κ2/c2

)
/2;8

break;9

m← m+ 1;10

p′τ ← calcThreshold(pτ );11

return (m,T ′, p′τ );12

6.3 Early-Termination Condition
We will consider the success probability when Algorithm 1

exits because of the early-termination condition is true.

Theorem 5. If Algorithm 1 stops due to the early-termination
condition, it returns a c-ANN with probability at least p′τ .

Proof. Let the early-termination condition becomes true
at the i-th iteration, and omin is the point with the minimum
distance among all the points examined so far by the algo-
rithm. We consider the relationship between ∆m(o∗) and
∆m(oi):

1. If ∆m(o∗) ≤ ∆m(oi), then o∗ has been accessed, thus the
termination condition is always correct.

2. If ∆m(o∗) > ∆m(oi), then the algorithm may produce
incorrect result if omin may not be a c-ANN, i.e., dist(omin) >

c · dist(o∗)). Nevertheless, the probability of such prob-
lematic cases can be bounded (thanks to Corollary 1) as:

Pr [∆m(o∗) > ∆m(oi)] = 1−Ψm

(
∆2
m(oi)

dist2(o∗)

)
< 1−Ψm

(
c2 ·∆2

m(oi)

dist2(omin)

)
≤ 1− p′τ .

Hence, the theorem follows.

Note that Theorem 2 follows from Theorem 5.

6.4 Main Theorem about Algorithm 1
Proof (sketch). Theorem 1 can be proved by consider-

ing only the case when Algorithm 1 stops due to the early-
termination condition.

7. DISCUSSIONS
In this section, we provide more discussions on our meth-

ods and differentiate them with existing ones.

7.1 More on Our Methods
Update. It is obvious that our methods support efficient
update as our index is just an R-tree. In addition, since our
index is typically very small, updates cost is accordingly low.

Aboutm. Our method essentially reduces a c-ANN query in
a d-dimensional space into a T -NN query in a m-dimensional
space. Our experimental evaluation demonstrates that cur-
rent solution with R-tree and m = 6 seems to be sufficient
for a large spectrum of settings. Note also that due to the
tiny size of our index (See Table 5 for example), it is likely
that a large part of the index, if not the entire index, can
be loaded into the main memory, in a way reminiscent of
the VA-File [45]. Not only does this save many I/Os, it
also enables us to exploit recent development for efficient
in-memory indexes for low to medium dimensional spaces
(e.g., Cover Tree [6]) and indexes exploiting low intrinsic
dimensionalities (e.g., RBC [9]), such that the in-memory
processing can be performed efficiently.

7.2 Comparison with Existing Methods
Both LSB-forest [42] and C2LSH [17] are designed to an-

swer c-ANN queries with an small index in external memory.
Compared with them, our method uses a much smaller in-

dex (typically 2–5% of C2LSH and at least 2 orders of mag-
nitude smaller than LSB-forest in our experiments), while
achieving the same error bound (i.e., c) and confidence (i.e.,
pτ ). This is because LSB-forest uses O((dn)1.5) space to

achieve the query complexity of O((dn)1/2) I/Os. C2LSH
uses O(n logn) space to achieve the query complexity of
O(n logn) I/Os, as in its default setting, β = O(1/n). If we
set β = O(1) (as we did in the experiments), then C2LSH
can useO(n) space with query complexityO(n), hence match-
ing the complexity of our methods. However, the constants
for C2LSH are much larger than ours. For example, when
set to access at most 0.00242n points during the query pro-
cessing, our methods use m = 6 projections while C2LSH
needs to use m = 215 projections. There are at least two
reasons: (1) C2LSH applies quantization for the projections
(into buckets), hence needs more projections to distinguish
points falling into the same bucket. (2) Chernoff tail bounds
are applied to derive m while we use the c.d.f. of the χ2 dis-
tribution to compute m exactly.
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Furthermore, our method is more flexible in the following
aspects.

• Both LSB-forest and C2LSH need preprocessing to scale
floating numbers to integers; this is not required by our
method.
• Both LSB-forest and C2LSH can only work with c = i2,

for integer i ≥ 2. Hence, the smallest such c is 4. They
need to make O(1/ε) copies to handle c = 2+ε. Therefore,
they cannot handle c ≤ 2. In contrast, our methods work
with any c > 1, and SRS-2 can handle the case of c = 1.

Part of our method is similar to the proposal in [20]. How-
ever, there are a few important differences:

• To support c-ANN queries, [20] needs to use a small ε <
c−1
c+1

. This entailsm = C ·log(n)/ε2, for C at least 4 [13]. It
is easy to verify that this number is still too large to admit
an efficient indexing method to answer exact NN queries,
and does not scale with n. By using k-NN queries and
computing the tail probabilities exactly rather than using
tail bounds, we can drastically reduce the resulting m to a
small constant that admits reasonably efficient indexing.
• Our early-termination condition fully exploits the knowl-

edge of the distribution of the projected distances, and it
is both novel and effective.

8. EXPERIMENTAL EVALUATION
We report experimental results in this section.

8.1 Experiment Setup
We consider the state-of-the-art methods that have theo-

retical guarantees and can work on external memory. Hence,
the following algorithms are used.

• We use the four algorithms proposed in this paper. We
mainly use SRS-12 and SRS-1 for c-ANN queries, along
with SRS-2 for ANN queries (i.e., c = 1), and also evalu-
ate SRS-12+ for varying degrees of desirable approxima-
tion ratios. m is set to 6 in all the experiments.
• LSB-forest is a state-of-the-art method for c-ANN queries

for high-dimensional data with guarantees of 1/2−1/e [42].
Note that LSB-forest has been shown to outperform ear-
lier approaches such as iDistance[22] and MedRank [16].
Therefore, we do not compare with them here.
• C2LSH [17] is another recent solution with theoretical

guarantee. We mainly consider C2LSH without its opti-
mization as otherwise it loses the theoretical guarantees.5

We do consider C2LSH with c = 9 and its optimization
(denoted as C2LSH∗) on Tiny dataset.

To compare these algorithms fairly, the success probabil-
ity (i.e., pτ ) of all algorithms is set to be 1/2−1/e. The ap-
proximation ratio c is set to 4, which is the smallest c C2LSH
and LSB-forest can support. We use the C++ source codes
provided by the authors of [42] and [17]. Our algorithms
were implemented in C++. All programs were complied with
gcc 4.7 with -O3. All experiments were conducted on a
PC with Intel Xeon X3330@2.66GHz, 4GB memory, 500GB
hard disk, running Linux 2.6.

We use five publicly available real-world datasets. We set
page size B according to what LSB-forest requires. For each
dataset, we first remove the duplicated points, then reserve
100 random data points as queries, finally, we scale up values
to integers as required by LSH-forest and C2LSH.

5The optimization substantially lowers the count threshold.
While P1 still holds, P2 does not. Also see Section 8.5.

• Audio has about 0.05 million 192-dimensional audio fea-
ture vectors extract by the Marsyas library from the DARPA
TIMIT audio speech database.6 B is set to be 1,024.
• SUN contains about 0.08 million 512-dimensional GIST

features of images.7 B is set to 2,048.
• Enron origins from a collection of emails.8 We extract

bi-grams and form feature vectors of 1,369 dimensions. B
is set to 4,096.
• Tiny contains over 8 million 384-dimensional GIST fea-

ture vectors.9 B is set to 2,048.
• ANN SIFT1B contains nearly 1 billion 128-dimension

SIFT feature vector from the ANN SIFT1B dataset10. B
is set to 2,048.

Dataset statistics are listed on the LHS of Table 5.
We evaluate the following metrics.

• We follow previous methods [42, 17] and measure the I/O
costs of algorithms. Since our index is very small, we de-
liberately turn off buffering in all experiments.
• We use the overall ratio defined in [42] to measure the

accuracy of the results. For a c-k-ANN query, it is defined
as 1

k

∑k
i=1(dist(oi)/dist(o

∗
i )), where oi is the i-th returned

point, and o∗i is the true i-th nearest point.
• We measure the sizes of indexes created by the algorithms.

As each B+-tree in the LSB-forest is a clustered index, we
discount the data size from its index size.
• We measure the empirical success probability an algo-

rithm. We run the algorithm 100 times for the same query
but with different indexes built with random seeds, and
measure the percentage of times the point return by the
algorithm is indeed within approximation ratio c.

I/O costs and overall ratios are averaged over all queries.

8.2 Index Size and Indexing Time
We list the index sizes of all algorithms (our algorithms

use the same SRS index) on the RHS of Table 5. We can
see that SRS is the smallest by far: LSB-forest and C2LSH
are 729–128,850 times and 22-64 times larger than SRS, re-
spectively.

This is mainly because of the number of projections used.
SRS uses only 6 projections, while C2LSH uses 215 random
projections, and LSB-forest needs 100–1247 rounds of 19–29
projections. Also note that the index size of LSB-forest is
especially large when d or n is large, as its index size grows
at the rate of O(d1.5n1.5). In contrast, C2LSH and SRS are
independent of d, and grow only linearly with n.

Due to the implementation differences, we are not able
to fairly compare indexing time. Nevertheless, given the
huge difference in index sizes, both theoretically and empir-
ically, the indexing time of SRS is the smallest, followed by
C2LSH, and then LSB-forest. For example, on the 8 million
Tiny dataset, LSB-forest will take 48 hours to build just a
single LSB-tree, while C2LSH takes about 4 hours, and SRS
takes less than 2 hours.

8.3 I/O Cost
We evaluate the I/O costs for all algorithms for c-k-ANN

queries with k from 1 to 100. The results are shown in Fig-
ures 3(a)-3(c) and 3(g). We observe that

6http://www.cs.princeton.edu/cass/audio.tar.gz
7http://groups.csail.mit.edu/vision/SUN/
8http://www.cs.cmu.edu/~enron/
9http://horatio.cs.nyu.edu/mit/tiny/data/

10http://corpus-texmex.irisa.fr
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Table 5: Statistics of the Datasets and Index Sizes (in Megabytes) (Italic numbers in parentheses are
conservative estimates, as the indexes are too large to be built on the PC used in the experiment)

Statistics Index Sizes (MB)

Dataset n d Domain Size Data Size LSB-forest C2LSH SRS

Small

Audio 54,287 192 [0, 100,000] 39.8 1,458.7 127.4 2.0

SUN 80,006 512 [0, 100,000] 156.3 12,162.8 185.0 2.9

Enron 95,863 1,369 [0, 10,000] 500.8 12,745.0 85.9 3.9

Medium Tiny 8,288,062 384 [0, 100,000] 12,140.7 (39,982,311.6 ) 7,851.2 310.3

Large ANN SIFT1B 999,494,170 128 [0, 255] 122,008.6 (12,535,703,042.7 ) (819,745.1 ) 37,117.1
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(d) Audio, Overall Ratio
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(e) SUN, Overall Ratio
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(f) Enron, Overall Ratio
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(g) Tiny, I/O Cost
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(k) ANN Search, Success Probability
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Figure 3: Experiment Results

• We first consider the first three small datasets. When
k = 1, SRS-12 always requires the smallest I/Os; its I/O
cost is only 2.5%–18.5% of LSB-forest and 1.8%–4.0%
of C2LSH. This is due to the effectiveness of the early-
termination test. Even when the early-termination con-
dition is disabled (i.e., SRS-1), the I/O cost is still better
than other algorithms, e.g., I/O cost of SRS-1 is 49.3%–
72.0% of LSB-forest and 15.4%–42.1% of C2LSH.

LSB-forest typically uses slightly more I/Os than SRS-
1, and C2LSH always has the largest I/O cost by far. This
is consistent with the original report [17] when C2LSH’s
optimization is turned off.

• Consider the large Tiny dataset (Figure 3(g)). We cannot
run LSB-forest to completion, as it requires 1,247 LSB-
tree indexes, which is about 40TB. Instead, we report ex-
trapolated results based on 34 LSB-trees here. We also in-
clude C2LSH∗, which is the C2LSH algorithm with c = 9
and optimization on.

The results are slightly different. I/O cost of SRS-
12 is still the minimum, followed by LSB-forest, SRS-1,
C2LSH∗, and finally C2LSH. LSB-forest works well as its
I/O cost is O(

√
n) (at the expense of O(n3/2) index size),

while our SRS-1’s I/O cost is linear in n. Hence, when n
is sufficiently large, LSB-forest uses relatively fewer I/Os.
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Note that the dilemma is that a large n also means LSB-
forest may not be able to be built as its index is too large.

C2LSH uses much more I/Os than SRS-1, which uses
more I/Os than C2LSH∗. It shows that C2LSH needs
more I/Os to achieve the same guarantee as our methods.
• When k increases, the I/O costs of LSB-forest, C2LSH,

and SRS-1 all rise gently, with SRS-12 having the steepest
slope. This is because (i) SRS-12 has the lowest starting
point, as it uses only a tiny amount of I/Os when k = 1.
(ii) SRS-12 has to perform more rounds of incremental k-
NN search on aR-tree, and this usually requires additional
I/Os for the internal R-tree pages. This also explains the
growth trend for SRS-1 too. Nevertheless, even with k =
100, SRS-12 still uses the minimum amount of I/Os among
all the algorithms, on both small and large datasets.

8.4 Overall Ratio
We also evaluate the overall ratios of c-k-ANN queries

for all algorithms with varying k. The results are shown
in Figures 3(d)-3(f) and 3(j), and they should be viewed in
conjunction with their corresponding I/O plots (i.e., figures
above). We can make the following observations:
• Firstly, all algorithms return high-quality results, with ap-

proximation ratio much lower than c = 4. C2LSH and
SRS-1 always have the best ratios, which are always below
1.2. They perform better than LSB-forest especially when
k is small (e.g., 1.089 vs. 1.339 on SUN when k = 1). SRS-
12’s ratio is usually higher than LSB-forest when k = 1,
but they become comparable with large k; it even outper-
forms LSB-forest under some settings (e.g., 1.218 vs. 1.226
on Enron when k = 100).

We can see clear trade-offs between the overall ratio and
the I/O cost for all algorithms. The reason why C2LSH
has the best ratio is because it requires an extraordinary
amount of I/Os. Notably, SRS-1 uses a small fraction of
I/Os of C2LSH (e.g., 1/5 on SUN), while achieves com-
parable qualities (e.g., 1.089 vs. 1.024 on SUN), not to
mention its small index size. SRS-12 is designed to stop
as soon as a c-ANN point is found with certain confidence.
Note that it can be tuned to return a better quality result
by its variant SRS-12+ with a custom c′, which will be
discussed in Section 8.7.
• In terms of trends, the ratios of SRS-1 and C2LSH grow

with increasing k. This is because both algorithms return
the best k points within a candidate set with size approx-
imately T + k− 1. When k increases, only few additional
candidates are checked, hence the overall ratio increases.

In contrast, the ratios of SRS-12 and LSB-forest de-
crease with k. Because they are usually stopped by their
respective early-termination conditions. Thus with a large
k, more points are accessed and hence the ratios improve.
• On the large Tiny dataset, LSB-forest has the worst ra-

tio, as the ratio is the minimum among 34 LSB-trees (out
of the 1247 required). SRS-12 has reasonable ratio as it
is designed to stop as early as possible. The other three
algorithms all have good ratios below 1.1. C2LSH has the
best ratio, followed by SRS-1, and then C2LSH∗.

8.5 Empirical Success Probability
We create a hard dataset with n = 10, 000 and d = 128 to

evaluate the empirical success probability for c-ANN query
using different algorithms. We fix the query q and one point
with distance to q as u, while the rest points at distance
(c+ ε) · u to q with a small ε. We choose c = 4.

Those algorithms with guarantees all achieve much higher
success probabilities than the theoretical bound. For exam-
ple, SRS-1 achieves the highest success probability which is
100%, and SRS-12 achieves the lowest which is 78%. Algo-
rithms without guarantees has much lower success probabil-
ity. For example, C2LSH∗ only achieves 29%.

8.6 Approximate NN Search with SRS-2

SRS-2 can return c-ANN for any c ≥ 1 and desired success
probability 1 > pτ > 0. Here we only focus on the inter-
esting and also the hardest case of approximate NN search
by setting c = 1 and varying pτ . We show the results on all
datasets in Figures 3(h) and 3(k). We can observe that

• The resulting success probability of our algorithm is al-
ways larger than the user-given threshold pτ , thanks to
our theoretical guarantees. This also shows (together with
Section 8.5) that the actual performances of our algo-
rithms are usually better than the worst-case lower bound.
• We measure the I/O cost ratio, defined as the I/O cost

of our algorithm over that of the brute-force, linear scan
algorithm. SRS-2 uses fewer I/Os than the linear scan
algorithm on all the datasets, especially when pτ is low.
For example, on the Audio dataset, by using only 14.9%
(resp. 61.9%) of the I/Os of linear scan, it returns the NN
with 70.9% (resp. 99.7%) probability.

8.7 Tuning Approximation Ratio by SRS-12+

We evaluate the SRS-12+ algorithm which essentially is
the SRS-12 but with an additional “desirable” approxima-
tion ratio c′. We show the results only on the Audio dataset
in Figures 3(i) and 3(l), results on other datasets are similar.

We can observe that giving an increasingly smaller c′, the
algorithm returns better quality results (note that for c′ = 4,
it is essentially identical to SRS-12). In fact, the top-1 re-
sult always has a better approximation ratio than the given
c′. E.g., when c′ = 1.6, the result is of ratio 1.239; when
c′ = 1.2, the result is of ratio 1.159. The algorithm achieves
this by using a more stringest early-termination test, hence
it entails accessing more points. The I/O cost of SRS-2 in-
creases when c′ decreases.

8.8 Large Dataset
We run our algorithms on the large ANN SIFT1B dataset

with different scales to evaluate performance on non-trivial
sized datasets (See Table 6 for results). Unfortunately, at
such a scale, LSB-forest simply cannot run, as a single LSB-
tree index may require 2.3TB space. C2LSH’s implementa-
tion requires at least 476.6GB memory to run, so we just
extrapolate its performance using smaller n from 0.1M–1M.
The only “reasonable” algorithm is C2LSH∗, whose over-
all ratio is about 1.145, and I/O cost on ANN SIFT1B is
2,951,666.

Our algorithms scales linearly with n. SRS-12 uses fewest
number of I/Os, and SRS-1 returns the best quality results,
though with the largest number of I/Os (which is about 15%
of the cost of linear scan). As designed, SRS-12+ achieves a
good and tunable balance between cost and quality.

Table 6: Our Algorithms on ANN SIFT1B
Alg. SRS-12 SRS-12+ (c′ = 1.5) SRS-1
Size Ratio I/O Ratio I/O Ratio I/O

500M 1.330 4,164 1.123 113,188 1.018 1,185,795
750M 1.344 5,765 1.126 160,922 1.017 1,782,967

1000M 1.343 7,096 1.127 204,907 1.019 2,452,974
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9. CONCLUSIONS
In this paper, we propose several simple yet effective meth-

ods to process c-approximate nearest neighbor queries for
high-dimensional points with provable guarantees. We de-
signed four algorithms with various features, all operating
on a tiny index. We demonstrate superior performance
against the state-of-the-art LSH-based methods in our ex-
periments, and the fact our methods scale well to 1 billion
high-dimensional points using just a single commodity PC.
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