
Real-time Targeted Influence Maximization for Online
Advertisements

Yuchen Li Dongxiang Zhang Kian-Lee Tan
Department of Computer Science

School of Computing, National University of Singapore

{liyuchen,zhangdo,tankl}@comp.nus.edu.sg

ABSTRACT
Advertising in social network has become a multi-billion-
dollar industry. A main challenge is to identify key in-
fluencers who can effectively contribute to the dissemina-
tion of information. Although the influence maximization
problem, which finds a seed set of k most influential users
based on certain propagation models, has been well stud-
ied, it is not target-aware and cannot be directly applied
to online advertising. In this paper, we propose a new
problem, named Keyword-Based Targeted Influence Max-
imization (KB-TIM), to find a seed set that maximizes the
expected influence over users who are relevant to a given
advertisement. To solve the problem, we propose a sam-
pling technique based on weighted reverse influence set and
achieve an approximation ratio of (1−1/e−ε). To meet the
instant-speed requirement, we propose two disk-based solu-
tions that improve the query processing time by two orders
of magnitude over the state-of-the-art solutions, while keep-
ing the theoretical bound. Experiments conducted on two
real social networks confirm our theoretical findings as well
as the efficiency. Given an advertisement with 5 keywords,
it takes only 2 seconds to find the most influential users in
a social network with billions of edges.

1. INTRODUCTION
Many companies have started to use social network as

the main advertising tool to precisely target the customers.
Such trends brought Facebook a total advertising revenue of
4.28 Billion dollars in 20121. Influence Maximization (IM)
is a key algorithmic problem behind online viral market-
ing. By word-of-mouth propagation effect among friends, it
finds a seed set of k users to maximize the expected influence
among all the users in a social network. Since the problem
is NP-Hard, Kempe et al. [15] first proposed a greedy al-
gorithm to solve the IM problem, which returns a seed set

1http://www.engadget.com/2013/01/30/facebook-2012-q4-
earnings/

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 10
Copyright 2015 VLDB Endowment 2150-8097/15/06.

with a (1−1/e−ε) approximation ratio to the optimal solu-
tion. However, the greedy solution still takes a prohibitively
long time to finish. To address the efficiency issue, a state-
of-the-art solution, named Reverse Influence Set (RIS), was
proposed to support (1 − 1/e − ε) approximation ratio [2,
21]. The method uses random sampling and can support
various propagation models that have been proposed. De-
spite the performance improvement, it still takes nearly an
hour to find the most influential users in a social network
with millions of nodes.

There have been some efforts to extend the influence max-
imization problem to topic-aware IM [1, 13, 4, 18, 3] so as
to support online advertisements. The propagation model
is required to take into account influence probability based
on different topics. However, all of the proposed techniques
suffer from the efficiency issue. Their models require offline
training of the propagation probability w.r.t. different top-
ics, which is not scalable to the graph size and number of
topics. The most recent work [3] was reported to handle
a graph with 4 million vertices and 10 topics only. In ad-
dition, the proposed solutions are all heuristic and none of
them provides theoretical guarantee on the quality of the
results.

To bridge the gap, we propose a new Keyword-Based Tar-
geted Influence Maximization (KB-TIM) query for online
targeted advertising. The query finds a seed set that maxi-
mizes the expected influence over users who are relevant to a
given advertisement. In other words, the expected influence
only incorporates those users interested in the advertisement
as targeted customers. To solve the problem, we propose a
weighted sampling technique based on RIS and achieve an
approximation ratio of (1− 1/e− ε). However, the method
needs to generate hundreds of thousands of random sample
sets to guarantee the theoretical bound and requires inten-
sive computation overhead. To meet the real-time require-
ment, we propose two disk-based solutions, RR and IRR,
that improve the query processing performance. The idea is
to push the sampling procedure from online to offline and
build index on the random sample sets for each keyword.
During query processing, RR directly loads all the related
random sample sets into memory and uses the greedy al-
gorithm on the maximum coverage problem [22] to find the
top-k seed users. IRR futher improves over RR by incremen-
tally loading the most promising RR sets into memory and
adopts the top-k aggregation strategy to save computation
costs. Our contributions can be summarized as follows:

1. We propose a KB-TIM query to support scalable social
IM in online advertising platforms.

1070

2. We propose a weighted sampling technique, i.e. WRIS,
based on RIS and show that it has an approximation
ratio of (1− 1/e− ε) to the optimal solution to a KB-
TIM query.

3. To meet the instant-speed requirement, we propose
two disk-based solutions that improve the running time
by two orders of magnitude over WRIS, while preserv-
ing the theoretical bound.

4. We evaluate the performance on real social network
with billions of edges and hundreds of topics. The ex-
periment results confirm our theoretical findings and
show that the two disk-based methods significantly
outperform the weighted online sampling.

We present the preliminaries in Section 2 and the problem
definition of KB-TIM query in Section 3. We extend the
RIS method and propose WRIS in Section 3.2. Then two
disk-based methods, RR and IRR, are presented in Sections
4 and 5 respectively. We report the experimental results in
Section 6. Subsequently, various IM techniques are reviewed
in Section 7. Finally we conclude the paper in Section 8.

2. PRELIMINARY
In this section, we review the classic influence maximiza-

tion problem as well as the state-of-the-art solutions to the
problem.

2.1 Influence Maximization (IM)
Consider a directed graph G = (V,E) where vertices in V

are users and edges in E capture the friendships or follow
relationships in a social network. To model the propagation
process, a number of methods such as independent cascade
(IC) model [9], linear threshold (LT) model [11] and general
triggering model [15] have been proposed. In this paper, we
adopt IC model because it has been widely used in previous
work [21, 5, 6, 19] 2.

Under the IC model, each directed edge e = (u, v) is as-
sociated with an influence probability p(e) to measure the
social impact from user u to user v. This probability is nor-
mally set to p(e) = 1

Nv
, where Nv is the in-degree of v 3.

Each user is either in an “active” state or “inactive” state,
and an active user can activate his inactive neighbors with
probability p(e). Once a user is activated, his (active) state
remains unchanged. Initially, a set of seed users S are se-
lected to influence other people and their states are set to
be active at time step 0. Then, each active user at time step
i will activate the neighbors that are inactive at time step
i+ 1 with probability p(e). Note that each user u has only
one chance to activate his neighbors. In other words, we flip
a coin with P (head) = p(e) and if head occurs, v is activated
by u. Otherwise, v can only be activated by other incom-
ing neighbors except u. This procedure terminates when no
more users can be activated.

Let I(S) denote the set of nodes activated by the seeds
S in an instance of the influence propagation process. Intu-
itively, the IM problem finds a seed set S∗ with k users to
maximize the expected number of users influenced by a seed
set S, denoted by E[I(S)], over the social network and can
be formally defined as follows:

2Note that the methods proposed in this paper can support
LT and general triggering model as well.
3Our proposed methods are also independent of how p(e) is
set.

a

b d

e

c

1.0

0.5

0.5

0.5

0.5

Topic Preference

music 0.3

book 0.3

sport 0.4

f

Topic Preference

music 0.5

book 0.3

car 0.2

0.5

Topic Preference

car 1.0

Topic Preference

music 0.5

book 0.5

Topic Preference

music 0.6

book 0.2

sport 0.1

car 0.1

Topic Preference

sport 0.2

book 0.2

travel 0.6

g
Topic Preference

book 1.0

0.5

Figure 1: the social network adopted in the paper.

Definition 1 (IM). Let OPTk denote the maximum
expected influence spread of any node set with size k, i.e.
OPTk = maxS⊆V,|S|=k E[I(S)]. The IM problem finds an
optimal seed set S∗ with k users such that E[I(S∗)] = OPTk.

Due to the linearity of expectation, E[I(S)] can also be
expressed as E[I(S)] =

∑
v∈V p(S 7→ v) where p(S 7→ v)

is the probability with which a user v is activated by seed
set S. The following is an example of how to compute the
expected influence given a seed set and how to retrieve the
optimal influential seed set on a social graph.

Example 1. In Figure 1, we have a social network with
7 users {a, b, c, d, e, f, g} and the edge value is the influence
probability from one user to his neighbor. Let us assume,
at time step 0, the seed set S contains two nodes e and f ,
i.e. S = {e, f}. Suppose after flipping the coin in step 1,
nodes (a, c) are activated by e and node d is activated by f ,
but in step 2, node a fails to activate b. Then, the process
terminates because no more nodes can be further activated
and I(S) = {a, c, d, e, f}.

Although evaluating p(S 7→ v) has been proven to be #P
hard in [5], the calculation of the probability is feasible in
this small example graph. Take p({e, g} 7→ b) as an exam-
ple: since p(e 7→ b) = 0.5 and p(g 7→ b) = 0.5 and each ac-
tivated node has only one chance to activate the neighbors,
the probability of b being activated by {e, g} is p({e, g} 7→
b) = 1− [1− p(e 7→ b)] · [1− p(g 7→ b)] = 0.75. We can then
find, among all possible seed sets with two nodes, the optimal
initial set is S∗ = {e, g} for the IM problem and E[I(S∗)]
=
∑
v∈V p(S

∗ 7→ v) = 1+0.75+0.6875+0.375+1+0+1 =
4.8125.

2.2 Reverse Influence Set (RIS)
The state-of-the-art solutions to the IM problem [2, 21]

are based on a sampling technique called Reverse Influence
Set (RIS). To facilitate the understanding of RIS, we first
introduce the concepts of the Reverse Reachable (RR) Set
and Random RR Set [2, 21]:

Definition 2. Let G′ denote a sub-graph of G generated
by removing any edge e ∈ E with probability 1 − p(e). The
Reverse Reachable (RR) Set for vertex v contains all the
vertices in G′ that can reach v. Then, a random RR set

1071

is generated on an instance of G′ sampled from G and v is
randomly picked from V .

Intuitively, the random RR set generated from a random
user v contains the users who can influence v. By building
multiple random RR sets on different random users, if a user
u has a great impact on other people, u will have a higher
probability to appear in these random RR sets. Similarly,
if S∗ covers most of the RR sets, S∗ is likely to maximize
E[I(S))]. Based on this idea, the query processing frame-
work of RIS works as follows:

1. Generate θ random RR sets from G.
2. Use the standard greedy algorithm on the maximum

coverage problem [22] to select k users to cover the
maximum number of RR sets generated above. The
result set S∗ is a (1 − 1/e − ε)-approximate solution
for the IM problem.

In [21], it was proved that when θ is sufficiently large, RIS
returns near-optimal results with high probability:

Theorem 1 ([21]). If θ ≥ (8+2ε)·|V |· ln |V |+ln (|V |k)+ln 2

OPTk·ε2
,

RIS returns a (1−1/e−ε)-approximate solution with at least
1− |V |−1 probability.

The proof sketch in [21] is summarized as follows:

S1: Let Fθ(S) denote the number of sampled RR sets covered

by a seed set S and prove E[
Fθ(S)·|V |

θ
] = E[I(S)].

S2: Based on the property in S1, show that if θ ≥ (8 + 2ε)|V | ·
ln |V |+ln

(
|V |
k

)
+ln 2

OPTk·ε2
, we have |Fθ(S)·|V |

θ
−E[I(S)]| < ε

2
·OPTk holds

with probability 1− |V |−1 simultaneously for all S s.t |S| = k.
S3: Utilize the greedy algorithm of maximum coverage problem

which produces a (1− 1/e) approximation solution.

S4: By combining the two approximation ratios ε
2

and (1−1/e)

in S2 and S3, show the final approximation ratio is (1− 1/e− ε)
with at least 1− |V |−1 probability.

Example 2. Suppose k = 2, θ = 4 and four random
RR sets Gd = {b, d, f}, Ge = {e}, Gd = {d, f} and Gb =
{a, b, e} are generated from the social graph in Figure 1 (d
is sampled twice). Then {e, f} will be selected as the seed
set as {e, f} intersects (or “covers”) all the random RR sets
generated.

3. TARGETED INFLUENCE MAXIMIZATION
In this section, we define Keyword-Based Targeted Influ-

ence Maximization (KB-TIM) query and propose a baseline
solution.

3.1 Problem Definition
To model a social network as an online advertisement plat-

form, we extend each node v in G to be associated with a
user profile represented by a weighted term vector. Each
advertisement is modeled as a weighted term vector and the
impact of an advertisement to an end user is calculated as
the similarity between two term vectors. If a user does not
contain any keyword in the advertisement, we consider the
user not being impacted. Our goal is to find k seeds in the
social network, that generate the maximum impact based
on the influence propagation model.

Formally, let G = (V,E, T) be a social network for online
advertisements where T is a universal topic space to model

user interests. Each user is associated with a weighted term
vector to capture the preference in different topics. The term
vector can be generated by aggregating all the social activ-
ities such as new posts, like and sharing into a single doc-
ument and then use existing topic modeling techniques [12]
to map explicit keywords into the latent topic space T . Let
tfw,v denote the preference weight between a user v and
a topic w and idfw denote the inverse document frequency
for a topic w. By applying tf-idf model [23] on the topic
space, the impact of an advertisement with a keyword set
Q.T ⊆ T 4 on a user v is defined as:

φ(v,Q) =
∑

w∈Q.T

tfw,v · idfw (1)

Then, the impact of k selected seeds w.r.t an advertisement
can be calculated by accumulating the impact to each acti-
vated user when the influence propagation terminates. Let
IQ(S) denote the influence score of I(S) w.r.t the query
keywords Q.T , i.e. IQ(S) =

∑
v∈I(S) φ(v,Q). we have

E[IQ(S)] = E[
∑

v∈I(S)

φ(v,Q)] =
∑
v∈V

p(S 7→ v) · φ(v,Q) (2)

To this end, we define our keyword based targeted influ-
ence maximization problem as follows:

Definition 3. (Keyword Based Targeted Influence Max-
imization (KB-TIM)). A KB-TIM query Q on a social graph
G is associated with a tuple (Q.T,Q.k), where Q.T ⊆ T is
the advertisement keyword set and Q.k is the number of seed
users. Let OPTQ.TQ.k denote the maximum expected influence
spread of any size-Q.k node w.r.t the weighting function for
Q.T , i.e. OPTQ.TQ.k = maxS⊆V,|S|=Q.kE[IQ.T (S)]. A KB-

TIM query finds Q.k seed users to achieve OPTQ.TQ.k .

Example 3. In Figure 1, each node is associated with
a user profile depicting the user’s preferences on different
topics. Suppose a KB-TIM query is Q = ({music}, 2), the
optimal seed set S∗ selected by Q should be {b, e} and the

expected impact is E[I{music}(S∗)] =
∑
v∈V p(S

∗ 7→ v) ·
φ(v, {music}) = 1 · 0.5 + 1 · 0.3 + 0.75 · 0.6 + 0.1875 · 0.5 +
0 · 0 + 0 · 0 + 0 · 0 = 1.5. The result is different from the
general IM problem in Example 2 as we are now considering
targeted influence maximization.

3.2 Weighted RIS Sampling
To facilitate our presentation, all frequently used nota-

tions are listed in Table 1. In the traditional IM problem, all
the users are treated as candidates to be influenced. How-
ever, in our KB-TIM query, we only target at the users
associated with query keywords in the advertisement. The
original uniform sampling technique cannot work in the new
scenario because the condition S1 in the proof sketch of The-

orem 1 does not hold, i.e., E[Fθ(S)
θ
· |V |] 6= E[IQ(S)]. There-

fore, we need to find a new unbiased estimator for E[IQ(S)].
In this section, we propose a weighted RIS (WRIS) sampling
technique for the KB-TIM query processing.

4In this paper, we use ’topic’ and ’keyword’ interchangeably.

1072

Table 1: Frequent notations used across the paper
Notation meaning
G,V,E, T the social network, the vertex set, the edge set

and the topic space respectively.
Q(Q.T,Q.k) the KB-TIM query Q. Q.T are the topics

queried and Q.k is the size of seed set. We
use Q to denote Q.T if there is no ambiguity
in the context.

OPTQ.TQ.k the maximum expected spread among all seed
set with size Q.k for query keywords Q.T .

Fθ(S) the number of RR sets, which is covered by
seed set S.

tfw,v the preference weight between a user v and a
topic w.

idfw the inverse document frequency for a topic w.
φw sum of the relevance scores among all users for

a given topic w, i.e.,
∑
v∈V tfw,v · idfw.

φ(v,Q) the relevance score of a KB-TIM query Q to a
user v, i.e.,

∑
w∈Q.T tfw,v · idfw.

φQ sum of the relevance scores among all users to
Q, i.e.,

∑
v∈V φ(v,Q).

θ the number of RR sets needed to process Q
using WRIS.

pw the proportion of RR sets w.r.t a topic w
among all RR sets needed to process Q, i.e.
φw/φQ.

ps(v, w) the probability to sample a user v w.r.t a topic
w in discriminative WRIS sampling.

I(S) an instance of the influence spread of a seed
set S.

IQ(S) influence score of I(S) w.r.t query keywords
Q.T , IQ(S) =

∑
v∈I(S) φ(v,Q)

To differentiate the sampling probability of targeted users
from non-targeted users, we define the sampling probability
for a user v w.r.t a KB-TIM query Q as follows:

ps(v,Q) =
φ(v,Q)∑
v∈V φ(v,Q)

=
φ(v,Q)

φQ
(3)

where we denote φQ =
∑
v∈V φ(v,Q). Intuitively, the users

are sampled based on their relevancies to the query. Users
whose profiles are more relevant have a higher probability to
be sampled. Under the weighted sampling scheme, we pro-
pose a new unbiased estimator for computing the expected
influence score:

Lemma 1. E[Fθ(S)
θ

] · φQ = E[IQ(S)]

Proof. Let Rv be the RR set by first sampling v with

probability ps(v,Q) = φ(v,Q)
φQ

and then sampling a RR given

v to form Rv, it follows:

E[
Fθ(S)

θ
] =

∑
v∈V

φ(v,Q)

φQ
· p(Rv ∩ S 6= ∅) (4)

p(Rv∩S 6= ∅) = p(S 7→ v) where p(S 7→ v) is the probability
that S activates v on G. This leads to:

E[
Fθ(S)

θ
] =

∑
v∈V

φ(v,Q)

φQ
· p(S 7→ v) =

E[IQ(S)]

φQ
(5)

This means Fθ(S)
θ
· φQ is an unbiased estimator to the ex-

pected influence score of any seed set S for KB-TIM query.

With the sampling scheme, we propose our WRIS method
as follows:

1. Sample θ number of vertices from G with a probability
of ps(v,Q) (in Eqn. 3) for any vertex v.

2. For each vertex v sampled, sample a RR set for v.
3. Follow step 2 of RIS

The steps of WRIS are similar to the RIS algorithm, ex-
cept that we need to determine a θ value as the minimum
number of random RR sets to guarantee that WRIS can
also achieve a theoretical bound like Theorem 1 for RIS.
Theorem 2 gives a sufficient lower bound for θ such that our
WRIS algorithm is a (1−1/e−ε)-approximate solution with
high probability.

Theorem 2. If θ satisfies:

θ ≥ (8 + 2ε)φQ ·
ln |V |+ ln

(|V |
Q.k

)
+ ln 2

OPTQ.TQ.k · ε2
(6)

the weighted RIS method returns a (1−1/e−ε)-approximate
solution with at least 1− |V |−1 probability.

With the revised sampling technique in Lemma 1, the proof
is similar to that in Theorem 1 (S1-S4). A complete version
is presented in [20].

4. DISK-BASED RR INDEX FOR KB-TIM
QUERY PROCESSING

Existing methods [2, 21] solve the IM problem by sampling
random RR sets online, this takes prohibitively long time to
finish on social networks with millions of users which hinders
interactive market analysis and decision. To achieve real-
time response, we move the sampling procedure offline and
propose a disk-based RR index to store the pre-computed
sampling sets. In this section, we first introduce how to
build an RR index for each keyword and then present our
query processing algorithm based on RR index.

4.1 Discriminative WRIS Sampling
We note that the sampling probability ps(v,Q) appeared

in Eqn. 3 relies on the query and cannot be determined in
advance. Hence, given a query, we cannot pre-compute the
random RR sets using ps(v,Q). To support offline sam-
pling, we propose discriminative WRIS sampling by rewrit-
ing ps(v,Q) as

ps(v,Q) =

∑
w∈Q.T tfv,w · idfw

φQ

=
∑

w∈Q.T

tfv,w · idfw∑
v∈V tfv,w · idfw

·
∑
v∈V tfv,w · idfw

φQ

=
∑

w∈Q.T

tfv,w∑
v∈V tfv,w

·
∑
v∈V tfv,w · idfw

φQ

Let ps(v, w) =
tfv,w∑
v∈V tfv,w

and pw =
∑
v∈V tfv,w·idfw

φQ
. We

have

ps(v,Q) =
∑

w∈Q.T

ps(v, w) · pw (7)

This implies that we can sample the RR sets for each key-
word w and store them on disk as an offline step. When a
query Q is issued, the RR sets associated with the relevant
keywords are loaded and merged. The random RR sets gen-
erated by our discriminative WRIS sampling still guarantee

1073

Algorithm 1: BuildRR(TopicSet T)

1 RRIndex (R,L)← (∅, ∅)
2 for w ∈ T do

3 Compute θ̂w RR sets
4 Rw ← generate θw RR sets with probability ps(v, w)
5 Lw ← inverse mapping of Rw
6 Store (R,L)

the same theoretical bound as in Theorem 2 based on the
following lemma:

Lemma 2. Given a query Q, let θQw be the number of RR
sets sampled by a probability of ps(v, w) w.r.t each vertex v
given a query keyword w. Then θQ is the total number of

RR sets and θQ =
∑
w∈Q.T θ

Q
w . If θQ ≥ θ and

θQw
θQ

= pw, we
can achieve the same theoretical bound as in Theorem 2 for
the discriminative WRIS sampling.

Proof. On one hand, as the RR samples are taken in-
dependently, the expected fraction of RR samples w.r.t v
among all the RR samples using WRIS should be ps(v,Q)
according to Eqn. 7. On the other hand, the discriminative
sampling is expected to sample

∑
w∈Q.T [(θQ · pw) · ps(v, w)]

number of samples w.r.t each user v if we sample θQ RR sets.
Therefore the expected fraction of RR sets w.r.t v among the
θQ RR samples is:

∑
w∈Q.T [(θQ·pw)·ps(v, w)]/θQ = ps(v,Q)

which is the same as the WRIS method. Besides, we take
more RR samples than the desired threshold specified in
Eqn. 6 for WRIS. Thus we conclude that the discriminative
sampling achieves at the same theoretically accuracy as the
WRIS method as in Theorem 2.

4.2 RR Index Construction
As we want to pre-compute the RR sets w.r.t keyword

w ∈ Q.T in an offline step and merge the relevant RR sets for
query processing, we need to determine how many RR sets
needs to be built for the RR index w.r.t each w. We define
K to be a system specified parameter such that Q.k ≤ K
∀Q. This is because Q.k will not be interesting if Q.k is
large since the purpose of IM is to influence a large group of
people by a small seed set for budgeted advertisement. Since
θ · pw is a value dependent on Q, we cannot set θQw = θ · pw
in the offline sampling. Hence, we need to find a θw value
that is independent of Q and satisfies θw ≥ θ · pw, but as
small as possible to save the time and space cost for index
construction. Following this intuition, we have the following
lemma:

Lemma 3. For any keyword w, if we choose

θ̂w = (8 + 2ε)(
∑
v∈V

tfw,v) ·
ln |V |+ ln

(|V |
K

)
+ ln 2

OPT
{w}
1 · ε2

(8)

we have θ̂w ≥ θ · pw.

Proof. According to Eqn. 6 and the definition of pw, we
have:

θ · pw = (8 + 2ε)(
∑
v∈V

tfw,v) ·
ln |V |+ ln

(|V |
Q.k

)
+ ln 2

OPTQ.TQ.k /idfw · ε2
(9)

Now let us prove OPT
{w}
Q.k ≤ OPTQ.TQ.k /idfw. Let Sw be the

seed set that achieves influence of OPT
{w}
Q.k w.r.t the weight

a rr1, rr5

b rr4, rr5, rr7, rr8

c rr4, rr5, rr6, rr9

d rr2, rr3

e rr1, rr5, rr6, rr9

F rr2

G rr5

rr1 a,e

rr2 d,f

rr3 d

rr4 c,b

rr5 c,b,g,a,e

rr6 c,e

rr7 b

rr8 b

rr9 c,e

a

b rr2, rr3, rr4, rr5

c rr5, rr6

d rr1, rr2

e rr5

f rr1, rr2

g rr4

rr1 d,f

rr2 d,b,f

rr3 b

rr4 b,g

rr5 c,b,e

rr6 c

Figure 2: example of basic RR index structures for
keyword “music” and “book”.

of w, we have: E[IQ.T (Sw)] ≤ OPTQ.TQ.k according to the

definition of OPTQ.TQ.k . Then:

OPTQ.TQ.k

idfw
−OPT {w}Q.k

≥ E[IQ.T (Sw)]

idfw
−OPT {w}Q.k

≥ 1

idfw
E[

∑
v∈I(Sw)

∑
w∗∈Q.T

tfw∗,v · idfw∗]−OPT {w}Q.k

≥
∑

w∗∈Q.T\{w}

E[
∑

v∈I(Sw)

tfw∗,v
idfw∗

idfw
] + E[

∑
v∈I(Sw)

tfw,v]−OPT {w}Q.k

≥
∑

w∗∈Q.T\{w}

E[
∑

v∈I(Sw)

tfw∗,v
idfw∗

idfw
] + 0 ≥ 0

Since the influence spread is monotonic w.r.t the size of the

seed set [15], OPT
{w}
1 ≤ OPT

{w}
Q.k ≤ OPTQ.TQ.k /idfw. In

addition, as Q.k ≤ K, ln
(|V |
Q.k

)
≤ ln

(|V |
K

)
when K ≤ |V |/2.

Thus we can conclude that θ̂w ≥ θ · pw.

The index construction procedure based on the offline
sampling is shown in Algorithm 1. For each keyword w,
we build an RR index with two components (Rw, Lw). Rw
is the RR sets sampled with probability ps(v, w) for the ver-

tices in the graph. There are θ̂w RR sets for each keyword.
For each vertex v ∈ Rw, we maintain an inverted list in Lw
to indicate which RR sets contain v.

Note that in Line 3 of Algorithm 1, OPT
{w}
1 is unknown

and needs to be estimated in advance. We adopt the weighted

iterative estimation method in [21] to estimate OPT
{w}
1 . Af-

ter OPT
{w}
1 and θ̂w are determined, we construct Rw by

sampling θ̂w number of RR sets followed by computing its
inverse mapping Lw. Finally, we can store the RR index
(R,L) in disk for query processing.

Example 4. Figure 2 shows the RR index built for key-
words “music” and “book” for the running example in Fig-
ure 1. In this example, we estimate θmusic = 9 and θbook =
6. Then, we sample 9 random RR sets for keyword “music”
and 6 for “book”. Based on the RR sets, we construct Lmusic
and Lbook to store the inverse mapping between vertex and
RR set.

1074

Algorithm 2: QueryRR(KB-TIM Q)

1 θQ ← min{ θw
pw
|w ∈ Q.T}

2 SQ ← ∅, (RQ, LQ)← (∅, ∅)
3 for w ∈ Q.T do

4 RQw ← θQ · pw number of RR sets from Rw.

5 LQw ← Lw
6 for i = 1 to Q.k do
7 vi ← the user that covers the most RR sets in RQ.

8 SQ ← SQ ∪ {vi}
9 for w ∈ Q.T do

10 for rr ← LQw [vi] do
11 if rr is not covered then
12 mark rr as covered

13 if rr ∈ RQw then

14 remove rr from RQw
15 return SQ

4.3 Improved Estimation of θw
Based on Lemma 3, we know that as long as we set θw =

θ̂w, the number of sampled RR sets is sufficient to guarantee
the theoretical bound with high probability. However, θ̂w
could be such a large value that it takes huge amounts of
disk storage to build the index. To reduce the index size, we
propose a compact estimation of θw based on the observation

that
ln |V |+ln (|V |K)+ln 2

ln |V |+ln (|V |Q.k)+ln 2
can be approximated to K

Q.k
when |V |

is significantly larger than K and Q.k.

Lemma 4. For any keyword w, if we choose

θw = (8 + 2ε)(
∑
v∈V

tfw,v) ·
ln |V |+ ln

(|V |
K

)
+ ln 2

OPT
{w}
K · ε2

(10)

we have θw ≥ θ · pw.

Proof. AsOPT
{w}
Q.k ≤ OPT

Q.T
Q.k /idfw according to Lemma 3,

θ · pw ≤ (8 + 2ε)(
∑
v∈V tfw,v)

ln |V |+ln (|V |Q.k)+ln 2

OPT
{w}
Q.k
·ε2

.

To prove θw ≥ θ·pw, we need to justify:
ln |V |+ln (|V |K)+ln 2

OPT
{w}
K
·ε2

≥

ln |V |+ln (|V |Q.k)+ln 2

OPT
{w}
Q.k
·ε2

. Let r =
ln |V |+ln (|V |K)+ln 2

ln |V |+ln (|V |Q.k)+ln 2
·
OPT

{w}
Q.k

OPT
{w}
K

. Since

ln |V |+ln (|V |K)+ln 2

ln |V |+ln (|V |Q.k)+ln 2
can be approximated to K

Q.k
, r = K

Q.k
·

OPT
{w}
Q.k

OPT
{w}
K

. Let SK be the seed set to achieve OPT
{w}
K with

|SK | = K, according to the submodular property of the in-
fluence spread function [15], there exists a set S ⊂ SK with

|S| = Q.k s.t. E[I{w}I(S)]
Q.k

≥ OPT
{w}
K
K

. According to the def-

inition of OPT {w}, OPT{w}

Q.k
≥ E[I{w}I(S)]

Q.k
≥ OPT

{w}
K
K

. This
means r ≥ 1. Lastly, we can conclude that θw ≥ θ · pw
whenever θw satisfies Eqn. 10.

To utilized the improved θw for constructing the index, we

simply replace θ̂w with θw in Line 3 of Algorithm 1. OPT
{w}
K

will be estimated similarly as how we estimated OPT
{w}
1 .

4.4 KB-TIM Query Processing
The algorithm for KB-TIM query processing based on RR

index is shown in Algorithm 2. To process a query, we need

b rr4, rr5, rr7, rr8

c rr4, rr5, rr6, rr9

e rr1, rr5, rr6, rr9

d rr2, rr3

a rr1, rr5

f rr2

g rr5

rr4 c,b

rr5 c,b,g,a,e

rr7 b

rr8 b

rr6 c,e

rr9 c,e

rr1 a,e

rr2 d,f

rr3 d

b rr2, rr3, rr4, rr5

c rr5, rr6

d rr1, rr2

f rr1, rr2

e rr5

g rr4

a

rr2 d,b,f

rr3 b

rr4 b,g

rr5 c,b,e

rr6 c

rr1 d,f

a rr1

b rr4

c rr4

d rr2

e rr1

f rr2

g rr5

a

b rr2

c rr5

d rr1

e rr5

f rr1

g rr4

Figure 3: Example of incremental RR index struc-
tures for keyword “music” and “book”.

to retrieve θQ number of RR sets from the RR index from
all the query keywords. To determine θQ, we need to ensure
the conditions in Lemma 2 so that the algorithm has the
result guaranteed as in Theorem 2. Note that we cannot set
θQ to θ via Eqn. 10 because the optimal influence spread
OPTQ.TQ.k is unknown. To determine a proper θQ, we set

θQ = min{ θw
pw
| w ∈ Q.T} (11)

When θQ is determined (line 1), we retrieve θQ·pw number
of RR sets from each query keyword w to ensure the sampled
RR sets are not biased towards any query keyword according
to Lemma 2 (line 4). Since θQ · pw ≤ θw, we can guarantee
that there are at least θQ · pw RR sets for each keyword w
in the index. Finally, the result seed set SQ is identified
by running a greedy algorithm for the maximum coverage
problem [22] on (RQ, LQ) (lines 6 - 14).

Example 5. Suppose Q.T = {“music′′, “book′′} and k =
2. If the ratio of RR sets for keyword “music” to “book” is 9 :
4, we can determine θQ as 13 because min{ 13·θmusic

9
, 13·θbook

4
} =

min{ 13·9
9
, 13·6

4
} = 13. This means we need 9 RR sets from

“music” and 4 from “book”. Thus, we load rr1-rr9 in Rmusic
and rr1-rr4 in Rbook into memory. The whole index of
Lmusic and Lbook are also loaded. Then, we run the greedy
maximum coverage algorithm [22] on the 13 RR sets in mem-
ory: in the first iteration, b is selected as the first seed be-
cause it appears in the most number of RR sets. In other
words, b has the highest probability to influence other peo-
ple. In the next step, we remove all the RR sets containing b
and find that e to be the most frequent user in the remaining
RR sets. Therefore, we return {b, e} as two most influential
users for query keywords {“music′′, “book′′}.

Finally, we can show that our algorithm returns a (1 −
1/e − ε)-approximate solution to any KB-TIM query with
a probability of at least 1 − |V |−1. Due to space limit, the
proof is presented in [20].

5. INCREMENTAL RR INDEX (IRR)
Although the RR index significantly improves the KB-

TIM query processing compared to the WRIS method, it
has to load θQw RR sets in Rw and all the inverted lists in
Lw for each query keyword, which still incurs high disk I/O.
In addition, we observe that a large number of RR sets do
not contain the seed users. It is thus a waste of disk I/O to
load these RR sets in memory because they are not accessed
by the query processing algorithm. These motivate us to

1075

Algorithm 3: BuildIRR(TopicSet T , BlockSize δ)

1 IRRIndex (IR, IL, IP)← (∅, ∅)
2 for w ∈ T do
3 Compute θw according to Lemma 4
4 Rw ← generate θw RR sets with probability ps(v, w)
5 Lw ← inverse mapping of Rw
6 for each user v s.t Lw[v] exists do
7 IPw[v]← the RR set with the smallest ID in Lw[v]
8 Sort rows of Lw by descending order of Lw(v).size
9 p← 1

10 while Lw 6= ∅ do
11 ILpw ← δ rows Lw

12 IRpw ← {rr|rr ∩ ILpw 6= ∅ ∧ rr /∈
⋃

1≤j<p IR
j
w}

13 p← p+ 1
14 Remove the first δ rows from Lw
15 Store (IR, IL, IP)

design an index that incrementally loads relevant RR sets
into memory for query processing.

5.1 IRR Index Construction
We observe that if a user has a very high impact in the

social network, e.g. followed by millions of other users in
Twitter, he has a good chance to be frequently sampled
in the RR sets of different keywords. Hence, we sort the
inverted lists in Lw in decreasing order of the list length.
In this way, by incrementally loading the inverted lists, the
more impactful users will be loaded first.

Our IRR index consists of three components (IRw, ILw, IPw),
which can be derived from (Rw, Lw) in the RR index. ILw
sorts Lw in decreasing order of list length. Then, we further
split ILw into m equi-size partitions IL1

w, IL
2
w, . . . , IL

m
w .

IRw also contains m partitions IR1
w, IR

2
w, . . . , IR

m
w gener-

ated from the partitions in ILw.

IRiw =

{rr|rr ∈ Rw ∧ rr ∩ ILiw 6= ∅} if i = 1
{rr|rr ∈ Rw ∧ rr ∩ ILiw 6= ∅

∧ rr /∈
⋃

1≤j<i IR
j
w} if i > 1

In other words, IRiw picks from the remaining RR sets in
Rw that contain users in partition ILiw. IPw preserves the
mapping between each vertex in ILw and its first occurrence
in Rw of RR index. Whenever we process a query Q and θQw
RR sets need to be retrieved w.r.t w ∈ Q.T , IPw determines
whether a vertex covers at least one RR set which is among
the θQw samples.

Example 6. Figure 3 shows the three components of the
IRR index for keywords “music” and “book”. We can see
that the inverted lists in ILw are now sorted by the list
length, compared to the Lw in Figure 2. In this example,
we set the partition size in ILw to be 2. The first partition
of ILmusic contain users {b, c} and all the RR sets with user
b or c are organized in the first partition in IRmusic. The
second partition of ILmusic contains {d, e}, which appear in
all the remaining RR sets. Thus, all of them are put into the
second partition in IRmusic. Since all the RR sets have been
processed, the following partitions in ILmusic correspond to
empty partitions in IRmusic. The IPw preserves the first
occurrence in the original Rw sets. For example, user d first
appears in rr2 in the Rmusic in Figure 2. Hence, it has an
entry in IPmusic mapping to rr2.

Algorithm 4: QueryIRR(KB-TIM Q)

1 θQ ← min{ θw
pw
|w ∈ Q.T}

2 for each keyword w ∈ Q.T do
3 kb[w]←∞ // upper bound score for w

4 θQw ← θQ · pw // number of RR sets for w

5 pq ← ∅ // priority queue sorted by upper bound score

6 SQ ← ∅ // the result set

7 while |SQ| < Q.k do
8 (s, tp)← pq.top() // s is the score for user tp in pq
9 s′ ← re-compute upper bound score of tp

10 if s 6= s′ then
11 pq.pop()
12 push (s′, tp) to pq
13 continue
14 if tp.status = COMPLETE ∧s ≥

∑
w∈Q.T kb[w] then

15 pq.pop()

16 SQ ← SQ ∪ tp
17 for each keyword w ∈ Q.T do
18 for each RR set rr containing tp in IRw do

19 if rr is not covered ∧ rr < θQw then
20 mark rr as covered
21 for each user v ∈ IRw[rr] do
22 update upper bound for v w.r.t w
23 else
24 for each keyword w ∈ Q.T do
25 load the next partition IR′w and IL′w from the

IRR index of w
26 for each user v ∈ IL′w do
27 update upper bound for v w.r.t w
28 push v with new upper bound into pq
29 set tp.status to COMPLETE if all the partial

scores have been determined
30 update kb[w]

31 return SQ

The construction of IRR index is presented in Algorithm 3.
For each keyword w, we build the RR sets Rw and the re-
verse mapping Lw as the basic RR index. Then IP is com-
puted in Lines 6-7. Lastly, we divide the users, into parti-
tions and each of the partitions has δ users, to form ILpw
where p is the partition ID. The matching RR sets parti-
tion IRpw is built against ILpw. The construction terminates
when all the users are visited.

5.2 Incremental KB-TIM Query Processing
In our IRR index, the users in ILw are sorted for each

keyword. This motivates us to model the KB-TIM query
as a top-k aggregation problem and employ an algorithm
similar to NRA [8]. The NRA algorithm maintains an ac-
cumulation table for candidates with incomplete results and
incrementally loads blocks of items in the sorted lists for ag-
gregation. If a candidate contains partial scores from all the
keywords, its status is set to COMPLETE and pushed into a
heap storing top-k results. The algorithm terminates when
the upper bound score for the partial or unvisited results is
smaller than the k-th best score ever found.

KB-TIM query processing based on IRR index brings two
new issues when employing NRA algorithm: 1) how to de-
termine the status of a candidate user is COMPLETE when
there are missing partial scores; 2) how to find and update
all the affected users when a new seed user is confirmed and
added to the result set.

For the first issue in NRA, a candidate is said to be
COMPLETE if the partial scores of all the attributes have been

1076

accessed and aggregated. However, we only access (θQ · pw)
RR sets for keyword w in query processing. If a user is
not contained in the RR sets of a query keyword, there is
a missing partial score for the keyword and the complete
score can only be determined when all the RR sets have
been scanned. To avoid the case, we check whether a user
appears in the RR sets of a keyword before the query pro-
cessing. If IPw[v] ≥ θQ · pw, where IPw[v] indicates the
first occurrence in the RR sets, we set the partial score of
user v on keyword w to be 0. The status of a user becomes
COMPLETE when the partial scores for all query keywords are
set. We use score(u) to denote the complete score of user u.

The second issue arises because each time a new seed
user is confirmed by the greedy maximum coverage algo-
rithm [22], we need to remove the seed user from the RR
sets and update the list length for the all the affected can-
didate users. To save computation cost, we propose a lazy
evaluation strategy. We mark the RR sets containing previ-
ous seed users as covered and refine the score of a candidate
only when it is the top element in the priority queue.

We present our incremental KB-TIM query processing so-
lution in Algorithm 4. Given a query, we first calculate θQ

to determine the number of RR sets that should be loaded
for each keyword. pq is a priority queue in which candidate
users are sorted by their upper bound score and kb[w] stores
the maximum list length in ILw for the unvisited user can-
didates. The algorithm iterates until k seed users have been
found. In each iteration, we access the user tp with the high-
est upper bound score. If u has been loaded into memory,
we know the accurate number of RR sets for that keyword.
Otherwise, the upper bound score on that keyword is kb[w].
The upper bound score is the sum of the scores from all the
query keywords. If the score of the user is affected by previ-
ous seed users, we further refine the score by removing those
RR sets containing previous seed users. The user with the
new candidate upper bound is pushed back into the priority
queue. Otherwise, we check whether the user is a new seed
user. If his status is COMPLETE, the upper bound score is an
exact score. If the score is larger than the upper bound score
of unseen users, we can guarantee that there is no other user
with a better score than tp. So we insert tp to the result set
and the RR sets covered by tp are marked (lines 14-22) such
that the candidate users contained in any of these RR set
are affected. If tp cannot be determined as a new seed, we
load more partitions from each query keyword’s IRR index.
Then we update the upper bound scores for all the users in
the loaded partition (lines 23-30). The algorithm terminates
when Q.k seed users are found. An example is included in
the technical report [20] for more details.

Theorem 3. The impact scores of top-k seed users re-
turned by Algorithm 4 and Algorithm 2 are the same.

Proof. Suppose Algorithm 4 iteratively returns k seed
users {u1, u2, . . . , uk}, Algorithm 2 returns {v1, v2, . . . , vk}.
If the top-k impact scores are not the same, since Algo-
rithm 2 picks the user with the maximum score in each it-
eration, we can find an index i such that ui is the first user
with score(ui) < score(vi) and score(uj) = score(vj) for
j < i.

case 1): vi 6= ui. In Algorithm 4, ui is selected as a new
seed only when it has the maximum upper bound score in
the priority queue or its score is larger than

∑
w∈Q.T kb[w].

Therefore, if vi is in the priority queue, we have score(vi) ≤

Table 2: All parameter settings used in the experi-
ments. The default values are highlighted.

Datasets Twitter dataset News dataset
#Users 10M,20M,30M,40M 0.2,0.6M,1M,1.4M
#Edges 0.7B,1.1B,1.2B,1.3B 1.0,1.9M,2.6M,3.1M

AveDegree 76.4,56.8,46.1,38.9 5.2,3.1,2.6,2.2
#QWords 1,2,...,5,6

k 10,15,...,30,...,50

1

10

102

103

104

105

1 10 102 103 104

N
um

be
r

of
 U

se
rs

In Degrees

1

10

102

103

104

105

106

1 10 102 103 104 105

N
um

be
r

of
 U

se
rs

In Degrees

(a) News (b) Twitter
Figure 4: In-degrees distributions for both datasets

score(ui). Otherwise, vi has not been loaded into memory
and its upper bound score is

∑
w∈Q.T kb[w] ≤ score(ui).

Both cases contradict with score(ui) < score(vi).
case 2): vi = ui. When ui is selected as a seed user, we

know that its score is complete, i.e., all the related RR sets
have been loaded into memory. Since Algorithm 4 finds the
same i− 1 seed users in previous iterations, after removing
all these i − 1 seed users from the RR sets of ui, we know
that its inverted list length is the same with that of vi in Al-
gorithm 2. Thus, score(vi) = score(ui), which contradicts
with score(ui) < score(vi).

6. EXPERIMENTAL STUDY
In this section, we study the performance of KB-TIM

query processing on two real datasets. We use WRIS (in
Section 3.2) as a baseline solution because it uses online
sampling and can be considered as a variant of the state-
of-the-art RIS methods [21, 2]. We compare the methods
based on offline sampling (RR and IRR index in Sections 4
and 5 respectively) with WRIS and evaluate the efficiency
by average running time and effectiveness by expected in-
fluence. We did not evaluate the existing topic-aware IM
solutions since they cannot handle the social networks used
in this paper due to the incapability to scale for large graph
sizes and number of topics (detailed discussion in Section 7).
All the methods are implemented with C++ and run on a
CentOS server (Intel i7-3820 3.6GHz CPU with 8 cores and
60GB RAM).

6.1 Experimental Setup
Datasets. We use two real world datasets, Twitter and

News, from SNAP 5 for performance evaluation. The Twit-
ter dataset contains 41.6 million users with 476 million tweets
and the news dataset contains 1.42 million media extracted
from a collection of 96 million online news corpus. For the

5http://snap.stanford.edu/

1077

Table 3: Disk space and running time of using θ̂w
and θw for constructing indices for news datasets

Data

Disk Size (GB) Time (Secs)
RR IRR RR IRR

θ̂w θw θ̂w θw θ̂w θw θ̂w θw

n0.2M 37 4.1 37 4.1 662 67.3 700 69.9
n0.6M 47 5.7 47 5.8 982 121 994 122
n1.0M 54 6.7 54 6.9 1238 157 1270 164
n1.4M 62 7.6 63 7.8 1487 167 1497 188

news dataset, the vertex in the graph denotes an online me-
dia whereas the edge means that there is a link from one
online media to another. We extract 200 topics from each
dataset and user profile is represented by a term vector in
the topic space. To test the scalability with increasing num-
ber of users, we sampled 10M, 20M, 30M, 40M users for
the Twitter dataset and 0.2M, 0.6M, 1M, 1.4M for the news
dataset. We use t10M, t20M, t30M, t10M to denote the
respective Twitter datasets and n0.2M,n0.6M,n1.0M,n1.6M
for new datasets. The statistics of the social networks are
shown in Table 2. We also plot the frequency distribution of
incoming degrees in Figure 4, which shows Twitter is a much
denser graph than news social network and many nodes are
followed by a large number of users.

Queries. We use real keyword queries from AOL search
engine6. Given the 200 topics defined in advance, we first
filter the keyword queries and retain those only containing
our topic keywords. To evaluate the performance in terms
of increasing number of topics (or keywords) in a query, we
vary the number of query keywords from 1 to 6 and extract
100 queries for each length.

Parameters. In our algorithms, two parameters, ε and
K, need to be determined to evaluate θ in Eqn. 6, θ̂w in
Eqn. 8 and θw in Eqn. 10. ε is set to 0.1 for all experiments as
it is the most accurate setting adopted in [21] (no experiment
is done in [2]). K is set to 100 since the largest Q.k in
our experiment is 50. For IRR, the partition size δ is set
to 100 for all experiments. In the following experiments,
we evaluate the scalability w.r.t. increasing seed users Q.k,
query keywords |Q.T | and social network size |V | as shown
in Table 2.

6.2 Index Sizes and Construction Time
For RR and IRR, both methods require offline sampling

of RR sets to build respective indices. All indices are con-
structed by running 8 threads in parallel. We first study
the difference between using θ̂w(Eqn. 8) and θw(Eqn. 10)
for index construction. The disk space and running time
of using θ̂w and θw for index construction of news datasets
are presented in Table 3. It is obvious that using θ̂w is not
scalable against large graphs. Besides, in subsequent ex-
periments, we will see that indices constructed by θw have
equivalent approximation power as compared to that by us-
ing θ̂w. Therefore we will not present results for indices built
by θ̂w for Twitter datasets.

Since RR and IRR use inverted lists, we can apply FastP-
FOR7 compression (adopted in Apache Lucene 4.6.x) to re-
duce disk storage. We report disk space and running time
for uncompressed and compressed indices in Table 4. For

6http://www.gregsadetsky.com/aol-data/
7https://github.com/lemire/FastPFOR

Table 4: Disk space and running time for construct-
ing indices for various datasets with θw

Data

Disk Size (GB) Time (Secs)
uncompress compress uncompress compress

RR IRR RR IRR RR IRR RR IRR

n0.2M 4.1 4.1 2.0 2.0 67.3 69.9 70.1 73.8
n0.6M 5.7 5.8 3.0 3.1 121 122 113 119
n1.0M 6.7 6.9 3.7 3.9 157 164 148 157
n1.4M 7.6 7.8 4.3 4.6 167 188 164 167
t10M 88 94 52 58 5.9h 6.0h 5.8h 6.0h
t20M 84 93 56 65 4.3h 4.5h 4.4h 4.4h
t30M 77 87 54 64 3.7h 3.8h 3.7h 3.7h
t40M 55 63 41 50 2.4h 2.5h 2.4h 2.5h

Table 5: Sum of θw and mean RR set size for in-
creasing graph size

(News) Sum of Mean of Twitter Sum Mean
|V | θw RR size |V | θw RR size

0.2M 385M 2.7 10M 218M 94.9
0.6M 640M 2.3 20M 247M 71.9
1M 798M 2.1 30M 276M 55.0

1.4M 926M 2.0 40M 374M 26.7

uncompressed indices, we can see that the index size in the
news dataset grows with the graph size. However, to our
surprise, such pattern does not apply to Twitter datasets.
The reason is that the index size depends on two factors:
the number of RR sets, i.e. θw in Lemma 4, and the average
size of a RR set. On one hand, θw increases for large graphs
since θw depends on |V |. We report the sum of θw among
all keywords and average RR set size for both datasets in
Table 5. On the other hand, as a RR set is constructed by
first randomly picking a starting vertex and then performing
a random breath first search on the social graph, the size of
a RR set will be larger if the graph is denser. As shown in
Table 2, the average degree of both the news and the Twit-
ter dataset decrease as the graph becomes larger. This lead
to a decrease in the average RR set size for both datasets.
Hence, θw and average RR set size are two conflicting factors
as |V | varies. In the news dataset, θw takes the major role
in determining the index size while in the Twitter dataset,
the average RR set size is more critical. For compressed
indices, there are approximately 50% and 40% space reduc-
tions for news and Twitter datasets respectively. Besides
the construction time for the compressed indices does not
increase significantly compared to that of the uncompressed
indices. Thus, in the following experiments, we will adopt
the compressed scheme for both RR and IRR indices.

We also obverse that Twitter consumes much more disk
space than the news dataset. This is because Twitter is
a much larger and denser social network than news. For
each user in Twitter, it can be affected by a large number
of users. The construction time of the index grows linearly
with the index size. It requires hours to build the index for
Twitter datasets, even when we used 8 threads in parallel.
This is because we need to build the index for 200 keywords
and each keyword requires hundreds of thousand of random
walks to generate RR sets.

6.3 Vary the Seed Set Size
We first examine the performance with increasing seed

users Q.k. The running time and number of RR sets ac-
cessed are shown in Figure 5. It is obvious that the meth-
ods based on offline sampling are significantly faster than

1078

Table 6: Number of I/O for IRR when varying Q.k
Q.k 10 15 20 25 30 35 40 45 50

News 6.10 7.34 8.75 10.2 14.0 19.3 33.6 78.1 170

Twitter 8.00 14.5 23.0 34.0 40.0 51.0 58.5 69.0 81.0

Table 7: Influence spread when varying Q.k.
News dataset Twitter dataset

Q.k WRIS RR(θ̂w) RR IRR WRIS RR IRR

10 289.6 289.4 289.4 289.4 8673.9 8672.6 8672.6
15 356.5 356.3 356.4 356.4 10666 10666 10666
20 408.9 409.0 409.0 409.0 12088 12092 12092
25 448.7 448.6 448.6 448.6 13100 13099 13099
30 480.3 480.3 480.2 480.2 13929 13925 13925
35 506.7 506.8 506.7 506.7 14618 14616 14616
40 528.6 528.8 528.8 528.8 15209 15209 15209
45 548.6 548.0 548.1 548.1 15731 15735 15735
50 564.9 564.9 564.9 564.9 16211 16214 16214

the online sampling method. In the Twitter dataset, the
average response time to a KB-TIM query using RR and
IRR indices are 160x and 434x times smaller than WRIS
respectively. IRR runs faster than RR for two reasons.
First, RR method needs to load θw RR sets and this num-
ber is invariant to Q.k. IRR method incrementally loads
partitions for top-k aggregation. The number of RR sets
loaded by the two algorithms is plotted in Figure 5. Second,
in RR method, after a seed is found, we need to eliminate its
impact on the remaining candidate users. In other words, we
scan the inverted lists Lw and update the length by remov-
ing those RR sets containing the seed user. The operation
is expensive. In IRR, our proposed lazy update mechanism
only requires updating the score of the user at the top of the
priority queue in each iteration.

As Q.k increases, it takes a slightly longer time for RR
and IRR methods to answer a query. This is because both
RR and IRR require more iterations to find the seed users,
causing more CPU cost and disk I/O. But the performance
of WRIS is slightly faster as Q.k increases. The reason is
that the performance of WRIS is mainly dependent on the
number of RR sets generated, i.e. θ in Theorem 2, which
is inversely proportional to the optimal spread. Due to the
monotonicity of the IM problem, the optimal spread be-
comes larger when Q.k increases, resulting in smaller num-
ber of RR sets sampled.

We also note that the performance of IRR degrades to
be close to RR in the news dataset. This is because the I/O
efficiency of RR is better than IRR. RR method incurs a
sequential disk I/Os for each query keyword (default number
of query keywords is 5 which lead to 5 I/Os for each query).
As shown in Table 6, IRR method relies on incremental
loading of partitions into memory, which causes increasing
disk I/Os for larger Q.k. However, in the Twitter dataset,
although RR still has the advantages in I/Os, the number
of RR sets loaded for IRR is significantly smaller than that
of RR, which explains why IRR does not degrade to RR.

In addition to the result that RR and IRR are much
faster than WRIS, the expected influence of the top-Q.k
seed users generated by them is also no worse than WRIS.
We report the expected influence of the seed users returned
by all the methods in Table 7. To justify our improved
estimation of θw in Sec. 4.3, we also report the news dataset
result for running RR method on indices constructed by
using θ̂w. As shown in Table 7, there are almost no difference
between all the methods. The expected influence spread for
all three methods will not be presented in the rest of the
experimental study as the results show similar patterns.

6.4 Vary the Number of Query Keywords

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 10 15 20 25 30 35 40 45 50

E
xe

cu
tio

n
T

im
e

(s
)

Q.k

News

RR
IRR

WRIS

1.2x106

1.6x106

2.0x106

2.4x106

2.8x106

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 R

R
 s

et
s

lo
ad

ed

Q.k

News

RR
IRR

 2
 4
 8

 16
 32
 64

 128
 256
 512

 1024
 2048

 10 15 20 25 30 35 40 45 50

E
xe

cu
tio

n
T

im
e

(s
)

Q.k

Twitter

RR
IRR

WRIS

4.0x105

6.0x105

8.0x105

1.0x106

1.2x106

1.4x106

1.6x106

1.8x106

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 R

R
 s

et
s

lo
ad

ed

Q.k

Twitter

RR
IRR

Figure 5: Varying the seed set size: Q.k

When we increase the number of query keywords |Q.T |
from 1 to 6, as shown in Figure 6, the results demonstrate
similar patterns: RR and IRR are at least two orders of
magnitude better than WRIS in a social network with bil-
lions of edges. The running time of IRR outperforms RR
in the Twitter dataset but degrades to be close to RR in
the news dataset. This is because in Twitter, there are a
large number of users with dominating number of followers.
After we sort the users based on their overall influence, we
only need to access a small portion of RR sets. In the news
dataset, the number of accessed RR sets for the two methods
grows linearly and IRR degrades because it requires more
random disk I/O.

6.5 Vary the Graph Size
We also vary the graph size, i.e. |V |, to test the scalability

of our proposed solutions. The results are shown in Figure 7.
RR and IRR clearly outperform WRIS by great margins
in all scenarios. In the news datasets, RR can outperform
IRR in certain cases because its I/O is more efficient when
examining similar number of RR sets. Nevertheless, IRR
has dominating performance against RR when the size of
Twitter datasets increases. It shows that IRR is more effec-
tive for larger graphs without compromising its performance
superiority.

6.6 Effectiveness of Propagation Model
In the last experiment, we discuss the effectiveness of the

propagation model applied for KB-TIM query processing us-
ing the two real datasets. In this section, we present results
for both independent cascade (IC) model [21, 5, 6, 19] and
linear threshold (LT) model [21, 19, 15]. For IC model, the
propagation probability set to p(e) = 1

Nv
which is widely

adopted in [21, 5, 19]. For LT model, following existing
work [21, 15, 7], we assign a random value in [0, 1] to each
user’s incoming neighbours and normalize the values so that
the sum of all neighbours’ influence probabilities equals 1.
In Table 8, we illustrate the top-8 most influential users for

1079

Table 8: Example KB-TIM query results
Method Keyword News dataset

WRIS(IC) “software”
kb.vmware.com en.wikipedia.org davidstef9.wordpress.com codeplex.com
suse.ehelp.pl virtualgeek.typepad.com softwarelivre.net linux.pl

WRIS(LT) “software”
kb.vmware.com en.wikipedia.org orums.asp.net communities.vmware.com
suse.ehelp.pl virtualgeek.typepad.com ntwizard.spaces.live.com linux.pl

WRIS(IC) “journal”
www.biblegateway.com bookology.wordpress.com hugh.journalspace.com journals.aol.com
journal.peishan.org earticle.wordpress.com signefavor17.spaces.live.com jazzitalia.net

WRIS(LT) “journal”
journals.aol.com bookology.wordpress.com bizjournals.com www.biblegateway.com
journal.peishan.org journaldugeek.com bookalytics.com jazzitalia.net

RIS N.A
en.wikipedia.org blogger.com youtube.com myweb.yahoo.com
wordpress.com wrzuta.pl match.seesaa.jp 2.bp.blogspot.com

Method Keyword Twitter dataset

WRIS(IC) “software”
BarackObama britneyspears cnnbrk aplusk
THE REAL SHAQ kevinrose jimmyfallon twitter

WRIS(LT) “software”
biz cnnbrk kevinrose twitter
BarackObama mashable jimmyfallon britneyspears

WRIS(IC) “journal”
kevinrose twitter BarackObama TheEllenShow
RyanSeacrest britneyspears THE REAL SHAQ taylorswift13

WRIS(LT) “journal”
ev cnnbrk twitter BarackObama
TheOnion NotTinaFey jimmyfallon britneyspears

RIS N.A
ev cnnbrk kevinrose BarackObama
mashable jimmyfallon TheEllenShow britneyspears

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 1 2 3 4 5 6

E
xe

cu
tio

n
T

im
e

(s
)

|Q.T|

News

RR
IRR

WRIS

0.0x100

5.0x105

1.0x106

1.5x106

2.0x106

2.5x106

3.0x106

3.5x106

 1 2 3 4 5 6

N
um

be
r

of
 R

R
 s

et
s

lo
ad

ed

|Q.T|

News

RR
IRR

 0.25

 1

 4

 16

 64

 256

 1024

 1 2 3 4 5 6

E
xe

cu
tio

n
T

im
e

(s
)

|Q.T|

Twitter

RR
IRR

WRIS

0.0x100
2.0x105
4.0x105
6.0x105
8.0x105
1.0x106
1.2x106
1.4x106
1.6x106
1.8x106
2.0x106
2.2x106

 1 2 3 4 5 6

N
um

be
r

of
 R

R
 s

et
s

lo
ad

ed

|Q.T|

Twitter

RR
IRR

Figure 6: Varying query keywords length: |Q.T |

keywords “software” and “journal” in both news dataset and
Twitter dataset for both models. We can see that it is more
effective for the news dataset than the Twitter dataset. In
the news dataset, we can see that many websites in the top-
10 results are highly relevant to the keyword “software” and
“journal”. It shows that 1) our proposed KB-TIM query can
be applied for targeted advertising and disseminate the ad-
vertisement in the more relevant communities or clusters in
the social network; 2) The propagation model used in this
paper is effective for topic-aware advertising in the news
dataset. However, in the Twitter dataset, the results for
different topics are similar because the reported users have
a huge number of followers with diverse background. In
other words, they are very influential in different topics. We
also note that RIS method always returns the same results
for different query keywords. There is no clue between its
top-10 seed users and query keywords.

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 0.2 0.4 0.6 0.8 1 1.2 1.4

E
xe

cu
tio

n
T

im
e

(s
)

Graph Size

News

RR
IRR

WRIS

1.2x106
1.4x106
1.6x106
1.8x106
2.0x106
2.2x106
2.4x106
2.6x106
2.8x106

 0.2 0.4 0.6 0.8 1 1.2 1.4

N
um

be
r

of
 R

R
 s

et
s

lo
ad

ed

Graph Size

News

RR
IRR

 1
 2
 4
 8

 16
 32
 64

 128
 256
 512

 1024

 10 15 20 25 30 35 40

E
xe

cu
tio

n
T

im
e

(s
)

Graph Size

Twitter

RR
IRR

WRIS

2.0x105
4.0x105
6.0x105
8.0x105
1.0x106
1.2x106
1.4x106
1.6x106
1.8x106

 10 15 20 25 30 35 40

N
um

be
r

of
 R

R
 s

et
s

lo
ad

ed

Graph Size

Twitter

RR
IRR

Figure 7: Varying the graph size: |V |

Note that how to determine a proper propagation model
is beyond the scope of this paper. In this paper, we focus
on the efficiency issue and our method can be easily ap-
plied to other propagation models like the general trigger-
ing model [15, 19]. This is because our proposed WRIS is
an extension of RIS and RIS has been shown to incorporate
all propagation models in [21]. The only difference is that
RIS uniformly samples vertices to create RR sets whereas
WRIS conducts a weighted sampling approach. Since influ-
ence propagation models is independent of the vertex sam-
pling methods, WRIS can directly adopt other propagation
models supported by RIS.

7. RELATED WORK
IM problem is a NP-Hard problem that has been ex-

tensively studied. Since Kempe et al. [15] proposed the

1080

first simple greedy algorithm with an approximation ratio
of (1 − 1/e − ε), there has been a large body of research
work devoted to improving the efficiency while keeping the
theoretical bound [17, 10, 5, 7, 6, 16, 2, 14, 21]. Although
CELF [17] and its variant CELF++ [10] have significantly
improved the running time, the methods were only exam-
ined in small graphs with thousands of vertices. RIS [2] is
the first method scalable enough to handle graphs with mil-
lions of vertices. It uses random sampling and can handle
various propagation models that have been proposed. The
method was further improved in [21] in terms of sampling
efficiency. However, RIS still requires nearly one hour to
process a graph with millions of vertices.

Another branch of work on IM improved the efficiency by
discarding the theoretical bound. In other words, the ex-
pected influence returned does not have any approximation
ratio to the optimal results. Chen et al. [6] used vertex de-
gree as a quick selection criterion. In [5, 7, 16, 14], the prop-
agation behaviour is simplified by removing social paths that
have low propagation probabilities. Although these heuristic
solutions are more efficient, none of them have been exam-
ined in large social networks. The state-of-the-art solutions
(PMIA [5] and IRIE [14]) require more than 10 minutes to
run a graph with less than 1 million edges.

The above methods cannot be directly applied in online
advertisements because the same seed users are returned for
different advertisements. To solve the issue, topic-aware IM
problem was proposed [1, 13, 4, 18, 3]. In [1], the influence
probabilities that a user influences his neighbors are different
for different topics. Subsequently, Chen et al. [4] proposed
a solution for the topic-ware IM by extending PMIA. As
mentioned, PMIA does not have any theoretical bound and
is not applicable to very large graphs. In [13], Inflex was
proposed to achieve real-time performance. Inflex first pre-
computes a number of top-k seed sets offline and the online
query is processed by finding nearest neighbours among the
pre-computed seed sets w.r.t the query topics. Thus, In-
flex does not have a theoretical bound due to the nearest
neighbour approximation. Very recently, Shuo et al. [3] pro-
posed another heuristic solution to improve the efficiency
of Inflex, but still failed to provide a theoretical bound. In
addition, existing works are not scalable to large number
of topics as they take prohibitively long time to train the
propagation probabilities and huge storage spaces for differ-
ent topics. No study was reported in [1, 13, 4] on handling
graphs with more than 1 million vertices and [3] is only ca-
pable of handling 10 topics for a graph with 4 million users.
Obviously, these solutions are infeasible for real-world social
IM applications.

Compared with existing topic-aware IM solutions, our
KB-TIM query takes into account the influence on the tar-
geted users relevant to the advertisement instead of assign-
ing different influence probabilities between directly con-
nected users for different advertisements. Our solution not
only achieves an approximation ratio of (1 − 1/e − ε), but
also is scalable to retrieve the seed users with a few seconds
in a graph with billions of edges and hundreds of topics.

8. CONCLUSION
In this work, we studied the Keyword-Based Targeted In-

fluence Maximization (KB-TIM) query on social networks.
We first proposed an online sampling RIS method WRIS
that returns a solution with a (1 − 1/e − ε) approximation

ratio. Then a disk based index RR is developed so that the
query processing can be done in real time. Subsequently,
an incremental index and query processing technique, i.e.
IRR, is presented to further boost the performance of RR
method. Extensive experiments on real world social network
data have verified the theoretical findings and efficiency of
our solutions.

9. ACKNOWLEDGEMENT
We would like to thank Prof. Xiaokui Xiao (NTU) for

his insightful comments. This work was supported by NUS-
Tsinghua Extreme Search project under the grant number:
R-252-300-001-490.

10. REFERENCES
[1] N. Barbieri, F. Bonchi, and G. Manco. Topic-aware social

influence propagation models. In ICDM, pages 81–90, 2012.

[2] C. Borgs, M. Brautbar, J. T. Chayes, and B. Lucier. Influence
maximization in social networks: Towards an optimal
algorithmic solution. CoRR, abs/1212.0884, 2012.

[3] S. Chen, J. Fan, G. Li, J. Feng, K.-l. Tan, and J. Tang. Online
topic-aware influence maximization. Proc. VLDB Endow.,
8(6):666–677, 2015.

[4] W. Chen, T. Lin, and C. Yang. Efficient topic-aware influence
maximization using preprocessing. CoRR, abs/1403.0057, 2014.

[5] W. Chen, C. Wang, and Y. Wang. Scalable influence
maximization for prevalent viral marketing in large-scale social
networks. In KDD, pages 1029–1038, 2010.

[6] W. Chen, Y. Wang, and S. Yang. Efficient influence
maximization in social networks. In KDD, pages 199–208, 2009.

[7] W. Chen, Y. Yuan, and L. Zhang. Scalable influence
maximization in social networks under the linear threshold
model. In ICDM, pages 88–97, 2010.

[8] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. J. Comput. Syst. Sci.,
66(4):614–656, 2003.

[9] J. Goldenberg, B. Libai, and Muller. Using complex systems
analysis to advance marketing theory development. Academy of
Marketing Science Review, 2001.

[10] A. Goyal, W. Lu, and L. V. Lakshmanan. Celf++: Optimizing
the greedy algorithm for influence maximization in social
networks. In WWW, pages 47–48, 2011.

[11] M. Granovetter. Threshold models of collective behavior. The
American Journal of Sociology, 83(6):1420–1443, 1978.

[12] L. Hong and B. D. Davison. Empirical study of topic modeling
in twitter. In SOMA, pages 80–88, 2010.

[13] Çigdem Aslay, N. Barbieri, F. Bonchi, and R. A. Baeza-Yates.
Online topic-aware influence maximization queries. In EDBT,
pages 295–306, 2014.

[14] K. Jung, W. Heo, and W. Chen. IRIE: scalable and robust
influence maximization in social networks. In ICDM, pages
918–923, 2012.

[15] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread
of influence through a social network. In KDD, pages 137–146,
2003.

[16] M. Kimura and K. Saito. Tractable models for information
diffusion in social networks. In PKDD, pages 259–271, 2006.

[17] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. M.
VanBriesen, and N. S. Glance. Cost-effective outbreak
detection in networks. In KDD, pages 420–429, 2007.

[18] F.-H. Li, C.-T. Li, and M.-K. Shan. Labeled influence
maximization in social networks for target marketing. In
SocialCom/PASSAT, pages 560–563, 2011.

[19] G. Li, S. Chen, J. Feng, K. Tan, and W. Li. Efficient
location-aware influence maximization. In SIGMOD, pages
87–98, 2014.

[20] Y. Li, D. Zhang, and K.-L. Tan. Real-time targeted influence
maximization for online advertisements. Technical report, 2015.
http://www.comp.nus.edu.sg/~a0047194/.

[21] Y. Tang, X. Xiao, and Y. Shi. Influence maximization:
Near-optimal time complexity meets practical efficiency. In
SIGMOD, pages 75–86, 2014.

[22] V. V. Vazirani. Approximation algorithms. Springer, 2001.

[23] J. Zobel and A. Moffat. Inverted files for text search engines.
ACM Comput. Surv., 38(2), 2006.

1081

