
Possible and Certain SQL Keys

Henning Köhler
School of Engineering &
Advanced Technology

Massey University
Palmerston Nth, New Zealand
h.koehler@massey.ac.nz

Sebastian Link
Department of

Computer Science
The University of Auckland

Auckland, New Zealand
s.link@auckland.ac.nz

Xiaofang Zhou
The University of Queensland

Brisbane, Australia; and
Soochow University

Suzhou, China
zxf@itee.uq.edu.au

ABSTRACT
Driven by the dominance of the relational model, the re-
quirements of modern applications, and the veracity of data,
we revisit the fundamental notion of a key in relational
databases with NULLs. In SQL database systems primary
key columns are NOT NULL by default. NULL columns
may occur in unique constraints which only guarantee unique-
ness for tuples which do not feature null markers in any of
the columns involved, and therefore serve a different func-
tion than primary keys. We investigate the notions of pos-
sible and certain keys, which are keys that hold in some or
all possible worlds that can originate from an SQL table, re-
spectively. Possible keys coincide with the unique constraint
of SQL, and thus provide a semantics for their syntactic def-
inition in the SQL standard. Certain keys extend primary
keys to include NULL columns, and thus form a sufficient
and necessary condition to identify tuples uniquely, while
primary keys are only sufficient for that purpose. In ad-
dition to basic characterization, axiomatization, and simple
discovery approaches for possible and certain keys, we inves-
tigate the existence and construction of Armstrong tables,
and describe an indexing scheme for enforcing certain keys.
Our experiments show that certain keys with NULLs do oc-
cur in real-world databases, and that related computational
problems can be solved efficiently. Certain keys are therefore
semantically well-founded and able to maintain data quality
in the form of Codd’s entity integrity rule while handling the
requirements of modern applications, that is, higher volumes
of incomplete data from different formats.

1. INTRODUCTION
Keys have always been a core enabler for data manage-

ment. They are fundamental for understanding the struc-
ture and semantics of data. Given a collection of entities, a
key is a set of attributes whose values uniquely identify an
entity in the collection. For example, a key for a relational
table is a set of columns such that no two different rows have
matching values in each of the key columns. Keys are essen-

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivs 3.0 Unported License. To view a copy of this li
cense, visit http://creativecommons.org/licenses/byncnd/3.0/. Obtain per
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 11
Copyright 2015 VLDB Endowment 21508097/15/07.

tial for many other data models, including semantic models,
object models, XML and RDF. They are fundamental in
many classical areas of data management, including data
modeling, database design, indexing, transaction process-
ing, query optimization. Knowledge about keys enables us
to i) uniquely reference entities across data repositories, ii)
minimize data redundancy at schema design time to process
updates efficiently at run time, iii) provide better selectiv-
ity estimates in cost-based query optimization, iv) provide a
query optimizer with new access paths that can lead to sub-
stantial speedups in query processing, v) allow the database
administrator (DBA) to improve the efficiency of data ac-
cess via physical design techniques such as data partitioning
or the creation of indexes and materialized views, vi) enable
access to the deep Web, and vii) provide new insights into
application data. Modern applications raise the importance
of keys even further. They can facilitate the data integra-
tion process and prune schema matches. Keys can further
help with the detection of duplicates and anomalies, provide
guidance in repairing and cleaning data, and provide con-
sistent answers to queries over dirty data. The discovery of
keys from data is one of the core activities in data profiling.

According to a Gartner forecast, the NoSQL market will
be worth 3.5 billion US dollars annually by 2018, but by that
time the market for relational database technology will be
worth more than ten times that number, namely 40 billion
US dollars annually [12]. This underlines that “relational
databases are here to stay, and that there is no substitute for
important data” [12]. For these reasons relational databases
must meet basic requirements of modern applications, in-
clusive of big data. On the one hand, relational technology
must handle increases in the volume, variety and velocity
of data. On the other hand, veracity and quality of this
data must still be enforced, to support data-driven decision
making. As a consequence, it is imperative that relational
databases can acquire as much data as possible without sac-
rificing reasonable levels of data quality. Nulls constitute
a convenient relational tool to accommodate high volumes
of incomplete data from different formats. Unfortunately,
nulls oppose the current golden standard for data quality in
terms of keys, that is, Codd’s rule of entity integrity. Entity
integrity is one of Codd’s integrity rules which states that
every table must have a primary key and that the columns
which form the primary key must be unique and not null
[11]. The goal of entity integrity is to ensure that every tu-
ple in the table can be identified efficiently. In SQL, entity
integrity is enforced by adding a primary key clause to a
schema definition. The system enforces entity integrity by

1118

not allowing operations, that is inserts and updates, that
produce an invalid primary key. Operations that create a
duplicate primary key or one containing nulls are rejected.
Consequently, relational databases exhibit a trade-off be-
tween their main mechanism to accommodate the require-
ments of modern applications and their main mechanism to
guarantee entity integrity.
We illustrate this trade-off by a powerful example. Con-

sider the snapshot I of the RFAM (RNA families) data set
in Table 1, available at http://rfam.sanger.ac.uk/. The
data set violates entity integrity as every potential primary
key over the schema is violated by I. In particular, column
journal carries the null marker ⊥. Nevertheless, every tuple
in I can be uniquely identified by a combination of column
pairs, such as (title, journal) or (author, journal). This is
not possible with SQL unique constraints which cannot al-
ways uniquely identify tuples in which null markers occur
in the columns involved. We conclude that the syntactic
requirements of primary keys are sufficient to meet the goal
of entity integrity. However, the requirements are not nec-
essary since they prohibit the entry of some data without
good reason. The inability to insert important data into the
database may force organizations to abandon key validation
altogether, exposing their future database to less data qual-
ity, inefficiencies in data processing, waste of resources, and
poor data-driven decision making. Finding a notion of keys
that is sufficient and necessary to meet the goal of entity
integrity will bring forward a new database technology that
accommodates the requirements of modern applications bet-
ter than primary keys do.

title author journal
The uRNA database Zwieb C Nucleic Acids 1997
The uRNA database Zwieb C Nucleic Acids 1996
Genome wide detect. Ragh. R ⊥

Table 1: Snippet I of the RFAM data set

These observations have motivated us to investigate keys
over SQL tables from a well-founded semantic point of view.
For this purpose, we permit interpretations of ⊥ as missing
or unknown data. This interpretation leads to a possible
world semantics, in which a possible world results from a
table by replacing independently each occurrence of ⊥ by a
value from the corresponding domain (missing data is repre-
sented by a distinguished domain ‘value’). A possible world
can therefore be handled as a relation of total tuples in which
duplicate tuples may occur. As usual, a possible world w
satisfies a key X if and only if there are no two tuples in w
that have distinct tuple identities and matching values on all
the attributes in X. For example, the possible world w1 of I
in Table 2 satisfies keys such as {journal}, {author,journal}
and {title,journal}, and the possible world w2 of I in Ta-
ble 3 satisfies the keys {author,journal} and {title,journal}
but violates the key {journal}. When required we stipulate
any minimality requirement on keys explicitly.

title author journal
The uRNA database Zwieb C Nucleic Acids 1997
The uRNA database Zwieb C Nucleic Acids 1996
Genome wide detect. Ragh. R PLOS One 2000

Table 2: Possible World w1 of snippet I in Table 1

title author journal
The uRNA database Zwieb C Nucleic Acids 1997
The uRNA database Zwieb C Nucleic Acids 1996
Genome wide detect. Ragh. R Nucleic Acids 1997

Table 3: Possible World w2 of snippet I in Table 1

This approach naturally suggests two semantics of keys
over SQL tables. A possible key p ⟨X⟩ is satisfied by an SQL
table I if and only if there is some possible world of I in
which the key X is satisfied. A certain key c ⟨X⟩ is satisfied
by an SQL table I if and only if the key X is satisfied in
every possible world of I. In particular, the semantics of
certain keys does not prevent the entry of incomplete tuples
that can still be identified uniquely, independently of which
data null marker occurrences represent. For example, the
snapshot I in Table 1 satisfies the possible key p ⟨journal⟩
as witnessed by world w1 in Table 2, but violates the cer-
tain key c ⟨journal⟩ as witnessed by world w2 in Table 3.
Moreover, I satisfies the certain keys c ⟨title, journal⟩ and
c ⟨author, journal⟩. The example illustrates that primary
keys cannot enforce entity integrity on data sets that orig-
inate from modern applications, while certain keys can. In
fact, primary keys are only sufficient to uniquely identify
tuples in SQL tables, while certain keys are also necessary.
Our observations provide strong motivation to investigate
possible and certain keys in detail. In particular, our re-
search provides strong evidence that certain keys can meet
the golden standard of entity integrity and meet the require-
ments of modern applications. The contributions of our re-
search can be summarized as follows:
1. We propose a possible world semantics for keys over SQL
tables. Possible keys hold in some possible world, while cer-
tain keys hold in all possible worlds. Hence, certain keys
identify tuples without having to declare all attributes NOT

NULL. While primary keys provide a sufficient condition to
identify tuples, the condition is not necessary. Certain keys
provide a sufficient and necessary condition, thereby not pro-
hibiting the entry of data that can be uniquely identified.
2. We establish simple syntactic characterizations to vali-
date the satisfaction of possible and certain keys. Permit-
ting possible worlds to be multisets rather than sets means
that possible keys provide a semantics for SQL’s unique con-
straint. That is, unique(X) is satisfied by an SQL table if
and only if it satisfies p ⟨X⟩.
3. We characterize the implication problem for the com-
bined class of possible and certain keys and NOT NULL con-
straints axiomatically and by an algorithm that works in
linear time in the input. This shows that possible and cer-
tain keys can be reasoned about efficiently. As an important
application, we can efficiently compute the minimal cover of
our constraints in order to reduce the amount of integrity
maintenance to a minimal level necessary. Our algorithm
requires only little time to eliminate all future redundant
enforcements of keys on potentially big data sets. Conse-
quently, the bigger the data sets become the more time we
save by not having to check redundant keys.
4. We address the data-driven discovery of possible and
certain keys. Exploiting hypergraph transversals, we estab-
lish a compact algorithm to compute a cover for the possible
and certain keys that hold on a given table. The discovery
algorithm allows us to find possible and certain keys that

1119

hold on publicly available data sets. Several of the certain
keys permit null marker occurrences, which makes them dif-
ferent from primary keys. Hence, certain keys do occur in
practice, providing strong motivation for further research
and exploiting their features in database technology. The
discovery of keys is useful in many applications, as outlined
before. This line of our research is also a contribution to the
new important area of data profiling [35].
5. We investigate structural and computational aspects of
Armstrong tables. Given some set of possible keys, certain
keys and NOT NULL constraints, an Armstrong table for this
set is an SQL table that satisfies the constraints in this set
but violates all possible keys, certain keys and NOT NULL

constraints that are not implied by the set. For example,
snapshot I of Table 1 is an Armstrong table for p ⟨journal⟩,
c ⟨title, journal⟩, c ⟨author, journal⟩ and the NOT NULL con-
straints on title and author. Despite much more involved
challenges as encountered in the idealized special case of
pure relations, we characterize when Armstrong tables exist
and how to compute them in these cases. While being, in
theory, worst-case double exponential in the input, our al-
gorithm is very efficient in practice. For example, for a table

with 20 attributes, a brute-force approach would require 22
20

operations, i.e., never finish. While the theoretical worst-
case bound for our algorithm is not much better, it actually
establishes an Armstrong table within milliseconds. We also
provide circumstantial evidence that the worst-case bound
is difficult to improve upon in theory. For this purpose we
show the NP-hardness of the key/antikey satisfiability prob-
lem, whose input size is worst-case exponential in the input
to the Armstrong table existence problem, and closely linked
to it. Armstrong tables provide a tool for database design-
ers to communicate effectively with domain experts in order
to acquire a more complete set of semantically meaningful
integrity constraints. It is well-known that this results in
better database designs, better data quality, more efficient
data processing, exchange and integration, resource savings
and better decision-making [33].
6. We propose an indexing scheme for certain keys. Our
scheme improves the enforcement of certain keys on inserts
by several orders of magnitude. It works only marginally
slower than the enforcement of primary keys, provided that
the certain keys have only a small number of columns in
which null markers can occur. Exploiting our data-driven
discovery algorithm from before, we have found only certain
keys in which at most two columns can feature null markers.
7. Besides the discovery of possible and certain keys in
real-life data sets we conducted several other experiments.
These confirm our intuition that the computational prob-
lems above can be solved efficiently in practice. For ex-
ample, we applied our construction of Armstrong tables to
the possible and certain keys we had previously discovered,
resulting in tables containing only seven rows on average,
which makes them particularly useful for semantic samples
in data profiling or as a communication tool when require-
ments are acquired from domain experts. Furthermore, their
computation only took a few milliseconds in each of the
130 cases. For only 85 out of 1 million randomly gener-
ated schemata and sets of keys, Armstrong tables did not
exist, otherwise Armstrong tables were computed in a few
milliseconds. Although the computation of Armstrong ta-
bles may take exponential time in the worst case, such cases
need to be constructed carefully and occur at best sparingly

in practice. Experiments with our scheme showed that i)
certain keys in practice are likely to not have more than two
columns in which null markers occur, and ii) such certain
keys can be enforced almost as efficiently as primary keys.

Our findings provide strong evidence that certain keys
achieve the golden standard of Codd’s principle of entity
integrity under the requirements of modern applications.
Organization. Section 2 discusses related work further
motivating our research. Possible and certain keys are in-
troduced in Section 3 where we also establish their syntac-
tic characterization, axiomatic and algorithmic solutions to
their implication problem, the computation of their mini-
mal cover, and their discovery from given tables. Structural
and computational aspects of Armstrong tables are inves-
tigated in Section 4. An efficient indexing scheme for the
enforcement of certain keys is established in Section 5, and
results of our experiments are presented in Section 6. We
conclude and comment on future work in Section 7. Proofs
and further material are available in a technical report [27].

2. RELATED WORK
Integrity constraints enforce the semantics of application

domains in database systems. They form a cornerstone of
database technology [1]. Entity integrity is one of the three
inherent integrity rules proposed by Codd [11]. Keys and
foreign keys are the only ones amongst around 100 classes of
constraints [1] that enjoy built-in support by SQL database
systems. In particular, entity integrity is enforced by pri-
mary keys [34]. Core problems investigate reasoning [21],
Armstrong databases [18], and discovery [22, 24, 32, 33,
40]. Applications include anomaly detection [43], consis-
tency management [4], consistent query answers [3, 28], data
cleaning [17], exchange [16], fusion [36], integration [9], pro-
filing [35], quality [38], repairs [6], and security [7], schema
design [14], query optimization [23], transaction processing
[2], and view maintenance [37]. Surrogate keys (‘autoincre-
ment’ fields) do not help with enforcing domain semantics
or supporting applications while semantic keys do.

One of the most important extensions of the relational
model [11] is incomplete information, due to the high de-
mand for the correct handling of such information in real-
world applications. We focus on SQL where many kinds
of null markers have been proposed. The two most prolific
proposals are “value unknown at present” [11] and “no infor-
mation” [31, 42]. Even though their semantics differ, both
notions possess the (for our purposes) fundamental property
that different null marker occurrences represent either differ-
ent or identical values in possible worlds. This holds even if
the two notions were to be mixed, allowing two different in-
terpretations of null marker occurrences. As a consequence,
our definition of key satisfaction in possible worlds (where
for “no information” nulls we permit possible worlds with
missing values) remains sensible under either notion, and
leads to the same syntactical characterization. Since all our
results are based on this syntactical characterization, estab-
lished in Section 3.2, they continue to hold under “no in-
formation” interpretation. For simplicity we will only refer
to the “value unknown at present” interpretation for the re-
mainder of the paper, but note that missing data can simply
be handled as above.

We adopt a principled approach that defines the semantics
of constraints in terms of possible worlds. Levene and Loizou
introduced strong and weak functional dependencies (FDs)

1120

[29]. We take a similar approach and strong/weak FDs and
possible/certain keys are closely related. However, neither
are certain keys special cases of strong FDs, nor are possible
keys special cases of weak FDs. The reason is that we permit
duplicate tuples in possible worlds, which is necessary to ob-
tain entity integrity. Consider I1 in Table 4: if we prohibited
possible worlds with duplicates, title would become a certain
key. Under such multiset semantics, keys are no longer spe-
cial cases of FDs, since the former prohibit duplicate tuples
and the latter do not. Duplicate tuples occur naturally in
modern applications, such as data integration, entity link-
ing and de-duplication, and must be accommodated by any
reasonable notion of a key. For example, the snippet I1 in
Table 4 satisfies the strong FD title → author, i.e., {title} is
a strong key for I1, but c ⟨title⟩ is not a certain key for I1.
In particular, the world that results from replacing ⊥ in I1
with ‘uRNA’ contains two duplicate tuples that violate the
key {title}. Similarly, the snippet I2 in Table 4 satisfies the
weak FD author → journal, i.e., {author} is a weak key for
I2, but p ⟨author⟩ is not a possible key for I2. In particular,
the world that results from replacing ⊥ in I2 with ‘Acids’
contains two duplicate tuples that violate the key {author}.
The snippet I2 further illustrates the benefit of permitting
multisets of tuples as possible worlds. This guarantees that
SQL’s unique constraint coincides with our possible keys,
but not with weak keys: I2 violates unique(author) and
p ⟨author⟩, but satisfies the weak key {author}.

I1
title author

uRNA Zwieb
⊥ Zwieb

I2
author journal
Zwieb C ⊥
Zwieb C Acids

Table 4: SQL tables I1 and I2

The focus in [29] is on axiomatization and implication of
strong/weak FDs. While Armstrong tables are claimed to
exist for any set of weak/strong FDs [29], we discovered a
technical error in the proof. Indeed, in the technical report
[27], Example 15 on page 42 shows a set of strong and weak
FDs for which no Armstrong table exists.
The principle of entity integrity has been challenged by

Thalheim [41] and later by Levene and Loizou [30], both
following an approach different from ours. They propose
the notion of a key set. A relation satisfies a key set if, for
each pair of distinct tuples, there is some key in the key set
on which the two tuples are total and distinct. A certain
key is equivalent to a key set consisting of all the singleton
subsets of the key attributes, e.g., c ⟨title, author, journal⟩
corresponds to the key set {{title}, {author}, {journal}}.
However, our work is different in that we study the interac-
tion with possible keys and NOT NULL attributes, establish
a possible world semantics, and study different problems.
The implication problem for the sole class of primary keys
is examined in [19]. As the key columns of primary keys are
NOT NULL, the class of primary keys behaves differently from
both possible and certain keys, see Section 3.3.
We emphasize that our findings may also be important for

other data models such as XML [20] and RDF [10] where
incomplete information is inherent, probabilistic databases
[25] where keys can be expected to hold with some proba-
bility other than 1, and also description logics [10].

Summary. Certain keys appear to be the most natural
approach to address the efficient identification of tuples in
SQL tables. It is therefore surprising that they have not
been considered in previous work. In this paper, we investi-
gate the combined class of possible and certain keys under
NOT NULL constraints. The combination of these constraints
is particularly relevant to SQL, as possible keys correspond
to SQL’s unique constraint. The presence of certain keys
also means that the problems studied here are substantially
different from those investigated elsewhere.

3. POSSIBLE AND CERTAIN KEYS
We start with some preliminaries before introducing the

notions of possible and certain keys. Subsequently, we char-
acterize these notions syntactically, from which we derive
both a simple axiomatic and a linear time algorithmic char-
acterization of the implication problem. We show that possi-
ble and certain keys enjoy a unique minimal representation.
Finally, we exploit hypergraph transversals to discover pos-
sible and certain keys from a given table.

3.1 Preliminaries
We begin with basic terminology. Let A = {A1, A2, . . .}

be a (countably) infinite set of distinct symbols, called at-
tributes. Attributes represent column names of tables. A
table schema is a finite non-empty subset T of A. Each at-
tribute A of a table schema T is associated with an infinite
domain dom(A) which represents the possible values that
can occur in column A. In order to encompass incomplete
information the domain of each attribute contains the null
marker, denoted by ⊥. As explained in Section 2 we restrict
the interpretation of ⊥ to “value unknown at present” but
only to ease presentation. Although not a value, we include
⊥ in attribute domains as a syntactic convenience.

For attribute sets X and Y we may write XY for their
set union X ∪ Y . If X = {A1, . . . , Am}, then we may write
A1 · · ·Am for X. In particular, we may write A to represent
the singleton {A}. A tuple over T is a function t : T →∪

A∈T dom(A) with t(A) ∈ dom(A) for all A ∈ X. For
X ⊆ T let t[X] denote the restriction of the tuple t over T
to X. We say that a tuple t is X-total if t[A] ̸= ⊥ for all
A ∈ X. A tuple t over T is said to be a total tuple if it is
T -total. A table I over T is a finite multiset of tuples over T .
A table I over T is a total table if every tuple t ∈ I is total.
Let t, t′ be tuples over T . We define weak/strong similarity
of t, t′ on X ⊆ T as follows:

t[X] ∼w t′[X] :⇔ ∀A ∈ X.
(t[A] = t′[A] ∨ t[A] = ⊥ ∨ t′[A] = ⊥)

t[X] ∼s t′[X] :⇔ ∀A ∈ X.
(t[A] = t′[A] ̸= ⊥)

Weak and strong similarity become identical for tuples that
are X-total. In such “classical” cases we denote similarity
by t[X] ∼ t′[X]. We will use the phrase t, t′ agree inter-
changeably for t, t′ are similar.

A null-free subschema (NFS) over the table schema T is
a set TS where TS ⊆ T . The NFS TS over T is satisfied
by a table I over T if and only if I is TS-total. SQL al-
lows the specification of attributes as NOT NULL, so the set
of attributes declared NOT NULL forms an NFS over the un-
derlying table schema. For convenience we sometimes refer
to the pair (T, TS) as table schema.

1121

We say that X ⊆ T is a key for the total table I over
T , denoted by I ⊢ X, if there are no two tuples t, t′ ∈ I
that have distinct tuple identities and agree on X. We will
now define two different notions of keys over general tables,
using a possible world semantics. Given a table I on T , a
possible world of I is obtained by independently replacing
every occurrence of ⊥ in I with a domain value. We say
that X ⊆ T is a possible/certain key for I, denoted by p ⟨X⟩
and c ⟨X⟩ respectively, if the following hold:

I ⊢ p ⟨X⟩ :⇔ X is a key for some possible world of I

I ⊢ c ⟨X⟩ :⇔ X is a key for every possible world of I .

We illustrate this semantics on our running example.

Example 1. For T = {title, author, journal} let I denote

title author journal
The uRNA database Zwieb C Nucleic Acids 1997
The uRNA database Zwieb C Nucleic Acids 1996
Genome wide detect. Ragh. R ⊥

that is, Table 1 from before. Then I ⊢ p ⟨journal⟩ as ⊥
can be replaced by a domain value different from the jour-
nals in I. Furthermore, I ⊢ c ⟨title, journal⟩ as the first
two rows are unique on journal, and the last row is unique
on title, independently of the replacement for ⊥. Finally,
I ⊢ c ⟨author, journal⟩ as the first two rows are unique on
journal, and the last row is unique on author, independently
of the replacement for ⊥.

For a set Σ of constraints over table schema T we say that
a table I over T satisfies Σ if I satisfies every σ ∈ Σ. If for
some σ ∈ Σ the table I does not satisfy σ we say that I
violates σ (and violates Σ). A table I over (T, TS) is a table
I over T that satisfies TS . A table I over (T, TS ,Σ) is a
table I over (T, TS) that satisfies Σ.
When discussing possible and certain keys, the following

notions of strong and weak anti-keys will prove useful. Let
I be a table over (T, TS) and X ⊆ T . We say that X is
a strong/weak anti-key for I, denoted by ¬p⟨X⟩ and ¬c⟨X⟩
respectively, if p ⟨X⟩ and c ⟨X⟩, respectively, do not hold on
I. We may also say that ¬p⟨X⟩ and/or ¬c⟨X⟩ hold on I.
We write ¬ ⟨X⟩ to denote an anti-key which may be either
strong or weak. A set Σ of constraints over (T, TS) permits
a set Π of strong and weak anti-keys if there is a table I
over (T, TS ,Σ) such that every anti-key in Π holds on I. We
illustrate this semantics on our running example.

Example 2. For T = {title, author, journal} let I denote
the table over T from Table 1. Then I ⊢ ¬p⟨title, author⟩
as the first two rows will agree on title and author in every
possible world. Furthermore, I ⊢ ¬c⟨journal⟩ as ⊥ could be
replaced by either of the two journals listed in I, resulting in
possible worlds that violate the key {journal}.

3.2 Syntactic Characterization
The following result characterizes the semantics of pos-

sible and certain keys syntactically, using strong and weak
similarity. The characterization shows, in particular, that
possible keys capture the unique constraint in SQL. There-
fore, we have established a first formal semantics for the
SQL unique constraint, based on Codd’s null marker inter-
pretation of “value exists, but unknown”. Moreover, The-
orem 1 provides a foundation for developing efficient algo-
rithms that effectively exploit our keys in data processing.

Theorem 1. X ⊆ T is a possible (certain) key for I iff
no two tuples in I with distinct tuple identities are strongly
(weakly) similar on X.

We illustrate the syntactic characterization of our key se-
mantics from Theorem 1 on our running example.

Example 3. Suppose I denotes Table 1 over T = {title,
author, journal}. Then I ⊢ p ⟨journal⟩ as no two differ-
ent I-tuples strongly agree on journal. Furthermore, I ⊢
c ⟨title, journal⟩ as no two different I-tuples weakly agree
on title and journal. Finally, I ⊢ c ⟨author, journal⟩ as no
two different I-tuples weakly agree on author and journal.

3.3 Implication
Many data management tasks, including data profiling,

schema design, transaction processing, and query optimiza-
tion, benefit from the ability to decide the implication prob-
lem of semantic constraints. In our context, the implica-
tion problem can be defined as follows. Let (T, TS) denote
the schema under consideration. For a set Σ ∪ {φ} of con-
straints over (T, Ts) we say that Σ implies φ, denoted by
Σ |= φ, if and only if every table over (T, TS) that satisfies
Σ also satisfies φ. The implication problem for a class C of
constraints is to decide, for an arbitrary (T, TS) and an ar-
bitrary set Σ∪{φ} of constraints in C, whether Σ implies φ.
For possible and certain keys the implication problem can
be characterized as follows.

Theorem 2. Let Σ be a set of possible and certain keys.
Then Σ implies c ⟨X⟩ iff c ⟨Y ⟩ ∈ Σ for some Y ⊆ X or
p ⟨Z⟩ ∈ Σ for some Z ⊆ X ∩ TS. Furthermore, Σ implies
p ⟨X⟩ iff c ⟨Y ⟩ ∈ Σ or p ⟨Y ⟩ ∈ Σ for some Y ⊆ X.

Thus, a given certain key is implied by Σ iff it contains a
certain key from Σ or its NOT NULL columns contain a pos-
sible key from Σ. Similarly, a given possible key is implied
by Σ iff it contains a possible or certain key from Σ. We
exemplify Theorem 2 on our running example.

Example 4. Let T = {title, author, journal} be our table
schema, TS = {title, author} our NFS, and let Σ consist of
p ⟨journal⟩, c ⟨title, journal⟩ and c ⟨author, journal⟩. The-
orem 2 shows that Σ implies c ⟨title, author, journal⟩ and
p ⟨title, journal⟩, but neither c ⟨journal⟩ nor p ⟨title, author⟩.
This is independently confirmed by Table 1, which satisfies
c ⟨title, author, journal⟩ and p ⟨title, journal⟩, but it vio-
lates c ⟨journal⟩ and p ⟨title, author⟩.

A consequence of Theorem 2 is that the implication of our
keys can be decided with just one scan over the input.

Theorem 3. The implication problem for the class of pos-
sible and certain keys can be decided in linear time.

Theorem 3 indicates that the semantics of our keys can
be exploited efficiently in many data management tasks. We
illustrate this on the following example.

Example 5. Suppose we want to find all distinct combi-
nations of authors and journals from the current instance
over table schema T = {title, author, journal} where TS =
{title, author} denotes our NFS. For the query

SELECT DISTINCT author, journal
FROM T
WHERE journal IS NOT NULL

1122

an optimizer may check if the certain key c ⟨author, journal⟩
is implied by the set Σ of specified constraints on (T, TS)
together with the additional NOT NULL constraint on journal,
enforced by the WHERE clause. If that is indeed the case, as for
the set Σ in Example 4, the DISTINCT clause is superfluous
and can be omitted, thereby saving the expensive operation
of duplicate removal.

3.4 Axiomatization
An axiomatic characterization of the implication problem

provides us with a tool for gaining an understanding of and
reasoning about the interaction of possible and certain keys
and NOT NULL constraints. The following result presents a
sound and complete axiomatization for this combined class
of constraints. The definitions of sound and complete sets
of axioms are standard [1].

Theorem 4. The following axioms are sound and com-
plete for the implication of possible and certain keys.

p-Extension:
p ⟨X⟩
p ⟨XY ⟩ c-Extension:

c ⟨X⟩
c ⟨XY ⟩

Weakening:
c ⟨X⟩
p ⟨X⟩ Strengthening:

p ⟨X⟩
c ⟨X⟩ X ⊆ TS

We note that Theorem 4 also constitutes an invaluable
foundation for establishing further important results about
our class of keys. A simple application of the inference rules
is shown on our running example.

Example 6. Let T = {title, author, journal} be our table
schema, TS = {title, author} our NFS, and let Σ consist of
p ⟨journal⟩, c ⟨title, journal⟩ and c ⟨author, journal⟩. Then
p ⟨author, journal⟩ can be inferred from Σ by a single appli-
cation of p-Extension to p ⟨journal⟩, or by a single applica-
tion of Weakening to c ⟨author, journal⟩.

3.5 Minimal Covers
A cover of Σ is a set Σ′ where every element is implied by

Σ and which implies every element of Σ. Hence, a cover is
just a representation. Minimal representations of constraint
sets are of particular interest in database practice. Firstly,
they justify the use of valuable resources, for example, by
limiting the validation of constraints to those necessary. Sec-
ondly, people find minimal representations easier to work
with than non-minimal ones. For the class of possible and
certain keys, a unique minimal representation exists.
We say that i) p ⟨X⟩ ∈ Σ is non-minimal if Σ � p ⟨Y ⟩

for some Y ⊂ X or Σ � c ⟨X⟩, and ii) c ⟨X⟩ ∈ Σ is non-
minimal if Σ � c ⟨Y ⟩ for some Y ⊂ X. We call a key σ with
Σ � σ minimal iff σ is not non-minimal. We call σ ∈ Σ
redundant iff Σ\{σ} � σ, and non-redundant otherwise. We
call Σ minimal (non-redundant) iff all keys in Σ are minimal
(non-redundant), and non-minimal (redundant) otherwise.
Due to the logical equivalence of p ⟨X⟩ and c ⟨X⟩ for X ⊆

TS , certain keys can be both minimal and redundant while
possible keys can be both non-minimal and non-redundant.

Theorem 5. The set Σmin of all minimal possible and
certain keys w.r.t. Σ is a non-redundant cover of Σ. Indeed,
Σmin is the only minimal cover of Σ.

We may hence talk about the minimal cover of Σ, and
illustrate this concept on our running example.

Example 7. Let T = {title, author, journal} be our ta-
ble schema, TS = {title, author} our NFS, let Σ′ consist of
p ⟨journal⟩, c ⟨title, journal⟩, c ⟨author, journal⟩,
p ⟨author, journal⟩ and c ⟨title, author, journal⟩. The min-
imal cover Σ of Σ′ consists of p ⟨journal⟩, c ⟨title, journal⟩
and c ⟨author, journal⟩.

A strong anti-key ¬p⟨X⟩ is non-maximal if ¬ ⟨Y ⟩ with
X ⊂ Y is an anti-key implying ¬p⟨X⟩ on (T, TS). A weak
anti-key ¬c⟨X⟩ is non-maximal if ¬ ⟨Y ⟩ with X ⊂ Y is an
anti-key or ¬p⟨X⟩ is a strong anti-key. Anti-keys are max-
imal unless they are non-maximal. We denote the set of
maximal strong anti-keys by As

max, the set of maximal weak
anti-keys by Aw

max and their disjoint union by Amax.

3.6 Key Discovery
Our next goal is to discover all certain and possible keys

that hold in a given table I over (T, TS). If TS is not given it
is trivial to find a maximal TS . The discovery of constraints
from data reveals semantic information useful for database
design and administration, data exchange, integration and
profiling. Combined with human expertise, meaningful con-
straints that are not specified or meaningless constraints
that hold accidentally may be revealed.

Keys can be discovered from total tables by computing the
agree sets of all pairs of distinct tuples, and then comput-
ing the transversals for their complements [13]. On general
tables we distinguish between strong and weak agree sets,
motivated by our notions of strong and weak similarity.

Given two tuples t, t′ over T , the weak (strong) agree set
of t, t′ is the (unique) maximal subset X ⊆ T such that t, t′

are weakly (strongly) similar on X. Given a table I over T ,
we denote by AGw(I),AGs(I) the set of all maximal agree
sets of distinct tuples in I:

AGw(I) := max{X | ∃t ̸= t′ ∈ I.t[X] ∼w t′[X]}
AGs(I) := max{X | ∃t ̸= t′ ∈ I.t[X] ∼s t′[X]}

We shall simply write AGw,AGs when I is clear from the
context. Complements and transversals are standard no-
tions for which we now introduce notation [13].

Let X be a subset of T and S a set of subset of T . We use
the following notation for complements and transversals:

X := T \X
S := {X | X ∈ S}

Tr(S) := min {Y ⊆ T | ∀X ∈ S.Y ∩X ̸= ∅}

Our main result on key discovery shows that the certain
(possible) keys that hold in I are the transversals of the
complements for all weak (strong) agree sets in I.

Theorem 6. Let I be a table over (T, TS), and ΣI the set
of all certain and/or possible keys that hold on I. Then

Σ := {c ⟨X⟩ | X ∈ Tr(AGw)} ∪ {p ⟨X⟩ | X ∈ Tr(AGs)}

is a cover of ΣI .

Our goal was to show that elegant tools such as hyper-
graph transversals can be used to discover our keys in real-
world data sets. Results of those experiments are presented
in Section 6. Optimizations and scalability of our method to
big data are left for future research, see [35]. We illustrate
the discovery method on our running real-world example.

1123

Figure 1: Acquisition Framework for SQL Keys

Example 8. Let I denote Table 1 over table schema T =
{title, author, journal}. Then TS = {title, author} can be
easily computed. Then AGw(I) consists of {title,author} and
{journal}, with complements {journal} and {title,author} in
AGw, and transversals {title,journal} and {author,journal}.
AGs(I) consists of {title,author}, with complement {journal}
in AGs, and transversal {journal}. Therefore, a cover of the
set of possible and certain keys that holds on I consists of
c ⟨title, journal⟩, c ⟨author, journal⟩, and p ⟨journal⟩.

4. ARMSTRONG TABLES
Armstrong tables are widely regarded as a user-friendly,

exact representation of abstract sets of constraints [5, 15, 18,
33]. For a class C of constraints and a set Σ of constraints
in C, a C-Armstrong table I for Σ satisfies Σ and violates
all the constraints in C not implied by Σ. Therefore, given
an Armstrong table I for Σ the problem of deciding for an
arbitrary constraint in C whether Σ implies φ reduces to the
problem of verifying whether φ holds on I. The ability to
compute an Armstrong table for Σ provides us with a data
sample that is a perfect summary of the semantics embodied
in Σ. Unfortunately, classes C cannot be expected at all to
enjoy Armstrong tables. That is, there are sets Σ for which
no C-Armstrong table exists [15]. Classically, keys and even
functional dependencies enjoy Armstrong relations [5, 33].
However, for possible and certain keys under NOT NULL con-
straints the situation is much more involved. Nevertheless,
we will characterize when Armstrong tables exist, and es-
tablish structural and computational properties for them.

4.1 Acquisition Framework
Applications benefit from the ability of data engineers to

acquire the keys that are semantically meaningful in the do-
main of the application. For that purpose data engineers
communicate with domain experts. We establish two major
tools to improve communication, as shown in the framework
of Figure 1. Here, data engineers use our algorithm to visu-
alize abstract sets Σ of keys as an Armstrong table IΣ, which
is inspected jointly with domain experts. Domain experts
may change IΣ or provide new data samples. Our discovery
algorithm from Theorem 6 is then used to discover the keys
that hold in the given sample.

4.2 Definition and Motivating Examples
An instance I over (T, TS) is a pre-Armstrong table for

(T, TS ,Σ) if for every key σ over T , σ holds on I iff Σ � σ.
We call I an Armstrong table if it is pre-Armstrong and for
every NULL attribute A ∈ T \ TS there exists a tuple t ∈ I
with t[A] = ⊥. Our first example presents a case where a
pre-Armstrong table but no Armstrong tables exist.

Example 9. Let (T, TS ,Σ) = (AB,A, {c ⟨B⟩}). The fol-
lowing is easily seen to be a pre-Armstrong table:

A B
0 0
0 1

Now let I be an instance over (T, TS ,Σ) with t ∈ I such that
t[B] = ⊥. Then the existence of any other tuple t′ ∈ I with
t′ ̸= t would violate c ⟨B⟩, so I = {t}. But that means c ⟨A⟩
holds on I even though Σ 2 c ⟨A⟩, so I is not Armstrong.

We now present a case where no pre-Armstrong tables exist.

Example 10. Let (T, TS) = (ABCD, ∅) and

Σ = {c ⟨AB⟩, c ⟨CD⟩, p ⟨AC⟩, p ⟨AD⟩, p ⟨BC⟩, p ⟨BD⟩}

Then a pre-Armstrong table I must disprove the certain keys
c ⟨AC⟩, c ⟨AD⟩, c ⟨BC⟩, c ⟨BD⟩ while respecting the possible
keys p ⟨AC⟩, p ⟨AD⟩, p ⟨BC⟩, p ⟨BD⟩. In each of these four
cases, we require two tuples t, t′ which are weakly but not
strongly similar on the corresponding key sets (e.g. t[AC] ∼w

t′[AC] but t[AC] ̸∼s t′[AC]). This is only possible when t
or t′ are ⊥ on one of the key attributes. This ensures the
existence of tuples tAC , tAD, tBC , tBD with

tAC [A] = ⊥ ∨ tAC [C] = ⊥, tAD[A] = ⊥ ∨ tAD[D] = ⊥,

tBC [B] = ⊥ ∨ tBC [C] = ⊥, tBD[B] = ⊥ ∨ tBD[D] = ⊥

If tAC [A] ̸= ⊥ and tAD[A] ̸= ⊥ it follows that tAC [C] = ⊥
and tAD[D] = ⊥. But this means tAC [CD] ∼w tAD[CD],
contradicting c ⟨CD⟩. Hence there exists tA ∈ {tAC , tAD}
with tA[A] = ⊥. Similarly we get tB ∈ {tBC , tBD} with
tB [B] = ⊥. Then tA[AB] ∼w tB [AB] contradicting c ⟨AB⟩.
In fact, if tAC = tAD then tAC [CD] = (⊥,⊥) is weakly
similar to every other tuple.

4.3 Structural Characterization
Motivated by our examples we will now characterize the

cases for which Armstrong tables do exist, and show how
to construct them whenever possible. While the research
has been technically challenging, it has significant rewards
in theory and practice. In practice, Armstrong tables facil-
itate the acquisition of requirements, see Figure 1. This is
particularly appealing to our keys since the experiments in
Section 6 confirm that i) key sets for which Armstrong tables
do not exist are rare, and ii) keys that represent real appli-
cation semantics can be enforced efficiently in SQL database
systems. Our findings illustrate the impact of nulls on the
theory of Armstrong databases, and have revealed a tech-
nical error in previous research [29], see Section B of the
appendix in the technical report [27].

In case that Σ � c ⟨∅⟩ there is an Armstrong table with a
single tuple only. Otherwise every pre-Armstrong table con-
tains at least two tuples. We will now characterize the exis-
tence of (pre-)Armstrong tables. The core challenge was to
characterize reconcilable situations between the given pos-
sible keys and null-free subschema, and the implied max-
imal weak anti-keys. In fact, possible keys require some
possible world in which all tuples disagree on some key at-
tribute while weak anti-keys require some possible world in
which some tuples agree on all key attributes. So, when-
ever a weak anti-key contains a possible key, this situation
is only reconcilable by the use of the ⊥ marker. However,
such ⊥ occurrence can cause unintended weak similarity

1124

of tuples, as seen in Example 10. Consequently, standard
Armstrong table construction techniques [5, 18, 33], which
essentially deal with each anti-constraint in isolation, can-
not be applied here. We introduce some more notation to
present the characterization. Let V,W ⊆ P(T) be two
sets of sets. The cross-union of V and W is defined as
V ∪× W := {V ∪ W | V ∈ V,W ∈ W}. We abbreviate
the cross-union of a set W with itself by W×2 := W ∪× W.

Theorem 7. Let Σ 2 c ⟨∅⟩. There exists a pre-Armstrong
table for (T, TS ,Σ) iff there exists a set W ⊆ P(T \ TS) with
the following properties:

i) Every element of W×2 forms a weak anti-key.

ii) For every maximal weak anti-key ¬c⟨X⟩ ∈ Aw
max there

exists Y ∈ W×2 with Y ∩X ′ ̸= ∅ for every possible key
p ⟨X ′⟩ ∈ Σ with X ′ ⊆ X.

There exists an Armstrong table for (T, TS ,Σ) iff i) and ii)
hold as well as

iii)
∪

W = T \ TS.

We have exploited Theorem 7 to devise a general construc-
tion of (pre-)Armstrong tables whenever they exist. In the
construction, every maximal anti-key is represented by two
new tuples. Strong anti-keys are represented by two tuples
that strongly agree on the anti-key, while weak anti-keys are
represented by two tuples that weakly agree on some suit-
able attributes of the anti-key as determined by the set W
from Theorem 7. Finally, the set W permits us to introduce
⊥ in nullable columns that do not yet feature an occur-
rence of ⊥. For the construction we assume without loss of
generality that all attributes have integer domains.

Construction 1 (Armstrong Table).
Let W ⊆ P(T \ TS) satisfy conditions i) and ii) of Theorem
7. We construct an instance I over (T, TS) as follows.

I) For every strong anti-key ¬p⟨X⟩ ∈ As
max add tuples

tsX , ts′X to I with

tsX [X] = (i, . . . , i) ts′X [X] = (i, . . . , i)
tsX [T \X] = (j, . . . , j) ts′X [T \X] = (k, . . . , k)

where i, j, k are distinct integers not used previously.

II) For every weak anti-key ¬c⟨X⟩ ∈ Aw
max we add tuples

twX , tw′
X to I with

twX [X \ Y1] = (i, . . . , i) tw′
X [X \ Y2] = (i, . . . , i)

twX [X ∩ Y1] = (⊥, . . . ,⊥) tw′
X [X ∩ Y2] = (⊥, . . . ,⊥)

twX [T \X] = (j, . . . , j) tw′
X [T \X] = (k, . . . , k)

where Y1, Y2 ∈ W meet the condition for Y = Y1 ∪ Y2

in ii) of Theorem 7, and i, j, k are distinct integers not
used previously.

III) If condition iii) of Theorem 7 also holds for W, then
for every A ∈ T \ TS for which there is no t in I with
t[A] = ⊥, we add a tuple tA to I with

tA[T \A] = (i, . . . , i) tA[A] = ⊥

where i is an integer not used previously.

Indeed, Construction 1 yields a (pre-)Armstrong table
whenever it exists.

Theorem 8. Let Σ 2 c ⟨∅⟩ and I constructed via Con-
struction 1. Then I is a pre-Armstrong table over (T, TS ,Σ).
If condition iii) of Theorem 7 holds for W, then I is an
Armstrong table.

We illustrate Construction 1 on our running example and
show how Table 1 can be derived from it.

Example 11. Consider our running example where T =
{article, author, journal}, TS = {article, author} and Σ
consists of the certain key c ⟨article, journal⟩, the certain
key c ⟨author, journal⟩ and the possible key p ⟨journal⟩. This
gives us the maximal strong and weak anti-keys

Amax = {¬p⟨author, article⟩,¬c⟨journal⟩}

with the set W = {journal} meeting the conditions of The-
orem 7. Now Construction 1 produces the Armstrong table

article author journal
0 0 0
0 0 1
1 1 ⊥
2 2 ⊥

.

In this specific case, we can remove either the third or the
fourth tuple. While those two tuples have weak agree set
{journal}, both of them have the same weak agree set with
the first and the second tuple, too. After removal of the third
or fourth tuple and suitable substitution we obtain Table 1.

The characterization of Theorem 7 is difficult to test in
general, due to the large number of candidate sets W. How-
ever, there are some cases where testing becomes simple.

Theorem 9. Let Σ 2 c ⟨∅⟩.

i) If Σ 2 c ⟨X⟩ for every X ⊆ T \ TS then there exists an
Armstrong table for (T, TS ,Σ).

ii) If Σ � c ⟨X⟩ for any X ⊆ T \TS with |X| ≤ 2 then there
does not exist an Armstrong table for (T, TS ,Σ).

4.4 Computational Characterization
We present a worst-case double exponential time algo-

rithm for computing Armstrong tables whenever possible.
Our experiments in Section 6 show that these worst cases do
not arise in practice, and our computations are very efficient.
For example, our algorithm requires milliseconds when brute

force approaches would require 22
20

operations. While the
exact complexity of the Armstrong table existence problem
remains an open question, we establish results which sug-
gest that the theoretical worst-case time bound is difficult
to improve upon.
Algorithm. Our goal is to compute the setW of Theorem 7
whenever it exist. For this purpose, we first observe that
maximal anti-keys can be constructed using transversals.

Lemma 1. Let ΣP ,ΣC be the sets of possible and certain
keys in Σ. For readability we will identify attribute sets with
the keys or anti-keys induced by them. Then

As
max = { X ∈ Tr(ΣC ∪ ΣP) |

¬(X ⊆ TS ∧ ∃Y ∈ Aw
max. X ⊂ Y) }

Aw
max = Tr(ΣC ∪ {X ∈ ΣP | X ⊆ TS}) \ As

max

1125

For computing As
max and Aw

max by Lemma 1, we note that
anti-keys for which strictly larger weak anti-keys exist can
never be set-wise maximal weak anti-keys. Hence, the set of
all maximal weak anti-keys can be computed as

Aw
max = Tr(ΣC ∪ {X ∈ ΣP | X ⊆ TS}) \ Tr(ΣC ∪ ΣP)

The difficult part in deciding existence of (and then com-
puting) an Armstrong table given (T, TS ,Σ) is to check ex-
istence of (and construct) a set W meeting the conditions
of Theorem 7, in cases where Theorem 9 does not apply.
Blindly testing all subsets of P(T \ TS) becomes infeasible
as soon as T \ TS contains more than 4 elements (for 5 el-
ements, up to 232 ≈ 4, 000, 000, 000 sets would need to be
checked). To ease discussion we will rephrase condition ii)
of Theorem 7. Let W ⊆ P(T). We say that

• W supports Y ⊆ T if Y ⊆ Z for some Z ∈ W.

• W ∨-supports V ⊆ P(T) if W supports some Y ∈ V.

• W ∧∨-supports T ⊆ P(P(T))
if W ∨-supports every V ∈ T .

We write Y ⊂∈ W to indicate that W supports Y .

Lemma 2. Let TX be the transversal set in T \ TS of all
possible keys that are subsets of X, and T the set of all such
transversals for all maximal weak antikeys:

TX := Tr({X ′ ∩ (T \ TS) | p
⟨
X ′⟩ ∈ Σmin ∧X ′ ⊆ X})

T := {TX | X ∈ Aw
max}

Then condition ii) of Theorem 7 can be rephrased as follows:

ii’) W×2 ∧∨-supports T .

We propose the following: For each TX ∈ T and each
minimal transversal t ∈ TX we generate all non-trivial bi-
partitions BX (or just a trivial partition for transversals of
cardinality < 2). We then add to W one such bi-partition
for every TX to ensure condition ii), and combine them with
all single-attribute sets {A} ⊆ T \ TS to ensure condition
iii). This is done for every possible combination of biparti-
tions until we find a set W that meets condition i), or until
we have tested them all. We then optimize this strategy as
follows: If a set PX is already ∨-supported by W×2 (which
at the time of checking will contain only picks for some sets
TX), we may remove PX from further consideration, as long
as we keep all current picks in W. In particular, since all
single-attribute subsets of T \ TS are added to W, we may
ignore all PX containing a set of size 2 or less. We give the
algorithm thus developed in pseudo-code as Algorithm 1.

Theorem 10. Algorithm Armstrong-Set is correct.

We illustrate the construction with an example.

Example 12. Let (T, TS) = (ABCDE, ∅) and

Σ =

{
p ⟨A⟩, p ⟨B⟩, p ⟨CD⟩,
c ⟨ABE⟩, c ⟨ACE⟩, c ⟨ADE⟩, c ⟨BCE⟩

}
Neither condition of Theorem 9 is met, so Algorithm Arm-
strong-Set initializes/computes W, Aw

max and T as

W = {A,B,C,D,E}
Aw

max = {ABCD,AE,BDE,CDE}
T = {{ABC,ABD}}

Algorithm 1 Armstrong-Set

Input: T, TS ,Σ
Output: W ⊆ P(T \ TS) meeting conditions i) to iii) of

Theorem 7 if such W exists, ⊥ otherwise
1: if ̸ ∃c ⟨X⟩ ∈ Σ with X ⊆ T \ TS then
2: return {T \ TS}
3: if ∃c ⟨X⟩ ∈ Σ with X ⊆ T \ TS and |X| ≤ 2 then
4: return ⊥
5: W := {{A} | A ∈ T \ TS}
6: Aw

max := Tr(ΣC ∪ {X ∈ ΣP | X ⊆ TS})\Tr(ΣC ∪ ΣP)
7: T := { Tr({X ′ ∩ (T \ TS) | p ⟨X ′⟩ ∈ Σmin ∧X ′ ⊆ X}) |

X ∈ Aw
max }

8: T := T \ {TX ∈ T | ∃Y ∈ TX . |Y | ≤ 2}
9: return Extend-Support(W, T)

Subroutine Extend-Support(W, T)
Input: W ⊆ P(T \ TS) meeting conditions i) and iii) of

Theorem 7, T ⊆ P(P(T \ TS))
Output: W ′ ⊇ W meeting conditions i) and iii) of Theorem

7 such that W ′×2 ∧∨-supports T if such W ′ exists, ⊥
otherwise

10: if T = ∅ then
11: return W
12: T := T \ {TX} for some TX ∈ T
13: if W×2 ∨-supports TX then
14: return Extend-Support(W, T)
15: for all Y ∈ TX do
16: for all non-trivial bipartitions Y = Y1 ∪ Y2 do
17: if (W ∪ {Y1, Y2})×2 contains no certain key then
18: W ′ := Extend-Support(W ∪ {Y1, Y2}, T)
19: if W ′ ̸= ⊥ then
20: return W ′

21: return ⊥

Then, in method Extend-Support, Tx = {ABC,ABD} which
is not ∨-supported by W×2. The non-trivial bi-partitions
(Y1, Y2) of ABC are

{(A,BC), (AC,B), (AB,C)}.

None of these are suitable for extending W, as the exten-
sion (W∪{Y1, Y2})×2 contains the certain keys BCE, ACE
and ABE, respectively. The non-trivial bi-partitions of the
second set ABD are {(A,BD), (AD,B), (AB,D)}. While
(AD,B) and (AB,D) are again unsuitable, (A,BD) can be
used to extend W to the Armstrong set

W ′ = Extend-Support({A,BD,C,E}, ∅)
= {A,BD,C,E}

If we add c ⟨BDE⟩ to the sample schema, then (A,BD) be-
comes unsuitable as well, so that no Armstrong set exists.

Hardness in theory. The main complexity of construct-
ing Armstrong relations for keys in the relational model goes
into the computation of all anti-keys. This is just the start-
ing point for Algorithm 1, line 6. When computing the pos-
sible combinations of bi-partitions in line 16, Algorithm 1
becomes worst-case double exponential. We provide evi-
dence that suggests this worst-case bound may be difficult
to improve upon. The key/anti-key satisfiability problem
asks: Given a schema (T, TS ,Σ) and a set Aw ⊆ P(T) of
weak anti-keys, does there exist a table I over (T, TS ,Σ)
such that every element of Aw is a weak anti-key for I?

1126

The pre-Armstrong existence problem can be reduced to
the key/anti-key satisfiability problem by computing the set
of maximal weak anti-keys w.r.t. Σ. We followed this ap-
proach in Algorithm 1 that computes a set W of Theorem 7
whenever such a set exists. Therefore, by showing key/anti-
key satisfiability to be NP-complete, we show that any at-
tempt to decide Armstrong existence more efficiently will
likely need to take a very different route. As W can be
exponential in the size of Σ, any such approach must not
compute W at all. The NP-hard problem we reduce to the
key/anti-key satisfiability problem is monotone 1-in-3 SAT
[39], which asks: Given a set of 3-clauses without negations,
does there exist a truth assignment such that every clause
contains exactly one true literal?

Theorem 11. The key/anti-key satisfiability problem is
NP-complete.

Despite the poor theoretical worst-case bounds of the prob-
lem, our experiments in Section 6 show that our algorithm
is typically very efficient.

5. ENFORCING CERTAIN KEYS
In practice, an efficient enforcement of certain keys re-

quires index structures. Finding suitable index structures is
non-trivial as weak similarity is not transitive. Hence, clas-
sical indices will not work directly. Nevertheless we present
an index scheme, based on multiple classical indices, which
allows us to check certain keys efficiently, provided there are
few nullable key attributes. While an efficient index scheme
seems elusive for larger sets of nullable attributes, our ex-
periments from Section 6 suggest that most certain keys in
practice have few nullable attributes.
Let (T, TS) be a table schema and X ⊆ T . A certain-

key-index for c ⟨X⟩ consists of a collection of indices IY on
subsets Y of X which include all NOT NULL attributes:

Ic⟨X⟩ := {IY | X ∩ TS ⊆ Y ⊆ X}

Here we treat ⊥ as regular value for the purpose of indexing,
i.e., we do index tuples with ⊥ “values”. When indexing a
table I, each tuple in I is indexed in each I.
Obviously, |Ic⟨X⟩| = 2n, where n := |X \ TS |, which

makes maintenance efficient only for small n. When check-
ing if a tuple exists that is weakly similar to some given
tuple, we only need to consult a single index, but within
that index we must perform up to 2n lookups.

Theorem 12. Let t be a tuple on (T, TS) and Ic⟨X⟩ a
certain-key-index for table I over (T, TS). Define

K := {A ∈ X | t[A] ̸= ⊥} .

Then the existence of a tuple in I weakly similar to t can be
checked with 2k lookups in IK , where k := |K \ TS |.
As |K \ TS | is bounded by |X \ TS |, lookup is efficient

whenever indexing is efficient.

Example 13. Consider schema (ABCD,A, {c ⟨ABC⟩})
with table I over it:

I =

A B C D
1 ⊥ ⊥ 1
2 2 ⊥ 2
3 ⊥ 3 ⊥
4 4 4 ⊥

The certain-key-index Ic⟨ABC⟩ for c ⟨ABC⟩ consists of:

IA

A
1
2
3
4

IAB

A B
1 ⊥
2 2
3 ⊥
4 4

IAC

A C
1 ⊥
2 ⊥
3 3
4 4

IABC

A B C
1 ⊥ ⊥
2 2 ⊥
3 ⊥ 3
4 4 4

These tables represent attribute values that we index by,
using any standard index structure such as B-trees. When
checking whether tuple t := (2,⊥, 3, 4) is weakly similar on
ABC to some tuple t′ ∈ I (and thus violating c ⟨ABC⟩
when inserted), we perform lookup on IAC for tuples t′ with
t′[AC] ∈ {(2, 3), (2,⊥)}.

6. EXPERIMENTS
We conducted several experiments to evaluate various as-

pects of our work. Firstly, we discovered possible and certain
keys in publicly available databases. Secondly, we tested our
algorithms for computing and deciding the existence of Arm-
strong tables. Lastly, we considered storage space and time
requirements for our index scheme. We used the following
data sets for our experiments: i) GO-termdb (Gene Ontol-
ogy) at geneontology.org/, ii) IPI (International Protein
Index) at ebi.ac.uk/IPI, iii) LMRP (Local Medical Review
Policy) from cms.gov/medicare-coverage-database/, iv)
PFAM (protein families) at pfam.sanger.ac.uk/, and v)
RFAM (RNA families) at rfam.sanger.ac.uk/. These were
chosen for their availability in database format.

6.1 Key Discovery
Examining the schema definition does not suffice to de-

cide what types of key constraints hold or should hold on
a database. Certain keys with ⊥ occurrences cannot be ex-
pressed in current SQL databases, so would be lost. Even
constraints that could and should be expressed are often not
declared. Furthermore, even if NOT NULL constraints are de-
clared, one frequently finds that these are invalid, resulting
in work-arounds such as empty strings. We therefore mined
data tables for possible and certain keys, with focus on find-
ing certain keys containing ⊥ occurrences. In order to decide
whether a column is NOT NULL, we ignored any schema-level
declarations, and instead tested whether a column contained
⊥ occurrences. To alleviate string formatting issues (such as
“Zwieb C.” vs “Zwieb C.;”) we normalized strings by trim-
ming non-word non-decimal characters, and interpreting the
empty string as ⊥. This pre-processing was necessary be-
cause several of our test data sets were available only in CSV
format, where ⊥ occurrences would have been exported as
empty strings. Tables containing less than two tuples were
ignored. In the figures reported, we exclude tables pfamA

and lcd from the PFAM and LMRP data sets, as they con-
tain over 100,000 (pfamA) and over 2000 (lcd) minimal keys,
respectively, almost all of which appear to be ‘by chance’,
and thus would distort results completely. Table 5 lists the
number of minimal keys of each type discovered in the 130
tables. We distinguish between possible and certain keys
with NULL columns, and keys not containing NULL columns.
For the latter, possible and certain keys coincide.

Two factors are likely to have a significant impact on the
figures in Table 5. First, constraints may only hold acciden-
tally, especially when the tables examined are small. For ex-
ample, Table 1 of the RFAM data set satisfies c ⟨title, journal⟩
and c ⟨author, journal⟩, with NULL column journal. Only

1127

Key Type Occurrences
Certain Keys with NULL 43
Possible Keys with NULL 237
Keys without NULL 87

Table 5: Keys found by type

the first key appears to be sensible. Second, constraints
that should sensibly hold may well be violated due to lack
of enforcement. Certain keys with ⊥ occurrences, which
cannot easily be expressed in existing systems, are likely to
suffer from this effect more than others. We thus consider
our results qualitative rather than quantitative. Still, they
indicate that certain keys do appear in practice, and may
benefit from explicit support by a database system.

6.2 Armstrong Tables
We applied Algorithm 1 and Construction 1 to compute

Armstrong tables for the 130 tables we mined possible and
certain keys for. As all certain keys contained some NOT

NULL column, Theorem 9 applied in all cases, and each Arm-
strong table was computed within a few milliseconds. Each
Armstrong table contained only 7 tuples on average.
We also tested our algorithms against 1 million randomly

generated table schemas and sets of keys. Each table con-
tained 5-25 columns, with each column having a 50% chance
of being NOT NULL, and 5-25 keys of size 1-5, with equal
chance of being possible or certain. To avoid overly silly
examples, we removed certain keys with only 1 or 2 NULL

attributes and no NOT NULL attributes. Hence, case ii) of
Theorem 9 never applies.
We found that in all but 85 cases, an Armstrong table

existed, with average computation time again in the order
of a few milliseconds. However, note that for larger random
schemas, transversal computation can become a bottleneck.
Together these results support our intuition that although

Algorithm 1 is worst-case double exponential, such cases
need to be carefully constructed and arise neither in practice
nor by chance (at least not frequently).

6.3 Indexing
The efficiency of our index scheme for certain keys with

⊥ occurrences depends directly on the number of NULL at-
tributes in the certain key. Thus the central question be-
comes how many NULL attributes occur in certain keys in
practice. For the data sets in our experiments, having 43 cer-
tain keys with ⊥ occurrences, the distribution of the number
of these occurrences is listed in Table 6.

#NULLs Frequency
1 39
2 4

Table 6: NULL columns in certain keys

Therefore, certain keys with ⊥ occurrences contain mostly
only a single attribute on which ⊥ occurs (requiring 2 stan-
dard indices), and never more than two attributes (requir-
ing 4 standard indices). Assuming these results generalize
to other data sets, we conclude that certain key with ⊥ oc-
currences can be enforced efficiently in practice.
We used triggers to enforce certain keys under different

combinations of B-tree indices, and compared these to the

enforcement of the corresponding primary keys. The exper-
iments were run in MySQL version 5.6 on a Dell Latitude
E5530, Intel core i7, CPU 2.9GHz with 8GB RAM on a 64-
bit operating system. For all experiments the schema was
(T = ABCDE, TS = A) and the table I over T contained
100M tuples. In each experiment we inserted 10,000 times
one tuple and took the average time to perform this op-
eration. This includes the time for maintaining the index
structures involved. We enforced c ⟨X⟩ in the first experi-
ment for X = AB, in the second experiment for X = ABC
and in the third experiment for X = ABCD, incrementing
the number of NULL columns from 1 to 3. The distribution
of permitted ⊥ occurrences was evenly spread amongst the
100M tuples, and also amongst the 10,000 tuples to be in-
serted. Altogether, we run each of the experiments for 3
index structures: i) IX , ii) ITS , iii) Ic⟨X⟩. The times were
compared against those achieved under declaring a primary
key PK(X) on X, where we had 100M X-total tuples. Our
results are shown in Table 7. All times are in milliseconds.

T = ABCDE, TS = A
Index X = AB X = ABC X = ABCD

PK(X) 0.451 0.491 0.615
IX 0.764 0.896 0.977
ITS 0.723 0.834 0.869
Ic⟨X⟩ 0.617 0.719 1.143

Table 7: Average Times to Enforce Keys on X

Hence, certain keys can be enforced efficiently as long as
we involve the columns in TS in some index. Just having ITS

ensures a performance similar to that of the corresponding
primary key. Indeed, the NOT NULL attributes of a certain
key suffice to identify most tuples uniquely. Our experiments
confirm these observations even for certain keys with three
NULL columns, which occur rarely in practice. Of course,
ITS cannot guarantee the efficiency bounds established for
Ic⟨X⟩ in Theorem 12. We stress the importance of indexing:
enforcing c ⟨X⟩ on our data set without an index resulted in
a performance loss in the order of 104.

7. CONCLUSION AND FUTURE WORK
Primary key columns must not feature null markers and

therefore oppose the requirements of modern applications,
inclusive of high volumes of incomplete data. We studied
keys over SQL tables in which the designated null marker
may represent missing or unknown data. Both interpreta-
tions can be handled by a possible world semantics. A key is
possible (certain) to hold on a table if some (every) possible
world of the table satisfies the key. Possible keys capture
SQL’s unique constraint, and certain keys generalize SQL’s
primary keys by permitting null markers in key columns.
We established solutions to several computational problems
related to possible and certain keys under NOT NULL con-
straints. These include axiomatic and linear-time algorith-
mic characterizations of their implication problem, minimal
representations of keys, discovery of keys from a given table,
and structural and computational properties of Armstrong
tables. Experiments confirm that our solutions work effec-
tively and efficiently in practice. This also applies to enforc-
ing certain keys, by utilizing known index structures. Our
findings from public data confirm that certain keys have
only few columns with null marker occurrences. Certain

1128

keys thus achieve the goal of Codd’s rule for entity integrity
while accommodating the requirements of modern applica-
tions. This distinct advantage over primary keys comes only
at a small price in terms of update performance.
Our research encourages various future work. It will be

both interesting and challenging to revisit different notions
of keys, including our possible and certain keys, in the pres-
ence of finite domains. The exact complexity of deciding
the existence of Armstrong tables should be determined.
It is worth investigating optimizations to reduce the time
complexity of computing Armstrong tables, and their size.
Evidently, the existence and computation of Armstrong re-
lations for sets of weak and strong functional dependencies
requires new attention [29]. Approximate and scalable dis-
covery is an important problem as meaningful keys may be
violated. This line of research has only been started for
total [22, 40] and possible keys [22]. Other index schemes
may prove valuable to enforce certain keys. All application
areas of keys deserve new attention in the light of possible
and certain keys. It is interesting to combine possible and
certain keys with possibilistic or probabilistic keys [8, 26].

8. ACKNOWLEDGEMENTS
We thank Mozhgan Memari for carrying out the experi-

ments for key enforcement. We thank Arnaud Durand and
Georg Gottlob for their comments on an earlier draft. This
research is partially supported by the Marsden Fund Coun-
cil from New Zealand Government funding, by the Natural
Science Foundation of China (Grant No. 61472263) and the
Australian Research Council (Grants No. DP140103171).

9. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] S. Abiteboul and V. Vianu. Transactions and integrity
constraints. In PODS, pages 193–204, 1985.

[3] M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent query
answers in inconsistent databases. In SIGMOD, pages 68–79,
1999.

[4] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Bolt-on
causal consistency. In SIGMOD, pages 761–772, 2013.

[5] C. Beeri, M. Dowd, R. Fagin, and R. Statman. On the
structure of Armstrong relations for functional dependencies. J.
ACM, 31(1):30–46, 1984.

[6] L. E. Bertossi. Database Repairing and Consistent Query
Answering. Morgan & Claypool Publishers, 2011.

[7] J. Biskup. Security in Computing Systems - Challenges,
Approaches and Solutions. Springer, 2009.

[8] P. Brown and S. Link. Probabilistic keys for data quality
management. In CAiSE, pages 118–132, 2015.

[9] A. Cal̀ı, D. Calvanese, and M. Lenzerini. Data integration
under integrity constraints. In Seminal Contributions to
Information Systems Engineering, pages 335–352. 2013.

[10] D. Calvanese, W. Fischl, R. Pichler, E. Sallinger, and
M. Simkus. Capturing relational schemas and functional
dependencies in RDFS. In AAAI, pages 1003–1011, 2014.

[11] E. F. Codd. The Relational Model for Database Management,
Version 2. Addison-Wesley, 1990.

[12] S. Doherty. The future of enterprise data.
http://insights.wired.com/profiles/blogs/the-
future-of-enterprise-data#axzz2owCB8FFn, 2013.

[13] T. Eiter and G. Gottlob. Identifying the minimal transversals
of a hypergraph and related problems. SIAM J. Comput.,
24(6):1278–1304, 1995.

[14] R. Fagin. A normal form for relational databases that is based
on domains and keys. ACM Trans. Database Syst.,
6(3):387–415, 1981.

[15] R. Fagin. Horn clauses and database dependencies. J. ACM,
29(4):952–985, 1982.

[16] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data
exchange: semantics and query answering. Theor. Comput.
Sci., 336(1):89–124, 2005.

[17] W. Fan, F. Geerts, and X. Jia. A revival of constraints for data
cleaning. PVLDB, 1(2):1522–1523, 2008.

[18] S. Hartmann, M. Kirchberg, and S. Link. Design by example
for SQL table definitions with functional dependencies. VLDB
J., 21(1):121–144, 2012.

[19] S. Hartmann, U. Leck, and S. Link. On Codd families of keys
over incomplete relations. Comput. J., 54(7):1166–1180, 2011.

[20] S. Hartmann and S. Link. Efficient reasoning about a robust
XML key fragment. ACM Trans. Database Syst., 34(2), 2009.

[21] S. Hartmann and S. Link. The implication problem of data
dependencies over SQL table definitions. ACM Trans.
Database Syst., 37(2):13, 2012.

[22] A. Heise, Jorge-Arnulfo, Quiane-Ruiz, Z. Abedjan, A. Jentzsch,
and F. Naumann. Scalable discovery of unique column
combinations. PVLDB, 7(4):301–312, 2013.

[23] I. Ileana, B. Cautis, A. Deutsch, and Y. Katsis. Complete yet
practical search for minimal query reformulations under
constraints. In SIGMOD, pages 1015–1026, 2014.

[24] I. F. Ilyas, V. Markl, P. J. Haas, P. Brown, and A. Aboulnaga.
CORDS: automatic discovery of correlations and soft functional
dependencies. In SIGMOD, pages 647–658, 2004.

[25] A. K. Jha, V. Rastogi, and D. Suciu. Query evaluation with
soft keys. In PODS, pages 119–128, 2008.

[26] H. Köhler, U. Leck, S. Link, and H. Prade. Logical foundations
of possibilistic keys. In JELIA, pages 181–195, 2014.

[27] H. Köhler, U. Leck, S. Link, and X. Zhou. Possible and certain
SQL keys. CDMTCS-452, The University of Auckland, 2013.

[28] P. Koutris and J. Wijsen. The data complexity of consistent
query answering for self-join-free conjunctive queries under
primary key constraints. In PODS, pages 17–29, 2015.

[29] M. Levene and G. Loizou. Axiomatisation of functional
dependencies in incomplete relations. Theor. Comput. Sci.,
206(1-2):283–300, 1998.

[30] M. Levene and G. Loizou. A generalisation of entity and
referential integrity. ITA, 35(2):113–127, 2001.

[31] Y. E. Lien. On the equivalence of database models. J. ACM,
29(2):333–362, 1982.

[32] J. Liu, J. Li, C. Liu, and Y. Chen. Discover dependencies from
data - A review. IEEE TKDE, 24(2):251–264, 2012.

[33] H. Mannila and K.-J. Räihä. Design of Relational Databases.
Addison-Wesley, 1992.

[34] J. Melton. ISO/IEC 9075-2: 2003 (SQL/foundation). ISO
standard, 2003.

[35] F. Naumann. Data profiling revisited. SIGMOD Record,
42(4):40–49, 2013.

[36] R. Pochampally, A. D. Sarma, X. L. Dong, A. Meliou, and
D. Srivastava. Fusing data with correlations. In SIGMOD,
pages 433–444, 2014.

[37] K. A. Ross, D. Srivastava, and S. Sudarshan. Materialized view
maintenance and integrity constraint checking: Trading space
for time. In SIGMOD, pages 447–458, 1996.

[38] B. Saha and D. Srivastava. Data quality: The other face of big
data. In ICDE, pages 1294–1297, 2014.

[39] T. J. Schaefer. The complexity of satisfiability problems. In
STOC, pages 216–226, 1978.

[40] Y. Sismanis, P. Brown, P. J. Haas, and B. Reinwald.
GORDIAN: Efficient and scalable discovery of composite keys.
In VLDB, pages 691–702, 2006.

[41] B. Thalheim. On semantic issues connected with keys in
relational databases permitting null values. Elektr.
Informationsverarb. Kybern., 25(1/2):11–20, 1989.

[42] C. Zaniolo. Database relations with null values. J. Comput.
System Sci., 28(1):142–166, 1984.

[43] K. Zellag and B. Kemme. Consad: a real-time consistency
anomalies detector. In SIGMOD, pages 641–644, 2012.

1129

