
SCAN++: Efficient Algorithm for Finding Clusters, Hubs
and Outliers on Large-scale Graphs

Hiroaki Shiokawa†‡, Yasuhiro Fujiwara†, Makoto Onizuka§
† NTT Software Innovation Center, 3-9-11 Midori-cho, Musashino, Tokyo, Japan

‡ University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
§ Osaka University, 1-5 Yamadaoka, Suita, Osaka, Japan

†{shiokawa.hiroaki, fujiwara.yasuhiro}@lab.ntt.co.jp, §onizuka@ist.osaka-u.ac.jp

ABSTRACT
Graph clustering is one of the key techniques for understanding the
structures present in graphs. Besides cluster detection, identifying
hubs and outliers is also a key task, since they have important roles
to play in graph data mining. The structural clustering algorithm
SCAN, proposed by Xu et al., is successfully used in many appli-
cation because it not only detects densely connected nodes as clus-
ters but also identifies sparsely connected nodes as hubs or outliers.
However, it is difficult to apply SCAN to large-scale graphs due to
its high time complexity. This is because it evaluates the density
for all adjacent nodes included in the given graphs. In this paper,
we propose a novel graph clustering algorithm named SCAN++.
In order to reduce time complexity, we introduce new data struc-
ture of directly two-hop-away reachable node set (DTAR). DTAR
is the set of two-hop-away nodes from a given node that are likely
to be in the same cluster as the given node. SCAN++ employs two
approaches for efficient clustering by using DTARs without sacri-
ficing clustering quality. First, it reduces the number of the density
evaluations by computing the density only for the adjacent nodes
such as indicated by DTARs. Second, by sharing a part of the den-
sity evaluations for DTARs, it offers efficient density evaluations
of adjacent nodes. As a result, SCAN++ detects exactly the same
clusters, hubs, and outliers from large-scale graphs as SCAN with
much shorter computation time. Extensive experiments on both
real-world and synthetic graphs demonstrate the performance su-
periority of SCAN++ over existing approaches.

1. INTRODUCTION
Recent advances in social and information science have shown

that large-scale graphs are becoming increasingly important to rep-
resent complicated structures and schema-less data such as is gen-
erated by Twitter, Facebook and various complex networks. To
understand these complex networks, graph cluster analysis (a.k.a.
community detection) is one of the most important techniques in
various research areas such as data mining [11, 37] and social sci-
ence [23]. A cluster can be regarded as a group of nodes that are
densely connected within a group and sparsely connected to those
of other groups. Besides extracting clusters, finding special role

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 11
Copyright 2015 VLDB Endowment 2150-8097/15/07.

nodes, hubs and outliers, is also a worthwhile task for understand-
ing the structures of large-scale graphs [16]. Hubs are generally
thought of as bridging different clusters. In the context of graph
data mining, they are often considered as representative or influen-
tial nodes. In contrast, outliers are the nodes that are neither clusters
nor hubs; they are treated as noise. The hubs and outliers provide
useful insights in mining graphs. For instance, hubs in web graphs
act like authoritative web pages that link similar topics [17]. The
detection of outliers in web graphs is useful in stripping spam pages
from web pages [35]. As well as web analysis, hubs and outliers
play important roles in various applications such as marketing [7]
and epidemiology [32]. That is why identifying hubs and outliers
has become an interesting and important problem.

Most traditional clustering algorithms such as graph partition-
ing [27, 30], modularity-based method [26, 28], and density-based
method [15] only study the problem of cluster detection and so ig-
nore hubs and outliers. One of the most successful clustering meth-
ods is structural clustering algorithm (SCAN) proposed by Xu et
al. [36]. Similar to density-based clustering, the main concept of
SCAN is that densely connected adjacent nodes should be in the
same cluster. However, unlike the traditional algorithms, SCAN
successfully finds, at not insignificant cost, not only clusters but
also hubs and outliers. As a result, SCAN has been used in many
applications including bioinfomatics [6], social analyses [20], clin-
ical analyses [22], and so on.

Although SCAN’s effectiveness in detecting hubs and outliers
as well as clusters is known in many applications, SCAN has, un-
fortunately, a serious weakness; it requires high computation costs
for large-scale graphs. This is because SCAN has to find all clus-
ters prior to identifying hubs and outliers; it first finds densely
connected node sets as clusters. It then classifies the remaining
non-clustered nodes into hubs or outliers. This clustering proce-
dure entails exhaustive density evaluations for all adjacent nodes
in large-scale graphs. Several methods have been proposed to im-
prove its clustering speed. For example, LinkSCAN∗, proposed
by Lim et al., is a state-of-the-art algorithm that uses SCAN to
find overlapping communities from large-scale graphs [21]. They
improve the efficiency of SCAN by employing an edge sampling
technique [21] in the clustering process. By sampling edges from
the graphs, they reduce the number of edges that require density
evaluations. However, this approach produces approximated clus-
tering results; it does not guarantee the same clustering results as
the original algorithm, and so loses the superiority of SCAN [21].

1.1 Contributions
In this paper, we present a novel algorithm, SCAN++. SCAN++

can efficiently handle graphs with more than 100 million nodes and
edges without sacrificing the clustering quality compared to SCAN.

1178

SCAN++ is based on the property of real-world graphs; real-
world graphs such as web graphs have high scores of clustering
coefficients [34]. The clustering coefficient of a node is a mea-
sure of node density. If a node and its neighbor nodes approach a
complete graph (a.k.a. a clique), the score of clustering coefficient
becomes high. That is, a node and its two-hop-away node espe-
cially in real-world graphs are expected to share large parts of their
neighborhoods. Based on this property, SCAN++ prunes the den-
sity evaluation for the nodes that are shared between a node and its
two-hop-away node. Specifically, SCAN++ employs the following
techniques: (1) it uses a new data structure, directly two-hop-away
reachable node set (DTAR), the set of nodes that are two hops away
from a given node, (2) it reduces the cost of clustering by avoid-
ing unnecessary density evaluations if the nodes are not included
in DTARs, and (3) its density evaluation is efficient since DTAR
allows the reusing of density evaluation results. After identifying
clusters, SCAN++ classifies the remaining nodes, which do not be-
long to clusters, as hubs or outliers. Instead of the exhaustive com-
putation performed by the original algorithm, SCAN++ can find
clusters in an efficient manner in large-scale real-world graphs.

SCAN++ has the following attractive characteristics:
• Efficient: SCAN++ achieves higher clustering speeds than

SCAN as well as the edge sampling technique of LinkSCAN∗

(Section 5.1.1). Although SCAN significantly increases its
clustering time as the number of edges increases, SCAN++
has near-linear clustering time against the number of edges
(Section 5.2.2).
• Exact: SCAN++ theoretically guarantees the same cluster-

ing results as SCAN, even though it drops unnecessary den-
sity evaluations (Section 4.3 and 5.1.4).
• Effective: As described above, real-world graphs have high

scores in terms of clustering coefficients. SCAN++ offers
efficient clustering for large-scale real-world graphs that ex-
hibit high clustering coefficients (Section 5.2.1).

To the best of our knowledge, SCAN++ is the first solution to
achieve both high efficiency and clustering results guarantees at
the same time. Our experiments confirm that SCAN++ computes
clusters, hubs and outliers 20.4 times faster than SCAN on aver-
age without sacrificing the clustering quality. Even though SCAN
is effective in enhancing application quality, it has been difficult to
apply to large-scale graphs due to its performance limitation. How-
ever, by providing a sophisticated approach that suits the identifica-
tion of clusters, hubs, and outliers, SCAN++ will help to improve
the effectiveness of a wider range of applications.

The remainder of this paper is organized as follows. Section 2
describes the background of this work. Section 3 and 4 introduce
the main ideas of SCAN++ and their theoretical assessment, re-
spectively. Section 5 reviews the results of our experiments. Sec-
tion 6 shows related work. Section 7 provides our brief conclusion.

2. PRELIMINARY
In this section, we formally define the notations and introduce the

background of this paper. Let G = {V,E} be an unweighted and
undirected graph, where V and E are a set of nodes and edges, re-
spectively. We assume graphs are undirected and unweighted only
to simplify the representations. Other types of graphs such as di-
rected and weighted, can be handled with only slight modifications.
Table 1 lists the main symbols and their definitions.

We briefly review the original algorithm SCAN proposed by Xu
et al. [36]. SCAN is one of the most popular graph clustering
methods; it successfully detects not only clusters C but also hubs H
and outliers O unlike traditional methods. SCAN extracts clusters

Table 1: Definition of main symbols.
Symbol Definition

ε Threshold of the structural similarity, 0 ≤ ε ≤ 1
µ Minimal number of nodes in a cluster
cu Cluster ID of the cluster to which node u belongs
G Given graph
V Set of nodes in G
E Set of edges in G
C Set of clusters in G
H Set of hubs in H
O Set of outliers in G
P Set of pivots in G
B Set of bridges in G

N[u] Set of nodes in the structure neighborhoods of node u
Nε[u] Set of nodes in the ε-neighborhoods of node u
D[u] Set of directly structure-reachable nodes of node u
C[u] Set of nodes that belong to the same cluster as node u
T[u] Set of nodes in the DTAR of node u
Tu Set of nodes in the converged DTAR of node u
L[u] Set of nodes in the local cluster of node u
VTu Set of candidate nodes of clusters derived from Tu
Pε[b] Set of pivots in the ε-neighborhood pivots of bridge b
| · | Number of nodes or edges included in a given set

σ(u, v) Structural similarity between node u and v

as sets of nodes that have dense internal connections; it identifies
the other non-clustered nodes (i.e. nodes that belong to none of the
clusters) as hubs or outliers. Thus, prior to identifying hubs and
outliers, it finds all clusters in a given graph.

In order to find clusters, SCAN first detects a special node, called
core. Core is a node that has a lot of neighbor nodes with highly
dense connections; the core is regarded as the seed of a cluster.
SCAN uses the structural neighborhood [36] to evaluate density.
The structural neighborhood of a node is a node set composed of
the node itself and all its adjacent nodes.

DEFINITION 1 (STRUCTURAL NEIGHBORHOOD). The defi-
nition of structural neighborhood of node u, denoted by N[u], is
given by N[u] = {v ∈ V : (u, v) ∈ E} ∪ {u}.

The density of adjacent nodes is computed by the common nodes
in the structural neighborhoods. SCAN measures the number of
common nodes in two structural neighborhoods normalized by the
geometric mean of their structural neighborhood sizes. This mea-
surement is called structural similarity and is defined as follows:

DEFINITION 2 (STRUCTURAL SIMILARITY). The structural
similarity between node u and v, denoted by σ(u, v), is defined as
σ(u, v) = |N[u] ∩ N[v]|/

√
|N[u]||N[v]|.

The structural similarity is a score varying from 0 to 1 that indicates
the scale of matching degree of structural neighborhoods. When
adjacent nodes share many members of their structural neighbor-
hoods, their structural similarity becomes large.

From Definition 2, SCAN detects the core by evaluating struc-
tural similarities for all neighborhoods. In order to specify core
metrics, SCAN requires two user-specified parameters. First is the
minimum score of the structural similarity to neighbor nodes, de-
noted by ε. Second is the minimum number of neighborhoods, de-
noted by µ, all of whose structural similarities exceed ε. SCAN
regards a node as core when it has at least µ neighbors with struc-
tural similarities greater than ε:

DEFINITION 3 (CORE). Node u is core iff |Nε[u]| ≥ µ, where
Nε, called ε-neighborhood, is Nε[u] = {v ∈ N[u] : σ(u, v) ≥ ε}.

Once SCAN finds core, SCAN expands a cluster from the core.
Specifically, nodes included in the ε-neighborhood of the core are
assigned to the same cluster as the core. The ε-neighborhood nodes
of core node u are called directly structure-reachable nodes, de-
noted by D[u] (e.g. in Figure 1(a), D[u0] = {u0, u1, u5, u6} since

1179

u0 is core.) When node u is core and D[u] 6= ∅, SCAN assigns all
nodes in D[u] to the same cluster as node u.

SCAN recursively expands the cluster by checking whether each
node, which is included in the cluster, satisfies core condition de-
fined by Definition 3 or not. Specifically, if (1) node v is included
in D[u] and (2) node v is core, SCAN assigns nodes in D[v] to the
same cluster as node u. These directly structure-reachable nodes
(i.e. D[v]) are expanded from a member node of the cluster (i.e.
D[u]). These expanded directly structure-reachable nodes D[v] are
called structure-reachable nodes of node u. If node v ∈ D[u] is
not core, it does not expand the cluster from node v. All nodes in
a cluster, except the core node, are called border nodes. SCAN re-
cursively finds cores and expands the clusters from the cores until
there are no undiscovered cores in the structure-reachable nodes of
node u. After completion of cluster expansion, SCAN obtains the
structure-reachable nodes of node u, which are composed of cores
and borders. The original algorithm determines the obtained nodes
as being in the same cluster as node u. Formally, the cluster that
has node u is defined as follows:

DEFINITION 4 (CLUSTER). The cluster by node u, denoted
by C[u], is defined as C[u] = {w ∈ D[v] : v ∈ C[u]}, where C[u]
is initially set to C[u] = {u}.

After termination of cluster expansion, SCAN randomly selects a
new node from the nodes that have yet to be checked. SCAN con-
tinues this procedure until there are no undiscovered cores.

Finally, SCAN identifies non-clustered nodes (i.e. nodes that
belong to no cluster) as hubs or outliers.

DEFINITION 5 (HUB AND OUTLIER). Assume node u does
not belong to any cluster. u ∈ H iff node v and w exist in N[u]
such that C[v] 6= C[w]. Otherwise u ∈ O.

Note that, as described in the literature [36], Definition 5 is flexi-
ble enough for practical application. For example, it may be more
appropriate than Definition 5 for some applications to determine a
non-clustered node with extremely high degree as a hub. This point
should be discussed in future when we consider actual applications.

As a result, SCAN finds all clusters, hubs, and outliers in a graph.
However, despite its effectiveness in finding the hidden structure of
graphs, it is difficult to apply SCAN to large-scale graphs since
it requires high time complexity. This is because the clustering
procedure entails exhaustive similarity evaluations for all adjacent
nodes in the given graph; Thus, if V = {u1, u2, . . . , u|V|}, the
running cost of SCAN is of the order of O(|N[u1]| + |N[u2]| +
· · · + |N[u|V|]|) = O(|E|). In addition to the cost of clustering,
each structural similarity computation (e.g. σ(u, v)) takes at least
O(min(|N[u]|, |N[v]|)) time since the computation of structural
similarity defined in Definition 2 enumerates all common nodes
between N[u] and N[v]. Therefore, the total running cost of SCAN
is O(min(|N[u]|, |N[v]|)|E|). The average and the largest size of
degree are |E|/|V| and |V|, respectively. Hence, the average and
the worst running cost of SCAN are given by O(|E|2/|V|) and
O(|V|3), respectively. Also, SCAN needs to hold the structural
similarity scores of all adjacent nodes in E and the cluster IDs of
all nodes. Thus, the space complexity of the entire clustering task
of SCAN is O(|E|+ |V|).

3. PROPOSED METHOD: SCAN++
Our goal is to find exactly the same clusters, hubs, and outliers

as SCAN from large-scale graphs within short computation time.
In this section, we present details of our proposal, SCAN++. We
first overview the ideas underlying SCAN++ and then give a full
description of the graph clustering algorithm.

3.1 Overview of SCAN++
In order to efficiently find exactly same clusters as SCAN, we use

an observation of real-world graphs: if node u is two hops away
from node v, their structural neighborhoods, N[u] and N[v], are
likely to share large portion of nodes. This observation is based
on a well-known property of real-world graphs: real-world graphs
are expected to have high clustering coefficients [34]. For nodes
that have high clustering coefficients, the topology among a node
and its neighboring nodes is likely to be a clique [34]. Thus, nodes
u and v are expected to share most of their neighborhoods if they
are two hops apart. For example, in a social network, if a user
and friends of his/her friends are in the same community, they are
likely to share a lot of common friends even if they do not have
direct friendships with each other.

In order to reduce the computation costs, SCAN++ uses a new
data structure based on the observation, called directly two-hop-
away reachable node set (DTAR for short), instead of the directly
structure-reachable nodes of SCAN. Intuitively, DTAR is a set of
nodes such that (1) it includes two-hop-away nodes from a given
node, and (2) the nodes in DTAR are likely to be lie in the same
cluster of the given node. By selecting two-hop-away nodes from
the given node, we share the computation of clustering among the
given nodes and nodes in DTAR. By using DTAR, we consider two
approaches to defeating the exhaustive computation of SCAN. First
approach is the two-phase clustering. In this method, we reduce the
number of similarity computations for clustering without sacrific-
ing the quality of clusters. Specifically, the method first roughly
detects subsets of clusters by computing structural similarity only
for the pairs of the pivot in DTAR and its adjacent node. It then
refines the subsets of clusters to find exactly the same clusters as
SCAN. The exactness of clustering results is proved in Section 4.3.
The second approach is the similarity sharing. In this method, we
reduce the computation cost for each similarity computation from
O(|E|/|V|) by sharing the scores of each similarity computation.
We give a detailed definition of DTAR in Section 3.2. Also, we dis-
cuss the details of the two-phase clustering method and similarity
sharing method in Section 3.3 and 3.4, respectively.

In the following sections, we present our method by using the
running example in Figure 1 where ε = 0.6 and µ = 3.

3.2 Directly Two-hop-away Reachable (DTAR)
We introduce the data structure called DTAR. DTAR is a set of

nodes that (1) it includes two-hop-away nodes from a given node,
and (2) the nodes in DTAR are likely to lie in the same cluster as
the given node. The formal definition of DTAR is as follows:

DEFINITION 6 (DIRECTLY TWO-HOP-AWAY REACHABLE).
The definition of DTAR of node u, denoted by T[u], is given by
T[u] = {v ∈ V : v /∈ Nε[u] and Nε[u] ∩ N[v] 6= ∅}.

In addition, we define two classes of nodes as follows:

DEFINITION 7 (PIVOT AND BRIDGE). Let T[u] be DTAR of
node u, node u is a pivot if it acts the starting point of DTAR
T[u]. Also, non-pivot nodes in the ε-neighborhoods of a pivot (i.e.
Nε[u]\{u} for pivot u) are referred to as bridges.

Figure 1(a) shows an example of DTAR of u0. In this example,
u0 is a pivot, and u1, u5 and u6 are bridges since Nε[u0]\{u0} =
{u1, u5, u6}. Clearly, u2, u4 /∈ Nε[u0], Nε[u0] ∩ N[u2] 6= ∅, and
Nε[u0] ∩ N[u4] 6= ∅. Thus, T[u0] = {u2, u4}.

Similar to the directly structure-reachable nodes, DTAR is recur-
sively expanded by selecting a new pivot. Let nodes u and T[u] be
a pivot and a DTAR of node u, respectively; SCAN++ selects node
v ∈ T[u] as a new pivot and then assigns all nodes in T[v] to a new

1180

u0

u1
u2

u3

u5
u4

u6 u7

u11

u10

u9

u12

u8

u13

0.82

(a) Output of computing DTAR for u0

u0

u1

u3

u5

u6 u7

u11

u10

u9

u12

u8

u13

u2

u4

0.75

0.75

(b) Output of computing converged TAR for u0

u0

u1

u5

u6 u7

u9

u13

u2

u4 u11

u3

u12

u8

u10

(c) Output of the local clustering phase

Figure 1: Running example (ε = 0.6, µ = 3). Black and gray nodes denote pivots and DTARs of the pivots, respectively. Nodes circled
by grayed area and circled by dotted line denote bridges and the local clusters of the pivots, respectively. Real number of the edge between
ui and uj denotes the score of σ(ui, uj) and bold lines denote σ(ui, uj) ≥ ε.

DTAR expanded from T[u]. This DTAR, T[v], expanded from a
new pivot in T[u], is called the two-hop-away reachable node set
(TAR for short). Our proposal recursively finds new pivots and ex-
pands DTARs from the pivots until there are no undiscovered piv-
ots and bridges. After the expansions terminate, SCAN++ obtains
a converged TAR rooted at a given node. Formally, the converged
TAR, which is rooted at node u, is defined as follows:

DEFINITION 8 (CONVERGED TAR). The converged TAR of
pivot u, denoted by Tu, is defined as Tu = {w ∈ T[v] : v ∈
Tu and w is not bridge}, where Tu is initially set to Tu = {u}.

Figure 1(b) shows an example of converged TAR of u0. Since
T[u0] = {u2, u4}, our method expands TAR of u0 from u2 and
u4 by selecting u2 and u4 as new pivots. Since T[u2] and T[u4]
have no undiscovered nodes, our method stops the expansion and
obtains converged TAR Tu0 = {u0, u2, u4}.

3.3 Two-phase Clustering
SCAN++ detects the clusters by constructing converged TARs

and running the two-phase clustering method simultaneously. The
two-phase clustering method allows us to efficiently find clusters
while matching the exactness of the SCAN results. In this section,
we formally introduce this two-phase clustering method.

We overview the two-phase clustering below. The two-phase
clustering consists of (1) local clustering phase and (2) cluster re-
finement phase. In the local clustering phase, SCAN++ roughly
clusters the given graph, and identifies local clusters for each con-
verged TAR. In our algorithm, local clusters are obtained from a
converged TAR. The local clusters act as a subset of clusters that
are potentially included in the converged TAR. After finding the
local clusters, SCAN++ obtains clusters by merging the local clus-
ters in the cluster refinement phase. This refinement phase enables
SCAN++ to produce exactly same clustering results as SCAN but
with much shorter computation time. We detail each phase does in
the following sections.

3.3.1 Local clustering phase
At the beginning of clustering, SCAN++ finds a converged TAR

in Definition 8 and then extracts local clusters from the converged
TAR, in the bottom-up clustering manner. By finding local clusters,
SCAN++ captures the rough cluster structures of the given graph.
The formal definition of the local cluster is given as follows:

DEFINITION 9 (LOCAL CLUSTER). Let node u be a pivot. If
|Nε[u]| ≥ µ, the definition of the local cluster of node u, denoted
by L[u], is given by L[u] = Nε[u]. Otherwise, L[u] = {u}.

For instance, the nodes circled by the dotted line in Figure 1(b)
show an example of local clusters of the converged TAR Tu0 . Since
pivots u0, u2 and u4 in Tu0 are cores, we have local clusters L[u0] =
{u0, u1, u5, u6}, L[u2] = {u1, u2, u6}, and L[u4] = {u4, u5, u6}.
Note that each local cluster in a converged TAR is connected to the

other local clusters via bridges. The goal of this phase is to enu-
merate all local clusters for each pivot in each converged TAR.

Concrete details of the procedure of the local clustering phase
are as follows: First, SCAN++ selects arbitrary node u ∈ V as
a pivot of a DTAR. Next, SCAN++ evaluates the structural sim-
ilarity defined in Definition 2 for the pivot and its adjacent node
that are included in N[u]. By applying Definition 3, SCAN++ then
checks whether node u satisfies the requirement of core or not; if
|Nε[u]| ≥ µ, then node u is core. Thus SCAN++ assigns all nodes
in Nε[u] to L[u] to the local cluster of node u by applying Defini-
tion 9. Otherwise, it only assigns node u to L[u]. Then, SCAN++
obtains the DTAR rooted from node u and selects a new pivot from
T[u]. SCAN++ recursively continues this procedure until it finds
converged TAR Tu that is rooted at node u. After that, SCAN++
selects a new pivot, a node that has not been a pivot or bridge in any
converged TAR. SCAN++ terminates the local clustering phase if
all nodes are assigned as pivots or bridges.

Efficiency of the local clustering phase: The local clustering
evaluates the structural similarities only for the pivots; that is, it
skips the similarity computations for adjacent node pairs that are
lying between bridges. For example, in Figure 1(b), our method
does not compute similarities for pairs (u1, u6) and (u5, u6) since
u1, u5, and u6 are bridges. More precisely, our approach skips
|{(u, v) ∈ E : u, v ∈ B̂}| computations for each pivot by letting B̂
be the set of bridges of each pivot. Actually, the size of B̂ depends
on the clustering coefficient of graphs. From Definition 6 and 7,
we obtain |B̂| = |Nε[u] ∩ N[v]|, where node u and v are pivots
such that v ∈ T[u]. Since Latapy et al. [19] defines the clustering
coefficient of a node pair (u, v) as c = |N[u]∩N[v]|/|N[u]∪N[v]|,
we have 0 ≤ |B̂| ≤ c|N[u] ∪ N[v]|. Recall that |N[u] ∩ N[v]| ≤ d
and d ≤ |N[u]∪N[v]| where d is the average degree, thus we have
0 ≤ |B̂| ≤ cd. As a result, the average size of |B̂| is cd/2, and |B̂|
clearly depends on the clustering coefficient c. Hence, |B̂| becomes
large if graphs increase c; SCAN++ increases the number of com-
putations that are avoided by the local clustering phase. In practice,
as shown in Table 2, many real-world graphs show high clustering
coefficients; thus our method successfully prunes the candidates
subjected to computations for the real-world graphs. We theoret-
ically and experimentally verify the effect of our method in Sec-
tion 4.1 and 5, respectively.

3.3.2 Cluster refinement phase
After identifying the local clusters, SCAN++ then refines them to

find exactly the same clusters as SCAN. From Definition 4, we in-
troduce a necessary and sufficient condition for merging local clus-
ters in the following lemma:

LEMMA 1 (MERGING LOCAL CLUSTERS). Let nodes u and
v lie in the same converged TAR. We have, ∃w ∈ Nε[u]∩Nε[v] s.t.
|Nε[w]| ≥ µ iff L[u] ∪ L[v] ⊆ C[w].

1181

PROOF. We first prove the necessary condition of Lemma 1.
Since w ∈ Nε[u] ∩ Nε[v] s.t. |Nε[w]| ≥ µ, node w is core and
we have u, v ∈ D[w]. From Definition 9, L[u] = Nε[u] = D[u]
and L[v] = Nε[v] = D[v], when node u and v are core. Otherwise,
L[u] and L[v] contain only node u and node v, respectively. Thus
we have L[u]∪L[v] ⊆ D[w]∪D[u]∪D[v]. From Definition 4, we
have C[w] = {w ∈ D[v] : v ∈ C[w]} where C[w] is initially set to
C[w] = {w}. Hence, L[u] ∪ L[v] ⊆ D[w] ∪ D[u] ∪ D[v] ⊆ C[w].
Therefore, we have the necessary condition of Lemma 1.

Next, we prove the sufficient condition of Lemma 1. Since L[u]∪
L[v] ⊆ C[w], we have cu = cv . Hence, from Definition 4, we have
nodew such that u, v ∈ C[w] and |Nε[w]| ≥ µ. Additionally, from
Definition 9, nodes u and v are pivots. Recall Definitions 6 and 8,
two pivots (i.e. node u and v) only share the nodes in Nε[u]∩N[v]
(or N[u] ∩ Nε[v]). Therefore, node w must be in Nε[u] ∩ N[v] (or
N[u]∩Nε[v]). Since u, v ∈ C[w], nodes u and v have σ(u,w) ≥ ε
and σ(v, w) ≥ ε, respectively. Thus w ∈ Nε[u] ∩ Nε[v], which
yields the sufficient condition of Lemma 1.

From Lemma 1, if we have core in Nε[u]∩Nε[v], L[u] and L[v] are
assigned to the same cluster. From Definition 9, a local cluster is
adjacent to other local clusters via bridges. Hence, if a bridge sat-
isfies the core condition in Definition 3, SCAN++ merges the local
clusters adjacent to the bridge into the same cluster. Figure 1(c)
shows an example of the output of the local clustering phase. In
Figure 1(c), u6 and u13 can be cores since u6 and u13 are ad-
jacent to at least µ = 3 pivots with structural similarity greater
than ε. Thus, u6 and u13 can merge their adjacent local clusters,
{L[u0],L[u2],L[u4]} and {L[u8],L[u10],L[u12]}, respectively.

Intuitively, to find local clusters that are merged into the same
cluster, we check all bridges to determine whether they can be
cores or not. This is because Lemma 1 implies that we may be
able to merge local clusters if a bridge has more than two pivots
in its ε-neighborhoods. However, this straightforward approach
incurs high computation costs since we have to compute similar-
ities among cores and bridges. To avoid this inefficiency, SCAN++
reuses the results of the local clustering phase. We first define a set
of pivots that are included in ε-neighborhood of a bridge.

DEFINITION 10 (ε-NEIGHBORHOOD PIVOTS). Let node b be
a bridge extracted in the local clustering phase, the ε-neighborhood
pivots of node b, denoted by Pε[b], are defined as Pε[b] = {p ∈
N[b] : σ(b, p) ≥ ε and p is a pivot}.

For example, the six bridges u1, u5, u6, u7, u9, and u13 in Fig-
ure 1(c) have the following ε-neighborhood pivots, Pε[u1]={u0, u2},
Pε[u5]={u0, u4}, Pε[u6]={u0, u2, u4}, Pε[u7]={u8, u12}, Pε[u9]
={u8, u10}, and Pε[u13]={u8, u10, u12}.

From Lemma 1, we have to extract cores from bridges such that
|Pε[b]| ≥ 2 since such bridges connects two or more pivots (and lo-
cal clusters) with the structural similarity greater than ε. However,
if the ε-neighborhood pivots of a bridge already satisfy the core
condition in Definition 3 (i.e. |Pε[b]| ≥ µ) by the local clustering
phase, we can determine that the bridge is core without computing
similarities. In addition, from Lemma 1 and Definition 10, we can
introduce prunable bridges given by the following lemma.

LEMMA 2 (PRUNABLE BRIDGES). Let bridge b be core, and⋃
p∈Pε[b] L[p] be the merged cluster by Lemma 1. The following set

shows prunable bridges that are merged into clusters without com-
puting similarities in the subsequent cluster refinement process:

{b′ ∈
⋃
p∈Pε[b] L[p] : |{p

′ ∈ Pε[b′] : cp′ 6= cb}| = 0}, (1)

where cp′ and cb are clusters of pivot p′ and bridge b, respectively.

PROOF. From Definition 10, prunable bridges have neighbor-
hood pivots whose cluster ids are the same as cb. This implies that
all neighboring local clusters have already been merged in the same
cluster by Lemma 1. Hence, the prunable bridges do not merge any
local clusters in the subsequent cluster refinement process.

Lemma 2 implies that we can skip the process to determine the
prunable bridges are core nodes at the cluster refinement process.
For example, in Figure 1(c), bridge u6 and u13 are clearly cores
since |Pε[u6]|≥ µ and |Pε[u13]|≥ µ, respectively. Thus, we ob-
tain the prunable bridges {u1, u5} for u6 and {u7, u9} for u13

since u6 and u13 merge the local clusters {L[u0],L[u2],L[u4]}
and {L[u8],L[u10],L[u12]}, respectively.

By using Lemma 1, 2 and Definition 10, we introduce a con-
crete procedure for the cluster refinement phase as follows: First,
SCAN++ obtains a set of bridges B as a result of the local cluster-
ing phase. Next, it selects bridge b ∈ B that maximizes |Pε[b]| so
that we can merge a lot of local clusters and remove many prunable
bridges from B by Lemma 2 if bridge b is core. Then, it deter-
mines whether bridge b is core or not. If bridge b is core, SCAN++
merges all nodes in

⋃
p∈Pε[b] L[p] into the same cluster based on

Lemma 1. Then, SCAN++ obtains all prunable bridges included
in {b′ ∈

⋃
p∈Pε[b] L[p] : |{p′ ∈ Pε[b′] : cp′ 6= cb}| = 0} by

Lemma 2, and removes them from B. These processes are contin-
ued until there are no bridges that have more than µ local clusters.

After the above procedure, we can divide the remaining bridges
into two groups by their degree: (1) bridges with |N[b]| < µ, or
(2) bridges with |N[b]| ≥ µ and 2 ≤ |Pε[b]| < µ. From Def-
inition 3, the former case trivially has no cores, hence SCAN++
removes them from B. The latter case may have some cores, so
SCAN++ computes the structural similarities only for the bridges
in the latter case. Finally, SCAN++ terminates the cluster refine-
ment when there are no unevaluated bridges in B.

Efficiency of the cluster refinement phase: Our cluster refine-
ment phase has short computation time for two reasons: First is that
SCAN++ does not require exhaustive structural similarity compu-
tations for all bridges. In practice, two local clusters in a converged
TAR tend to share a lot of bridges due to the high clustering coeffi-
cients of real-world graphs. This implies that we can merge several
local clusters at the same time by checking only one of the bridges,
and thus prune a lot of computations for prunable bridges included
in the merged local clusters (Lemma 2). Therefore, we can reduce
the computation time by merging local clusters. Second reason is
that structural similarity computations are not required for bridges
if the parameter settings are effective. This is based on the obser-
vations on the effective parameters (i.e. ε and µ) for real-world
graphs as revealed by Xu et al. [36] and Lim et al. [21]. In the
literature [36], they revealed the following effective parameter set-
ting, given the goal of reasonable clustering results for real-world
graphs: “an ε value between 0.5 and 0.8 is normally sufficient to
achieve a good clustering result. We recommend a value for µ, of
2.” Also, in the literature [21], Lim et al. revealed that clustering
quality parameter is less sensitive to µ than ε. These observations
imply that desirable clustering results can be obtained by properly
choosing the above parameters. In practice, if we set parameter µ
= 2 based on the observation of the literature [36], the bridges have
the following attractive property for efficient computations:

LEMMA 3 (PROPERTY OF BRIDGES FOR µ = 2). If we set µ
= 2, bridges always satisfy the core condition.

PROOF. From the definition of DTAR in Definition 6, SCAN++
always selects bridges from ε-neighborhoods of a pivot. In addi-
tion, from the definitions of the structural similarity in Definition 2,
each node always has the structural similarity that is equal to 1 with

1182

itself (e.g. σ(u, u) = 1). As a result, bridges have |Pε[b]| ≥ 2,
therefore they always satisfy the core condition when µ = 2.

That is, bridges in real-world graphs are cores and so structural
similarities do not need to be calculated for bridges.

As a result, SCAN++ lowers the computation cost by cluster re-
finement. We will show that cluster refinement has small, practical
computation time for real-world graphs in Section 5.1.1.

3.4 Similarity Sharing
In this section, we describe our approach to reducing the cost of

structural similarity computation. As shown in Section 2, the origi-
nal algorithm enumerates all common nodes in the structural neigh-
borhoods of two adjacent nodes. This approach is expensive since
its time complexity isO(|E|/|V|) on average. Hence, we introduce
an efficient method for computing the structural similarity by shar-
ing the intermediate results of structural similarities in DTAR. We
first introduce a topological property of DTAR, and then we detail
our approach based on the property. In order to show the property,
we first define pivot subgraph Gw by using T[u] as follows:

DEFINITION 11 (PIVOT SUBGRAPH). If node v is a two-hop-
away node from node u (i.e. v ∈ T[u]) given in Definition 6 and
Gw = {Vw,Ew} is the pivot subgraph of node w where Vw ⊆ V
and Ew ⊆ E, Vw and Ew are defined as Vw = N[u]∩N[v]∪{w}
and Ew = {(x, y) ∈ E : x, y ∈ Vw}, respectively.

Definition 11 indicates that if node v is included in T[u], we have
two pivot subgraphs Gu and Gv for node u and v, respectively. For
example, since u2∈T[u0], Figure 1(a) has two pivot subgraphs Gu0

and Gu2 consisting of Vu0={u0, u1, u6} and Vu2={u1, u2, u6}.
Definition 11 provides the following lemma that shows a topo-

logical property of DTAR suggested in Definition 6.

LEMMA 4 (SUBGRAPH ISOMORPHISM OF DTAR). If node v
is a directly two-hop away reachable from node u (i.e. v ∈ T[u])
given in Definition 6, the pivot subgraphs of node u and v (i.e. Gu
and Gv) are always isomorphic [5].

PROOF. From Definition 1 and 6, N[u] ∩ N[v] = {w ∈ V :
(u,w) ∈ E ∧ (v, w) ∈ E} 6= ∅ if v ∈ T[u]. Hence, if mapping
ϕ(u) = v and ϕ(w) = w where w ∈ N[u] ∩ N[v], trivially we
have isomorphism mapping ϕ : Vu → Vv with (x, y) ∈ Eu ⇔
(ϕ(x), ϕ(y)) ∈ Ev . Therefore, Gu and Gv are isomorphic.

This lemma implies that if node u is a pivot and node v is a node
in T[u] given by Definition 6, node v and the nodes in N[u] ∩ N[v]
always have the same subgraph topology as the subgraph of node u
and nodes in N[u]∩N[v]. For instance, in Figure 1(a), the two pivot
subgraphs consisting of Vu0={u0, u1, u6} and Vu2={u1, u2, u6}
are clearly isomorphic. Thus, by using Lemma 4, we introduce the
following lemma for efficient structural similarity computation.

LEMMA 5 (SIMILARITY SHARING). If we have nodes u, v
and w such that v ∈ T[u] and w ∈ N[u] ∩ N[v], we can compute
structural similarity σ(v, w) by using the result of the structural
similarity σ(u,w) as follows:

σ(v, w) =
√
|N[u]||N[w]|σ(u,w)−|(N[u]\N[v])∩N[w]|+|(N[v]\N[u])∩N[w]|√

|N[v]||N[w]|
.

(2)

PROOF. From Definition 11 and Lemma 4, we have two pivot
isomorphic subgraphs Gu and Gv for node u and v, respectively.
Therefore, N[u]∩N[w] shares N[u]∩N[v]∩N[w] 6= ∅ with N[v]∩
N[w] since N[u] ∩ N[v] 6= ∅ and w ∈ N[u] ∩ N[v] for v ∈ T[u]

given by Definition 6. Hence, if we decompose |N[u] ∩ N[w]| and
|N[v] ∩ N[w]| by using N[u] ∩ N[v] ∩ N[w] into |N[v] ∩ N[w]| =
|N[u]∩N[v]∩N[w]|+ |(N[v]\N[u])∩N[w]| and |N[u]∩N[w]| =
|N[u] ∩ N[v] ∩ N[w]|+ |(N[u]\N[v]) ∩ N[w]|, we have,

|N[v] ∩ N[w]| =
|N[u]∩N[w]|−|(N[u]\N[v])∩N[w]|+|(N[v]\N[u])∩N[w]|.

(3)

From Definition 2, structural similarity is as follows:

σ(v, w)= |N[v]∩N[w]|√
|N[v]||N[w]|

(4) σ(u,w)= |N[u]∩N[w]|√
|N[u]||N[w]|

(5)

Hence, from Eq. (3) and (5),

Eq. (4) = |N[u]∩N[w]|−|(N[u]\N[v])∩N[w]|+|(N[v]\N[u])∩N[w]|√
|N[v]||N[w]|

=

√
|N[u]||N[w]|σ(u,w)−|(N[u]\N[v])∩N[w]|+|(N[v]\N[u])∩N[w]|√

|N[v]||N[w]|
. (6)

Therefore, we have Lemma 5.

Lemma 5 implies that we can reuse the result of the similarity com-
putation σ(u,w) for obtaining σ(v, w) where node v is a two-hop-
away node from node u (i.e. v ∈ T[u]) and w ∈ N[u] ∩ N[v].

Efficiency of similarity sharing method: As shown in Lemma 5,
SCAN++ shares the scores of structural similarity computations be-
tween a node and a node in the DTAR. Hence, SCAN++ reduces
the cost of structural similarity computation. From Lemma 4 and 5,
the efficiency of the similarity sharing method is as follows:

LEMMA 6 (COMPLEXITY OF LEMMA 5). Let v ∈ T[u] and
w ∈ N[u]∩N[v]. The computation of σ(v, w) in Lemma 5 requires
O(min(|N[v]\N[u]|, |N[w]|)) if σ(u,w) has been obtained.

PROOF. From Lemma 5, we can obtain the score of σ(v, w)
by computing σ(u, v), |(N[u]\N[v]) ∩ N[w]| and |(N[v]\N[u]) ∩
N[w]|. Given v ∈ T[u], we have already had the score of σ(u,w)
by Definition 6. Additionally, since (N[u]\N[v])∩N[w] ⊆ N[u]∩
N[w], |(N[u]\N[v])∩N[w]|was also obtained when SCAN++ com-
puted |N[u] ∩ N[w]| for σ(u,w). The remaining term of Eq. (2) is
just |(N[v]\N[u])∩N[w]|. Therefore the similarity sharing requires
the computational cost O(min(|N[v]\N[u]|, |N[w]|)).

Lemma 6 shows the similarity sharing incurs O(min(|N[v]\N[u]|,
|N[w]|)) when σ(u,w) has been computed. In Figure 1(a), for
computing σ(u1, u2) it is enough to confirm whether N[u2]\N[u0]
= {u3} is included in N[u1] or not since u2∈T[u0] and σ(u0, u1)
have already been obtained. In contrast, as shown in Definition 2,
the original computation form of structural similarity incursO(min
(|N[v]|, |N[w]|)) times. Hence, in Figure 1(a), we need to check
whether all nodes in {u1, u3, u6} are included in N[u1] or not.
Thus, if σ(u,w) has been computed, the similarity sharing reduces
the cost of computing σ(v, w) such that v ∈ T[u] and w ∈ N[u]
compared to the original computation form.

3.5 Algorithm of SCAN++
We can efficiently extract the clustering results by using two-

phase clustering and similarity sharing. The pseudo-code of our
proposal, SCAN++, is given in Algorithm 1. Algorithm 1 con-
sists of three parts: local clustering phase given by Section 3.3.1
(line 2-17), cluster refinement phase given by Section 3.3.2 (line
18-37), and classification of hubs and outliers (line 38-44). Ini-
tially all the nodes are labeled with their own cluster-id (i.e. cu for
node u). First, SCAN++ runs local clustering phase (line 2-17). It
selects a node as a pivot of a DTAR (line 3-6). Then, SCAN++
computes the structural similarities for the pivot by using Lemma 5

1183

Algorithm 1 SCAN++
Input: G = (V,E), ε ∈ R, µ ∈ N;
Output: clusters C, hubs H, and outliers O;
1: U = V, B = ∅;
2: while U 6= ∅ do
3: select a node u ∈ U;
4: Tu = {u};
5: while we have unvisited pivots in Tu do
6: select node p ∈ Tu;
7: for each node v ∈ N[p] do
8: evaluate σ(p, v) by Lemma 5;
9: end for

10: get L[p] by Definition 9;
11: label all nodes in L[p] as cp;
12: get T[p] by Definition 6;
13: expand Tu using T[p] by Definition 8
14: end while
15: get VTu by Definition 12;
16: U = U\VTu , B = B ∪ {Nε[p]\{p}};
17: end while
18: while B 6= ∅ do
19: get node b ∈ B s.t. arg max |Pε[b]|;
20: if |N[b]| < µ then
21: B = B\{b};
22: else
23: if 2 ≤ |Pε[b]| < µ or b has already been visited then
24: evaluate σ(b, b′) for b′ ∈ N[b]\Pε[b], B = B\{b};
25: end if
26: if node b is core then
27: merge

⋃
p∈Pε[b] L[p] in to the same cluster;

28: label all nodes in
⋃
p∈Pε[b] L[p] as cb;

29: for each bridge b′ in
⋃
p∈Pε[b] L[p] do

30: if |{p ∈ Pε[b′] : cp 6= cb}| = 0 then
31: B = B\{b′} by Lemma 2;
32: end if
33: end for
34: end if
35: end if
36: end while
37: insert all clusters into C;
38: for each singleton node u ∈ V do
39: if ∃x, y ∈ N[u] s.t. cx 6= cy then
40: label node u as hub and u ∈ H;
41: else
42: label node u as outlier and u ∈ O;
43: end if
44: end for

(line 7-9). After that, it finds local clusters from the pivot by Def-
inition 9 (line 10-11). Finally, it expands Tu by Definition 6 (line
12-13), and continues this procedure until there are no unvisited
pivots in Tu. Then, the cluster refinement phase starts. SCAN++
refines local clusters (line 18-37). First, SCAN++ selects bridge
b that maximizes |Pε[b]| (line 19). If |N[b]| < µ, the bridge can
not be core, and hence it is removed from B (line 20-21). Oth-
erwise, when 2 ≤ |Pε[b]| < µ or bridge b has already been vis-
ited, SCAN++ computes the structural similarity of bridge b until
SCAN++ can identify node b as core or border (line 23-25). Then,
SCAN++ checks if bridge b satisfies the core condition in Defini-
tion 3 (line 26). If the bridge is core, SCAN++ merges local clus-
ters by Lemma 1 (line 27-28) and removes prunable bridges from B
based on Lemma 2 (line 29-33). Finally, SCAN++ adds the clusters
derived in this phase to C (line 37). After the cluster refinement,
SCAN++ classifies the singleton nodes that do not belong to any
cluster, as either hubs or outliers (line 38-44). This phase is based
on Definition 5. If a singleton node is adjacent to multiple clusters,
it regards the node as a hub (line 38). Otherwise, it regards the node
as an outlier (line 40). After assigning all nodes to clusters C, hubs
H or outliers O, SCAN++ terminates the clustering procedure.

3.6 Parallel Extension of SCAN++
The previous sections (Section 3.1 to 3.5) assumed that SCAN++

was implemented as a single-threaded program. Recent studies

have shown the increased availability of parallel graph processings
such as Apache Giraph [1] and Pregel [24]. Thus, we introduce
an extension of SCAN++ for MapReduce [4], which is one of the
most standard parallel processing frameworks.

The basic idea of the MapReduce-based SCAN++ is as follows.
At first, we assume that node-ids are assigned by breadth first search.
The local clustering phase (Section 3.3.1) and the cluster refine-
ment phase (Section 3.3.2) correspond to the map and reduce func-
tions, respectively. More specifically, the map function takes key-
value pairs 〈u,N[u]〉 as input, where u is a node in V. Then, it
starts the local clustering phase from a node u whose neighbor
nodes are in the same map function. Next, the map function out-
puts list(〈b,L[pi]〉) where b is a bridge node and pi ∈ Pε[b].
The reduce function takes 〈b,list(L[pi])〉 as input, and outputs
merged local clusters by running the cluster refinement phase (Sec-
tion 3.3.2). Finally, we obtain clustering results by assigning a
same cluster-id to nodes included in a same cluster and classify-
ing the singleton nodes into hubs or outliers.

4. THEORETICAL ANALYSES OF SCAN++
In this section, we theoretically discuss the efficiency, space com-

plexity, and exactness of SCAN++.

4.1 Efficiency of SCAN++
We analyze the computational complexity of algorithm SCAN++.

Given a graph with |V| nodes and |E| edges, SCAN++ finds all
clusters w.r.t. given parameter settings. This theoretically entails
the following time complexity:

THEOREM 1 (TIME COMPLEXITY OF SCAN++). SCAN++
incurs time complexity of O(2−c

2δ+c
|E|) for clustering where δ =

|V|/|E| and c is the average pairwise clustering coefficient [19].

PROOF. Let |P|, d and s be the average number of pivots, the
average degree, and the average computation cost of each similarity
computation, respectively. The total computation cost of SCAN++
can be represented asO(|P|ds) since SCAN++ computes structural
similarities for each pivot (Section 3). In order to prove Theorem 1,
we specify the cost of |P| and s below.

First, we specify |P|. As we described in Section 3.3.1, each
pivot has cd/2 bridges on average. Hence, from Definition 9, the
average size of a local cluster is cd/2+1. Thus, the average number
of pivots is expected to O(|P|) = O(|V|

cd/2+1
).

Next, we specify s. Lemma 6 shows that we can obtain struc-
tural similarity on DTARs by computing just |(N[v]\N[u])∩N[w]|
where v ∈ T[u] and w ∈ N[u] ∩ N[v]. Hence, the time complex-
ity of each similarity computation isO(min(|N[v]\N[u]|, |N[w]|)).
Recall that a pivot shares cd/2 neighborhoods with the other pivots,
hence we have O(s) = O(min(|N[v]\N[u]|, |N[w]|)) = O(d −
cd/2) = O((2− c)d) times for each similarity computation.

Therefore, we have O(|P|ds) = O((2−c)|V|d
c+2/d

). Recall that d =

|E|/|V| = δ−1, hence SCAN++ hasO(|P|ds) = O(2−c
2δ+c
|E|).

In practice, real-world graphs show |V| � |E|, 0 < δ � 1, and
0 < c < 1. Also, it is known that the clustering coefficient c of
most real-world graphs tends to be high [34]. Thus, Theorem 1
indicates that SCAN++ can find clusters much faster than SCAN
since it needsO(|E|2/|V|) and we obtain |E|2/|V|− 2−c

2δ+c
|E| > 0.

In Section 5, we experimentally verify the efficiency of SCAN++.

4.2 Space Complexity of SCAN++
We theoretically analyze the space complexity of our proposed

algorithm SCAN++ as follows:

1184

THEOREM 2 (SPACE COMPLEXITY OF SCAN++). SCAN++
requires space complexity of O(|E|+ |V|+ l) to obtain clustering
results, where l is the sum of all local cluster sizes that are detected
by the local clustering phase (i.e. l =

∑
p |L[p]|).

PROOF. Let P and B be the sets of pivots and bridges extracted
by SCAN++, respectively. From Algorithm 1, SCAN++ extracts
|P| pivots, |B| bridges, and |V| cluster-ids in the local clustering
phase. In addition, it computes |E|/|V| structural similarities for
each pivot and holds |Pε[b]| for each bridges. Furthermore, SCAN++
holds local clusters of all pivots such that the total size of local
clusters is defined as l. Thus, the total space complexity is O(|P|+
|B| + |V| + |P||E|

|V| + |B||Pε[b]| + l). Since all nodes are included
in either P or B, we have |V| = |P| + |B|. Also, from Defini-
tion 10, |Pε[b]| is at most |E|/|V|. Hence, the space complexity is
O(|P|+ |B|+ |V|+ |P||E||V| + |B||Pε[b]|+ l) = O(|E|+ |V|+ l).

Theorem 2 indicates that SCAN++ needs larger space than SCAN,
which requires O(|E| + |V|) space for clustering. In addition, in
the worst case, SCAN++ incurs O(2|E| + |V|) space complexity
since l ≈ |P||E|/|V| ≈ |V||E|/|V| = |E|. However, from Defini-
tion 9, the size of each local cluster relies on the parameter ε; thus,
the space cost of l can be small for specific parameter ε settings
in practice. In Section 5.1.3, we experimentally verify the actual
impacts of l by varying parameter ε values.

4.3 Exactness of SCAN++
We analyze the exactness of clustering results of SCAN++ com-

pared to SCAN. Prior to discussing the exactness, we define a set
of nodes that are cluster candidates derived from a converged TAR.

DEFINITION 12 (CANDIDATE CLUSTERS). Let Tu be a con-
verged TAR obtained by SCAN++, the candidate cluster VTu de-
rived from Tu is defined as VTu = Tu ∪ {

⋃
∀v∈Tu Nε[v]}.

From Definition 12, we have the following lemma:

LEMMA 7 (NON-DIRECTLY STRUCTURE-REACHABILITY).
Let VTu be nodes that do not belong to VTu (i.e. VTu = V\VTu).
SCAN++ has the following property for adjacent node pair (u, v).

u ∈ VTu and v ∈ VTu ⇒ σ(u, v) < ε. (7)

PROOF. We prove Lemma 7 by contradiction. We assume that
adjacent node pair (v, w) has σ(v, w) ≥ ε if v ∈ VTu and w ∈
VTu . From Definition 6 and 8, all bridges are adjacent to only the
nodes in VTu . Thus node v must be a pivot of Tu since node v
is adjacent to node w which belongs to VTu . Recall Definition 6
that SCAN++ regards ε-neighborhoods of a pivot as bridges that
are included in VTu . Hence, node w is a member of Nε[v] ⊆ VTu ,
and this contradicts w ∈ VTu . This yields Lemma 7.

Lemma 7 implies VTu is always surrounded by adjacent nodes
whose similarities are less than ε. According to Lemma 7, we in-
troduce the following property of clusters derived from VTu .

LEMMA 8 (CLUSTER COMPREHENSIBILITY). Let C[v] be a
cluster where node v ∈ VTu . All member nodes included in C[v]
satisfy the following condition:

v ∈ VTu ⇒ ∀w ∈ C[v], w ∈ VTu . (8)

PROOF. We prove Lemma 8 by contradiction. We first have the
following assumption: v ∈ VTu ⇒ ∃w ∈ C[v], w /∈ VTu . From
Definition 4, node w is included in the structure-reachable node set
of node v since w ∈ C[v]. However, Lemma 7 shows that node
w has similarity less than ε for all adjacent nodes in VTu since
w /∈ VTu . Hence, node w is not structure-reachable from node v.
This contradicts the assumption, which yields Lemma 8.

Lemma 8 indicates no clusters and local clusters cross several con-
verged TARs; all local clusters in VTu only partition VTu derived
from a single converged TAR. For example, in Figure 1(c), we have
a candidate clusters VTu0 = {u0, u1, u2, u4, u5, u6} that has three
local clusters L[u0] = {u0, u1, u5, u6}, L[u2] = {u1, u2, u6}, and
L[u4] = {u4, u5, u6}. Since VTu0 is adjacent to only u3 in VTu0
with σ(u2, u3) = 0.41 < ε and σ(u3, u4) = 0.41 < ε, it clearly
satisfies Lemma 7 and all of the local clusters (L[u0], L[u2], and
L[u4]) are included in VTu0 .

From Lemma 8 and Definition 4, which defines clusters derived
by SCAN, SCAN++ finds the same clusters as SCAN if it satis-
fies the following conditions in each candidate clusters VTu : (1)
SCAN++ finds all cores in VTu , (2) SCAN++ finds all nodes in
D[u], where node u is core, as the structure-reachable nodes of
node u on VTu . We prove SCAN++ satisfies the conditions below.

(1) Core completeness: The following lemma demonstrates that
SCAN++ finds all cores from a candidate clusters:

LEMMA 9 (CORE COMPLETENESS). SCAN++ finds all cores
included in candidate clusters VTu .

PROOF. From Definition 12, nodes in VTu are divided into piv-
ots and bridges. As shown in Section 3.3.1, SCAN++ finds all cores
from pivots since it computes the similarities for all adjacent nodes
of the pivots in the local clustering phase. In addition, SCAN++
finds all cores from the bridges. There are two reasons: First, as
we described in Section 3.3.2, if bridges are adjacent to more than
µ pivots with structural similarity that exceeds ε, the bridges are
regarded as core in the cluster refinement phase. Second, as shown
in Algorithm 1 (line 23-25), SCAN++ computes the similarities for
all remaining bridges. Thus, SCAN++ finds all cores in VTu .

(2) Structure reachability: To demonstrate the condition (2),
which we described above, we introduce the following property:

LEMMA 10 (BRIDGE CONNECTIVITY). Let P and B be sets
of pivots and bridges,respectively. We have the following property:

bi, bj ∈ B and bj ∈ N[bi]⇒ ∃p ∈ P s.t. bi, bj ∈ Nε[p]. (9)
PROOF. We prove by contradiction. We assume that we have

bi, bj ∈ B and bj ∈ N[bi] ⇒ p /∈ P s.t. bi, bj ∈ Nε[p]. From
Definition 6, either bi or bj should be a pivot if p /∈ P s.t. bi, bj ∈
Nε[p]. This contradict bi, bj ∈ B, hence we have Lemma 10.

From Lemma 10, we prove the condition (2) as follows:

LEMMA 11 (STRUCTURE REACHABILITY). Let node u be a
core in VTu and D[u] be directly structure-reachable nodes of node
u derived by SCAN. All nodes in D[u] are included in the structure-
reachable nodes of node u on VTu .

PROOF. If node u is a pivot, SCAN++ clearly satisfies Lemma 11
from the DTAR definition in Definition 6. Next, if node u is a
bridge, nodes in D[u] are divided into pivots and bridges on VTu .
From Definition 6, SCAN++ clearly satisfies Lemma 11 for pivots
in D[u]. Similarly, from Lemma 10, SCAN++ satisfies Lemma 11
for the bridge b in D[u]. This is because we have a node p ∈ P s.t.
u, b ∈ Nε[p] from Lemma 10. Hence, if node p is a core, node b is
included in the structure-reachable nodes of node u by Definition 6;
otherwise, node b is a directly structure-reachable node on VTu by
Algorithm 1 (line 23-25). Thus, if node u is a bridge, SCAN++
satisfies Lemma 11, which proves Lemma 11.

Finally, we have the following theorem from Lemma 9 and 11:

THEOREM 3 (EXACTNESS OF SCAN++). SCAN++ always
has exactly the same clustering results as SCAN.

PROOF. From Lemma 9, 11 and Definition 4, it is clear that
SCAN++ has exactly same clustering results as SCAN.

1185

Table 2: Real-world datasets
Dataset |V| |E| Graph type c

condmat 23,133 186,936 Social network 0.6334
slashdot 77,360 905,468 Social network 0.0555
amazon 334,863 925,872 Web graph 0.3967

dblp 317,080 1,049,866 Social network 0.6324
road 1,379,917 3,843,320 Road network 0.0470

google 875,713 5,105,039 Web graph 0.5143
cnr 325,557 5,477,938 Web graph 0.5586

skitter 1,696,415 11,095,298 Computer network 0.2581
uk-2002 18,520,486 298,113,762 Web graph 0.6891
webbase 118,142,155 1,019,903,190 Web graph 0.5533

5. EXPERIMENTS
We compared the effectiveness of four algorithms including our

proposed method SCAN++.
• SCAN++: our proposal.
• SCAN∗: a simple variation of SCAN that produces approx-

imate results by utilizing the edge sampling technique pro-
posed by the state-of-the-art method LinkSCAN∗[21]. Based
on LinkSCAN∗, SCAN∗ samples min{du, α+β ln du} edges
for each node, where du is the degree of a node and both α
and β are user-specified parameters. We set α = 2|E|/|V|
and β = 1 as recommended by LinkSCAN∗.
• SCAN: the original algorithm [36].
• gSkeletonClu: a state-of-the-art algorithm extended from

SCAN that provides us parameter-free structural clustering
[14]. gSkeletonClu employs the tree-decomposition-based
algorithm and it searches clustering results that maximize the
score of modularity [26].

All experiments were conducted on a Linux 2.6.18 server with
one CPU (Intel Xeon Processor L5640 2.27GHz) and 144GBytes
of main memory. SCAN++, SCAN* and SCAN were implemented
in C/C++ as single-threaded programs, which use a single CPU
core with the entire graph held in the main memory. Also, we
used gcc-g++ 4.8.1 compiler with optimization parameter “-O2”
for each algorithm. To evaluate the other algorithm, we used the
program of gSkeletonClu published on their authors’ sites1.

The experiments used 10 public datasets published by Standard
Network Analysis Project2 and Laboratory of Web Algorithmics3.
The statistics of each dataset are shown in Table 2. In the right
most column, c shows the average clustering coefficient. Addition-
ally, in order to evaluate the effectiveness of our algorithm, we also
used synthetic datasets generated by LFR benchmark [18], which
is considered as the de facto standard model for generating graphs.
The settings will be detailed later.

5.1 Evaluation on Real-world Datasets

5.1.1 Efficiency
We evaluated the clustering performance of each method through

wall clock time for the real-world datasets. In this evaluation, we
fixed the parameter µ = 5 and varied the parameter ε as 0.2, 0.4,
0.6 and 0.8 for each algorithm. Figure 2 shows the running time
for each real-world dataset. Since existing algorithm show almost
same results under all parameter settings, we omitted the results of
them from Figure 2 except for ε = 0.6. In addition, we omitted
the results of gSkeletonClu, SCAN∗, and SCAN for several large
datasets since they cannot compute clusters in a day.
1
http://web.xidian.edu.cn/jbhuang/en/publications.html

2
http://snap.stanford.edu

3
http://law.di.unimi.it/datasets.php

Figure 2 shows that SCAN++ is much faster than existing ap-
proaches under all conditions examined. Of particular interest,
SCAN++ is 20.4 times faster than SCAN on average, and it is
also a few orders of magnitude faster than gSkeletonClu. As de-
scribed in Section 2, SCAN subjects all adjacent nodes in the given
graph to structural similarity computations. Furthermore, SCAN
incurs average computation time of O(|E|/|V|) for each structural
similarity computation. Hence, SCAN requires O(|E|2/|V|) time
on average. Similar to SCAN, for finding clustering results that
maximizes modularity, gSkeletonClu has to extract spanning trees
from the graph by computing structural similarities for all adja-
cent nodes. Therefore, as shown in Figure 2, gSkeletonClu re-
quires significantly larger computation times for clustering than
SCAN++ or SCAN. In contrast to both SCAN and gSkeletonClu,
as shown in Section 3, SCAN++ employs two efficient cluster-
ing approaches, (1) two-phase clustering and (2) similarity shar-
ing that utilizes the clustering coefficient. As a result, as shown in
Theorem 1, SCAN++ only requires time complexity O(2−c

2δ+c
|E|).

Therefore, SCAN++ finds clustering results much more efficiently
than SCAN∗, SCAN and gSkeletonClu.

Figure 2 also shows that SCAN∗ could be competitive with our
proposal SCAN++ for slashdot in terms of efficiency. This is due
to former’s use of the clustering coefficient of the given graph. As
shown in Table 2, slashdot has a significantly lower clustering co-
efficient than the other datasets. SCAN++ could not reduce the
running time enough by using two-phase clustering and similar-
ity sharing since the small graphs had low clustering coefficients.
Even though road and skitter have relatively lower clustering co-
efficients than the other datasets, SCAN++ was much faster than
SCAN∗. There are two reasons. First, road and skitter are much
larger graphs than slashdot. If graph size is large enough, SCAN++
can reduce the computation time even if the clustering coefficients
are small. Second, each node in road has almost the same degree
while slashdot has a skewed degree distribution. As we described,
SCAN∗ eliminates edges from the graph when the degree of each
node is large enough. However, the nodes in road have almost the
same degree; hence SCAN∗ could not effectively eliminate edges
from the dataset. Therefore, SCAN++ ran faster than SCAN∗ for
road and skitter. Although, SCAN∗ is efficient for small graphs
with lower clustering coefficients, it is an approximation approach
based on SCAN and so can not match the clustering performance
of the other methods. We will discuss this point in Section 5.1.4.

In all conditions examined, the running time of the cluster re-
finement phase described in Section 3.3 is negligible. Specifically,
SCAN++ consumed less than 1% of its running time for merging
clusters under all conditions examined. This is because, in the real-
world datasets with high clustering coefficients, each bridge is ad-
jacent to many pivots with high structural similarity scores. Hence,
as shown in Lemma 2, most bridges are prunable bridges, and they
do not require additional similarity computations for merging lo-
cal clusters. We omit the detailed results of the running time for
merging local clusters due to space limitations.

Our experiments also considered different parameter µ settings.
Figure 3 shows the running time of SCAN++ for the five small
datasets for various values of µ. As shown in Figure 3, the values of
µ have no significant impact for the running time of SCAN++. This
is because the running time of the cluster refinement phase con-
sumes at most 1% of the total running time. Although we omit the
results of the other algorithms from Figure 3 and the results of the
large datasets due to space limitations, all the other methods shows
almost same results as Figure 2. SCAN++ can find clusters, hubs,
and outliers more efficiently than the existing approaches even un-
der different parameter settings.

1186

10
-2

10
0

10
2

10
4

10
6

10
8

condmat slashdot amazon dblp road google cnr skitter uk-2002 webbase

W
a
ll

c
lo

c
k
 t
im

e
 [
s
]

SCAN++(ε=0.2)
SCAN++(ε=0.4)
SCAN++(ε=0.6)
SCAN++(ε=0.8)

SCAN*
SCAN

gSkeletonClu

Figure 2: Runtime for real-world datasets

10
-2

10
-1

10
0

10
1

2 5 10 15

W
a

ll
c
lo

c
k
 t

im
e

 [
s
]

Value of µ for each dataset

condmat
slashdot
amazon

dblp
road

Figure 3: Effect of parameter µ

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

condmat slashdot amazon dblp road google cnr skitter uk-2002 webbase

W
a
ll

c
lo

c
k
 t
im

e
 [
s
]

SCAN++
W/O sharing

SCAN

Figure 4: Effect of key techniques

Table 3: Memory usage for real-world datasets

Dataset
SCAN++
ε = 0.2

SCAN++
ε = 0.4

SCAN++
ε = 0.6

SCAN++
ε = 0.8

SCAN

condmat 8.0M 7.4M 7.0M 6.8M 6.4M
slashdot 12M 11M 10M 10M 9.3M
amazon 44M 37M 31M 30M 29M

dblp 40M 29M 27M 26M 25M
road 98M 97M 93M 93M 92M

google 119M 103M 98M 96M 96M
cnr 59M 57M 57M 55M 52M

skitter 319M 235M 212M 209M 207M
uk-2002 4.1G 3.7G 3.6G 3.6G -
webbase 17G 15G 15G 15G -

5.1.2 Effectiveness of the Key Techniques
As mentioned in Section 3.3 and 3.4, we used two-phase clus-

tering and similarity sharing to prune unnecessary computations.
In order to show the effectiveness of our approach, we evaluated
the running time of a variant method of SCAN++ that did not use
similarity sharing. In this evaluation, we fixed parameter ε = 0.6
and µ = 5 for each algorithm. Figure 4 shows the runtime of each
algorithm to find clusters, hubs, and outliers from the real-world
datasets. In this figure, “W/O sharing” represents the results of the
variant method of SCAN++ that did not use similarity sharing. Fig-
ure 4 shows that SCAN++ without similarity sharing is 8.76 times
faster than the original algorithm SCAN on average. On the other
hand, the comparison of “SCAN++” and “W/O sharing” in Fig-
ure 4 shows that the runtime can be cut further; SCAN++ is 2.33
times faster than W/O sharing on average. This indicates that two-
phase clustering contributes most of the improvement of SCAN++,
as demonstrated in Section 5.1.1. As shown in Figure 4, SCAN++
more efficiently reduce the computation cost than “W/O sharing”
by combining two-phase clustering and similarity sharing.

5.1.3 Memory usage
Section 4.2 theoretically shows SCAN++ incursO(|E|+|V|+l)

space complexity. This section experimentally verifies our theo-
retical analysis for real-world datasets. Table 3 summarizes the
measured memory usages of SCAN++ and SCAN. Table 3 demon-
strates that SCAN++ increases its memory usage by the sizes of |V|
and |E|. In addition, Table 3 shows that SCAN can be competitive
with SCAN++ according to parameter ε. This is because, as shown
in Definition 9, the size of each local cluster is determined by the
value of ε. If we set ε to a small value, SCAN++ produces a lot of
large size of local clusters. Thus, the size of l becomes large and
SCAN++ increases its memory usage for the parameter settings.
These results verify our theoretical analysis in Section 4.2.

5.1.4 Exactness
One major contribution of SCAN++ is that it outputs exactly

same clustering results as SCAN. To demonstrate the exactness of
the clustering results, we evaluated accuracy of obtaining cores and
clustering results against SCAN for each dataset. In this experi-

 0

 0.2

 0.4

 0.6

 0.8

 1

condmat slashdot amazon dblp road google cnr skitter

F
-m

e
a
s
u
re

SCAN++ SCAN* gSkeletonClu

Figure 5: F-measure

 0

 0.2

 0.4

 0.6

 0.8

 1

condmat slashdot amazon dblp road google cnr skitter

A
R

I

SCAN++ SCAN* gSkeletonClu

Figure 6: ARI

ment, we used two measures of accuracy, F-measure [25] and ad-
justed rand index (ARI) [25], for cores and clusters, respectively.
F-measure quantifies the accuracy of the clustering results by cal-
culating the harmonic mean of precision and recall. Hence, we
defined precision and recall as follows: precision is the fraction of
cores by each method that matches those of SCAN, and recall is the
fraction of cores obtained by SCAN that are also extracted by each
method. F-measure takes a value between 0 and 1, and F-measure
is 1 if the obtained cores exactly match those by SCAN. ARI is a
measure of the similarity between two clustering results. ARI has
a value between 0 and 1, and it shows 1 if the two clustering results
are completely same. Figure 5 and Figure 6 show F-measure and
ARI scores of each algorithm compared to the clustering results of
SCAN, respectively. In this evaluation, we set the parameters of
each algorithm as ε = 0.6 and µ = 5. We omitted the results of
uk-2002 and webbase since, as shown in Section 5.1.1, SCAN did
not return the results in a day.

Figure 5 indicates that SCAN++ obtains exactly same cores as
SCAN. In addition, Figure 6 indicates that SCAN++ extracts the
same clustering results as SCAN since it shows the ARI scores
equal to 1 for all datasets. As shown in Theorem 3, SCAN++
guarantees of outputting the same clustering results as SCAN even
though we drops unnecessary similarity computations. Hence, F-
measure and ARI of SCAN++ were 1 as shown in Figure 5 and
Figure 6, respectively. On the other hand, SCAN∗ and gSkeleton-
Clu output clustering results that differ from those of SCAN. This is
because SCAN∗ is an approximation method that samples subset of
edges from the given graph and gSkeletonClu employs the cluster-
ing results that maximize modularity [26]. Figure 5 and 6, as well
as Figure 2, confirms that SCAN++ is superior to existing meth-
ods since SCAN++ is more efficient than existing methods without
sacrificing the accuracy compared to SCAN.

1187

10
-1

10
0

10
1

10
2

 0.1 0.2 0.3 0.4 0.5 0.6

W
a

ll
c
lo

c
k
 t

im
e

 [
s
]

Average cluster coefficient

SCAN++
W/O sharing

SCAN

Figure 7: Effect of c

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Clique5 Clique50 Clique500

W
a
ll

c
lo

c
k
 t
im

e
 [
s
]

SCAN++
SCAN

Figure 8: Runtime of cliques

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Tree5 Tree50 Tree500

W
a

ll
c
lo

c
k
 t

im
e

 [
s
]

SCAN++
SCAN

Figure 9: Runtime of trees

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
5

10
6

10
7

10
8

10
9

W
a

ll
c
lo

c
k
 t

im
e

 [
s
]

Number of edges

SCAN++
SCAN

Figure 10: Scalability

5.2 Evaluation on Synthetic Datasets

5.2.1 Effectiveness of Clustering Coefficient
We evaluated the effectiveness of SCAN++ in terms of high clus-

tering coefficients by using synthetic graphs. We generate LFR
benchmark graphs with 100 thousand nodes; the average cluster-
ing coefficient was varied from 0.1 to 0.6 following the real-world
datasets in Table 2. The other parameters, average degree and max-
imum degree, were fixed at 20 and 50, respectively. Figure 7 shows
runtimes of SCAN++, W/O sharing in Section 5.1.2 and SCAN
for different c scores. As shown in Figure 7, SCAN shows almost
constant computation time under all conditions examined. Unlike
SCAN, SCAN++ and W/O sharing increased their clustering speed
as c increased. In the most efficient case (i.e. c = 0.6) our propos-
als were up to three times faster than the result of the worst case
(i.e. c = 0.1). These results imply that our two-hop-away node
based algorithm effectively prunes the candidates that are assessed.
Thus, our algorithm outperforms SCAN when the given graph has
high c scores as is likely with real-world graphs.

As shown in Figure 7, the runtime of SCAN++ depends on the
clustering coefficient, hence we additionally evaluated two special
graphs, “clique” and “tree”, whose clustering coefficients are close
to c = 1 and c = 0, respectively. We evaluated “clique” based
on the connected caveman graph [33]. The connected caveman
graph is a graph consisting of a ring of several k-cliques. We gen-
erated three connected caveman graphs with 100 thousand nodes;
the clique size k of the three graphs were fixed as 5, 50, and 500
that are referred as Clique5, Clique50, and Clique500, respectively.
Also, we generated “trees” based on the balanced tree with 100
thousand nodes; each node had at most k children. We gener-
ated three trees by varying k as 5, 50, and 500 that are referred
as Tree5, Tree50, and Tree500, respectively. Figure 8 and 9 show
runtimes for the cliques and the trees, respectively. Figure 8 shows
that SCAN++ runs significantly faster than SCAN for the cliques
since the graphs have high clustering coefficient of close to 1. In
this case, c ≈ 1 and δ ≈ 0 since the average degree closes to |V|.
Thus, from Theorem 1, the time complexity of SCAN++ becomes
O(2−c

2δ+1
|E|) = O(|E|). Therefore, SCAN++ can run significantly

faster than SCAN for the cliques. On the other hand, Figure 9
shows that SCAN++ is competitive with SCAN for the trees since
they have low clustering coefficient of close to 0. As shown in
Theorem 1, if the clustering coefficient is 0, the time complexity
of SCAN++ is O(|E|2/|V|), which is the same as SCAN. Thus,
SCAN++ requires almost the same runtime as SCAN for the trees.

5.2.2 Scalability
We evaluated the scalability of SCAN++ and SCAN. We gener-

ated LFR benchmark graphs with various numbers of nodes from
1 thousand to 100 million. The other parameters, average degree,
maximum degree and clustering coefficient, were fixed at 20, 50
and 0.4, respectively. We omitted the results of SCAN for the
graphs with 10 million and 100 million nodes since it did not return

the clustering results in a day. The running times of the algorithms
in Figure 10, show that SCAN++ has near-linear runtime in terms
of number of edges. In contrast, SCAN significantly increases its
running time as the size of edges increases. This result verifies our
theoretical analysis in Section 4.1, hence, our proposals are scal-
able for large-scale graphs.

6. RELATED WORK
The problem of finding clusters in a graph has been studied for

some decades in many fields, particularity in computer science and
physics [12]. Graph partitioning algorithms [27, 30] are natural
choices for this problem. Since cluster structures are highly com-
plex, several clustering algorithms have been recently introduced.
Here we review some of the more successful methods.

Modularity-based algorithms: Modularity, proposed by New-
man and Girvan [26], is widely used to evaluate the cluster struc-
ture of a graph from global perspective. Modularity is a quality
metric of graph clustering; it measures the difference of the graph
structure from that of a random graph. The main idea of modular-
ity is to find groups of nodes that have a lot of inner-group edges
and few inter-group edges; optimal clustering is achieved when
modularity is maximized. Although modularity-based algorithms
are effective in many applications, finding the maximum modular-
ity is an NP-complete problem. This has led to the introduction
of approximation approaches. Instead of performing exhaustive
computations, various greedy algorithms based on hierarchical ag-
glomeration clustering have been proposed such as CNM [3] and
BGLL [2]. Recently, Shiokawa et al. proposed an incremental ag-
gregation based clustering algorithm for finding clusters in large-
scale graphs [28]. However, despite the efficiency of the approach,
these methods cannot identify hubs and outliers in graphs. Further-
more, recent research pointed out that modularity is not a scale-
invariant measure [10]. Hence, it is difficult for modularity-based
methods to find small clusters hidden in large-scale graphs; these
methods fail to fully reproduce the ground-truth [36]. This seri-
ous problem is famously known as the resolution limit of modu-
larity [10]. Unlike traditional modularity-based algorithms, we use
structural similarity [36], which overcomes the resolution limit, as
the clustering measure. Hence, our proposal can obtain better clus-
tering results than modularity-based methods.

Structural clustering algorithms: Due to the resolution limit
of modularity-based methods, structural clustering algorithms [13,
14, 21, 36] have been widely used in many applications in the last
few years. SCAN [36], proposed by Xu et al., is the most popular
method based on structural similarity. It is an extension of the tra-
ditional density based clustering method DBSCAN [8]. Unlike tra-
ditional density-based algorithms [15] and clique detection meth-
ods [29, 31], this algorithm can successfully find clusters as well as
hubs and outliers in a graph by specifying two parameters ε and µ.
Moreover, Xu et al. reported that SCAN outperforms modularity-
based methods in producing clustering results that resemble the
ground-truth [36]. However, as described in Section 2, this algo-

1188

rithm incurs an average cost of O(|E|2/|V|). Hence, SCAN incurs
large computation time for large-scale graphs.

Huang et al., proposed the two parameter-free methods named
SHRINK [13] and gSkeletonClu [14]. SHRINK is a hierarchi-
cal clustering algorithm that combines the advantages of structural
similarity and modularity-based methods. It first computes sim-
ilarities for all adjacent nodes. Then it aggregates densely con-
nected nodes into the same clusters if the aggregation improves
the modularity score. In this way, SHRINK achieves parameter-
free and hierarchical clustering. In contrast, gSkeletonClu tries
to find clustering results that maximize the modularity by using
the tree-decomposition-based algorithm. As with SHRINK, it first
computes the structural similarities for all adjacent nodes in the
graph. After that, it extracts maximum spanning trees from the
graph by using the scores of the structural similarities; and then
it searches better clustering results in terms of modularity from
the trees. SHRINK and gSkeletonClu are user-friendly algorithms
since they do not require user-specified parameters. However, these
methods requires exhaustive similarity computations for all adja-
cent nodes; hence the time complexities of SHRINK and gSkele-
tonClu are at least O((|E|2 log |V|)/|V|) and O(|E|2/|V| + |V|
log |V|), respectively. Hence, as well as SCAN, both methods in-
cur large computation time for large-scale graphs.

Recently, Lim et al. proposed LinkSCAN∗, which uses SCAN
to find overlapping communities. For detecting overlapping com-
munities, LinkSCAN∗ transforms the graph into a link-space graph
which combines the advantages of the graph and line graph [9].
This transformation entails an increase of the size of the graph
for clustering, hence they introduced a graph sampling step, which
we used for SCAN∗ in Section 5. This approach is certainly effi-
cient in reducing the computation time; however, as shown in Fig-
ure 5, it degrades the clustering results compared to SCAN since
sampling involves approximation. By using SCAN++ instead of
the graph sampling approach, we can improve the performance of
LinkSCAN∗ since our proposal is not only efficient but also exact.

Our work is different from these traditional algorithms in that
it provides efficient clustering with no loss in clustering quality
from SCAN. Our theoretical analyses and experiments show that
SCAN++ incursO(2−c

2δ+c
|E|) time complexity and much faster clus-

tering than the traditional methods.

7. CONCLUSION
This paper addressed the problem of efficiently finding clusters,

hubs, and outliers in large-scale graphs. Our proposal, SCAN++, is
based on three ideas: (1) it introduces a new data structure, called
directly two-hop-away reachable (DTAR), that contains only nodes
that two hops away from a given node, (2) it drops unnecessary
density evaluations for adjacent nodes in the clustering procedure
by using DTARs, and (3) its density evaluation method is highly
efficient since it shares some of the density evaluation results of
DTARs. As far as we know, this is the first study to introduce a
graph clustering algorithm that achieves both high efficiency and
exactly same clustering results as SCAN at the same time. Graph
clustering algorithms that extract not only clusters but also hubs
and outliers are essential for many applications. The proposal will
help to improve the effectiveness of current and future applications.

8. REFERENCES
[1] Apache Giraph. http://giraph.apache.org/.
[2] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast Unfolding

of Communities in Large Networks. Journal of Statistical Mechanics: Theory
and Experiment, 2008:P10008, October 2008.

[3] A. Clauset, M. E. J. Newman, and C. Moore. Finding Community Structure in
Very Large Networks. Phys. Rev. E, 70:066111, Dec 2004.

[4] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. In Proc. OSDI, pages 107–113, 2004.

[5] R. Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in
mathematics. Springer, 2012.

[6] Y. Ding, M. Chen, Z. Liu, D. Ding, Y. Ye, M. Zhang, R. Kelly, L. Guo, Z. Su,
S. Harris, F. Qian, W. Ge, H. Fang, X. Xu, and W. Tong. atBioNet An Integrated
Network Analysis Tool for Genomics and Biomarker Discovery. BMC
Genomics, 13(1), 2012.

[7] P. Domingos and M. Richardson. Mining the Network Value of Customers. In
Proc. KDD, pages 57–66, 2001.

[8] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise. In Proc. KDD,
pages 226–231, 1996.

[9] T. S. Evans and R. Lambiotte. Line Graphs, Link Partitions, and Overlapping
Communities. Phys. Rev. E, 80(1):016105, July 2009.

[10] S. Fortunato and M. Barthélemy. Resolution Limit in Community Detection.
Proceedings of the National Academy of Sciences, 104(1):36–41, 1 2007.

[11] Y. Fujiwara, G. Irie, S. Kuroyama, and M. Onizuka. Scaling Manifold Ranking
Based Image Retrieval. PVLDB, 8(4):341–352, 2014.

[12] Y. Fujiwara, M. Nakatsuji, H. Shiokawa, Y. Ida, and M. Toyoda. Adaptive
Message Update for Fast Affinity Propgation. In Proc. KDD, 2015.

[13] J. Huang, H. Deng, H. Sun, Y. Sun, J. Han, and Y. Liu. SHRINK: A Structural
Clustering Algorithm for Detecting Hierarchical Communities in Networks. In
Proc. CIKM, pages 219–228, 2010.

[14] J. Huang, H. Sun, Q. Song, H. Deng, and J. Han. Revealing Density-Based
Clustering Structure from the Core-Connected Tree of a Network. IEEE TKDE,
25(8):1876–1889, 2013.

[15] P. Jiang and M. Singh. SPICi: A Fast Clustering Algorithm for Large Biological
Networks. Bioinformatics, 26(8):1105–1111, 2010.

[16] U. Kang and C. Faloutsos. Beyond ‘Caveman Communities’: Hubs and Spokes
for Graph Compression and Mining. In Proc. ICDM, pages 300–309, 2011.

[17] J. M. Kleinberg. Authoritative Sources in a Hyperlinked Environment. J. ACM,
46(5):604–632, Sept. 1999.

[18] A. Lancichinetti and S. Fortunato. Community Detection Algorithms: A
Comparative Analysis. Phys. Rev. E, 80:056117, Nov 2009.

[19] M. Latapy, C. Magnien, and N. D. Vecchio. Basic Notions for the Analysis of
Large Two-mode Networks. Social Networks, 30(1):31–48, 2008.

[20] P. Lee, L. V. S. Lakshmanan, and E. E. Milios. Incremental Cluster Evolution
Tracking from Highly Dynamic Network Data. In Proc. ICDE, pages 3–14,
2014.

[21] S. Lim, S. Ryu, S. Kwon, K. Jung, and J.-G. Lee. LinkSCAN∗: Overlapping
Community Detection Using the Link-space Transformation. In Proc. ICDE,
pages 292–303, 2014.

[22] Z. Liu, Q. Shi, D. Ding, R. Kelly, H. Fang, and W. Tong. Translating Clinical
Findings into Knowledge in Drug Safety Evaluation - Drug Induced Liver
Injury Prediction System (DILIps). PLoS Computational Biology, 7(12), 2011.

[23] T. Lou and J. Tang. Mining Structural Hole Spanners Through Information
Diffusion in Social Networks. In Proc. WWW, pages 825–836, 2013.

[24] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski. Pregel: A System for Large-scale Graph Processing. In Proc.
SIGMOD, pages 135–146, 2010.

[25] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information
Retrieval. Cambridge University Press, 2008.

[26] M. E. J. Newman and M. Girvan. Finding and Evaluating Community Structure
in Networks. Phys. Rev. E, 69:026113, Feb 2004.

[27] J. Shi and J. Malik. Normalized Cuts and Image Segmentation. IEEE TPAMI,
22(8):888–905, 2000.

[28] H. Shiokawa, Y. Fujiwara, and M. Onizuka. Fast Algorithm for
Modularity-based Graph Clustering. In Proc. AAAI, pages 1170–1176, 2013.

[29] J. Wang and J. Cheng. Truss Decomposition in Massive Networks. PVLDB,
5(9):812–823, 2012.

[30] L. Wang, Y. Xiao, B. Shao, and H. Wang. How to Partition a Billion-Node
Graph. In Proc. ICDE, pages 568–579, 2014.

[31] N. Wang, J. Zhang, K. Tan, and A. K. H. Tung. On Triangulation-based Dense
Neighborhood Graphs Discovery. PVLDB, 4(2):58–68, 2010.

[32] Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos. Epidemic Spreading in
Real Networks: an Eigenvalue Viewpoint. In Proc. SRDS, pages 25–34, 2003.

[33] D. J. Watts. Small Worlds: The Dynamics of Networks Between Order and
Randomness. Princeton studies in complexity. Princeton University Press, 1999.

[34] D. J. Watts and S. H. Strogatz. Collective Dynamics of ’Small-World’
Networks. Nature, 393(6684):409–10, 1998.

[35] B. Wu and B. D. Davison. Identifying Link Farm Spam Pages. In Proc. WWW,
pages 820–829, 2005.

[36] X. Xu, N. Yuruk, Z. Geng, and T. A. J. Schweiger. SCAN: A Structural
Clustering Algorithm for Networks. In Proc. KDD, pages 824–833, 2007.

[37] Y. Zhou, H. Cheng, and J. X. Yu. Clustering Large Attributed Graphs: an
Efficient Incremental Approach. In Proc. ICDE, pages 689–698, 2010.

1189

