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ABSTRACT

Multi-versioned database systems have the potential to significantly

increase the amount of concurrency in transaction processing be-

cause they can avoid read-write conflicts. Unfortunately, the in-

crease in concurrency usually comes at the cost of transaction se-

rializability. If a database user requests full serializability, modern

multi-versioned systems significantly constrain read-write concur-

rency among conflicting transactions and employ expensive syn-

chronization patterns in their design. In main-memory multi-core

settings, these additional constraints are so burdensome that multi-

versioned systems are often significantly outperformed by single-

version systems.

We propose BOHM, a new concurrency control protocol for main-

memory multi-versioned database systems. BOHM guarantees se-

rializable execution while ensuring that reads never block writes.

In addition, BOHM does not require reads to perform any book-

keeping whatsoever, thereby avoiding the overhead of tracking reads

via contended writes to shared memory. This leads to excellent

scalability and performance in multi-core settings. BOHM has all

the above characteristics without performing validation based con-

currency control. Instead, it is pessimistic, and is therefore not

prone to excessive aborts in the presence of contention. An exper-

imental evaluation shows that BOHM performs well in both high

contention and low contention settings, and is able to dramatically

outperform state-of-the-art multi-versioned systems despite main-

taining the full set of serializability guarantees.

1. INTRODUCTION
Database systems must choose between two alternatives for han-

dling record updates: (1) overwrite the old data with the new data

(“update-in-place systems”) or (2) write a new copy of the record

with the new data, and delete or reduce the visibility of the old

record (“multi-versioned systems”). The primary advantage of multi-

versioned systems is that transactions that write to a particular record

can proceed in parallel with transactions that read the same record;

read transactions do not block write transactions since they can

read older versions until the write transaction has committed. On

the other hand, multi-versioned systems must consume additional

space to store the extra versions, and incurs additional complexity

to maintain them. As space becomes increasingly cheap in modern

hardware configurations, the balance is shifting, and the majority

of recently architected database systems are choosing the multi-

versioned approach.
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While concurrency control techniques that guarantee serializ-

ability in database systems that use locking to preclude write-write

and read-write conflicts are well understood, it is much harder to

guarantee serializability in multi-versioned systems that enable reads

and writes of the same record to occur concurrently. One popular

option that achieves a level of isolation very close to full serializ-

ability is “snapshot isolation” [6]. Snapshot isolation guarantees

that each transaction, T , reads the database state resulting from

all transactions that committed before T began, while also guar-

anteeing that T is isolated from updates produced by transactions

that run concurrently with T . Snapshot isolation comes very close

to fully guaranteeing serializability, and indeed, highly successful

commercial database systems (such as older versions of Oracle)

implement snapshot isolation when the user requests the “serializ-

able” isolation level [16]. However, snapshot isolation is vulner-

able to serializability violations [6, 13]. For instance, the famous

write-skew anomaly can occur when two transactions have an over-

lapping read-set and disjoint write-set, where the write-set (of each

transaction) includes elements from the shared read-set [6]. Pro-

cessing such transactions using snapshot isolation can result in a

final state that cannot be produced if the transactions are processed

serially.

There has been a significant amount of work on making multi-

versioned systems serializable, either by avoiding the write-skew

anomaly in snapshot isolation systems [11, 12], or by using al-

ternative concurrency control protocols to snapshot isolation [8,

19]. However, these solutions either severely restrict concurrency

in the presence of read-write conflicts (to the extent that they offer

almost no additional logical concurrency as compared to single-

versioned systems) or they require more coordination and book-

keeping, which results in poorer performance in main-memory multi-

core settings (Section 2).

In this paper, we start from scratch, and propose BOHM, a new

concurrency control protocol for multi-versioned database systems.

The key insight behind BOHM is that the complexity of determin-

ing a valid serialization order of transactions can be eliminated

by separating concurrency control and version management from

transaction execution. Accordingly, BOHM determines the seri-

alization order of transactions and creates versions corresponding

to transactions’s writes prior to their execution (Section 3). As a

consequence of this design, BOHM, guarantees full serializability

while ensuring that reads never block writes. Furthermore, BOHM

does not require the additional coordination and book-keeping in-

troduced by other methods for achieving serializability in multi-

versioned systems. The final result is perhaps the most scalable

(across multiple cores) concurrency control protocol ever proposed

— there is no centralized lock manager, almost all data structures

are thread-local, no coordination needs to occur across threads ex-

cept at the end of a large batch of transactions, and the need for

latching or any kind of atomic instructions is therefore minimized

(Section 3.2).

The main disadvantage of our approach is that entire transac-

tions must be submitted to the database system before the system
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can begin to process them. Traditional cursor-oriented database ac-

cess, where transactions are submitted to the database in pieces, are

therefore not supported. Furthermore, the write-set of a transaction

must be deducible before the transaction begins — either through

explicit write-set declaration by the program that submits the trans-

action, or through analysis of the transaction by the database sys-

tem, or through optimistic techniques that submit a transaction for

a trial run to get an initial guess for its write-set, and abort the trans-

action if the trial run resulted in an incorrect prediction [30, 26].

Although these disadvantages (especially the first one) change

the model by which a user submits transactions to a database sys-

tem, an increasingly large number of performance sensitive appli-

cations already utilize stored-procedures to submit transactions to

database systems in order to avoid paying round-trip communi-

cation costs to the database server. These applications can lever-

age our multi-versioned concurrency control technique without any

modifications.

BOHM thus presents a new, interesting alternative in the space of

multi-version concurrency control options — an extremely scalable

technique, at the cost of requiring entire transactions with deducible

write-sets in advance. Experiments show that BOHM achieves lin-

ear scalability up to (at least) 20 million record accesses per second

with transactions being processed over dozens of cores.

In addition to contributions around multi-versioned serializabil-

ity and multi-core scalability, a third important contribution of BOHM

is a clean, modular design. Whereas traditional database systems

use a monolithic approach, with the currency control and transac-

tion processing components of the systems heavily cross-dependent

and intertwined, BOHM completely separates these system compo-

nents, with entirely separate threads performing concurrency con-

trol and transaction processing. This modular design is made possi-

ble by BOHM’s philosophy of planning transaction execution in ad-

vance, so that when control is handed over to the execution threads,

they can proceed without any concern for other concurrently exe-

cuting transactions. This architecture greatly improves database en-

gine code maintainability and reduces database administrator com-

plexity.

2. MOTIVATION
We now discuss two fundamental issues that limit the perfor-

mance of current state-of-the-art multi-version concurrency control

protocols: a) the use of global counters to obtain timestamps, and

b) the cost of guaranteeing serializable execution

2.1 Centralized Timestamps
When a multi-version database system updates the value of a

record, the update creates a new version of the record. Each record

may have several versions simultaneously associated with it. Multi-

version databases therefore require a way to decide which of a

record’s versions – if any – are visible to a particular transaction. In

order to determine the record visible to a transaction, the database

associates timestamps with every transaction, and every version of

a record.

Multi-version databases typically use a global counter to obtain

unique timestamps. When a transaction needs a timestamp, the

database atomically increments the value of the counter using a

latch or an atomic fetch-and-increment instruction. Using a global

counter to obtain timestamps works well when it is shared among

a small number of physical CPU cores but does not scale to high

core counts [31].

Note that the use of a global counter to assign transactions their

timestamps is a pervasive design pattern in multi-version databases.

The use of a global counter is not restricted to only systems which

Figure 1: Non-serializable interleaving, and corresponding se-

rialization graph of Tr and Tw. r[x1] denotes to a read of ver-

sion 1 of record x, correspondingly, w[x1] denotes a write to

record x, which produces version 1. A record’s subscript cor-

responds to the version read or written by the transaction.

implement serializable isolation; implementations of weaker isola-

tion levels such as snapshot isolation and read committed also use

global counters [8, 19]. These systems are thus subject to the scal-

ability restrictions of using a global counter.

In order to address this bottleneck, BOHM assigns a total order to

transactions prior to their execution. Each transaction is implicitly

assigned a timestamp based on its position in the total order. When

a transaction is eventually executed, BOHM ensures that the state of

the database is identical to a serial execution of the transactions as

specified by the total order. Assigning a transaction its timestamp

based on its position in the total order allows BOHM to use low-

overhead mechanisms for timestamp assignment. For instance, in

our implementation, we utilize a single thread which scans the to-

tal order of transactions sequentially and assigns transactions their

timestamps (Section 3.2.1).

2.2 Guaranteeing Serializability
Multi-version database systems can execute transactions with

greater concurrency than their single version counterparts. A trans-

action, Tr , which reads record x need not block a concurrent trans-

action, Tw, which performs a write operation on record x. In order

to avoid blocking Tw, Tr can read a version of x, xold that exists

prior to the version produced by Tw’s write, xnew. More generally,

multiversioning allows transactions with conflicting read and write

sets to execute without blocking each other. Unfortunately, if con-

flicting transactions are processed without restraint, the resulting

execution may not be serializable. In our example, if Tr is allowed

to read xold, then it must be ordered before Tw in the serialization

order.

In the formalism of Adya et al. [1], the serialization graph corre-

sponding to the above execution contains an anti-dependency edge

from Tr to Tw. In order for an execution of transactions to be se-

rializable, the serialization graph corresponding to the trace of the

execution cannot contain cycles. If Tr were to write another record

y, and Tw read y (in addition to Tr’s read of x and Tw’s write of

x), then the order of Tr and Tw’s operations on record y must be

the same as the order of their operations on record x. In particular,

Tw must not read yold (the version of y prior to Tr’s write), oth-

erwise, the serialization graph would contain an anti-dependency

edge from Tw to Tr , leading to a cycle in the resulting serialization

graph.

Figure 1 shows the the interleaved execution of transactions Tr

and Tw, and the corresponding serialization graph. The graph con-

tains two anti-dependency edges, one from Tr to Tw, and the other

from Tw to Tr; these two edges form a cycle, implying that the in-

terleaving of Tw and Tr as described above is not serializable. This

example is a variant of Snapshot Isolation’s well known write-skew

anomaly [6].

In order to avoid non-serializable executions such as the one de-

scribed above, multi-versioned database systems need to account
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for anti-dependencies among transactions whose read and write

sets conflict. There exist two ways of accounting for anti-dependencies:

• Track Reads. Whenever a transaction reads a record, the system

tracks the fact that the transaction performed the read by asso-

ciating some meta-data with each record in the database. The

read meta-data associated with records in the database system is

then used to decide on the order of transactions. For instance,

the pessimistic version of Hekaton’s multi-version concurrency

control algorithm associates a counter with every record in the

database [19]. The counter reflects the number of in-flight trans-

actions that have read the record. As another example, Cahill et

al. modify BerkeleyDB’s lock manager to track anti-dependency

edges to and from a particular transaction [8].

• Validate Reads. A transaction locally keeps track of the version

of each record it observed. When the transaction is ready to com-

mit, it validates that the reads it observed are consistent with a

serial order. This technique is used by Hekaton’s optimistic con-

currency control protocol [19], and Multi-version General Vali-

dation [2].

While both approaches ensure that all executions are serializable,

they come at a cost. Concurrency control protocols track reads in

order to constrain the execution of concurrent readers and writ-

ers. For instance, Hekaton’s pessimistic concurrency control pro-

tocol does not allow a writer to commit until all concurrent readers

have either committed or aborted [19]. In addition to the reduction

in concurrency resulting from the concurrency control protocol it-

self, tracking reads entails writes to shared memory. If a record

is popular, then many different threads may attempt to update the

same memory words concurrently, leading to contention for access

to internal data structures, and subsequent cache coherence slow-

downs. Since reads are tracked, this contention is present even if

the workload is read-only.

The “Validate Reads” approach does not suffer from the problem

of requiring reads to write internal data to shared memory. How-

ever, validation protocols reduce concurrency among readers and

writers by aborting readers. Such a situation runs counter to the

original intention of multi-version concurrency control, because al-

lowing multiple versions of a record is supposed to allow for greater

concurrency among readers and writers.

In order to address these limitations, we designed BOHM’s con-

currency control protocol with the following goals in mind: (1) A

transaction, Tr , which reads the value of a particular record should

never block or abort a concurrent transaction that writes the same

record. This should be true whether or not Tr is a read-only trans-

action. (2) Reading the value of a record should not require any

writes to shared memory.

3. DESIGN
BOHM’s design philosophy is to eliminate or reduce coordina-

tion among database threads due to synchronization based on writes

to shared memory. BOHM ensures that threads either make de-

cisions based on local state, or amortize the cost of coordination

across several transactions. BOHM achieves this goal by separating

concurrency control logic from transaction execution logic. This

separation is reflected in BOHM’s architecture: a transaction is pro-

cessed by two different sets of threads in two phases: (1) a con-

currency control phase which determines the proper serialization

order and creates a data structure that will enable the second phase

to process transactions without concern for concurrently executing

transactions, and (2) an execution phase, which actually executes

transaction’s logic.

While the separation of concurrency control logic and transac-

tion execution logic allows BOHM to improve concurrency and

avoid scalability bottlenecks, it comes at the cost of extra require-

ments. In order to plan execution correctly, the concurrency con-

trol phase needs advance knowledge of each transaction’s write-set.

This requirement is not unique to BOHM — several prior systems

exploit a priori information about transactions’s read- and/or write-

sets [3, 10, 30, 23]. These previous systems have shown that even

though they need transactions’ write- (and sometimes also read-)

sets in advance, it is not necessary for transactions to pre-declare

these read-/write-sets. For example, Calvin proposes a speculative

technique which predicts each transaction’s read-/write-sets on the

fly [30]. Furthermore, Ren et. al. show that aborts due to specu-

lative read/write-set prediction are rare, since the volatility of data

used to derive the read and write sets is usually low1 [26]. BOHM

can make use of this technique if transactions’ write-sets are not

available (or derivable) in advance. However, either way, there is a

requirement that the entire transaction be submitted to the system

at once. Thus, cursor-oriented transaction models that a submit a

transaction to the system in pieces cannot be supported.

3.1 System Overview
Transactions that enter the system are handed over to a single

thread which creates a log in shared-memory containing a list of all

transactions that have been input to the system. The position of a

transaction in this log is its timestamp. The log is read (in parallel)

by m concurrency control threads. These threads own a logical par-

tition of the records in the database. For each transaction in the log,

each concurrency control thread analyzes the write-set of the trans-

action to see if it will write any records in the partition owned by

that thread. If so, the thread will create space (a “placeholder”) for

the new version in the database (the contents remain uninitialized)

and link it to the placeholder associated with the previous version

of record (which was written by the same thread).

A separate set of n threads (the “transaction execution threads”)

read the same log of input transactions and perform the reads as-

sociated with the transactions in the log and fill in the pre-existing

allocated space for any writes that they perform. These transaction

execution threads do not start working on a batch of transactions

until the the concurrency control threads have completed that same

batch. Therefore, it is guaranteed that placeholders already exist for

any writes that these threads perform. Furthermore, reads can de-

termine which version of a record is the correct version to read (in

order to guarantee serializability) by navigating the backward ref-

erences of the placeholders until the record is reached which was

created by a transaction older than the transaction which is per-

forming the read and invalidated by a transaction newer than the

transaction which is performing the read. If this placeholder as-

sociated the correct version to read remains uninitialized, then the

read must block until the write is performed. Hence, in BOHM,

reads never block writes, but writes can block reads.

The following two subsections give more details on the concur-

rency control phase and the transaction execution phase, respec-

tively. Furthermore, they explain how our design upholds our phi-

losophy of not allowing contented writes to shared memory, nor

any thread synchronization at the record or transaction granularity.

3.2 Concurrency Control
The concurrency control layer is responsible for (1) determining

the serialization order of transactions, and (2) creating a safe envi-

1For example, on TPC-C, no aborts due to speculative read/write
set prediction are observed.
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Figure 2: Intra-transaction parallelism. Transaction 200,

which writes four records is shown in the upper rectangle. The

logical partitioning of concurrency control thread responsibil-

ity is shown below.

ronment in which the execution phase can run transactions without

concern for other transactions running concurrently.

3.2.1 Timestamp Assignment

The first step of the concurrency control layer is to insert each

transaction into a log in main-memory. This is done by a single

thread dedicated solely to this task. Because the concurrency con-

trol layer is separated from (and run prior to) transaction execution,

BOHM can use this log to implicitly assign timestamps to trans-

actions (the timestamp of a transaction is its position in the log).

Since a single thread creates the log prior to all other steps in trans-

action processing, log creation (and thus timestamp assignment)

is an uncontended operation. This distinguishes BOHM from other

multi-versioned schemes that assign timestamps (which involve up-

dating a shared counter) as part of transaction processing. Thus,

timestamp assignment is an example of our design philosophy of

avoiding writing and reading from shared data-structures as much

as possible.

Several prior multi-version concurrency control mechanisms as-

sign each transaction, T , two timestamps, tbegin and tend [2, 6, 8,

19]. tbegin determines which versions of pre-existing records are

visible to T , while tend determines the logical time at which T ’s

writes become visible to other transactions, and is used to validate

whether T can commit. The time between tbegin and tend deter-

mines the logical interval of time during which T executes. If an-

other transaction’s logical interval overlaps with that of T , then the

database system needs to ensure that the transactions do not con-

flict with each other (what exactly constitutes a conflict depends on

the isolation level desired).

In contrast, BOHM assigns each transaction a single timestamp,

ts (determined by the transaction’s position in the log). Intuitively,

ts “squashes” tbegin and tend together; ts determines both the logi-

cal time at which T performs its reads, and the logical time at which

T ’s writes are visible to other transactions. As a consequence, each

transaction appears to execute atomically at time ts.

3.2.2 Inserting Placeholders

Once a transaction’s timestamp has been determined, the con-

currency control layer inserts a new version for every record in the

transaction’s write-set. This includes creating new versions for in-

dex key-values updated by the transaction. The version inserted by

the concurrency control layer contains a placeholder for the value

of the version, but the value is uninitialized. The actual value of

the version is only produced once the corresponding transaction’s

logic is executed by the execution layer (Section 3.3).

Several threads contribute to the processing of a single transac-

tion’s write-set. BOHM partitions the responsibility for each record

of a table across the set of concurrency control threads. When the

concurrency control layer receives a transaction, every concurrency

control thread examines T ’s write-set in order to determine whether

any records belong to the partition for which it is responsible.

Figure 2 illustrates how several threads cooperatively process

each transaction. The transaction is assigned a timestamp of 200,

and its write-set consists of records a, b, c, and d. The concurrency

control layer partitions records among three threads, CC1, CC2,

and CC3. CC1’s partition contains record a, CC2’s partition con-

tains records b and c, and CC3’s partition contains record d. CC1

thus inserts a new version for record a, CC2 does the same for

records b and c, and CC3 for d. BOHM uses several threads to pro-

cess a single transaction, a form of intra-transaction parallelism.

Every concurrency control thread must check whether a trans-

action’s write-set contains records that belong to its partition. For

instance, if record d belonged to CC1’s partition instead of CC3’s,

CC3 would still have to check the transaction’s write-set in order

to determine that no records in the transaction’s write-set map to its

partition.

This design is consistent with our philosophy that concurrency

control threads should never need to coordinate with each other in

order to process a transaction. Each record is always processed

by the same thread (as long as the partitioning is not adjusted);

two concurrency control threads will never try to process the same

record, even across transaction boundaries. The decision of which

records of a transaction’s write-set to process is a purely thread lo-

cal decision; a concurrency control thread will process a particular

record only if the record’s key resides in its partition.

Not only does this lead to reduced cache coherence traffic, but

it also leads to multi-core scalability. As we dedicate more con-

currency control threads to processing transactions, throughput in-

creases for two reasons. First, each transaction is processed by a

greater number of concurrency control threads, which leads to an

increase in intra-transaction parallelism. Since concurrency con-

trol threads do not need to coordinate with each other, there is little

downside to adding additional threads as long as there are enough

processing resources on which they can run. Second, for a fixed

database size, the number of keys assigned to each thread’s parti-

tion decreases. As a consequence, each concurrency control thread

will have a smaller cache footprint.

One impediment to scalability is the fact that every concurrency

control thread must examine every transaction that enters the sys-

tem. This is logic which is effectively executed serially, since every

concurrency control thread runs the same piece of logic. Increas-

ing the number of concurrency control threads beyond a certain

point will therefore yield a diminishing increase in throughput due

to Amdahl’s law. Although we have not encountered this scalability

bottleneck in our experimental evaluation, a straightforward mech-

anism around the issue is to pre-process transactions prior to hand-

ing them over to the concurrency control layer. The pre-processing

layer can analyze each transaction to determine the set of concur-

rency control threads responsible for the writes the transaction per-

forms, and then forward transaction references to the appropriate

concurrency control threads. Each transaction can be pre-processed

independently of others, thus making the pre-processing step em-

barrassingly parallelizable.

3.2.3 Processing a single transaction’s read/write set

For each record in a transaction’s write-set, the concurrency con-

trol phase produces a new version to hold the transaction’s write.

Figure 3 shows the format of a record version. Each version con-

sists of the following fields:

• Begin Timestamp. The timestamp of the transaction that cre-

ated the record.
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Figure 3: Inserting a new version

• End Timestamp. The timestamp of the transaction that invali-

dated the record.

• Txn Pointer. A reference to the transaction that must be exe-

cuted in order to obtain the value of the record.

• Data. The actual value of the record.

• Prev Pointer. A reference to the version of the record that pre-

cedes the current version.

When inserting a new version of a record, the concurrency con-

trol thread sets the version’s fields as follows: (1) the version’s start

timestamp is set to the timestamp of the transaction that creates the

version, (2) the version’s end timestamp is set to infinity, (3) the

version’s txn pointer is set to the transaction that creates the ver-

sion, (4) the version’s data is left uninitialized, (5) the version’s

prev pointer is set to the preceding version of the record.

Figure 3 shows the thread CC1 inserting a new version of record

a, which is produced by transaction T200. CC1 sets the new ver-

sion’s begin timestamp to 200, and its end timestamp to infinity.

The version’s txn pointer is set to T200 (since T200 produces the

new version). At this point, the version’s data has not yet been pro-

duced; BOHM needs to execute T200 in order to obtain the value of

the version.

While inserting a new version of record a, CC1 finds that a pre-

vious version of the record exists. The older version of a was pro-

duced by transaction T100. CC1 sets the new version’s prev pointer

to the old version, and sets the old version’s end timestamp to 200.

In order to create a new version of a record, BOHM does not

need to synchronize concurrency control threads. BOHM partitions

the database among concurrency control threads such that a record

is always processed by the same thread, even across transaction

boundaries (Section 3.2.2). One consequence of this design is that

there is no contention in the concurrency control phase. The main-

tenance of the pointers to the current version of every record can

be done in a thread-local data-structure; thus the look-up needed

to populate the prev pointer in the new versions is thread-local.

Furthermore, if multiple transactions update the same hot record,

the corresponding new versions of the record are written by the

same concurrency control thread, thereby avoiding cache coher-

ence overhead.

For each element in the transaction’s read-set, BOHM needs to

identify the corresponding version that the transaction will read.

In general, the concurrency control phase does not need to get in-

volved in processing a transaction’s read-set. When an execution

thread that is processing a transaction with timestamp ts wants to

read a record in the database, it can find the correct version of the

record to read by starting at the latest version of the record, and

following the chain of linked versions (via the prev pointer field)

until it finds a version whose tbegin ≤ ts and tend ≥ ts. If no such

version exists, then the record is not visible to the transaction.

While the above-described technique to find which version of a

record to read is correct, the cost of the traversal of pointers may be

non-trivial if the linked list of versions is long. Such a situation may

arise if a record is popular and updated often. An optimization to

eliminate this cost is possible if the concurrency control phase has

advanced knowledge of the read-sets of transactions (in addition to

the write-set knowledge it already requires). In this case, for every

record a transaction will read, concurrency control threads annotate

the transaction with a reference to the correct version of the record

to read. This is a low-cost operation for the concurrency control

threads since the correct version is simply the most recent version

at the time the concurrency control thread is running2.

In particular, if a record in a transaction’s read-set resides on

a concurrency control thread’s logical partition, the thread looks

up the latest version of the record and writes a reference to the

latest version in a memory word reserved in advance within the

transaction. The concurrency control thread does not track the read

in the database, it merely gives the transaction a reference to the

latest version of the record as of the transaction’s timestamp.

A consequence of BOHM’s design is that a transaction’s reads

do not require any contended writes to shared memory. Even for

the read-set optimization mentioned above, the write containing the

correct version reference for a read is to pre-allocated space for the

reference within a transaction, and is uncontended since only one

concurrency control thread is responsible for a particular record. In

contrast, pessimistic multi-version systems such as Hekaton [19]

and Serializable Snapshot Isolation [8] need to coordinate a trans-

action’s reads with concurrent transaction’s writes in order to avoid

serializability violations.

3.2.4 Batching

Only after a transaction T has been processed by all appropriate

concurrency control threads can it be handed off to the transaction

execution layer. One naïve way of performing this hand-off is for

the concurrency control threads to notify each other after having

processed each transaction by using synchronization barriers. Af-

ter processing T , each concurrency control thread enters a global

barrier in order to wait for all other threads to finish processing T .

After all threads have entered this barrier, each concurrency control

thread can begin processing the next transaction.

Unfortunately, processing transactions in this fashion is extremely

inefficient. Threads need to synchronize with each other on ev-

ery transaction, which has the effect of forcing concurrency control

threads to effectively execute in lock step. Another issue is that

some concurrency control threads are needlessly involved in this

synchronization process. Consider a scenario where none of the

records in T ’s write-set belong to a concurrency control thread,

CC’s, partition. CC has to wait for every thread in order to move

on to the next transaction despite the fact that CC “contributes”

nothing to T ’s processing.

BOHM avoids expensive global coordination on every transac-

tion, and instead amortizes the cost of coordination across large

batches of transactions. The concurrency control thread responsible

for allotting each transaction a timestamp accumulates transactions

in a batch. The concurrency control threads responsible for writing

versions receive an ordered batch of transactions, b, as input. Each

concurrency control thread processes every transaction in b inde-

pendently, without coordinating with other threads (Sections 3.2.2,

2This is true since concurrency control threads process transac-
tions sequentially (threads derive concurrency by exploiting intra-
transaction parallelism).
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3.2.3). Once a thread has finished processing every transaction in b,

it enters a global barrier, where it waits until all concurrency control

threads have finished processing b, amortizing the cost of a single

global barrier across every transaction in b.

Coordinating at the granularity of batches means that some threads

may outpace others in processing a batch; a particular thread could

be processing the 100th transaction in the batch while another is

still processing the 50th transaction. Allowing certain concurrency

control threads to outpace others is safe for the same reason that

intra-transaction parallelism is safe (Section 3.2.2): BOHM par-

titions the database among concurrency control threads such that

a particular record is always processed by the same thread, even

across transaction boundaries.

3.3 Transaction Execution
After having gone through the concurrency control phase, a batch

of transactions is handed to the transaction execution layer. The

execution layer performs two main functions: it executes transac-

tions’ logic, and (optionally) incrementally garbage collects ver-

sions which are no longer visible due to more recent updates.

3.3.1 Evaluating Transaction Logic

The concurrency control layer inserts a new version for every

record in a transaction’s write-set. However, the data within the

version cannot yet be read because the transaction responsible for

producing the data has not yet executed; concurrency control threads

merely insert placeholders for the data within each record. Each

version inserted by the concurrency control layer contains a refer-

ence to the transaction that needs to be evaluated in order to obtain

the data of the version.

Read Dependencies. Consider a transaction T , whose read-

set consists of r1, r2, ..., rn. T needs to read the correct version

of each record in its read-set using the process described in Sec-

tion 3.2.3. However, the data stored inside one or more of these

correct versions may not yet have been produced because the cor-

responding transaction has not yet been executed. Therefore, an

execution thread may not be able to complete the execution of T

until the transaction upon which T depends has finished executing.

Write Dependencies. Every time the value of a particular record

is updated, the concurrency control layer creates a new version of

the record, stored separately from other versions. Consider two

transactions T1 and T2, such that (1) neither transactions’ logic

contain aborts, and (2) T1 is processed before T2 by the concur-

rency control layer. Both transactions’ write-sets consist of a sin-

gle record, x, while their read-sets do not contain record x. In this

scenario, the concurrency control layer will write out two versions

corresponding to record x, one each for T1’s and T2’s update. The

order of both transaction’s updates is already decided by the con-

currency control layer; therefore, T1 and T2’s execution need not

be coordinated. In fact, T2 could execute before T1, despite the fact

that T1 precedes T2, and their write-sets overlap. However, if T2

performs a read-modify-write of record x, then T2 must wait for the

version of x produced by T1 before it can proceed with the write

(this is a type of read dependency explained above). If T2 aborts,

then it also needs to wait for T1. The reason is that in this case,

the data written to its version of x is equal to that produced by T1.

Thus, T2 has a read dependency on T1.

We now describe how a set of execution threads execute a batch

of transactions handed over from the concurrency control layer.

The execution layer receives a batch of transactions in an ordered

array < T0, T1, ..., Tn >. The transactions are partitioned among

k execution threads such that thread i is responsible for ensuring

transactions Ti, Ti+k, Ti+2k, and so forth are processed. Thread

i does not need to directly execute all transactions that it is re-

sponsible for — other threads are allowed to execute transactions

assigned to i, and i is allowed to execute transactions assigned to

other threads. However, before moving onto a new batch of transac-

tions, thread i must ensure that all transactions that it is responsible

for in the current batch have been executed.

Each transaction can be in one of three states: Unprocessed,

Executing, and Complete. All transactions received from the con-

currency control layer are in state Unprocessed — this state cor-

responds to transactions whose logic has not yet been evaluated.

A transaction is in state Executing if an execution thread is in the

process of evaluating the transaction. A transaction whose logic

has been evaluated is in state Complete.

In order to process a transaction, T , an execution thread, E, at-

tempts to atomically change T ’s state from Unprocessed to Exe-

cuting. E’s attempt fails if T is either already in state Executing

or Complete. If E’s attempt is successful, then BOHM can be sure

that E has exclusive access to T ; subsequent transactions that try

to change T ’s state from Unprocessed to Executing will fail.

If, upon trying to read a record, E discovers a read dependency

on a version that has yet to be produced, E tries to recursively

evaluate the transaction T ′ which must be evaluated to produce the

needed version. If E cannot evaluate T ′ (because another thread is

already processing T ′) then E sets T ’s state back to Unprocessed.

T is later picked up by an execution thread (not necessarily E)

which attempts once again to execute the transaction. After com-

pleting all reads and writes for T , E sets T ’s state to Complete.

Note that execution and concurrency control threads operate on

different batches concurrently. Execution threads are responsible

for producing the data associated with versions written in a batch,

while concurrency control threads create versions and update the

appropriate indexes. Logically, a version’s data is a field associ-

ated with the version (Section 3.2.3, Figure 3). Execution threads

only write a version’s data field; therefore, there are no write-write

conflicts between execution and concurrency control threads. How-

ever, in order to locate the record whose data must be read or writ-

ten, execution threads may need to read database indexes. Execu-

tion threads need only coordinate with a single writer thread while

reading an index – the concurrency control thread responsible for

updating the index entry for that record. BOHM uses standard latch-

free hash-tables to index data; readers need only spin on incon-

sistent or stale data [18]. We believe that coordinating structural

modifications (SMOs) by a single writer with multiple readers is

significantly less complex than coordinating multiple writers and

readers. We leave the broader discussion of SMOs in general in-

dexing structures to future work.

3.3.2 Garbage Collection

BOHM can be optionally configured to automatically garbage

collect all versions that are no longer visible to any active or fu-

ture transactions. Records that have been “garbage collected” can

be either deleted or archived. This section describes how BOHM

decides when a version can be safely garbage collected.

BOHM’s execution layer receives transactions in batches. Trans-

actions are naturally ordered across batches; if batch b0 precedes

batch b1, then every transaction in b0 precedes every transaction in

b1. Assume that a transaction T belongs to batch b0. T updates the

value of record r, whose version is v1, and produces a new version

v2. The timestamp of any transaction in batch bi, where i ≥ 1, will

always exceed v2, T ’s timestamp. As a consequence, version v1,

which precedes v2, will never be visible to transactions in batches

which occur after b0. Section 3.3.1 explained that execution threads

always process batches sequentially; that is, each thread will not
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move onto batch bi+1 until the transactions it is assigned in bi have

been executed. Therefore, v1 can be garbage collected when every

execution thread has finished executing batch b0. This condition

holds regardless of which batch v1 was created in. In fact, v1 may

even have been created in b0. Whenever a transaction in batch bi
updates the value of a particular record, we can garbage collect the

preceding version of the record when every execution thread has

finished processing every transaction in batch bi.

Garbage collection based on the preceding intuition is amenable

to an efficient and scalable implementation based on read-copy-

update (RCU) [21]. The heart of the technique is maintaining a

global low-watermark corresponding to the minimum batch of trans-

actions processed by every execution thread. Each execution thread

ti maintains a globally visible variable batchi, which corresponds

to the batch most recently executed by ti. batchi is only updated by

ti. We designate one of the execution threads, t0, with the respon-

sibility of periodically updating a global variable lowwatermark

with min(batchi), for each i.

4. EXPERIMENTAL EVALUATION
BOHM’s primary contribution is a multi-version concurrency con-

trol protocol that is able to achieve serializability at lower cost than

previous multi-version concurrency control protocols. Therefore,

the best comparison points for BOHM are other multi-versioned

protocols. We thus compare BOHM’s performance to two state-of-

the-art multi-versioned protocols: the optimistic variant of Heka-

ton [19], and Snapshot Isolation (implemented within our Heka-

ton codebase) [6]. Our Hekaton and Snapshot Isolation (SI) im-

plementations include support for commit dependencies, an opti-

mization that allows a transaction to speculatively read uncommit-

ted data. In order to keep our codebase simple, our Hekaton and

SI implementations do not incrementally garbage collect versions

from the database and use a simple fixed-size array index to access

records (BOHM and its other comparison points discussed below

use dynamic hash-tables). The lack of garbage collection does not

negatively impact performance; on the contrary, garbage collection

was cited as one of the primary contributors to Hekaton’s poor per-

formance relative to single-versioned systems. BOHM runs with

garbage collection enabled; therefore, any performance gains of

BOHM over Hekaton and SI that we see in our experiments are con-

servative estimates. We would expect an even larger performance

difference had garbage collection of these baselines been turned on.

While Hekaton and SI are the main points against which we

seek to compare BOHM, our evaluation also includes single-version

baselines. We compare BOHM against state-of-the-art optimistic

concurrency control (OCC) and two-phase locking (2PL) imple-

mentations. Our OCC implementation is a direct implementation of

Silo [31] – it validates transactions using decentralized timestamps

and avoids all shared-memory writes for records that were only

read. All our optimistic baselines — single-version OCC, Heka-

ton, and SI — are configured to retry transactions in the event of an

abort induced by concurrency control.

Our 2PL implementation uses a hash-table to store information

about the locks acquired by transactions. Our locking implementa-

tion has three important properties. a) Fine-grained latching. We

use per-bucket latches on the lock table to avoid a centralized latch

bottleneck. b) Deadlock freedom. We exploit advance knowledge

of transactions’s read- and write-sets to acquire locks in lexico-

graphic order. Acquiring locks in this fashion is guaranteed to avoid

deadlocks. Consequently, our locking implementation does not re-

quire any deadlock detection logic. c) No lock table entry alloca-

tions. We exploit advance knowledge of a transaction’s read- and

write-sets to allocate a sufficient number of lock table entries prior
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Figure 4: Interaction between concurrency control and trans-

action execution modules.

to submitting the transaction to the database. The consequence of

this design is that the duration for which locks are held is reduced

to the bare minimum.

Our experimental evaluation is conducted on a single 40-core

machine, consisting of four 10-core Intel E7-8850 processors and

128GB of memory. Our operating system is Linux 3.9.2. All ex-

periments are performed in main-memory, so secondary storage is

not utilized for our experiments.

In all our implementations, there is a 1:1 correspondence be-

tween threads and cpu cores; we explicitly explicitly pin long run-

ning threads to cpu cores. Traditional database systems typically

assign a transaction to a single physical thread. If the transac-

tion blocks, for instance, while waiting for lock acquisition or disk

I/O, the database yields the thread’s processor to other threads with

non-blocked transactions. In order to adequately utilize process-

ing resources when transactions block, the database ensures that

there are a sufficiently large number of threads running other non-

blocked transactions. The number of active threads is therefore

typically larger than the number of physical processors. In contrast,

transactions in single node main memory database systems do not

block on I/O. Therefore, some main memory database systems use

non-blocking thread implementations such that when a transaction

blocks for any reason (such as a a failure to acquire a lock), instead

of yielding control to another thread, the thread temporarily stops

working on that transaction and picks up another transaction to pro-

cess, eventually returning to the original transaction when it is no

longer blocked [25]. We leverage this approach in our implemen-

tations, so that all baselines we experiment with do not need to pay

thread context switching costs.

4.1 Concurrency control scalability
We begin our experimental evaluation by exploring the effect of

the separation concurrency control from transaction execution in

BOHM (Section 3). Recall that concurrency control and transaction

execution are each handled by two separate modules, each of which

is parallelized by a separate group of threads. Both, the number of

threads devoted to concurrency control and the number of threads

devoted to transaction execution are system parameters that can be

varied by a system administrator. We vary both parameters in this

experiment.

Our experiment stresses the concurrency control layer as much

as possible, in order to test scalability. In particular:

• The workload consists of short, simple transactions, involving

only 10 RMWs of different records. Furthermore, each record is

very small (it only contains a single 64-bit integer attribute), and

the modification that occurs in the transaction consists of a sim-
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ple increment of this integer. As a consequence, the execution

time of each transaction’s logic is very small.

• The database consists of 1,000,000 records, and the 10 records

involved in the RMWs of each transaction are chosen from a uni-

form distribution. As a consequence, transactions rarely conflict

with each other.

• The entire database resides in main memory, so there are no de-

lays to access secondary storage.

As a result of these three characteristics, there are no delays

around contending for data, waiting for storage, or executing trans-

action logic. This stresses the concurrency control layer as much

as possible — it is not able to hide behind other bottlenecks and

delays in the system, and must keep up with the transaction exe-

cution layer, which consumes very little effort in processing each

transaction.

Figure 4 shows the results of our experiment. The number of

threads devoted to transaction execution is varied on the x-axis,

while the number of threads devoted to concurrency control is var-

ied via the 4 separate lines on the graph. Recall that in our ex-

perimental setup, there is a 1:1 correspondence between threads

and CPU cores. Thus, adding more threads to either concurrency

control or transaction execution is equivalent to adding more cores

dedicated to these functions.

Despite the extreme stress on the concurrency control layer in

this microbenchmark, when the number of concurrency control threads

(cores) significantly outnumber the number of execution threads

(cores), the system is bottlenecked by transaction execution, not

concurrency control. This is why the throughput of each configura-

tion initially increases as more execution threads are added. How-

ever, once the throughput of the execution layer matches that of

the concurrency control layer, the total throughput plateaus. At this

point, the throughput of the system is bottlenecked by the concur-

rency control layer.

As we increase the number of concurrency control threads (rep-

resented by the four separate lines in Figure 4), the maximum through-

put of the system increases. This indicates that the concurrency

control layer’s throughput scales with increasing thread (core) counts.

This is because the concurrency control layer is able to exploit

greater intra-transaction parallelism and has a lower per-thread cache

footprint at higher core counts (Section 3.2.3).

While the number of concurrency control and execution threads

can be varied by a system administrator, the choice of the opti-

mal division of threads between the concurrency control and exe-

cution layers is non-trivial. As Figure 4 indicates, using too few

concurrency control threads results in under utilization of execu-

tion threads, while using too many concurrency control threads will

constrain overall throughput as not enough execution threads will

be available to process transactions.

This problem can be addressed by using techniques for dynamic

load balancing in high-performance web-servers. BOHM uses a

staged event-driven architecture (SEDA) [32]; the concurrency con-

trol and execution phases each correspond to a stage. The process-

ing of a single request (in BOHM’s case, a transaction) is divided

between the concurrency control and execution phases. As advo-

cated by SEDA, there is a strong separation between the concur-

rency control and execution phases; threads in the concurrency con-

trol phase are unaware of threads in the execution phase (and vice-

versa). SEDA’s design allows for dynamic allocation of threads

to stages based on load. By following SEDA’s design principles,

BOHM can similarly dynamically allocate resources to the concur-

rency control and execution phases.
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Figure 5: YCSB 10RMW throughput. Top: High Contention

(theta = 0.9). Bottom: Low Contention (theta = 0.0).

Overall, this initial experiment provides evidence of the scala-

bility of BOHM’s design. As we increase the number of concur-

rency control and execution threads in unison, the overall through-

put scales linearly. At its peak in this experiment, BOHM’s concur-

rency control layer is able to handle nearly 2 million transactions a

second (which is nearly 20 million RMW operations per second) —

a number that (to the best of our knowledge) surpasses any known

real-world transactional workload that exists today.

4.2 YCSB
We now compare BOHM’s throughput against the implemented

baselines of Hekaton, Snapshot Isolation (SI), OCC, and locking

on the Yahoo! Cloud Serving Benchmark (YCSB) [9].

For this set of experiments, we use a single table consisting of

1,000,000 records, each of size 1,000 bytes (the standard record

size in YCSB). We use three kinds of transactions: the first per-

forms 10 read-modify-writes (RMWs) — just like the experiment

above, the second performs 2 RMWs and 8 reads (which we call

2RMW-8R), and the third is a read-only transaction which reads

10,000 records.

We use a workload consisting of only 10RMW transactions to

compare the overhead of multiversioning in BOHM compared to

a single versioned system. If a workload consists of transactions

that perform only RMW operations, we do not expect to obtain

any benefits from multiversioning. To understand why, consider

two transactions T1 and T2 whose read- and write-sets consist of

a single record, x. Since both transactions perform an RMW on

x, their execution must be serialized. Either T1 will observe T2’s

write or vice-versa. This serialization is equivalent to how a single

version system would handle such a conflict.

In contrast, we expect that, under high contention, multi-versioned

systems will execute a workload of 2RMW-8R transactions with

greater concurrency than single-versioned systems. The reason is

that if a transaction, T , only reads the value of record r, then T does

not need to block a transaction T ′ which writes r (or alternatively,

performs an RMW operation on r).

Finally, we use a workload consisting of a combination of 10RMW

and read-only transactions to demonstrate the impact of long run-

ning read-only transactions on each of our baselines. We expect

such a workload to favor multi-version systems because multi-version

systems ensure that read-only transactions execute without block-

ing conflicting update transactions (and vice-versa).

4.2.1 10RMW Workload

Our first experiment compares the throughput of each system on

YCSB transactions which perform 10RMW operations, where each
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element of a transaction’s read- and write-set is unique. We run the

experiment under both low and high contention. We use a zipfian

distribution to generate the elements in a transaction’s read- and

write-sets. We vary the contention in the workload by changing

the value of the zipfian parameter theta [14]. The low contention

experiment sets theta to 0, while the high contention experiments

sets theta to 0.9.

The graph at the top of Figure 5 shows the result of our experi-

ment under high contention. The throughput of every system does

not scale beyond a certain threshold due to the high contention in

the workload — there are simply not enough transactions that do

not conflict that can be run in parallel. Hekaton and SI perform

particularly poorly when there are a large number of concurrently

executing threads because under high contention, they are prone to

large numbers of aborts. Optimistic systems run transactions con-

currently, regardless of the presence of conflicts, and validate that

transactions executed in a serializable fashion (or in the case of

SI, that write-write conflicts are absent and that transactions read

a consistent snapshot of the database). A transaction is aborted if

its validation step fails, and the work performed by the transaction

is effectively wasted. Note, however, that while OCC is also opti-

mistic and suffers from aborts; it does not suffer from the same drop

in throughput as Hekaton and SI. This is because Silo (the version

of OCC we use in these experiments) uses a back-off scheme to

slow down threads when there is high write-write contention.

The reason why BOHM is outperformed by the locking imple-

mentation is that individual transactions are subject to greater over-

head. When a multi-version database system performs an RMW

operation on a particular record (say, x), the corresponding exe-

cution thread must bring the memory words corresponding to x’s

version being read into cache, and write a different set of words

corresponding to the new version of x. In contrast, when a single-

version system performs an RMW operation, it writes to the same

set of memory words it reads. Note that the overhead of creating

new versions must be paid during a transaction’s contention pe-

riod 3. As a consequence, version creation has a greater negative

impact on throughput in high contention workloads (as compared

to low contention workloads). This effect is magnified for YCSB,

since the size of each YCSB record is fairly large (1,000 bytes),

and each transaction must therefore pay the overhead of writing

ten new 1,000-byte records. Thus, all the multi-versioned systems

(including BOHM) have a disadvantage on this workload — they

pay the overhead of multi-versioning without getting any benefit of

increase in concurrency for this 100% RMW benchmark.

Nonetheless, BOHM’s lack of aborts allow it to achieve over

twice the throughput of the other multi-versioned systems (Heka-

ton and SI) when there are large numbers of concurrently running

threads. However, when there are low numbers of concurrently run-

ning threads, there is less contention and the optimistic systems do

not suffer from many aborts. Furthermore, the high theta increases

the number of versions created and ultimately garbage collected for

the “hot” records, and our configuration of Hekaton and SI to not

have to garbage collect give them a small advantage over BOHM.

We find that OCC’s throughput begins to degrade between 8

and 12 threads, while Hekaton and SI are able to sustain higher

throughput for slightly higher thread counts (12 and 16 threads re-

spectively). The reason for this is that Hekaton and SI use an op-

timization that allows transactions to speculatively read uncommit-

ted values (commit dependencies) [19].

3We define a transaction’s contention period as the time period dur-
ing which concurrently running conflicting transactions must either
block or abort (depending on the pessimistic or optimistic nature of
the concurrency control protocol).
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Figure 6: YCSB 2RMW-8R throughput. Top: High Contention

(Theta = 0.9). Bottom: Low Contention (Theta = 0.0).

The graph at the bottom of Figure 5 shows the same experiment

under low contention. We find that locking once again outperforms

the other concurrency control protocols; however, the difference is

much smaller. The reason why locking still outperforms OCC is

that most OCC implementations (including our implementation of

Silo OCC [31]) requires threads to buffer their writes locally prior

to making writes visible in the database. Locking does not pay the

overhead of copying buffered writes to database records. While

OCC’s write buffering is similar to the multi-version systems’s re-

quirement of creation of new versions, it has lower overhead be-

cause the same local write buffer can be re-used by a single exe-

cution thread across many different transactions (leading to better

cache locality of the local write buffers). In contrast, the multi-

version systems need to write different locations on every update.

Under low contention, the multi-version systems – BOHM, Heka-

ton, and SI – have similar performance. Hekaton and SI marginally

outperform BOHM, since our implementations of Hekaton and SI

do not include garbage collection and use array-based indices to

access records.

4.2.2 2RMW8R Workload

This section compares BOHM’s throughput with each of our base-

lines on a workload where each YCSB transaction performs two

RMWs and eight reads (2RMW-8R). In a high contention setting,

we expect that the multi-versioned systems will obtain more con-

currency than the single-versioned systems, since the reads and

writes of the same data items need not conflict under certain cir-

cumstances. In particular, under SI, reads and writes never conflict.

Therefore, it is theoretically able to achieve more concurrency than

any of the other systems which guarantee serializability and there-

fore have to restrict (to some degree), reads and writes of the same

data items in order to avoid the write-skew anomaly (see Section 2).

In particular, BOHM allows writes to block reads, but reads never

block writes. In Hekaton, reads also never block writes, but writes

can cause transactions that read the same data items to abort. In the

single-version systems, reads and writes always conflict either via

blocking (2PL) or aborting (OCC).

The graph at the top of Figure 6 shows the results of this ex-

periment under high contention. As expected, the multi-versioned

implementations outperform the single-versioned implementations

due to their ability to achieve higher concurrency, and SI outper-

forms most of the other systems due to the larger amount of con-

currency possible when serializable isolation is not required.

Surprisingly, however, BOHM significantly outperforms SI. We

attribute this difference to aborts induced by write-write conflicts in

SI. Under high contention this can lead to many aborts and wasted
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Figure 7: YCSB 2RMW-8R throughput varying contention

work. Meanwhile, BOHM specifies the correct ordering of writes

to the same record across transactions in the concurrency control

layer, so that the transaction processing layer simply needs to fill

in placeholders and never needs to abort transactions due to write-

write conflicts (Section 3.3.1). Like SI, Hekaton also suffers from

aborts and wasted work under high contention. Interestingly, the

Hekaton paper also implements a pessimistic version of its con-

currency control protocol, but finds that it performs worse than the

optimistic version, even under high contention. This is because

in the pessimistic version, reads acquire read locks, and thus con-

flict with writes to the same record, thereby reducing concurrency.

Thus, a major contribution of BOHM relative to Hekaton is a solu-

tion for allowing reads to avoid blocking writes without resorting

to optimistic mechanisms.

The graph at the bottom of Figure 6 shows the same experiment

under low contention. OCC outperforms both BOHM and lock-

ing as it employs a light-weight concurrency control protocol, and

does not suffer from aborts under low contention. In particular, this

workload contains a significant number of reads, and read valida-

tion is very cheap in Silo (which is our OCC implementation) [31].

Note however, that BOHM is very close in performance to OCC,

despite the additional overhead of maintaining multiple versions.

The slope of the OCC, locking, and BOHM lines all decrease at

higher thread counts. We attribute this to the fact that our database

tables span multiple NUMA sockets.

The most interesting part of the bottom of Figure 6 is the com-

parison of the three multi-versioning implementations. With no

contention, there are very few aborts in optimistic schemes, nor any

significant differences between the amount of concurrency between

the three schemes. Therefore, one might expect all three implemen-

tations to perform the same. However, we find that this is not the

case; Hekaton and SI are unable to scale beyond 20 cores. We at-

tribute Hekaton and SI’s poor performance to contention on global

transaction timestamp counter. Hekaton and SI use a global 64-

bit counter to assign transactions their begin and end timestamps.

In order to obtain a timestamp, both systems atomically increment

the value of the counter using an atomic fetch-and-increment in-

struction (xaddq on our x86-64 machine). The counter is incre-

mented at least twice for every transaction, regardless of the pres-

ence of actual conflicts 4. At high thread counts, SI and Hekaton

are bottlenecked by contention on this global counter. This ob-

servation is significant because it indicates that database designs

which rely on centralized contended data-structures are fundamen-

tally unscalable. BOHM’s avoidance of this prevalent limitation of

multi-version concurrency control protocols is thus an important

contribution.

Figure 7 further illustrates the fundamental issue with Hekaton

and SI’s inability to scale. The graph shows the throughput of each

4The counter may be incremented more than twice if a transaction
needs to be re-executed due to a concurrency control induced abort.
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actions.

system (at 40 threads) while varying the degree of contention in the

workload. We use the same 2RMW-8R workload. The graph in-

dicates that both Hekaton and SI have identical performance under

low to medium contention, as they are both limited by the times-

tamp counter bottleneck. Only under high contention does a new

bottleneck appear, and prevents the timestamp counter from being

the primary limitation of performance.

4.2.3 Impact of Long Readonly Transactions

In this section, we measure the effect of long running read-only

transactions on each of our baselines. We run each baseline on a

workload consisting of a mix of update and read-only transactions.

Update transactions are the low contention 10RMW YCSB trans-

actions from Section 4.2.1. Read-only transactions read 10,000

records – chosen uniformly at random – from the database.

Figure 8 plots the overall throughput of each system while vary-

ing the fraction of read-only transactions in the workload. When a

small fraction of the transactions are read-only (1%), we find that

the multi-version systems outperform OCC and locking by about

an order of magnitude (the y-axis uses a log-scale). This is because

single-version systems cannot overlap the execution of read-only

transactions and update transactions. In the multi-versioned sys-

tems, read-only transactions do not block the execution of conflict-

ing update transactions (and vice-versa) because read-only transac-

tions can perform their reads as of a timestamp which precedes the

earliest active update transaction. We also find that BOHM signifi-

cantly outperforms Hekaton and SI. We attribute this difference to

BOHM’s read-set optimization (Section 3.2.3), which ensures that

BOHM can obtain a reference to the version of a record required by

a transaction without accessing any preceding or succeeding ver-

sions. In contrast, in Hekaton and SI, if the version required by a

transaction, vi, has been overwritten, then the system must traverse

the list of succeeding versions vn, vn−1, ..., vi+1 (where n > i) in

order to obtain a reference to vi. Version traversal overhead is not

specific to our implementations of Hekaton and SI – it is inherent in

systems which determine the visibility of each transaction’s writes

after the transaction has finished executing. Thus, version traversal

overhead is unavoidable in all conventional multi-version systems.

As the fraction of read-only transactions increases, the through-

put of each system drops. This is because each read-only trans-

action runs for a significantly greater duration than update trans-

actions (read-only transactions read 10,000 records, while update

transactions perform an RMW operation on 10 records). When the

workload consists of 100% read-only transactions, all systems ex-

hibit nearly identical performance. This is because the workload

does not contain any read-write nor write-write conflicts.

4.3 SmallBank Benchmark
Our final set of experiments evaluate BOHM’s performance on

the SmallBank benchmark [7]. This benchmark was used by Cahill
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Figure 9: Small Bank throughput. Top: High Contention (50

Customers). Bottom: Low Contention (100,000 Customers).

et al. for their research on serializable multi-versioned concurrency

control. SmallBank is designed to simulate a banking applica-

tion. The application consists of three tables, (1) Customer, a ta-

ble which maps a customer’s name to a customer identifier, (2)

Savings, a table whose rows contain tuples of the form <Customer

Identifier, Balance>, (3) Checking, a table whose rows contain tu-

ples of the form <Customer Identifier, Balance>. The application

consists of five transactions: (1) Balance, a read-only transaction

which reads a single customer’s checking and savings balances, (2)

Deposit, makes a deposit into a customer’s checking account, (3)

TransactSaving, makes a deposit or withdrawal on a customer’s

savings account, (4) Amalgamate, moves all funds from one cus-

tomer to another, (5) WriteCheck, which writes a check against

an account. None of the transactions update the customer table —

only the Savings and Checking tables are updated.

The number of rows in the Savings and Checking tables is

equal to the number of customers in the SmallBank database. We

can therefore vary the degree of contention in our experiments by

changing the number of customers; decreasing the number of cus-

tomers increases the degree of contention in the SmallBank work-

load.

The transactions in the SmallBank workload are much smaller

than the transactions in the YCSB workload from the previous sec-

tion. Every transaction performs reads and writes on between 1

and 3 rows. Each record in the Savings and Checking tables

is 8 bytes long. In comparison, our configuration of the YCSB

workload performs exactly 10 operations on each transaction, and

each record is of size 1,000 bytes. In order to make the SmallBank

transactions slightly less trivial in size, each transaction spins for

50 microseconds (in addition to performing the logic of the trans-

action).

Figure 9 shows the results of our experiment. The graph at the

top of Figure 9 shows the results under high contention (the num-

ber of SmallBank customers is set to 50). Although locking once

again performs best under high contention, the difference between

locking and BOHM is not as large as in the contended 10RMW

YCSB experiment (Section 4.2.1). There are two reasons for this

difference:

First, as explained in Section 4.2.1, BOHM must pay the cost

of bringing two different sets of memory words into cache on a

read-modify-write operation, one corresponding to the version that

needs to be read, the second corresponding to the version to be cre-

ated. Since SmallBank’s 8-byte records are smaller than YCSB’s

1000-byte records, the cost of this extra memory access is smaller.

Hence, the relative difference between BOHM and locking is smaller.

Second, the workload from Section 4.2.1 was 100% RMW trans-

actions. In contrast, a small part of the SmallBank workload (20%

of all transactions) consist of read-only Balance transactions. Multi-

versioned approaches such as BOHM are thus able to increase the

concurrency of these transactions, since reads do not block writes.

Both Hekaton and SI’s throughput drop under high contention

due to concurrency control induced aborts. At 40 threads, SI out-

performs Hekaton by about 50,000 transactions per second because

it suffers from fewer aborts while validating transactions. Note that

the abort-related drop in performance of Hekaton and SI is greater

than OCC. This is because the contention on the timestamp counter

for the multi-versioned schemes (Hekaton and SI) increases the

time required to get a timestamp. Since the SmallBank transac-

tions are so short, this time to acquire a timestamp is a nontrivial

percentage of overall transaction length. Hence, the transactions

are effectively longer for Hekaton and SI than they are for OCC,

which leads to more conflict during validation, and ultimately more

aborts.

The graph at the bottom of Figure 9 shows the results of the

same experiment under low contention. We find that locking, OCC,

and BOHM have similar performance under this configuration. As

mentioned previously, the cost of RMW operations on SmallBank’s

8-byte records is much smaller than RMW operations on YCSB’s

1000-byte records.

As we saw in previous experiments (Section 4.2.2), we find that

both Hekaton and SI are bottlenecked by contention on the global

timestamp counter. When using 40 threads, BOHM is able to achieve

throughput in excess of 3 million transactions per second, while

Hekaton and SI achieve about 1 million transactions per second; a

difference of more than 3x.

5. RELATED WORK
Multi-core Scalability. Pandis et al. propose a data-oriented ar-

chitecture (DORA) in order to eliminate the impact of contended

accesses to shared memory by transaction execution threads [24].

DORA partitions a database among several physical cores of a

multi-core system and executes a disjoint subset of each transac-

tion’s logic on multiple threads, a form of intra-transaction paral-

lelism. BOHM uses intra-transaction parallelism to decide the or-

der in which transactions must execute. However, the execution of

a transaction’s logic occurs on a single thread.

Jung et al. propose techniques for improving the scalability of

lock-managers [18]. Their design includes the pervasive use of the

read-after-write pattern [5] in order to avoid repeatedly “bouncing”

cache-lines due to cache-coherence [4, 22]. In addition, to avoid

the cost of reference counting locks, they use a technique to lazily

de-allocate locks in batches. BOHM similarly refrains from the use

of reference counters to garbage collect versions of records that are

no longer visible to transactions.

Johnson et al. identified latch contention on high level intention

locks as a scalability bottleneck in multi-core databases [17]. They

proposed Speculative Lock Inheritance (SLI), a technique to reduce

the number of contended latch acquisitions. SLI effectively amor-

tizes the cost of contended latch acquisitions across a batch transac-

tions by passing hot locks from transaction to transaction without

requiring calls to the lock manager. BOHM similarly amortizes syn-

chronization across batches of transactions in order to scale concur-

rency control.

Very lightweight locking (VLL) reduces lock-manager overhead

by co-locating concurrency control related meta-data with records

[25]. Unlike BOHM, VLL is not designed for systems with large

number of cores because every transaction must execute a global

critical section before it can execute.
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Calvin [29] is a deterministic database system that executes trans-

actions according to a pre-defined total order. Calvin uses deter-

ministic transaction ordering to reduce the impact of distributed

transactions on scalability. Furthermore, Calvin uses a modular

architecture and separates key parts of concurrency control from

transaction execution [28]. Although similar to BOHM with its

focus on scalability and modularity, Calvin is a single-versioned

system and uses locking to avoid read-write and write-write con-

flicts, while BOHM is multi-versioned and ensures that reads do

not block writes. Furthermore, Calvin is focused on horizontal

shared-nothing scalability, while BOHM is focused on multi-core

scalability.

H-Store [27] uses a shared-nothing architecture consisting of

single-threaded partitions in order reduce the impact of lock-manager

overhead [15], and logging overhead [20]. However, performance

degrades rapidly if a workload contains multi-partition transactions.

Furthermore, sub-optimal performance is observed if some parti-

tions have more work to do than others. BOHM achieves scalabil-

ity without doing a hard-partitioning of the data — it is thus less

susceptible to skew problems and does not suffer from the multi-

partition transaction problem.

Dependency Graphs. Whitney et al. propose a deterministic

concurrency control in which transactions are executed according

to a pre-defined total order [33]. Their system derives concurrency

by constructing a graph of transactions, which defines a partial or-

der on transactions based on their conflicts. BOHM also pre-defines

the order in which transactions must execute, but its design is fun-

damentally motivated by multi-core scalability. In contrast, Whit-

ney et al. ’s system contains several centralized bottlenecks which

inhibit multi-core scalability (e.g., the set of transactions that are

ready to execute is maintained in a centralized data-structure).

Faleiro et al. describe a technique for lazily evaluating transac-

tions in the context of deterministic database systems [10]. This

lazy database design separates concurrency control from transac-

tion execution — a design element that is shared by BOHM. How-

ever, BOHM does not process transactions lazily, and is far more

scalable due to its use of intra-transaction parallelism, and avoiding

writes to shared memory on reads. Furthermore, BOHM is designed

to be a generic multi-versioned concurrency control technique, and

is motivated by existing limitations in multi-version concurrency

control systems.

6. CONCLUSIONS
Most multi-versioned database systems either do not guaran-

tee serializability or only do so at the expense of significant re-

ductions in read-write concurrency. In contrast BOHM is able to

achieve serializable concurrency control while still leveraging the

multiple versions to ensure that reads do not block writes. Our

experiments have shown that this enables BOHM to significantly

outperform other multi-versioned systems. Further, for workloads

where multi-versioning is particularly helpful (workloads contain-

ing a mixture of reads and writes at high contention), BOHM is

able to outperform both single-versioned optimistic and pessimistic

systems, without giving up serializability. BOHM is the first multi-

versioned database system to accomplish this in main-memory multi-

core environments.
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