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ABSTRACT
The problem of aggregating multiple rankings into one con-
sensus ranking is an active research topic especially in the
database community. Various studies have implemented
methods for rank aggregation and may have come up with
contradicting conclusions upon which algorithms work best.
Comparing such results is cumbersome, as the original stud-
ies mixed different approaches and used very different eval-
uation datasets and metrics. Additionally, in real applica-
tions, the rankings to be aggregated may not be permuta-
tions where elements are strictly ordered, but they may have
ties where some elements are placed at the same position.
However, most of the studies have not considered ties.

This paper introduces the first large scale study of algo-
rithms for rank aggregation with ties. More precisely, (i) we
review rank aggregation algorithms and determine whether
or not they can handle ties; (ii) we propose the first im-
plementation to compute the exact solution of the Rank
Aggregation with ties problem; (iii) we evaluate algorithms
for rank aggregation with ties on a very large panel of both
real and carefully generated synthetic datasets; (iv) we pro-
vide guidance on the algorithms to be favored depending on
dataset features.
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1. INTRODUCTION
The problem of aggregating multiple rankings into one

consensus ranking has started to be investigated two cen-
turies ago and has been actively studied again in the last
decades. Direct applications are numerous and include ag-
gregating answers returned by several web engines [20], com-
puting a global rating based on numerous user ratings [4,
33], determining the winner in a sport competition [5], or
combining biomedical orderings [12, 18, 32].

This topic has been of particular interest in the informa-
tion retrieval and database communities ([20] and [21, 22,
23, 27, 31, 34]) while several other communities have also
deeply looked into it, including algorithmics ([1, 2, 31]), ar-
tificial intelligence ([5]), and social sciences ([3]).

Various studies have implemented methods for rank ag-
gregation and may have come up with contradicting con-
clusions upon which algorithms work best. Comparing such
results is cumbersome, as the original studies mixed differ-
ent kinds of approaches and used very different evaluation
datasets and metrics.

Additionally, in real applications, the rankings to be
aggregated may not be permutations where elements
are strictly ordered, but they may have ties where some
elements are placed at the same position (e.g., ex-aequo
competitors, or ratings involving the same grade to be
possibly associated with several elements). While the first
efficient solution to rank aggregation considering input
rankings with ties has been introduced in 2004 [21], most
of the approaches and studies introduced since then have
continued to focus on permutations, leaving several open
questions in the context of ranking with ties.

The purpose of this paper is thus twofold: (i) it provides
a clear overview of the approaches able to aggregate rank-
ings with ties and (ii) it introduces the first complete study
on ranking with ties, including possible (or not) adaptation
of existing algorithms to deal with ties, and experimenta-
tion of the approaches both on real and carefully generated
synthetic datasets.

More precisely, this paper makes four contributions. First,
we provide a comprehensive review of the existing rank ag-
gregation approaches and a clear overview of the results pro-
vided in the literature. Second, we carefully study the im-
pact of considering ties in all approaches, both on exact and
approximation (or heuristics) solutions, and provide a new
translation into integer linear programming for finding an
optimal consensus ranking in the context of ties. Third,
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we present the results we obtained on real and synthetic
datasets by using available rank aggregation algorithms. Fi-
nally, a careful analysis of the results allows us to provide a
comprehensive view of the algorithms to be used depending
on the kind of application and carefully identified datasets
features (e.g., number of elements, similarity between input
rankings...).

The paper is organized as follows. After introducing the
formal background in Section 2, we review the major rank
aggregation algorithms available in the literature (Section
3). In Section 4, we study the consequence of considering ties
both on exact and approximation (or heuristics) solutions.
Previous results on the performance and relative quality of
existing approaches are summarized in Section 5. Section 6
describes the experimental setting of the study, the datasets
we gathered and/or generated, and the methodology used
for comparing the available approaches. We analyze our re-
sults and provide guidance on the algorithm to be favored
based on dataset features in Section 7 while we discuss per-
spectives in Section 8.

2. BACKGROUND

2.1 Rank Aggregation problem
Among the communities the rank aggregation problem

is named differently including Kemeny rank aggregation [3,
5, 6, 14], consensus ranking [30], median ranking [12], and
preference aggregation [17].

The rank aggregation problem has been originally defined
for a set of permutations. A permutation π is a bijection
of [n] = {1, 2 . . . , n} onto itself. It represents a strict total
order of the elements of [n] (it is thus a ranking). The set of
all permutations of [n] is denoted Sn, and its size is |Sn| = n!.
As usual, π[i] stands for the image (or position) of integer i
in permutation π, and we denote π = π[1]π[2] . . . π[n].

A classical dissimilarity measure for comparing two per-
mutations is the Kendall-τ distance [29] which counts the
number of pairs for which the order is different in the two
permutations. More formally, the Kendall-τ distance, here
denoted D, counts the pairwise disagreements between two
permutations, π and σ ∈ Sn, and is defined as:

D(π, σ) = |{(i, j) : i < j ∧
(π[i] < π[j] ∧ σ[i] > σ[j] ∨ π[i] > π[j] ∧ σ[i] < σ[j])}|

Other metrics exist (e.g., Spearman’s footrule [19]), which
are all within constant multiples of each others [21].

From the Kendall-τ distance, the Kemeny score [28] is
defined as the sum of Kendall-τ distances between a given
permutation and all permutations in a given set. More for-
mally, given any set of permutations P ⊆ Sn and a permu-
tation π, we define the Kemeny score S as:

S(π,P) =
∑
σ∈P

D(π, σ)

Finally, the problem of finding an optimal consensus π∗

of a set P ⊆ Sn is to find π∗ such that:

∀π ∈ Sn : S(π∗,P) ≤ S(π,P).

The optimal consensus π∗ is also denoted as optimal Kemeny
ranking [1, 3, 4, 5], optimal aggregation [20], optimal solution
[2, 27, 30, 31] and median [12].

There may be several optimal consensus.

Example: Let us consider the set of input permutations
P = {π1, π2, π3} where π1 = [A,D,B,C], π2 = [A,C,B,D],
π3 = [D,A,C,B]. The optimal consensus ranking of P is
π∗ = [A,D,C,B]. The Kemeny score of π∗ is made of the
pairwise disagreements A-D in π3, D-C in π2, D-B in π2,
and C-B in π1 thus S(π∗,P) = 4.

Considering the Kendall-τ distance, the rank aggregation
problem is known to be NP-hard when the number of per-
mutations in P is even and greater or equal to 4 [7, 20]. It is
an open problem when the number of permutations is odd.

2.2 Ranking with ties
We now consider the problem of rank aggregation with

ties, that is, when elements in the input rankings can be tied
(with equal rank). More formally, following [21], a bucket
order on [n] is a transitive binary relation � represented by
a set of non empty buckets B1, . . . ,Bk that forms a disjoint
partition of [n] such that x � y if and only if there are i, j
with i < j such that x ∈ Bi and y ∈ Bj . A ranking with
ties on [n] is defined as r = [B1, . . .Bk], where r[x] = i iff
x ∈ Bi. Although the classical formulation of the Kendall-
τ distance allows to compare rankings with ties [3, 31], in
this case it is not a distance anymore [22]; moreover, ties
are actually ignored and no disagreement can be considered
for (un)tied elements. Therefore, whatever the input is, the
ranking with the fewest disagreements is the ranking where
all elements are tied in a unique bucket. To avoid producing
such a non-sense solution, algorithms based on Kendall-τ
have to restrain themselves to produce permutations. As
a consequence, the generalized Kendall-τ distance, de-
noted G, has been introduced to address the need of pro-
ducing ranking with ties. It is defined as follows:

G(r, s) = |{ (i, j) : i < j ∧
((r[i] < r[j] ∧ s[i] > s[j]) ∨ (r[i] > r[j] ∧ s[i] < s[j]) ∨
(r[i] 6= r[j] ∧ s[i] = s[j]) ∨ (r[i] = r[j] ∧ s[i] 6= s[j])) }|

A pair of elements which are either inversed or tied in only
one ranking counts as one disagreement. Computing the
distance is equivalent to sorting the elements and can be
done, with adaptations, in log-linear time when considering
ranking with ties [20].

[10, 12, 21] assign a different cost to the case where two
elements are inversed compared to the case where two ele-
ments are tied in only one ranking. Here, we consider a cost
of one in both cases.

LetRn be the set of all possible rankings with ties over [n].
Given any subset R ⊆ Rn and a ranking r, the generalized
Kemeny score denoted K is :

K(r,R) =
∑
s∈R

G(r, s)

An optimal consensus ranking of a set of rankings with ties
R ⊆ Rn under the generalized Kemeny score is a ranking
with ties r∗ such that

∀r ∈ Rn : K(r∗,R) ≤ K(r,R).

A consensus ranking (or consensus for short) denotes
a not necessarily optimal solution of the problem. When a
solution is optimal it is explicitly denoted as an optimal
consensus.

Example: Let us consider the set of input rankings R =
{r1, r2, r3} where r1 = [{A}, {D}, {B,C}] (B and C are
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Ref Name Approx. Algorithm class Can produce ties Untying cost

[1] Ailon 3
2

3/2 [K] Linear Prog. with slight modification with slight modif.
[12] BioConsert 2 [G] Local search yes yes

[8],[16] BordaCount 5 [P] Sort by score with slight modification no
[11] Chanas no [K] Local search no —
[13] ChanasBoth no [K] Local search no —
[3] BnB exact [K] Branch & Bound no —
[15] CopelandMethod no [P] Sort by score with slight modification no
[21] FaginDyn 4 [G] Dynamic Prog. yes yes

[3, 5, 14, 31] ILP exact [K] Linear Prog. only in input with large modif.
[2] KwikSort 11

7
[K] Divide & conquer with slight modification with slight modif.

[20] MC4 no [P] Hybrid yes no
[24] MEDRank no [P] Extract order with slight modification no
[2] Pick-a-Perm 2 [K] Naive yes —
[1] RepeatChoice 2 [K] Sort by order with slight modification no

Table 1: Algorithms and their categories, “Approx.” stands for approximation, “[P]” for Positional algo-
rithms, “[K]” for Kendall-τ based algorithms and “[G]” for generalized Kendall-τ based algorithms. Algo-
rithms in bold have all been re-implemented and experimentally evaluated (cf. Section 6).

tied), r2 = [{A}, {B,C}, {D}], r3 = [{D}, {A,C}, {B}].
The optimal consensus of R is r∗ = [{A}, {D}, {B,C}]. The
generalized Kemeny score K(r∗,R) is made of inversions A-
D in r3, D-B in r2, D-C in r2, tying B-C in r3 and untying
A-C in r3 thus K(r∗,R) = 5.

In this paper, a dataset systematically denotes a set of
input rankings R.

3. CLASSIFICATION OF APPROACHES
We review rank aggregation algorithms. We distinguish

approaches on whether their objective function is focused on
the disagreements regarding the order of pairs of elements,
considering (i) the generalized Kendall-τ distance ([G] in
Table 1), or (ii) the (classical) Kendall-τ distance ([K]), or
focused on the position of elements in rankings ([P]).

3.1 Generalized Kendall-τ based algorithms
We describe here the only two approaches designed to

natively deal with ties.
FaginDyn [21] is a dynamic programming approach

which runs in time O
(
nm+ n2

)
(n elements among m rank-

ings). Variants can be considered, favouring solutions with
large (FaginLarge) or small (FaginSmall) buckets [12].

BioConsert [12] follows a local search approach. It clas-
sically starts from a solution (i.e. a ranking) and applies
edition operations to alter the solution as long as the cost of
the current solution is reduced. The two edition operations
in BioConsert are (i) removing an element from its current
bucket and placing it into a new bucket at a given position
and (ii) moving an element in an already existing bucket.
BioConsert has an O

(
n2
)

memory complexity.

3.2 Kendall-τ based algorithms
We now review approaches based on the Kendall-τ dis-

tance. They can take rankings with ties as input but (by
definition of the distance) ignore the cost of (un)tying and
produce permutations as output (cf. Section 2.2).

The rank aggregation problem has naturally been trans-
lated into an integer linear programming problem (ILP)
and several strategies proposed to minimize the complexity
of solving the ILP [3, 14, 31]. A polynomial preprocessing

is introduced in [5, 6] to divide the problem into smaller in-
stances. Ailon [1] presents a 3

2
-approximation (called Ailon 3

2
here) based on relaxing the ILP into a floating-point op-
timization problem. The reconstruction of the consensus
ranking is then achieved by rounding variables to integers.

KwikSort [2] is a 11
7

-approximation algorithm based on a

divide-and-conquer approach (the 11
7

bound holds when
choosing the best of KwikSort and Pick-a-Perm solutions).
Given a set of elements, it (recursively) randomly chooses a
pivot and assigns the other elements to two buckets placed
before and after the pivot so that each element minimizes
the number of pairwise disagreements with the pivot. A de-
randomized version of KwikSort has been studied on a the-
oretical point-of-view [35]. KwikSort outperforms all other
approaches based on sorting [31]. Its memory consumption
is at worst pseudo linear in n.

In [3] a branch-and-bound approach explores a tree
where each leaf at depth j represents a part of the solution
over the jth first elements such that the currently studied
leaf has the minimal number of disagreements. It can re-
turn optimal solutions. Heuristics are proposed based on
techniques limiting the number of leaves expended.

Chanas [11] and ChanasBoth [13, 31] are two greedy local
search approaches where the edition operation permutes
two consecutive elements.

Other Kendall-τ based algorithms consist in Pick-
a-Perm and RepeatChoice. Pick-a-Perm [2] is a naive ap-
proach which takes permutations as input and returns one
of the input rankings. A de-randomized version [31] returns
one input ranking with minimal cost.

RepeatChoice [1] is a 2-approximation (called Ailon2 in
[12]) derived from Pick-a-Perm which provides permuta-
tions. Starting from one input ranking, the buckets are bro-
ken following the order of the elements in the other input
rankings (randomly picked) until all input rankings have
been used. Remaining buckets are arbitrarily broken. A
simple implementation runs in O (m× S(n)).

3.3 Positional algorithms
Approaches described here make use of the position of

elements to produce rank aggregation. They all have been
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designed to produce permutations as output (i.e. rankings
without ties). Some approaches follows a Voting scheme.
In BordaCount [8], the position of an element is defined
as the number of elements placed before it, plus one. The
score of an element is then the sum of its positions in the
rankings. In CopelandMethod [15] the score is the sum of
the number of elements placed after it. Both methods run in
O (nm+ S(n)) where S(n) is the complexity of the sorting
algorithm, n the number of elements, and m the number of
input rankings.

MEDRank [24] is a fast algorithm considering a Top-k ag-
gregation strategy to avoid any sorting step: input rankings
are read in parallel, element-by-element. Given m rankings
and a threshold in h ∈]0; 1[, as soon as an element has been
read in h×m rankings, it is appended to the consensus. It
runs in O (nm).

A last kind of approaches (qualified as hybrid in [31])
includes MC4 [20] where the problem of rank aggregation is
represented by a Markov chain whose states are elements in
the input rankings. The probability of a transition between
two elements e1 and e2 is equal to 1

n
if there is a majority of

rankings preferring e2 to e1 (n is the number of elements).
The score of each element is its probability in the stationary
distribution of the chain. Elements are then sorted in as-
cending order. The complexity of this method is dominated
by the complexity of finding the stationary distribution.

4. IMPACT OF TIES
The complexity of the problem of ranking aggregation

with ties has not been considered so far. Permutations can
be seen as rankings with ties where each bucket is of size one.
Considering a set of such rankings, we have proved that un-
der the generalized Kendall-τ distance (cf. Section 2.2) the
optimal consensus obtained has necessarily only buckets of
size one [9]. Thus the problem of ranking aggregation under
the Kendall-τ distance is a particular case of the problem of
ranking with ties under the generalized Kendall-τ distance.
The complexity result of [7, 20] thus still holds: the prob-
lem of aggregating ranking with ties is NP-hard when m the
number of rankings is even and m ≥ 4 and is open when m
is odd. Designing approximations and heuristics is thus still
of paramount importance in this context.

Here, we first adapt (whenever possible) existing algo-
rithms to make them consider ties and assign a cost to un-
tying elements. We then present a new translation of the
problem to an integer linear programming to obtain an ex-
act solution able to consider the cost of untying elements.

4.1 Adapting existing approaches
We discuss a general methodology to adapt ranking algo-

rithms to ties and provide such adapted algorithms. Algo-
rithms described in Section 3.1 natively deal with ties, do
not need any adaptation, and thus are not considered here.

4.1.1 Methodology to adapt algorithms to ties
Algorithms considering the Kendall-τ distance (cf. Sec-

tion 3.2) can be adapted to produce rankings with ties fol-
lowing three different strategies. First, for algorithms based
on branching depending of placing element(s) before or after
another, the presence of ties brings a third choice: putting
them in the same bucket. It can either result in an adapta-
tion of the original algorithm (KwikSort), or as a new algo-
rithm (BnB). Second, for algorithms based on local search

(e.g., Chanas), new operations have to be designed to ex-
plore the search space, and can result as a new algorithm
(BioConsert). Third, for linear programming algorithms, a
new formalism has to be drawn (cf. Section 4.2).

As for algorithms using the position (cf. Section 3.3) of
elements to compute a consensus, they can directly be used
with ranking with ties as the formulation of the position of
an element encompasses the presence of ties. Considering
the cost of (un)tying elements is not directly possible and
implies designing ad-hoc solutions.

4.1.2 Adapting Kendall-τ based approaches
Local search: Neither Chanas nor ChanasBoth handle

ties. However, BioConsert is a local search approach de-
signed to handle ties and considers the cost of untying ele-
ments.

Divide and conquer: The formulation of KwikSort can
be adapted to encompass ties. Elements should have the
possibility to be tied to the pivot in addition to be placed
before or after the pivot. Minimizing the pairwise disagree-
ments now includes the cost of (un)tying elements. The
complexity is modified by a constant factor only.

Branch-and-bound: The BnB algorithm has been de-
signed for permutations only. Dealing with rankings with
ties would require designing a fully new algorithm.

Linear programming: The Ailon 3
2

approach relaxes the
problem in floating-point optimization and can be used as
it is. As for optimal solution, a new algorithm is introduced
in Section 4.2.

Other: Pick-a-Perm can be used directly with ties. Re-
peatChoice takes in rankings with ties and produces a per-
mutation by arbitrarily breaking the possible remaining ties.
Removing this last step makes the algorithm able to produce
rankings with ties.

4.1.3 Adapting positional algorithms
BordaCount and CopelandMethod can be adapted by fol-

lowing the general methodology introduced above. There is
no change in their complexity. However, they are not able
to consider the cost of (un)tying elements. As an example,
let us consider two elements x and y, among others, ranked
in a set of input rankings. If in one input ranking x and y
are not tied while in all other input rankings they are tied,
then their scores will be different. As a consequence, x and
y will be untied in the consensus provided by BordaCount
or CopelandMethod, although a very large majority of the
input rankings considers them as ”equivalent” (i.e. tied).

MEDRank can easily be adapted to ties (in one ranking,
multiple elements can be read at the same time if they are
tied in a bucket) without any change in its complexity.

The hybrid approach MC4 uses a graph-based represen-
tation and may take rankings with ties as input as it models
the order of elements with edges. Nevertheless, this ap-
proach is costly and considering the cost of (un)tying el-
ements would imply considering a different Markov chain
modeling.

4.2 A ties-aware optimal algorithm
Here we generalize the existing method of [14] to ties. Our

key insight is to express our problem as a linear pseudo-
boolean optimization problem (LPB), i.e., as a linear pro-
gram whose variables are pseudo-boolean: their values are
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either zero or one, and they can be subject to classical arith-
metic operations. In a LPB problem, the objective is to find
an assignment of boolean variables such that all constraints
are satisfied and the value of the linear objective function
is optimized. Considering Linear Programming is natural
and has been already done for dealing with permutations.
[14] provides an LP formulation using a set C of candidates,
some weight coefficients wa<b counting for the number of in-
put rankings having a appearing before b and some binary
variables xa<b assessing if, in the optimal consensus ranking,
a appears before b. The objective function is to minimize

the disagreements i.e.
∑

{a,b}⊆C

(wb<a ∗ xa<b + wa<b ∗ xb<a)

while respecting the following two constraints: i) ∀{a, b} ⊆
C, xa<b + xb<a = 1 and ii) ∀{a, b, c} ⊆ C, xa<c − xa<b −
xb<c ≥ −1. Constraint (i) ensures that any two elements
are uniquely ordered in the optimal consensus ranking and
(ii) ensures order transitivity.

Our LPB formulation deals with rankings with ties. We
make use of the notations of [14]. We now present the vari-
ables, the objective function and the constraints of our LPB
program.

Variables. For any pair of elements (a, b), we define a
variable xa<b to denote whether, in the optimal consensus
ranking, a is ranked before b. Since in a ranking with ties
two elements may be unordered, we also introduce a variable
xa=b to denote whether in the optimal consensus ranking,
elements a and b are in the same bucket. As before, wa<b
counts for the number of input rankings where a appears
before b, while wa≤b counts for the number of input rankings
where a appears before or in the same bucket as b.

Objective. The objective of the LPB program is the
expression of the generalized Kendall-τ distance using vari-
ables of our LPB problem:∑
a,b

(wb≤a ∗ xa<b + wa≤b ∗ xb<a + (wa<b + wa>b) ∗ xa=b)

Clearly, if a appears before (resp. after) b in the optimal
consensus ranking, any input ranking where a appears after
(resp. before) b or tied to b costs one. Moreover, any pair
of elements a and b in the optimal consensus ranking which
are tied costs one for any input ranking where they are not.

Constraints. We now add constraints to ensure that the
solution returned is a ranking with ties. First, we generalize
constraint (i) above to ensure that any two elements are
uniquely ordered in the optimal consensus ranking: either a
is ranked before b, or b is ranked before a or a and b are in
the same bucket. Thus, we must have:

xa<b + xb<a + xa=b = 1 (1)

In order to ensure order transitivity, we have the same
constraint as (ii) above, i.e. if a is ranked before b and b is
ranked before c then a is ranked before c:

xa<c − xa<b − xb<c ≥ −1 (2)

Finally, we ensure that the solution is a ranking with ties.
Roughly, if a and b are in the same bucket and so do b and
c, then all three of them are in the same bucket.

2xa<b + 2xb<a + 2xb<c + 2xc<b − xa<c − xc<a ≥ 0 (3)

Lemma 1. Our LPB program correctly solves the problem
of finding an optimal consensus ranking under the general-
ized Kendall-τ distance of a set of rankings with ties.

Proof. Let us first prove that a solution to the rank
aggregation problem can be found by our LPB program i.e.
that it has a corresponding variable assignment that respects
all the constraints previously defined. Given an optimal con-
sensus ranking r∗ and for each pair of elements (a, b), either
a is ranked before b (xa<b = 1), or b is ranked before a
(xb<a = 1) or a and b are in the same bucket (xa=b = 1).
Thus, our assignment ensures that xa<b + xb<a + xa=b = 1
(Constraint (1)) for any pair of elements (a, b). Since r∗ is a
ranking with ties, it ensures transitivity. Considering a triple
of elements (a, b, c) where a is before b (xa<b = 1) and b is
before c (xb<c = 1). The only way to disregard Constraint
(2) would then to have xa<c = 0 leading to a contradiction
since a is before c by transitivity. Finally, considering Con-
straint (3), clearly, if any of (xa<b, xb<a, xb<c, xc<b) is set
to one, then the constraint is satisfied. Consider then that
xa<b = xb<a = xb<c = xc<b = 0, then it means that a and b
are tied and so are b and c. By definition, a, b and c belong
to the same bucket, thus xa<c = xc<a = 0.

Let us now prove that a solution to our LPB program cor-
responds to a ranking with ties. Given any solution, Con-
straint (1) ensures that for any pair of elements a and b,
either a is ranked before b if xa<b = 1, or a is ranked af-
ter b if xb<a = 1, or a and b belong to the same bucket if
xa=b = 1. Moreover, Constraint (2) ensures the transitiv-
ity of the ranking. Finally, Constraint (3) ensures that the
resulting ranking is a ranking with ties.

The objective function fully corresponds to the computa-
tion of the generalized Kendall-τ distance, thus an optimal
solution to our LPB is an optimal consensus ranking.

Due to the intrinsic complexity of this linear problem,
optimal solutions can be computed for moderately large
datasets only. This allows us evaluating the quality of non-
optimal algorithms.

5. PREVIOUS FINDINGS
We now summarize the results obtained by previous stud-

ies on the performance of rank aggregation algorithms. We
start with describing the datasets (listed in Table 2) and the
normalization processes which are used. Results on real
and synthetic datasets are then presented.

5.1 Normalization Process
Studies have designed approaches to convert any dataset

(i.e, a set of rankings) over different elements into dataset
over the same elements. Normalization strategies are de-
scribed here and illustrated in Table 3.

Projection consists in removing from a dataset all the el-
ements which are absent in at least one ranking [5], resulting
in a projected dataset . In Table 3 dp is the projection of
dr. It always produces permutations when the input rank-
ings are permutations. Its major drawback is to possibly
remove (large sets of) relevant elements.

Unification consists in adding at the end of each ranking
of a dataset a unification bucket with elements appear-
ing in other rankings (and absent in the current ranking).
This last unifying bucket can be considered as is (as in [12,
31]), we say that such datasets are unified, du is the unifica-
tion of dr. Others [3] prefer to arbitrarily break this bucket
to consider only permutations in the input rankings, such
datasets are said to be unif[ied] broken, as dataset db in
Table 3 .
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ava- Over the Used
ila- same with

Name & publications ble elements ties

EachMovie [13] no no
F1 [5] [5] projected no
BioMedical [12] [12] unified yes
GiantSlalom [3] unif. broken no
SkiCross/Jumping [5] [5] projected no
WebCommunities [13, 31] yes no
WebSearch [20, 31, 3, 5] [5] unified[31, 3] yes

projected[5] no

Mallows model [3, 5] yes no
Placket-Luce model [3, 5] yes no
RandomGraph [17, 13] yes no
Random [3] yes no
Random [12] yes yes

Table 2: Datasets properties and availability.

5.2 Previous results
In this subsection, we provide a view of the results ob-

tained by the previous studies found in the literature.
The only experimental study which has evaluated ap-

proaches both taking in and producing rankings with
ties is [12]. They concluded their experimentations by
stating that BioConsert outperformed all other considered
approaches. However, results have been obtained on small
real (biomedical) datasets and on very small generated
datasets (4 to 8 elements). Both the algorithms and the
datasets considered in [12] totally differ from those used in
other studies [3, 5, 13, 31].

Other studies ([3] and [31]) have compared approaches
taking in rankings with ties but based on the classical
Kendall-τ distance, thus necessarily producing permuta-
tions and unable to consider the cost of (un)tying. [3] work
on WebSearch and GiantSlalom datasets while [31] work
on WebSearch and WebCommunities datasets. From their
respective experimentations they conclude that (i) Chanas
produces good quality results, (ii) positional approaches
(such as BordaCount and CopelandMethod) are approaches
able to quickly provide results of good quality, (iii) KwikSort
provides a good trade-off between the previous recommen-
dations. Additionally, [3] recommends to use BnB with
beam search techniques as an intermediate solution between
KwikSort and ChanasBoth. While in [3] CopelandMethod
returns better results than BordaCount, in [31] they appear
to be equivalent. As for CopelandMethod and MC4, in [31]
they present comparable results in term of quality, MC4
being much more time consuming.

Another study, [13], focuses on permutations only, using
WebCommunities and EachMovie datasets. Compared to
[3, 31], they confirm that Chanas and ChanasBoth produce
quality results but they fully disagree on the use of KwikSort
(which obtains bad performance). Positional algorithms are
not considered at all in this study.

Optimal solutions (ILP-based) are intensively studied by
[5] which introduces pre-processes to reduce the search space
of the problem.

In addition to real datasets, a few generated datasets have
been considered. In particular and interestingly, [3] gener-
ated some datasets with different levels of similarities. Bor-

Raw dataset dr Projected dataset dp
[{A}, {D}, {B}] [{A}, {B}]
[{B}, {E,A}] [{B}, {A}]
[{D}, {A,B}, {C}] [{A,B}]
Unified dataset du Unif. broken dataset db
[{A}, {D}, {B}, {C,E}] [{A}, {D}, {B}, {C}, {E}]
[{B}, {E,A}, {C,D}] [{B}, {A}, {E}, {C}, {D}]
[{D}, {A,B}, {C}, {E}] [{D}, {A}, {B}, {C}, {E}]

Table 3: Resulting datasets after applying the var-
ious normalization processes to the raw dataset dr.

daCount appears to be the best choice while BnB should be
preferred when the similarity is low. However, as authors
do not provide any means to determine the similarity be-
tween given input rankings, such recommendations remain
difficult to apply in concrete settings.

As for the normalisation process, [3, 31, 12] normalize
datasets with the unification process, while [5] project them.
Whether or not the normalization process may have an im-
pact on their results is an open question.

To summarize, each study has considered a given (re-
stricted) set of algorithms and has performed experimenta-
tions in very different datasets, curated with diverse meth-
ods, and producing mostly permutations. Given the current
results that can be extracted from the literature, it is thus
very difficult to determine in which context one approach
should be preferred over the others.

The next two sections introduce for the first time the re-
sults obtained on a large-scale study conducted on rank ag-
gregation algorithms considering ties.

6. EXPERIMENTAL SETTING
In this section, we describe both the datasets we used to

compare rank aggregation algorithms, and the methodology
followed in our experiments.

6.1 Datasets
We have first considered real-world datasets which have

already been used in previous works (the four groups of
datasets in bold in Table 2) while extending the experiments
to a very large set of algorithms. We have then carefully gen-
erated datasets to better understand the possible impact of
three dataset features on rank aggregation algorithms: the
size of the dataset (number of rankings, number of elements
in each ranking), the (level of) similarity between the rank-
ings taken as input, the normalization process which has
been applied to the dataset (unification or projection). The
generation of synthetic datasets is described in the next two
subsections.

6.1.1 Uniformly generated synthetic datasets
The datasets introduced here are made of rankings with

ties, where all rankings have the same probability to be
present. This has been carefully ensured by using the
MuPAD-Combinat package [26] based on the work of [25].

More precisely, we produced datasets of m ∈ [3; 10] rank-
ings for different lengths: n ∈ [5; 95] with a step of 5, and
n ∈ [100; 500] with a step of 100. We produced 100 datasets
for each pair < m,n >. Such numbers have been chosen to
mimic real-world settings.
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 [{A}, {B,C}, {F}, {D}, {E}]
[{D}, {A,E}, {F}, {B}, {C}]
[{A}, {C}, {D}, {B}, {E,F}]

︸ ︷︷ ︸
original dataset

retaining
−→

top-2

 [{A}, {B,C}]
[{D}, {A,E}]
[{A}, {C}]

︸ ︷︷ ︸
sub−dataset

unification
−→

process

 [{A}, {B,C}, {D,E}]
[{D}, {A,E}{B,C}]
[{A}, {C}, {B,D,E}]

︸ ︷︷ ︸
unified dataset

Figure 1: Generation of a unified synthetic dataset: a dataset over 6 elements is generated (100 in the
experiment), then only the top-k=2 elements are retained for each ranking (k∈[1;35] in the experiment). The
unification process is finally applied to obtain datasets over the same elements.

6.1.2 Increasingly dissimilar synthetic datasets
To study the impact of input rankings similarity on the re-

sults obtained, we modeled the data generation process by a
Markov chain where states are rankings with ties and transi-
tion between states represents a possible modification of one
ranking into another. Modifications are done using four op-
erators: move an element of a ranking in the previous or the
following bucket, put it in a new bucket right before or right
after its current position. Such operators ensure (with re-
strictions when buckets contain one or two elements, details
omitted) that the Markov chain converges to the uniform
stationary distribution. Considering a seed ranking rs and
a number of steps t, a dataset over m rankings consists in
starting m times from rs in the Markov chain and adding the
state currently visited after t steps. The modeling allows us
to generate rankings with ties biased by the starting state,
and with different levels of similarity to the seed ranking
(depending of the number of steps allowed in the Markov
chain), and thus different levels of similarity.

We generated 1000 datasets ofm = 7 rankings over n = 35
elements with a number of steps to walk in the Markov chain
process t ∈ {50, 100, 250, 500, 1000, 2500, 5000, 10000,
25000, 500001}.

6.1.3 Unified synthetic datasets with similarities
Here, we study the impact of the unification process

(introduced in Section 5.1) used either when datasets are
not over the same elements (BioMedical [12]), or when the
dataset is made of only the top-k elements of raw rankings
(WebSearch [20, 31]). We mimicked this second use case
and generated datasets with different levels of similarity
(cf. Section 6.1.2), retained only the top-k elements and
then applied the unification process (cf. Figure 1).

We generated 1000 datasets with m = 7 rankings over
n = 100 elements with a number of steps t to walk in the
Markov chain modeling, t ∈ {103, 2.5 ∗ 103, 5 ∗ 103, 104,
2.5 ∗ 104, 5 ∗ 104, 105, 2.5 ∗ 105, 5 ∗ 105, 106}. The top-
k elements are retained with k ∈ [1; 35] in order to have
datasets of n = 35 elements.

6.2 Methodology

6.2.1 Algorithms
Algorithms we have entirely re-implemented and evalu-

ated are indicated in bold in Table 1. To evaluate random-
ized algorithms and highlight the variability of the results
quality of such algorithms, we have considered a large num-
ber of runs and selected as solution the best solution com-
puted through the iterations. We thus present the results
with the name of the algorithm suffixed with ”Min”: Re-
peatChoiceMin, KwikSortMin.

1This maximum number of steps is discussed in Section 7.2.

6.2.2 Measuring similarity
The Kendall−τ rank correlation coefficient [29] is a well-

known measure to quantify the correlation of two permuta-
tions. Its extension to rankings with ties is straightforward.
Formally, considering r1, r2 two rankings with ties, it is de-
fined as:

τ(r1, r2) =
1
2
n(n− 1)− 2G(r1, r2)

1
2
n(n− 1)

(4)

where G is the generalized Kendall-τ distance (cf. Section
2.2). To measure the intrinsic correlation of a dataset R =
{r1, ...rm}, we average the correlation coefficient of each pair
of rankings in this dataset:

s(R) =
2

m(m− 1)

m∑
i=1

m∑
j=i+1

τ(ri, rj) (5)

6.2.3 Quality of the results
To compare the quality of the results two approaches may

be followed. The first one is to use the actual distance of each
consensus to the inputs rankings [13]. The second approach
named gap [3, 31] consists in normalizing the distance to
show the additional disagreement a solution has, compared
to an optimal solution. Formally, let c∗ be an optimal con-
sensus ranking and c be a consensus ranking returned by a
given algorithm for a set of rankings with ties R, the gap is
defined such that:

gap =
K(c ,R)

K(c∗,R)
− 1 (6)

As a consequence, optimal consensus have a gap of 0.
In the case where it was not possible to compute any op-

timal solution, we compute the m−gap, where the distance
of a result produced by an algorithm is normalized by the
distance of the best consensus proposed by any available
algorithm.

6.2.4 Comparing over time
We paid particular attention to the configuration we set

up to ensure fair time comparison. Experiments were con-
ducted on a four dual-core processor Intel Xeon 3GHz with
16GB memory using Java 1.6.0 37, LPSolve 5.5.2.0, CPLex
12.4 and Python 2.4.4. To measure the execution time of an
algorithm, we ran it numerous times in a row such that the
time needed to do all executions was greater than two sec-
onds (the execution time is then the overall execution time
divided by the number of executions). Each measure was
preceded by a warm-up time to ensure that all classes were
already loaded in the JVM memory. Implementations were
single-threaded. LPSolve (used by Ailon 3

2
) and CPlex (used

by the ExactAlgorithm) were used in their default configu-
ration. For every algorithm we limited the computing time
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WebSearch Unif F1 SkiCross BioMed.
Algorithm (%) Proj (m−gap, %) (%)Proj (%)Unif (%) Proj (%)Unif (%)Unif %1st

Ailon 3
2

0(# 1) — 0(# 1) 16(# 4) — — 16,8(# 6) 17,1%
BioConsert 0(# 1) .00026(# 1) .0015(# 2) 0(# 1) 0,11(# 1) 0(# 1) 0,17(# 2) 91,8%
BordaCount 10,9(# 8) 55,9(# 8) 3,7(# 6) 30,2(# 8) 4(# 5) 27,7(#10) 20,7(# 9) 0,4%
CopelandMethod 10,9(# 8) 55,6(# 7) 3,7(# 6) 30,2(# 9) 4(# 5) 26,7(# 8) 20,3(# 8) 0,4%
FaginLarge 10,9(# 7) 55,9(# 9) 15,1(# 9) 17,8(# 6) 3,8(# 4) 23,9(# 7) 31,7(#11)
FaginSmall 4,6(# 5) 57(#11) 3,7(# 5) 31,6(#10) 3,2(# 3) 27,2(# 9) 23,4(#10) 2,5%
KwikSort 5,4(# 6) 33,5(# 3) 1,4(# 4) 3,2(# 3) 4,5(# 7) 16,7(# 5) 2,4(# 3) 9,0%
KwikSortMin 0,2(# 3) 32,2(# 2) 0(# 3) 0,2(# 2) 1,8(# 2) 15,1(# 3) 0,16(# 1) 61,0%
MEDRank(0.5) 12,5(#11) 45,2(# 6) 17,5(#10) 17,2(# 5) 6,5(# 8) 13,7(# 2) 7,5(# 4) 4,9%
MEDRank(0.7) 12,4(#10) 37,3(# 4) 24,8(#11) 20,7(# 7) 9,6(# 9) 15,7(# 4) 18,3(# 7) 0,2%
Pick-a-Perm 44,4(#13) 41,4(# 5) 27(#12) 39(#11) 19,1(#10) 18,8(# 6) 68,1(#13)
RepeatChoice 24,8(#12) 57,5(#12) 27,5(#13) 54,5(#13) 23,3(#12) 34,6(#12) 31,9(#12)
RepeatChoiceMin 1,2(# 4) 56,4(#10) 8,9(# 8) 40(#12) 19,1(#10) 30,2(#11) 16,4(# 5) 4,7%

# datasets 36 37 48 48 1 1 319 490

Table 4: Average gap (m-gap for unified WebSearch datasets) obtained over all datasets, and their rank.

to two hours: after that limit, we considered that the algo-
rithm was not able to provide a solution.

7. RESULTS
In this section, we present the results obtained by a large

panel of rank aggregation algorithms using various kinds of
datasets. Firstly, we evaluate the quality of results pro-
duced by the algorithms and their time consumption while
considering only the size of the datasets, to this end we use
uniformly generated datasets. Secondly, we take into ac-
count different levels of similarity with the help of synthetic
datasets with progressive dissimilarity. Thirdly we analyze
the impact of the normalization processes (unification, pro-
jection) on real datasets. Last, we analyze the impact of the
unification process on the quality of the results produced.

In each analysis, we also study the impact of results ob-
tained on real world datasets with the same knowledge (size,
similarity, normalization) allowing us to highlight the infor-
mation needed to fully understand the behaviour of algo-
rithms in real settings.

7.1 Considering only the size of datasets

7.1.1 Measuring quality
We have conducted a first series of experiments on uni-

formly generated datasets and observed that the number of
rankings considered has no significant impact in the results.
We have systematically considered datasets with m ∈ [3; 10]
rankings and n ≤ 60 elements (60 is the highest number
of elements for which the optimal consensus ranking can be
computed in a reasonable amount of time).

Results are presented in Table 5. Four points deserve
attention.

First, for both synthetic and real datasets (cf. Table 4
and 5), BioConsert provides the best results in the very
large majority of the cases (88.56%) and in 33.94% it strictly
outperforms the other algorithms. In 68.01% of the cases,
the solutions produced are optimal. When focused on real
datasets only, BioConsert provides the best results in 91.8%
of the datasets.

Second, Ailon 3
2

is a very effective approximation since it
has a gap close to 0, meanwhile the current implementa-
tion of the algorithm does not scale: for n > 45 no result

Algo average gap %gap =0 %first
Ailon 3

2
0,38% (# 2) 63,15% 64.31%

BioConsert 0,03% (# 1) 68,01% 88.56%
BordaCount 5,6% (# 7) 2,53% 2.17%
CopelandMethod 4,4% (# 5) 3,69% 3.69%
FaginSmall 4,7% (# 6) 3,21% 3.21%
FaginLarge 10,8% (# 9) 0,44% 0.44%
KwikSortMin 1,2% (# 3) 23,98% 24.02%
KwikSort 4,1% (# 4) 4,14% 4.13%
MEDRank(0.5) 12,9% (#10) 0,62% 0.62%
MEDRank(0.7) 17,2% (#11) 0,41% 0.41%
Pick-a-Perm 20% (#13) 0,84% 0.84%
RepeatChoice 17,6% (#12) 0,02% 0.02%
RepeatChoiceMin 9,7% (# 8) 5,8% 5.84%

Table 5: Average gap (and rank), percentage of
datasets where the optimal consensus ranking is
found and percentage of datasets where the algo-
rithm is first on uniformly generated datasets over
n ≤ 60 elements.

is provided. On synthetic datasets, Ailon 3
2

and BioConsert

provide results with a similar quality: Ailon 3
2

strictly out-
performs BioConsert in 14.39% of the datasets, while it is
outperformed in 18, 67% of them.

Third, positional algorithms BordaCount and Copeland-
Method have an interesting behavior on synthetic datasets.
When being compared to the other algorithms, the average
disagreements of their solution surprisingly decreases as the
number of elements grows: BordaCount (resp. Copeland-
Method) is ranked 8th (resp. 9th) when considering datasets
of 20 elements, and 3rd (resp. 4th) with datasets of 500 ele-
ments.

Fourth, we have evaluated the behavior of MEDRank
when varying its threshold. General observations of the
gap for various values of the threshold have shown that
MEDRank is very sensitive to its threshold value. More
precisely, values higher than the default one (threshold
of 0.5) do not lead to any improvement in the quality of
the consensus provided, neither in real nor in synthetic
datasets. In 76.37% of the synthetic datasets a threshold of
0.5 provides the best results. It is thus the threshold value
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Ailon3/2
BioConsert

BordaCount
CopelandMethod

ExactSolution

FaginSmall / FaginLarge
KwikSort

MEDRank(0.5)
RepeatChoice

Figure 2: Computing time with n ∈ [5; 400]. Note
that BordaCount, CopelandMethode, MEDRank
and RepeatChoice cannot be distinguished.

to be preferred when using MEDRank.

While some algorithms show coherent behavior between
synthetic and real datasets (cf. Table 4 and 5), others do
not. Two observations highlight the need of a finer grained
information on the datasets in order to understand the sit-
uation where algorithms perform well or do not.

First, when considering FaginDyn variants, FaginSmall
performs better on 99.59% of the synthetic datasets. This
observation is not repeated on real world datasets, as the two
versions are even: FaginSmall performs better than Fagin-
Large in 49.52% of the datasets.

Second, BordaCount is observed on synthetic data to pro-
vide relatively good results and being positively influenced
when the number of elements increases while this trend is
not observed in real world datasets.

Considering datasets similarities could help understand
algorithms behaviors. This will be explored in Section 7.2.

7.1.2 Experimental computation time on uniformly
generated datasets

We now consider the time consumption for different values
of n the number of elements in the datasets and fixed m = 7.

First of all, the average computing time needed by
positional algorithms MEDRank, CopelandMethod, Re-
peatChoice and BordaCount to return a solution is very
small: for datasets of n = 400 they take in average
respectively 436µs, 463µs, 468µs and 574µs. With the
synthetic data, we observed that when n grows, MEDRank,
CopelandMethod, BordaCount still return consensus of
good quality compared to the other algorithms while being
must faster. They are thus very good candidates for large
datasets.

Second, considering only the two algorithms returning
quality results, BioConsert strictly outperforms Ailon 3

2
e.g.

for n = 40 elements they take resp. 0.0083s and 50.373s.

From Table 4, Table 5 and Figure 2, it appears that Bio-
Consert is able to provide quality results in a very reason-
able amount of time while positional approaches can provide
answers very quickly but with lower quality.

7.2 Considering the similarity of datasets
Over the 105 datasets generated and used in this subsec-

tion, the exact solution is found in 99.91% of the datasets by
the ExactAlgorithm with the computation time allocated. It
ensures that no bias is introduced by datasets where it was
not possible to compute the exact solution.

-0.4 -0.2  0  0.2  0.4  0.6

-WebSearch Proj.

-WebSearch Unif.

-F1 Proj.

-F1 Unif.

-SkiCross Proj.

-SkiCross Unif.

-BioMedical Unif.

-Syn. w/ similarity .

-Syn. uniform

similarity
10

3
steps5*10

3
steps5*10

4
steps

Figure 3: Distribution of the similarity for each
group of datasets, grouped by type. Synthetic
datasets with similarities are presented in three dif-
ferent configurations depending on the number of
steps used in the Markov chain process generation.

The Markov chain modeling designed in Section 6.1.2 con-
verges to the uniform distribution when an infinite number
of steps is considered. Knowing the number of steps needed
to reach the uniform distribution with a relative error less
than a given ε is out of the scope of this paper. Instead,
we focus on two indicators to highlight that datasets gener-
ated with 50 000 steps are equivalent to uniformly generated
datasets with the same numbers of elements and rankings:
(1) the average similarity of uniformly generated datasets is
s = −0.0388 while the Markov based datasets have a sim-
ilarity of s = −0.0384 (note that with 50 steps s = 0.88,
with 1000 steps s = 0.55 and with 5000 steps s = 0.17), (2)
the results obtained on uniformly generated datasets with
the same numbers of rankings and elements are equivalent
to the results obtained when considering datasets generated
with the Markov chain modeling.

Time consumption. Experiments conducted on syn-
thetic datasets with different levels of similarities regarding
the time consumption reveal two groups of algorithms: the
algorithms from the first group take significant advantage of
datasets with intrinsic similarities, while the second group
is not impacted by the similarity. The local search algo-
rithms are expected to be in the first group and they are:
compared to not similar datasets (50 000 steps, s = 0.04),
BioConsert proposes a consensus up to 57% faster with sim-
ilar datasets (50 steps, s = 0.88). Similarly, ExactAlgorithm
and Ailon 3

2
also propose results faster on similar datasets:

respectively 85% and 11% faster. The second group is made
of BordaCount, CopelandMethod, FaginLarge, FaginSmall,
KwikSort, Pick-a-Perm and RepeatChoice.

Considering the gap. Three interesting behaviors have
been spotted (cf. Figure 4). First, KwikSort is positively in-
fluenced by the similarity, the average gap is 24 times smaller
with very similar datasets (50 steps) compared to not simi-
lar datasets (50 000 steps). BioConsert has the same behav-
ior: it always finds the optimal solution of similar datasets
(≤ 500 steps), and has an average gap = 0.02% with not
similar datasets (50 000 steps). Observations on KwikSort
are completed when using real-world dataset: KwikSort is
indeed more efficient with similar datasets, but it is also neg-
atively impacted by a negative similarity of datasets ”Web-
Search Unif” and ”SkiCross Unif” (cf. Figure 3).

Second, BordaCount presents a very stable gap in Figure
4 for the different levels of similarity: the average gap varies
from 3.6% to 4.0%. Surprisingly, this stability cannot be
observed on real world datasets, where BordaCount is one
of the worst algorithms on F1 unified datasets (30.2%) and
is interesting on F1 projected datasets (3.7%).
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Figure 4: For synthetic datasets with similarities,
gap plotted for different numbers of steps used dur-
ing the generation (cf. Section 6.1.2).

Third, FaginLarge is negatively influenced by the similar-
ity of the synthetic datasets: the average gap is more than
4.7 times larger with very similar datasets (50 steps) than
with not similar datasets (50 000 steps). Again, this obser-
vation cannot be confirmed on real world datasets: while
FaginSmall performs better than FaginLarge for WebSearch
projected datasets which are similar, it is the opposite on
F1 Unified datasets which are also similar.

Observations done on BordaCount or FaginDyn with
synthetic datasets (cf. Figure 4) and which cannot be
repeated on real world data (cf. Table 4 and Figure 3)
highlight clearly that for some algorithms, knowing the size
of a dataset and its similarity is still not enough to make an
informed choice on whether using or not these algorithms.
For this reason, the next section focuses on the influence of
the standardization process.

Two approaches particularly benefit from the similarity
in term of quality (Figure 4), namely BioConsert and Kwik-
Sort, while BioConsert and ExactAlgorithm benefit from
similarity in terms of time consumption.

7.3 Similarity and Normalization
In Section 7.3.1 we compare two normalization processes,

namely the unification and projection process. In Sec-
tion 7.3.2 we study the influence of the unification process
on the results produced by the algorithms.

7.3.1 Unifying and projecting real datasets
When considering a raw dataset with m rankings where

the length of the longest ranking is l, it can be noticed that
the projection process produces a dataset over 0 to l ele-
ments while the unification process produces a dataset over
l to l ×m elements.

The F1 datasets are seasons of F1 championship where
each ranking is the order of arrival of pilots finishing the
race. As done by [5], the projection removes 53.42%±25.03%
of the pilots. Among the removed pilots we find the 1961
vice-champion and the 1970 champion. Those two pilots can
clearly be qualified as relevant elements, not to be removed.
In average, projected datasets are over 15.81±8.53 elements
while unified datasets are over 38.73± 11.39 elements.

When considering the WebSearch datasets, the projection
removes in average 98.42%± 0.89% of the elements (proce-
dure followed by [5]). Each ranking contains the top 1000
results for a search engine; the projection produces, in av-
erage, datasets over 40± 20 elements while unified datasets
are over 2 586± 388 elements (used in [3, 31]).
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180 %
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Ailon3/2
BioConsert
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KwikSort
MEDRank(0.5)
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Figure 5: For unified synthetic datasets with simi-
larities, gap plotted for different numbers of steps
used during the generation (cf. Section 6.1.3).

Using a process that takes into account the elements not
present in all rankings appears to be a crucial need in real
life use cases. Indeed the usually used projection process
can remove relevant elements, such as champion in the F1
datasets. Nevertheless the increase of size between projected
and unified datasets (there can be from 2.4 to 65 times more
elements with unification) should be taken into account.

Having a large difference of size between projected and
unified datasets is an indicator of the presence of large uni-
fying buckets. As an example, in the WebSearch datasets,
unification buckets have an average size of 1586 elements.

The next subsection studies these possibly large unifica-
tion buckets in more detail.

7.3.2 Unification impact on similar data
The smallest the number of elements input rankings have

in common before applying the unification process, the
largest the size of unification buckets is expected to be.
On unified synthetic datasets with similarities (cf. Section
6.1.3), the average size of buckets of similar datasets
(generated with 103 steps) is 1.52 while it is 6.52 for not
similar datasets (generated with 106 steps). Algorithms are
expected to be cleaved into two categories depending on
whether or not they consider the cost of untying elements.

We have on the one hand, BioConsert, KwikSort, and
MEDRank which consider the importance of untying ele-
ments and are expected to be stable in quality, an assump-
tion confirmed in this experimentation (cf. Figure 5).

On the other hand, BordaCount, CopelandMethod, and
RepeatChoice are not able to consider the cost of untying el-
ements. They are expected to be dramatically impacted by
the unification process which can create a large ending tie.
Experimentally they induce 15 times more disagreements
with not similar and unified datasets than with similar uni-
fied datasets. The variation of quality of results for Borda-
Count and CopelandMethod with real world datasets which
was not reproducible with synthetic datasets, whether they
were similar or not, is now fully reproduced (cf. Figure 5 vs
Figure 4).

FaginDyn variants had behaviors which were not consis-
tent when only taking into account the size and similarity of
the datasets (cf. Section 7.2). In this experiment, we clearly
observe that the unification process, leading to the creation
of a big ending bucket for datasets with no similarities, has a
negative impact on FaginSmall. In the present experiment,
favoring small buckets when there are large buckets in the
input rankings is clearly a disadvantageous choice as shown
in Figure 5.
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On both unified synthetic and unified real world datasets
CopelandMethod outperforms BordaCount, and they have
the same performance on projected datasets.

The unification process as a standardization causes large
ending buckets which are now understood as being the cause
of bad performance of BordaCount and FaginSmall. Re-
sults obtained on real and synthetic datasets are consistent
to each others now that the impact of the standardization
process is understood.

7.4 Guidance based on known properties
Based on our experiments, we are now able to provide

recommendations according to the known properties of the
data to deal with, and the desired trade-off between time
efficiency and expected quality of the results. Figure 6 il-
lustrates the choice that could be proposed to the user, it
has been generated with 100 uniformly generated datasets
of m = 7 rankings over n = 35 elements. Results are repre-
sentative of other uniformly generated datasets.

As a general outcome, BioConsert appears to be the best
approach to follow in a very large number of cases. In ex-
treme situations, some alternatives may be considered.

First, when highest quality results are mandatory and be-
side the ExactAlgorithm which provides optimal consensus,
BioConsert should be favoured. While being reasonably
more time consuming than other algorithms, it takes ad-
vantage of the similarity of datasets and it is independent
of the standardization process applied.

Second, when extremely large datasets are considered
(number of elements n>30 000), the implementation of
BioConsert with a O

(
n2
)

memory complexity can face
physical limitation and may additionally take time to
propose a consensus. KwikSort is then the best alternative
for good quality results, and it is positively influenced by
the similarity of datasets (cf. Figure 4).

If time is highly important then BordaCount is to be con-
sidered if only a few ties are involved whereas with large ties
(possibly obtained by unification process) MEDRank is an
excellent candidate.

8. CONCLUSION
We have conducted the first large-scale study of algo-

rithms for rank aggregation with ties.
First, we have proposed an Integer Linear Programming

algorithm to compute the optimal consensus ranking for the
rank aggregation problem in the presence of ties. We have
used the results of such exact solution to evaluate other ap-
proaches.

Second, we have reviewed the algorithms available in
the literature and described which changes were needed in
such algorithms to handle ties. We have considered a set
of very diverse categories of algorithms which have all been
reimplemented in a general framework and experimented
both on available real-world and new synthetic datasets.
Very importantly, we have been able to identify the data
features to be considered to understand the behavior of
algorithms (to then be able to guide users), namely, the
size, level of similarity and normalization process. A total
of 19 000 datasets of 10 to 500 elements are involved in our
experiments and are all available at
http://rank-aggregation-with-ties.lri.fr/datasets/.

We now discuss future work.
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Figure 6: Computing time and gap achieved by al-
gorithms for uniformly generated dataset of m = 7
rankings over n = 35 elements.

First, the surprising improvement shown by BordaCount
and CopelandMethod when increasing the number of ele-
ment for a fixed amount of ranking is being investigated
under a theoretical point of view.

Second, unification and projection processes can be seen
as two extreme variants of the same standardization process
where the elements belonging to less than k rankings are
removed, and the others are appended into a unification
bucket when they are missing. Studying intermediate values
of k would allow keeping a reasonable amount of data while
ensuring the presence of relevant elements.

Third, considering strategies chaining several algorithms
is another line of research to be explored (in the same spirit
of [10]). In particular, simulated annealing techniques are
known to produce high-quality consensus, but are time con-
suming. Chaining this kind of anytime approach to refine
the solution produced by another (less time consuming) al-
gorithm would allow to efficiently produce high-quality con-
sensus.
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