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ABSTRACT
A critical challenge in the data exploration process is dis-
covering and issuing the “right” query, especially when the
space of possible queries is large. This problem of exploratory
query specification is exacerbated by the use of interactive
user interfaces driven by mouse, touch, or next-generation,
three-dimensional, motion capture-based devices; which, are
often imprecise due to jitter and sensitivity issues. In this
paper, we propose SnapToQuery , a novel technique that
guides users through the query space by providing inter-
active feedback during the query specification process by
“snapping” to the user’s likely intended queries. These in-
tended queries can be derived from prior query logs, or
from the data itself, using methods described in this pa-
per. In order to provide interactive response times over
large datasets, we propose two data reduction techniques
when snapping to these queries. Performance experiments
demonstrate that our algorithms help maintain an interac-
tive experience while allowing for accurate guidance. User
studies over three kinds of devices (mouse, touch, and mo-
tion capture) show that SnapToQuery can help users spec-
ify queries quicker and more accurately; resulting in a query
specification time speedup of 1.4× for mouse and touch-
based devices and 2.2× for motion capture-based devices.

1. INTRODUCTION
Ad-hoc data exploration is an important paradigm for

users to analyze data and gain insight from it. Given the
increasing availability and collection of data, there is a trend
towards data-driven decision making in all fields from busi-
ness to science. Businesses now hire data scientists to help
them to sift through, explore, and analyze data to derive
better business insights. In fields such as the sciences and
medicine, practitioners are turning to “data-driven” meth-
ods in experiments, producing large amounts of data with
the hope of deriving scientific insight through data explo-
ration. The exploratory querying of data is typical even
for non-expert users, with general-purpose use cases such
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Figure 1: Providing visual and interactive feedback
for exploratory WHERE Queries. When exploring the
query space, the currently manipulated handles (h2

and h3) will snap to the red line.

as planning a trip and searching for a nearby satisfactory
restaurant. Data exploration has also become inherently
more interactive – as with modern web applications and di-
rect manipulation interfaces, users have come to expect in-
teractive interfaces that quickly respond to a user’s actions
and allow for a fluid experience.

In terms of user interfaces for exploratory querying, there
has been a revolution in the availability of new devices that
go beyond the traditional keyboard and mouse paradigm.
Tablets and smart phones use capacitive touch as their only
mode of interaction. In 2014, the sales of tablets alone
were comparable to the sales of conventional PCs and lap-
tops, and trends predict computing devices with touch and
gesture-driven interaction will soon outnumber conventional
devices [2]. Further, there has been a proliferation of motion
capture-based devices in the recent past, including Google
Glass, Kinect, HoloLens, and Leap Motion. Finger or skele-
tal motion capture-based gesture control is being incorpo-
rated into mainstream tablets and laptops [19, 20]. Motion
capture-based interaction is also gaining traction in a wide
variety of applications such as medical imaging exploration
during surgery [30] and infotainment control in cars [1]. In
the near future, intuitive and natural user interfaces may
become the dominant setting for data exploration.

Given these contexts, several key questions arise. First,
can we use the interactivity in modern query interfaces to
guide the user to their intended queries during data explo-
ration tasks? Second, are the new generation of comput-
ing devices ready for ad-hoc, exploratory data interaction?
How can we improve them and effectively guide users to the
intended query under different computing devices? In the
following paragraphs, we summarize the challenges involved
when answering these key questions.
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1.1 Challenges in Data Exploration
Data Complexity: With the increasing size and complex-
ity of the data, users are easily overwhelmed by the data. It
is hard for users to understand and explore the dataset and
then issue the intended query. Effective feedback must be
provided during an exploratory querying step to guide users
to the intended query.

Ambiguous Query Intent: Users often do not have a
clear query intent when exploring datasets [27]. This could
occur because the user is unfamiliar with the data, schema,
or query language, or because the query specification re-
quires information that can only be derived by prior data
exploration. For example, if a user wants to find a cheap
restaurant nearby, “cheap” here can be regarded as an am-
biguous query predicate. Under this case, the system should
be able to provide effective feedback on the recommended
condition depending on the other predicates (e.g., city), and
perhaps suggest that $8 – $12 be regarded as “cheap”.

Continuous Actions: In the case of new devices that em-
ploy touch and motion capture, users articulate queries us-
ing gestures, treating query specification as continuous pro-
cess [28]. Due to the fluid nature of this interaction, it be-
comes easier for users to miss the intended queries. This
may be caused by jitter and sensitivity of the device, or
by users performing an unintended gesture. Since such in-
terfaces typically employ a direct manipulation paradigm,
users rely entirely on the query result to orient themselves.
In these cases, a “bad” query could dramatically change the
result, confusing the user. For example, a bad query may
return empty answers. In this case, it is the system’s re-
sponsibility to provide effective feedback to guide and orient
users towards their intended query.

Consideration of Feedback: In addition to the fact that
feedback is necessary to help users, there are several consid-
erations on how the feedback is rendered. First, the feed-
back should be obvious and noticeable enough to attract the
user’s attention. Second, if an action triggers feedback, the
feedback should not interrupt the fluid data exploration.
Feedback for unintended queries will interrupt the query in-
teraction, resulting in an unpleasant user experience. This
presents a challenging trade-off problem.

1.2 Challenges with Next-Generation Devices
Mapping from 3D to 2D Space: Unlike the 2D coor-
dinate system in the traditional interaction modes, next-
generation motion capture-based devices allow users to move
their hands, fingers, and body around in 3D space. Although
one simple solution is to map any two of the axes into the
2D space, this is not enough: should we map the observable
3D space onto the whole screen or the partial space of the
screen? Should this mapping be linear? Considering that
some parts on the user interface on the screen should not
trigger effective actions, and that there is a varying amount
of sensitivity in different parts of the 3D space (e.g., regions
far away from the sensor), this mapping is nontrivial.

Gestures, Sensitivity, and Jitter: In the mouse-based
or touch-based interaction, when users interact with the in-
terface, since users are manipulating physical objects, the
presence of friction and force makes the interaction process
more accurate. Due to the absence of friction, although mo-
tion capture-based devices provide users a more free and

natural way to perform gestures in 3D space, it also makes
the interaction highly variable and sensitive. This is because
users find it hard to hold the cursor at a specific point (jitter)
and because sensors detect even the most minor hand move-
ments (Fig. 10 provides a visualization of a Leap Motion
trace). These effects can easily trigger unintended and noisy
gestures. When it comes to data interaction, this makes it
prone to users missing their intended query.

1.3 Motivating Example
To illustrate the concept of SnapToQuery , we go over an

example. Let us assume a person wants to travel to a city
for sightseeing in the next few weeks, and does not have
a clear goal of what to do there. The only requirements
are that he hopes to go a place with as many places of in-
terest as possible and the date is also flexible within the
next few weeks. So, he opens a trip-planning website on his
iPad and finds out that he can choose different venue ticket
prices, dates, ratings, and neighborhoods using a combina-
tion of range sliders and a zoom/pan-driven map. However,
he finds it is very hard for him to find a satisfactory answer
since there are so many combinations of different neighbor-
hoods, prices, dates, and ratings. In some cases, the system
even gives him an empty answer. After spending a lot of
time exploring the query space, he gives up out of frustra-
tion. Such situations are common in a wide variety of ex-
ploratory query settings (as we will see in the two real-world
spatiotemporal datasets in our experimental evaluation, Sec-
tion 5). Beyond just touch, this challenge would exist even
with a mouse-based interface. While 3D gestural interfaces
such as Leap Motion would allow exploration of additional
dimensions simultaneously (each degree of freedom can be
used to explore one attribute in the dataset), our challenge
becomes even worse when manipulating sliders and maps
with such a device, as it is very easy for the user to miss
intended UI positions because of sensitivity and jitter.

We look towards ameliorating this problem using Snap-
ToQuery . First, the data is represented by a set of linked
frequency histograms for date, rating, and area. It is easy for
the user to see the number of places of interest under neigh-
borhoods, date, and rating. Second, suppose our user has
already chosen a certain area and star rating and when he
moves the slider of the date, if there is a large difference on
the number of places of interest in the adjacent dates, the
user interface will provide some “snapping” feedback, i.e.
UI-level resistance to changing the date, drawing attention
to this query combination. Similar feedback can be applied
to not just range sliders, but to zooming and panning ac-
tions on the map as well. With SnapToQuery , he finds it
is quick and easy for him to find a satisfactory answer.

Contributions: We make the following key contributions:

• We introduce the concept of SnapToQuery , a feedback
mechanism for guiding users to their intended queries dur-
ing exploratory query specification.

• We introduce data reduction techniques that allow users
to specify queries over large datasets while maintaining
an accurate and interactive performance.

• We implement our system for three classes of devices (mouse,
touch, and motion capture) and compare the performance
of query specification with these different devices. Our
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feedback techniques can also be used to power other user
interfaces and devices.

• Through performance experiments and user studies over
real-world data, we show that SnapToQuery helps users
to specify queries faster and more accurately, significantly
facilitating the exploratory query specification process.

2. RELATED WORK
We now introduce some terms in the context of prior work.

Snapping: Snapping [5, 6, 17] is an important user inter-
face feedback technique to help align digital objects, and
is widely used in computer-aided design and drawing pro-
grams. The idea behind this is that the shape will automat-
ically jump to the aligned position when it is close enough
to the “ideal” position, and users will feel a resistance when
they try to move beyond the aligned position. In many
cases, additional feedback is also provided to help the user,
such as visual feedback. Snapping is also used in other appli-
cations, such as multiple monitor display systems [24], text
selection [31], and the acquisition of small user interface tar-
gets [12]. Recently, a World Wide Web Consortium (W3C)
draft discusses controlled panning and scrolling behavior
with “snap points” [32]. However, these feedback techniques
have rarely been applied to exploratory querying and have
seldom been considered from a data standpoint. Further,
while snap points restrict querying to one of n values, our
method provides feedback that aids exploration while still
allowing the user to express any value.

Next-Generation Devices: There are several user inter-
action devices beyond traditional keyboards and mice that
are used for exploring data. There has already been prelim-
inary work in performing traditional data interaction using
next-generation devices, such as gestureDB [28], dbTouch [23],
TouchViz [14] and Kinetica [34]. However, to our knowl-
edge, SnapToQuery is the first to study the querying of data
with all major classes of input devices: mouse, touch, and
motion capture. Additionally, since the focus of SnapTo-
Query is to provide interactive feedback to aid users in the
data exploration process, the contributions here are orthog-
onal to query language mappings and interface innovations,
and can be used to enhance the usability of the aforemen-
tioned systems. For this paper, we focus on Leap Motion1

as our motion capture device. Leap Motion is a consumer-
grade stereoscopic infrared camera that connects to comput-
ers over USB and can track hand and finger skeleton-level
gestures, providing programmatic access to recognized ges-
ture, position, direction, and velocity information.

Guiding Exploratory Querying: One challenging task
in data exploration and query steering is how to guide users
through the process. One approach is to consider it from an
interface standpoint, such as introducing visual clues [13,37,
38] and adopting multi-resolution strategies in proportion
to the degree of interest of data subintervals [18]. Another
way is to organize the data into some kind of structure to
make it easier for the user to explore, such as facets [4, 21]
or clusters [11]. An alternative strategy is to incorporate
the user’s feedback into the iterative process [3, 9]. Fi-
nally, steering [8, 26] and recommendation of most likely
queries [10] have also been considered. However, as dis-
cussed in Section 3 and Section 3.1, the current approaches

1
https://www.leapmotion.com/

differ from SnapToQuery in that we propose a general frame-
work to provide interactive feedback during the data ex-
ploration process, which allows users define their own feed-
back and “snapping” conditions. Thus, all of these guidance
mechanisms can leverage SnapToQuery .

Scaling Factor: When users move the cursor around with
the mouse, fingers or Leap Motion, there is a mapping from
the physical movement to the virtual movement of the cur-
sor. For the mouse, the mapped virtual movement depends
on two parameters [33]: one is the scaling factor, the other
is the resolution in dots per inch (DPI). The moved dots
will be translated to pixels on the screen according to the
scaling factor. For example, if the mouse is moved 500 dots
and the scaling factor is 1.0, then the cursor will move 500
pixels. For touch-based tablets, the scaling factor is always
1.0 since we need to maintain the relative position between
the finger and manipulated object. For Leap Motion, we
define our own scaling factor strategy.

Jitter: From a user interface perspective, jitter can be de-
fined as the vibratory motion of the hand or finger [25, 39].
In this paper, we term the vibratory motion of the hand or
finger around the user’s targeted position as jitter. In the
motion capture-based device, jitter is a challenging prob-
lem. Consider the manipulation of a range slider with Leap
Motion, where the position of the user’s index finger indi-
cates the position of the handle of the slider. When users
are asked to move the handle to a certain position, this task
is very hard, since it is impossible for users to keep the in-
dex finger absolutely static in mid-air, especially when the
scaling factor is large.

3. PROBLEM STATEMENT:
SNAPPING TO INTENDED QUERIES

In light of the challenges and prior work, we formulate the
SnapToQuery concept in a SQL-like syntax:

SELECT A from T1, T2, . . . , Ti

WHERE C1, C2, . . . , Cj

SNAPTO S1, S2, . . . , Sk

FEEDBACK F1(p11, . . . ), . . . , Fx(px1, . . . , pxy)

in which T1...i are the relations, C1...j are predicates, F1...x

are the feedback functions with parameters p1...x,1...y, and
S1...k are SNAPTO conditions. Table 1 introduces addi-
tional terms and expressions used in the paper.

3.1 Implementation Considerations
Due to the tightly integrated nature of the system, there

are several implementation considerations that determine
how SnapToQuery can be adapted to the exact user interface
and device combination:

Feedback: Feedback is used to guide users to the intended
query. There are different kinds of feedback possible, such
as visual feedback, haptic feedback, etc. Users are allowed
to define their own feedback that best suits their use case as
a UDF (user-defined function).

SNAPTO Condition: Users are allowed to define their
own rule-based SNAPTO conditions to guide the user to
the intended query. Alternatively, the system can automati-
cally recommend a good snapping condition, which is a hard
problem. As discussed in the challenges, we need to provide
obvious and noticeable feedback, but at the same time we
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need to ensure that the feedback will not interrupt the flu-
idity of the user interaction. A good snapping condition can
be considered from different aspects. First, it can be derived
from prior usage: snapping can be based on the most fre-
quent queries from the query log. Second, we can consider
snapping from a data-only perspective: we can define a met-
ric to measure the “impact” of changing the query on the
current result. The recommended condition can be the one
with the maximum effect or the one that causes the maxi-
mum difference of effect in adjacent queries. The measures
can be information entropy, COUNT, AVG, etc.

Visualization & User Interface: Another interesting
consideration is that the feedback presented has a close re-
lationship with the visualization and the user interface. For
example, if the snapping feedback is provided on the bound-
ary of a dataset, for two different visualizations (bar chart
and pie chart), the UDF implementations of FEEDBACK func-
tions can be quite different, as shown in Figure 1.

Devices: The implementation of SnapToQuery is also re-
lated to the specific device it is used with, based on the fact
that different devices have different nuances in their user in-
teraction. For example, mouse and touch-based interfaces
are much more accurate than the motion capture-based de-
vice, but the motion capture-based is more expressive (it
has more degrees of freedom and can be more sensitive to
movement), making it possible to explore more WHERE con-
ditions simultaneously. In order to cater to multiple device
contexts, we discuss variations of the SnapToQuery imple-
mentation for each device in Section 4.2.

Symbol Meaning

ls, lh length of the slider, handle in pixels

r ratio of length of bar over length of the bin

n number of bins for each dimension

d number of dimensions for the dataset

ds snapping distance

w/, w/o with, without

R ratio of ds over lh

Rl, Rlr scaling factor of Leap Motion w/ snapping,
w/o snapping

Rll, Rlh minimum, maximum value of Rl

∆ difference of cardinalities in adjacent queries

∆l, ∆h minimum, maximum value of ∆ when snap-
ping occurs (we assume ∆ ≤ ∆h)

Table 1: Expressions

3.2 Query Exploration
While we focus on aggregation queries on a single relation

with the exploration of range predicates in this paper for
simplicity, the concept can be generalized to a much wider
range of queries, and is ideal future work.

For simplicity, we characterize our exploration model as
follows. We assume here that only one relation is involved,
that the dimensions involved in C1...j are numerical dimen-
sions, and that each of C1...j is a range predicate (non-
numerical values can be hashed to numerical values with
some notion of locality). Thus, our query can be consid-
ered an aggregation over an n-dimensional subsetting of a
composition of relations; e.g., if a relation had 3 attributes,

each of which were numerical (from our motivating exam-
ple: dates, rating, and price), then each tuple (i.e., venue)
could be represented as a point in a 3-dimensional vector
space, and the task of our exploratory query session is to
come up with a cuboid that contains the intended points,
by moving the handle on a slider for each dimension, as
shown in Figure 1. An exploration is performed by issu-
ing a succession of queries using a user interface, which are
thus “adjacent” to each other (e.g., a slider being moved
will cause the successive queries to be adjacent on a dimen-
sion). For successive queries, we assume that the change of
predicate for a dimension is continuous and only one value
is changed. For example, assume there are three ranges for
a dimension, which are [v1, v4], [v2, v4] and [v3, v4], and
v1<v2<v3<v4. If the current range is [v, v4], v = v3 and the
user is changing v (called the manipulated value), there
is no way to skip [v2, v4] and jump to [v1, v4] directly. Based
on this model, we consider an example implementation of
our SQL-like formulation:

SELECT COUNT(*) from T
WHERE v11 < d1 < v12, v21 < d2 < v22, . . . , vj1 < dj < vj2
SNAPTO ∆ ≥ ∆l

FEEDBACK snapping (∆,∆l,∆h)

where ∆ represents the relative change in the COUNT(*).
This implementation uses the feedback of snapping using
differences in query cardinality – users will feel a “sticki-
ness” or “resistance” in the UI controls when they try to
change one predicate of the current query and the change
of a predicate results in a large change of result cardinality.
This intuitively draws the user’s attention to the fact that
the current query is a representative of the current param-
eter space, and hence is a likely candidate to consider as an
intended query. We call the position where the snapping
happens as the snapping position.
Thus, our problem becomes: given a current query, de-
termine whether it is an intended query, and provide feed-
back if it is. Note that it is hard to consider every query:
first, under the direct manipulation, the number of possi-
ble follow-up queries issued can be superlinear [28], based
on the number of columns (i.e., attributes / dimensions)
that can be manipulated. If every query is considered, the
computation cost can become very high, leading to a lack
of responsiveness at the UI-level. Second, typically most
adjacent queries have similar cardinalities, and hence the
re-computation does not add any value. Thus, it is wise to
group the adjacent queries together and use one query to
represent the whole group, which is called the representa-
tive query: only representative queries are considered as
candidate intended queries.

Given this scenario, a question arises: how do we group
the queries and select which query to represent the query
group? In the following section, we propose two methods: a
baseline naive method, and a data contour method.

4. THE SnapToQuery SYSTEM
The overall architecture of our system is shown in Figure

2. The dataset is reduced in the backend and visualized as
brushing and linking-based coordinated histograms [16] in
the frontend, exposed as an application, such as our trip
planning website from Section 1.3. Each dimension cor-
responds to one histogram and one range slider with two
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handles. The dataset is divided into a set of bins on each
dimension. The height of each bar in each bin represents the
frequency of that bin. Users can manipulate the sliders on
three devices (mouse, tablet, and Leap Motion). By moving
handles on the sliders, users can issue range queries. We note
that the filtering effect is cumulative, meaning, if users filter
one dimension, the histograms in other dimensions should
be changed dynamically. During the query specification pro-
cess, the system will be “snap” to the intended query.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

DBMouse, Tablet, Leap Motion

Naive Method

Data Contour
Method

Data Reduction

Visualization

Snapping Algorithm

N
et

w
or

k

Figure 2: Overall Architecture of SnapToQuery .
The dataset is preprocessed using a data reduction
method at the backend, and then interacted with
using a frontend that provides the interactive visu-
alization and snapping feedback.

4.1 Data Reduction
Since we need to maintain interactive performance times

for a fluid user experience, performing queries directly on
the raw data is untenable if the dataset is large. Our goal
is to find a way to reduce the dataset while still maintain-
ing the characteristics of the dataset. At the same time,
we group the queries together and select the representative
query. Thus, two data reduction strategies are proposed: a
naive method and a data contour method.

4.1.1 Naive Method
Backend: The main idea behind the naive method is ag-
gregation. Specifically, instead of splitting the data when
the dataset is large, we can split the space, map each data
point into a cell, and then represent each cell by only one
data point with an additional dimension freq representing
how many data points reside in this cell and whose values
are aligned with the left boundary of the cell over all of the
dimensions. The algorithm for the naive method is shown
in Algorithm 1. First, we divide each dimension into a cer-
tain number of bins. Currently, each dimension is evenly
divided into the same number of bins. Second, we map the
data point into the corresponding cell in the grid. Third, the
empty cells will be removed. Finally, one cell is represented
by one tuple, and, as we can see, the number of data points
left will be at most O(nd). Thus, the remaining data points
are independent of the data size and are impacted by the
number of dimensions and bins.

Frontend: In the frontend, for each filter action, we aggre-
gate over the freq dimension and update the histograms.
We assume that the data is uniformly distributed in each
cell, and if the predicates are not aligned with the bins, at

Algorithm 1 Backend: Naive

1: Define the grid
2: Map the data points into the appropriate cell in the grid
3: Remove the empty cells
4: Each cell is represented a data point with an additional freq

dimension

Algorithm 2 Determination of Snapping Positions: Naive

UpdateSnappingPoses (int curIndex)

1: for dim in dimensions do
2: if dim.index != curIndex then
3: snapPoses[dim.index] = [ ]
4: for i = 1; i < dim.bins.length; i = i + 1 do
5: curBin = dim.bins[i]
6: preBin = dim.bins[i - 1]
7: if curBin.val - preBin.val > ∆ then
8: snapPoses[dim.index].push(curBin.key)

v11 v12 v13 v14 v15 

qn21 

qn22 

qr2 

qr1 

h1 
h2 

v 

h1 

Figure 3: Determination of Intended Queries and
Snapping Positions for Naive Method. v1i is the
boundary of the bin. The user drags the handle h1

from v13 to v12. qn21 and qn22 are the neighborhood
queries of qr2 and represented by the query qr2. If
there exists a big cardinality difference between qr2
and qr1, snapping will occur on v12.

the last step of the aggregation, we need to adjust the cardi-
nality according to the overlapping percentage between the
current filter range and selected cells.

Determination of Intended Queries and Snapping
Positions (Naive): The representative queries are those
whose manipulated value is aligned with the bin. The query
between two adjacent representative queries is represented
by its left representative query. Figure 3 gives an example
to illustrate how the naive method groups the queries, se-
lects the representative query, and determines the intended
query. Assume v11, v12, ..., v1i, ... are the boundaries of bins
in one dimension, v12 ≤ v < v13, and the user is dragging
the handle h1 from v13 to v12. All the queries issued in the
process are represented by the query qr2. For example, qn21

and qn22 are represented by the query qr2. Once the handle
h1 is moved onto v12, it means qr2 is specified. Since qr2 is
a representative query, the system will check whether there
exist a big cardinality difference between qr2 and qr1. If it
is, the snapping will occur on the value v12.

For each filter, we need to update the snapping positions
in other dimensions, as shown in Algorithm 2. We iterate
through each representative query and compare the cardi-
nality difference between adjacent representative queries and
save the snapping positions.
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4.1.2 Data Contour Method
Although the naive method is very intuitive and works

very well in most cases, there are two major problems with
it: first, it cannot fit high-dimensional datasets because as
the number of dimensions increases, the number of tuples
left will increase exponentially. Second, it does not take ad-
vantage of the characteristics of the dataset. Actually, the
queries aligned with the contour of the cluster is where the
cardinality change is large, which is shown in Figure 4. Since
the number of clusters is much less than the number of bins
in each dimension, it will also vastly improve the interactive
performance. There are several other options for detecting
the contour of the clusters: one is the edge detection method
in computer vision and the other is the grid-based cluster-
ing method, which suits this problem very well. However,
both methods can only work on low-dimensional datasets.
In order to handle high-dimensional datasets, we adopt a
KMeans + histogram method.
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Figure 4: Determination of Intended Queries for
Data Contour Method. There are six clusters in
the dataset and each cluster is bounded by a box.
The boundary of the box is the data contour of the
cluster. v1i is the contour of the cluster in one di-
mension. qn21 and qn22 are the neighborhood queries
of qr2 and represented by the query qr2. Snapping
will occur on the contour of the cluster, such as v11,
v12 and v13.

Backend: In the backend, the dataset is clustered first. In
order to give a more accurate cardinality approximation, we
divide each dimension into a set of bins for each cluster and
assume in each bin the data points are uniformly distributed.
The backend algorithm is shown in Algorithm 3. The num-
ber of clusters is determined by the gap statistic [15,36]. We
use a cluster-based method [35] to remove outliers: whether
a point is an outlier or not is based on the ratio of the dis-
tance between the point and the centroid to the distance
between the median point and the centroid. After outliers
are removed, we re-cluster the dataset.

Frontend: For a given filter range, Algorithm 4 shows how
to update the frequency of the bin in the frontend. Specif-
ically, for the filtered dimension, we attain the overlapping
ratio between each cluster and the current filter for the cur-
rent dimension, and then update the histograms in other
dimensions. The cardinality is achieved by aggregating the
frequencies of the selected bins.

Algorithm 3 Backend: Data Contour

1: Normalization
2: Select K points as initial centroids
3: Form K clusters by assigning each point to its closest centroid
4: Remove outliers
5: Form K clusters by assigning each point to its closest centroid
6: Divide each dimension into bins for each cluster
7: Remove empty bins of each dimension for each cluster

Algorithm 4 Update of Bins: Data Contour

UpdateBins (int curIndex)

1: for cluster in clusters do
2: cluster.preRatios[curIndex] = cluster.ratios[curIndex]
3: cluster.ratios[curIndex] = getRatio(cluster, curIndex)

4: for dim in dimensions do
5: if dim.index != curIndex then
6: for cluster in clusters do
7: for bin in cluster.dims[dim.index].bins do
8: preRatio = cluster.preRatios[bin.index]
9: curRatio = cluster.ratios[bin.index]

10: val = bin.val
11: if preRatio == 0 then
12: val *= curRatio
13: else
14: val *= curRatio / preRatio

15: dim.bins[bin.index].val += val

Algorithm 5 Determination of Snapping Positions: Data
Contour
setSnappingPoses ()

1: for cluster in clusters do
2: for dim in cluster.dims do
3: for bin in dim.bins do
4: if bin.val > thresh then
5: snapPoses[dim.index].push(bin.key)
6: break
7: for bin in reverse(dim.bins) do
8: if bin.val > thresh then
9: snapPoses[dim.index].push(bin.key)

10: break

Determination of Intended Queries and Snapping
Positions (Data Contour): In contrast to the naive method,
the representative queries are those whose manipulated value
is aligned with the contour of the cluster. The query be-
tween two adjacent representative queries is represented by
its left representative query. Snapping will occur if the ma-
nipulated value is aligned with the contour of the cluster.
Figure 4 gives an example to illustrate how the data contour
method groups the queries, selects the representative query,
and where the snapping occurs. Assume v11, v12, ..., v1i, ...
are the contour of clusters in one dimension, v12 ≤ v < v13,
and the user is dragging the handle h1 from v13 to v12, all the
queries issued in the process are represented by the query
qr2. For example, qn21 and qn22 are represented by the query
qr2. Once the handle h1 is moved onto v12, it means qr2
is specified and the manipulated value is aligned with the
contour. Figure 4 shows there exists a large cardinality dif-
ference between qr1 and qr2 since another cluster will be
involved if we move the handle h1 slightly towards the left,
the snapping will occur on the value v12 and always occur
on the contour of the cluster.

The contour of the cluster is determined by histograms,
detailed in Algorithm 5. Specifically, we iterate the bins
of the dimension for each cluster from both ends, and stop
when the frequency of the bin is greater than the threshold.
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We use the value of the boundary bins as the contour of
the cluster for this dimension. When users filter the dataset
in the frontend, the representative queries are those that
are aligned with the contours. Since we assume the data is
uniformly distributed in each cluster, for each filter we do
not need to re-cluster and re-compute the cluster contours.

4.1.3 Comparing Naive and Data Contour Methods
For the naive method, since we divide the data points over

all dimensions, the remaining data points will be O(nd). For
the data contour method, since we divide the data points on
each dimension, the remaining data points will be O(knd),
where k is the number of clusters. As we can see, with the
dimension increasing, the performance of the naive method
will be unsatisfactory and for the data contour method it
will maintain a linear scalability.

4.2 SnapToQuery Algorithm

gap area 

catch-up stage 

ds 

snapping stage 

Figure 5: Mouse & tablet SnapToQuery Implemen-
tation. In the snapping stage, the handle will keep
still while the cursor or finger is moving until the
cursor or finger moves beyond the handle. In the
catch-up stage, the handle will catch up with the
cursor or finger before the next snapping position.

Snapping Function: We propose a linear snapping func-
tion depicted below. The larger the ∆, the larger the R, the
larger the ds, and then the more snapping users will feel.

R =
∆−∆l

∆h −∆l
+ ∆l (1)

ds = R× lh (2)

where for the naive method, ∆ refers to the cardinality
difference, and for the data contour method, it refers to the
data density over this dimension for the cluster.

There exist distinct differences between the mouse, tablet,
and Leap Motion. For the mouse and tablet, we cannot con-
trol the position of the cursor, and it is necessary to main-
tain the relative position between the handle and the mouse
cursor or finger. For Leap Motion, since we determine the
scaling strategy from the finger position to the slider, we do
not need to consider the relative position problem. We pro-
pose two different SnapToQuery implementations developed
for different devices.

4.2.1 Mouse & Tablet SnapToQuery Implementation
The SnapToQuery algorithm for the mouse and touch-

based tablets is shown in Figure 5. Once the handle is

moved into the gap area, the system will determine whether
this is an intended query. If it is, the handle will be
static throughout the entire snapping stage while the cursor
is moving. Until the cursor is moved beyond the handle,
the handle will start to catch up with the cursor. And, ds
depends on the moving direction, if users move from left to
right, it is offset between the left boundary of the cursor
and the right boundary of the handle; otherwise it is the
offset between the left boundary of the cursor and the left
boundary of the handle. If users accidentally move across
the snapping boundary, the handle will also be static and
the value of the slider will be the value represented by the
closest boundary of the gap to the left of the handle. It is
obvious that the snapping greatly depends on ds and the
initial offset of the cursor and handle, in order to generate
an obvious snapping feedback between the adjacent intended
queries, we will adjust the relative position between the cur-
sor and handle to make sure when the handle is close to the
next intended query, ds is in position.

4.2.2 Leap Motion SnapToQuery Implementation
There are several design considerations for Leap Motion
First, we allow the thumb and index finger of one hand

to manipulate the sliders and perform queries. There are,
in total, six gesture states. We collect the most recent 10
points and develop a rule-based classifier to recognize the
gesture state according to the angle between the thumb and
index finger. The idea behind this is that when the thumb
and index finger are close enough, users are able to slide the
handle. This state is called clicked state. When the thumb
and index finger are separated enough, users can switch han-
dles or sliders. We call this state released state. All of the
others are intermediate states and will not trigger the effec-
tive action. This way, we can make sure that the ending
gesture will not change the final state of the slider. The
transition between gesture states and transition conditions
are shown in Figure 6. signLen indicates the number of
most recent points that are greater (Label 4, 5, 6) or less
(Label 1, 2, 3) than the degree threshold in the sequence.
seqLen indicates the number of the most recent points that
are increasing (Label 5) or decreasing (Label 2) in the se-
quence. We allocate the vertical space evenly to different
sliders and the horizontal space evenly to the handles of the
same slider.

ClickStart 

Releasing ReleaseStart 

Clicked Clicking 

Released 
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Label Condition

1, 4 signLen>0

2, 5 signLen = 0 and seqLen>thresh

3, 6 signLen = 10

7 else

Figure 6: Gesture State Transition
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Second, we use visual signals to indicate the state of change.
We constrain the mapping to the handle only. The handle
with a red border indicates the currently selected handle.
When users drag the handle, a circle indicates the position
of the simulated cursor.

Finally, we implement snapping effects from two perspec-
tives, one from the scaling function, and the other from
the snapping function. Additionally, the user position is
smoothed over the 10 recent positions to reduce jitter.

Scaling Function: Between adjacent intended queries, a
sigmoid function is proposed to adjust the scaling factor
dynamically, which is shown in Figure 7. Specifically, the
scaling factor is very small when the handle is close to the
snapping position, once the users move out of the snapping
position, the scaling factor will noticeably increase.

slider 
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Figure 7: Dynamic Scaling Factor in Leap Motion.
The scaling factor changes according to the handle
position on the slider. When the handle is close to
snapping positions, the scaling factor becomes small.

5. EXPERIMENTS AND EVALUATION
We evaluate SnapToQuery system from three aspects: per-

formance, quality, and usability. Section 5.2.2 evaluates
whether the data reduction strategies can maintain an in-
teractive performance. Section 5.2.3 evaluates whether the
data reduction strategies can give an accurate approxima-
tion of the cardinality of the query. Section 5.3 evaluates
the performance of the query specification with three de-
vices (mouse, iPad, and Leap Motion) with snapping and
without snapping, and tries to show whether the snapping
aids the query specification. Section 5.4 attempts to show
whether users feel the snapping when they explore the dataset
and thus pay attention to the intended query.

5.1 Experiment Setup
Configuration: Experiments are performed on a Windows
PC, which has 4GB memory and one Intel i5-3320M quad-
core processor. The computer has a 14-inch display with
1366× 768 resolution. The iPad is the 3rd generation iPad
with 16GB. We use Tornado2 as a web server, D3 [7] to
visualize, and Crossfilter3 to aggregate the dataset.

Datasets & Workloads: We use two real-world datasets
for the experiment, which are shown in Table 2. DataROAD

is a 3D road network dataset from the UCI machine learning
repository [22, 29]. DataBIKE is a city bike trip dataset of

2
http://www.tornadoweb.org

3
http://square.github.io/crossfilter/

4
Only 44 clusters are left when we removed empty clusters.

Name DataROAD DataBIKE

number of tuples 434874 299648
number of dimensions 3 5
number of clusters 474 44
session size 148 228

Table 2: Datasets and Workloads

NYC in January 20145. For DataBIKE , we select only 5
dimensions: trip duration, start station latitude, start sta-
tion longitude, end station latitude, and end station longi-
tude. Further, we only keep the tuples whose trip duration is
less than 2 hours. A random sample having the same num-
ber of tuples as the naive method is also generated from
each dataset for scale experiments. We use the clusterGap
function in cluster package of R to estimate the number of
clusters6 by measuring the goodness of clustering with a gap
statistic [15] and selecting the best K from 1 to 50. To avoid
the memory restrictions in the gap statistic, the number of
clusters is estimated on the 1% of the dataset. For the per-
formance experiment, we generate a random workload for
each dataset. For each workload, we ensure that each di-
mension has been filtered multiple times. The session size
of the workload for each dataset is presented in Table 2.

5.2 Performance Experiments
In this section, we measure the performance of data re-

duction strategies and how accurate they approximate the
cardinality of queries.

5.2.1 Data Reduction
In the backend, the dataset is preprocessed. Each dimen-

sion is divided into 20 and 50 bins separately. The size of
the data file after the data reduction is shown in Table 3.
Both the naive and the data contour methods reduce the
data size immensely, and the data contour method occupies
the least space.

Name DataROAD DataBIKE

original size 15, 294 KB 14, 444 KB
naive w/ 20 bins 77 KB 3874 KB
data contour w/ 20 bins 32 KB 72 KB
naive w/ 50 bins 640 KB 10, 035 KB
data contour w/ 50 bins 52 KB 137 KB

Table 3: Data Reduction

5.2.2 Query Execution Time
The performance is determined by the average time that

the system takes to run one query in one query session. We
replay each query session for each dataset five times to get
the average time for each query. Figure 8 shows the average
log time(µs) for each query in each dataset. The data
contour method has the fastest performance for all datasets.
For naive and sampling methods, since the performance is
closely related to the number of bins and dimensions, the
performance will be pretty bad when the number of bins and
dimensions increase. Usually, the sampling method takes
less time than the naive method, since the naive method
sums up the frequency instead of counting.

5
http://www.citibikenyc.com/system-data

6
http://cran.r-project.org/web/packages/cluster/index.html
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Figure 8: Average Query Execution Time for Each
Dataset with Different Strategies. All of data re-
duction strategies can maintain an interactive per-
formance and the data contour method takes the
least amount of time.
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Figure 9: Distance for Data Reduction Strategies
over Different Datasets. All data reduction strate-
gies can maintain a low distance. The data contour
method is better than the naive method in all cases.

5.2.3 Distance
We use a distance metric to measure the accuracy of the

approximation of the cardinality for different data reduction
strategies: d(H,K) =

∑
i |hi−ki|, where H = {hi} and K =

{ki}, hi represents the accurate cardinality and ki represents
the approximate cardinality returned by one data reduction
strategy. H and K are normalized so that

∑
hi = 1 and∑

ki = 1.
Figure 9 shows the result for different data reduction

strategies over different datasets. As we can see, all strate-
gies are able to maintain a low distance, and the data con-
tour method is always lower than naive method. One possi-
ble reason behind this is that for each filter, if the predicates
are not aligned with the bins and the filter range overlaps
with the cell, it means that in all the following filters of the
other dimensions, the data points in the cell are not involved.
It is even worse when the distribution of the data points in
the cell is skewed, since it makes the cardinality adjustment
less accurate. As more and more filters are performed over
the dataset, the approximation becomes less accurate. How-
ever, for the data contour method, the dataset is organized
in clusters first and then histograms. The clustering cap-
tures the characteristics of the dataset. On the other hand,
each dimension is divided into bins separately, which means
the filter over one dimension will not have a great impact
on other dimensions. Thus, the data contour is more robust
towards skewed datasets.

5.3 Query Specification Experiments
In this experiment, we ask users to specify the query task

with three devices (Mouse, iPad, and Leap Motion) and
compare the performance. 30 users are included in the ex-
periment. Each user performs the task with one device with
or without snapping. It means for each device under one
condition, it has five users. For example, five users will per-
form the task with the mouse with snapping.

5.3.1 User Study Setup

Dataset: We perform the user study on DataROAD with
50 bins. The ranges for each of the three dimensions in the
dataset are [8.146, 11.262], [56.582, 57.774], and
[−8.608, 137.361] respectively.

Parameters: The parameters for the experiment are shown
in Table 4.

parameter ls lh r Rlr Rll Rlh R

value 300 60 0.8 0.2 0.1 0.6 0.9

Table 4: Parameters

Since the resolution of the computer is different from that
of the iPad, we adjust the length of slider and handle in
the iPad to make sure the sliders have the same absolute
length. For Leap Motion, the unit of physical movement is
in millimeters. Since R = 0.9, ds = lh ×R = 54. We choose
Rlr = 0.2 since it allows users to move the handle from the
start to the end without lifting their fingers again.

Task: The query task is shown below:

• Move the first handle of the first slider to [10.009,10.022]

• Move the second handle of the first slider to [10.57,10.582]

• Move the first handle of the second slider to [57.498, 57.502]

where [10.009,10.022] and [10.57,10.582] is the first snapping
position while [57.498, 57.502] is the second snapping posi-
tion. All the handles are positioned at the ends of the slider
at first. The design of the query task considers the effect of
the handle switch, slider switch, and the possible delay of
the snapping.

Measures: The experiment is evaluated by two measures.
The first one is the average specification time – how much
time it took the user to specify the query over all users.
The second one is to evaluate how SnapToQuery helps pre-
vent users from making errors by measuring how many times
users miss the intended query.

Considerations: In order to avoid carryover effects, we
perform a between subjects experiment, which means each
user only performs with one device under one condition.
Another thing to keep in mind is that since users are used
to the mouse and tablets, before the experiment, we will
ask users to play a demo and manipulate the sliders with
the Leap Motion for about 10 minutes. Since the purpose
of the experiment is to show whether the snapping helps
users to specify the query, we will fix the snapping positions
to ensure intended queries will not change when users filter
the dataset.
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Figure 10: Traces of Different Devices with Snapping and without Snapping. Read points represent the
targeted positions. Users can move the handle into the targeted positions on the first attempt for the mouse
and iPad with snapping. Read points for Leap Motion without snapping are quite scattered while they
concentrate on one area for Leap Motion with snapping. In summary, the devices without snapping present
more jitter than devices with snapping and Leap Motion presents more jitter than the mouse and iPad.

5.3.2 User Traces
In order to get a visual sense of what happens during

the query specification, we select one person’s trace for the
first sub query task. Figure 10 shows the trace for different
device with and without snapping. The red points represent
the targeted position. There are several observations we
can gain from the trace. First, we can see users miss the
targeted position several times and spend much time around
the targeted position for devices without snapping. Second,
Leap Motion presents more jitter than the mouse and the
iPad. There are still misses for Leap Motion with snapping
and the range of the data points are larger than the mouse
and iPad. If we can reduce the jitter and miss times, it will
help users to specify the intended query much faster. Third,
snapping helps users specify the query. Users can move the
handle into the targeted position without misses for mouse
and iPad with snapping. For Leap Motion with snapping,
the red points concentrate on one position. For Leap Motion
without snapping, the read points are quite scattered, which
means there are many misses and users start over the task
several times.

5.3.3 Time to Specify Range Queries
Figure 11 shows the specification time over different de-

vices with and without snapping. The time is divided into
four parts: subtime1, subtime2, subtime3, and switchtime.
subtimei indicates the specification time for ith task, e.g.
subtime1 is the time for the first task. Switchtime describes
the time it takes to switch between different handles and
sliders. For all devices, the SnapToQuery helps to reduce
the specification time. And for Leap Motion, the gain is the
most effective, the speed up is 2.2. For Leap Motion with
snapping, it is comparable to the performance of the mouse
and the iPad.

5.3.4 Miss Times
The miss times represent how many times users miss the

intended query in the query specification process. Figure
12 shows the result. For all devices, SnapToQuery helps
reduce the miss times, and the effects are pretty impressive.
And for subtask1 and subtask3, the miss times are almost 0.
Since the targeted position of subtask2 is close to the end of
the slider, it is easier for users to miss it even with snapping.
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Figure 11: Specification Times of Devices with
Snapping and without Snapping. Devices with snap-
ping take less time than devices without snapping
and the speedup is at least 1.4×. Leap Motion with
snapping is comparable to the mouse and the iPad.
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Figure 12: Miss Times of Devices with Snapping
and without Snapping. The miss times of devices
with snapping is much smaller than those of devices
without snapping for all devices.

Device P-value for Time P-value for Miss Times

Mouse 0.0208 0.0007
iPad 0.0726 0.0131

Leap Motion 0.0012 0.0102

Table 5: One-sided Unpooled T Test

5.3.5 Statistical Significance
In order to determine whether the difference between the

case with snapping and that without snapping is statistically
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significant. We perform a one-sided unpooled t-test on the
specification time and miss times, shown in Table 5.

5.4 Snapping Discoverability Experiments
We further measure the usability of SnapToQuery and

attempt to find out whether the intended query draws the
user’s attention. 15 users are included in the experiment.
It should be noted that in order to avoid bias and memory
effects, these users are recruited separately from the previous
experiment. DataROAD with data contour method works as
the testbed.

Parameters: The parameters of the experiment are the
same as the query specification experiments except ls = 600.
We choose a different slider length since the range of third
dimension is much larger than the first two dimensions.

Task: Each user is asked to manipulate the second handle of
the third slider to discover the values at which the feedback
occurs given five minutes with the mouse. Only one target
range is involved in the experiment. In order to allow for
discovery, we did not tell users what the feedback looks like
and only tell them that some feedback exists when they
move the handle around. After the experiment, a survey is
performed to check the usability of snapping.

Discovery Time & Miss Times: Figure 13 shows users
are able to find the snapping position in a short time and
make few misses.
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Figure 13: Discoverability. Users are able to find
the snapping position in a short time and make few
misses.

Survey: Although users feel the snapping and pay atten-
tion to the intended query, one thing to keep in mind is that
we do not want the snapping to detract from the fluid inter-
action. It is also necessary to maintain the relative position
between the cursor and the handle. After the experiment,
we asked users of the discovery experiment to fill out a sur-
vey. Table 6 shows that all users think the snapping attracts
their attention. Most users do not notice the mismatch be-
tween the cursor and think that snapping does not hurt the
fluid interaction.

5.5 Insight from the User Studies
There are several observations we attain from the user

study. First, since Leap Motion has the detection bound-
ary, when users move the hand/finger out of the boundary,
as we can imagine, the slider will not respond to user’s ac-
tion. However, users do not understand what is actually
occurring here. They think that the system is stuck be-
cause of the dense computation, network problems, etc. We

Question Yes No

Pay attention to data point with snapping 15 0
Obvious mismatch b/w the cursor & handle 4 11
Snapping hurts the fluid interaction 4 11

Table 6: Discoverability Survey

should give a warning when this kind of phenomenon hap-
pens. Second, in the survey feedback, several users talk
about the visual feedback. The combination of visual and
haptic feedback should help the query specification. Third,
when users manipulate the slider with Leap Motion for a
while, some users complained that their hands were getting
fatigued. Designing the gesture with less effort and develop-
ing ways to relieve the fatigue are challenging problems for
Leap Motion. Finally, when users move the handle quickly,
it is pretty hard for them to notice the snapping. One way to
solve this is to incorporate sliding speed into the snapping
function or dynamic scaling factor: the faster the sliding
speed is, the larger the snapping distance is and the lower
scaling factor is.

5.6 Discussion of Parameters
We now discuss several key parameters that impact ex-

perimental results. The first one is the upper-bound of scal-
ing factor of Leap Motion with snapping. This represents
a trade-off problem – a higher upper-bound scaling factor
allows users to specify the intended query much faster, how-
ever, it will be harder to specify non-intended queries. The
second is the length of the slider. The longer the slider is,
the easier it is to move to a specific position: it results in
fewer miss times, but dampens the effects of SnapToQuery .
A longer slider also means that it takes more time for users
to move to the targeted position with the same scaling fac-
tor. The third is the snapping distance. A larger snapping
distance means users will feel more obvious snapping and it
is harder for users to miss the intended query. However, it
also increases the interruption of the fluid interaction.

6. CONCLUSION AND FUTURE WORK
Guiding users during the data exploration is a challenging

task. In this paper, we present the SnapToQuery concept,
which provides feedback to the user and allows them to ex-
plore the query space in an efficient manner. We discuss
several considerations ranging from the nature of the feed-
back at the user interface and device level, to data scale
and performance considerations. We propose a data-driven
approach to the exploratory query specification: given a
neighborhood of queries, snapping feedback is provided on a
representative query if the difference between the cardinal-
ities of the adjacent representative queries is large. In or-
der to maintain interactive performance, two data reduction
strategies are detailed and evaluated over two real datasets,
showing that both data reduction algorithms can provide
good quality and interactive performance. We detail imple-
mentations of snapping functions on different devices, and
evaluate them empirically. Through our user studies, we are
able to demonstrate that the snapping feedback indeed helps
users to specify their intended queries much faster and also
prevents users from missing the intended query. The gains
are particularly impressive for Leap Motion, which is prone
to the jitter and oversensitivity issues that are pervasive in
motion capture devices. Further, we observe that users pay
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attention to the snapping positions, validating our intent of
providing guidance about the data.

There are several avenues of future work that were beyond
the scope of this paper. One key area is the generalization
of guidance beyond just predicate specification; consider-
ing projections, joins, and aggregations. Since the resulting
representation and visualization for different joins or aggre-
gations will be very different, providing smooth and gradual
feedback to guide the user through all possible options is
nontrivial. Second, from an implementation perspective, it
is useful to develop a more complete framework to allow
users to easily define the snapping condition and feedback,
possibly iterating and improving them over time. Creat-
ing an implementation framework makes it easy to incorpo-
rate different interaction devices and interfaces. This can
be extended by constructing a SnapToQuery language, and
laying out algorithmic hooks for feedback and snapping con-
dition definitions. Another area of further study is in the
specific area of motion capture-based interfaces. As seen in
the experiments, our Leap Motion interface suffers from is-
sues such as jitter and sensitivity. While query specification
with Leap Motion is made comparable to mouse and touch-
based interfaces using snapping, there is a lot of room for
improvement. Developing other techniques to improve Leap
Motion-style interfaces is an ideal follow-up work. Finally,
as discussed in Section 5.6, some parameters, such as map-
ping ratio, have an important effect on the performance.
While our experiments explore a large portion of the pa-
rameter space, the ability to tune for these parameters in
an automated manner would be an ideal goal.
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