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ABSTRACT 
This paper describes our new algorithm for sorting an array of 
structures by efficiently exploiting the SIMD instructions and 
cache memory of today’s processors. Recently, multiway 
mergesort implemented with SIMD instructions has been used as 
a high-performance in-memory sorting algorithm for sorting 
integer values. For sorting an array of structures with SIMD 
instructions, a frequently used approach is to first pack the key 
and index for each record into an integer value, sort the key-index 
pairs using SIMD instructions, then rearrange the records based 
on the sorted key-index pairs. This approach can efficiently 
exploit SIMD instructions because it sorts the key-index pairs 
while packed into integer values; hence, it can use existing high-
performance sorting implementations of the SIMD-based 
multiway mergesort for integers. However, this approach has 
frequent cache misses in the final rearranging phase due to its 
random and scattered memory accesses so that this phase limits 
both single-thread performance and scalability with multiple cores. 
Our approach is also based on multiway mergesort, but it can 
avoid costly random accesses for rearranging the records while 
still efficiently exploiting the SIMD instructions. Our results 
showed that our approach exhibited up to 2.1x better single-thread 
performance than the key-index approach implemented with 
SIMD instructions when sorting 512M 16-byte records on one 
core. Our approach also yielded better performance when we used 
multiple cores. Compared to an optimized radix sort, our 
vectorized multiway mergesort achieved better performance when 
the each record is large. Our vectorized multiway mergesort also 
yielded higher scalability with multiple cores than the radix sort. 

1. INTRODUCTION 
Sorting is a fundamental operation for many software systems; 
hence, a large number of sorting algorithms have been devised. 
Recently, multiway mergesort implemented with SIMD 
instructions has been used as a high performance in-memory 
sorting algorithm for sorting 32-bit or 64-bit integer values [1-9]. 
By using the SIMD instructions efficiently in the merge operation, 
multiway mergesort outperforms other comparison-based sorting 

algorithms, such as quicksort, that are not suitable for exploiting 
the SIMD instructions. Multiway mergesort extends the standard 
(2-way) mergesort by reading input data from more than two 
streams and writing the output into one output stream. This 
reduces the number of merge stages from log2(N) to logk(N), 
where k is the number of ways and N is the total number of 
records to sort. Hence, multiway mergesort can reduce the 
required main memory bandwidth compared to the standard 2-
way mergesort because each stage of the mergesort accesses all 
the data. 

In real workloads, sorting is mostly used to rearrange 
structures based on a sorting key included in each structure. We 
call each structure to be sorted a record in this paper. For sorting 
large records using SIMD instructions, a common approach is to 
first pack the key and index for each record into an integer value, 
such as combining each 32-bit integer key and a 32-bit index into 
one 64-bit integer value. The key-index pairs are then sorted using 
SIMD instructions, and the records are finally rearranged based 
on the sorted key-index pairs [3]. This key-index approach can 
efficiently exploit SIMD instructions because it sorts the key-
index pairs while packed into integer values, allowing it to use 
existing high-performance sorting implementations of SIMD-
based multiway mergesort for integers. However, the key-index 
approach causes frequent cache misses in the final rearranging 
phase due to its random memory accesses, and this phase limits 
both single-thread performance and scalability with multiple cores, 
especially when the size of each record is smaller than the cache 
line size of the processor. When the record size is small, only a 
part of the transferred data is actually used; thus, a large amount 
of unused data wastes the memory bandwidth. 

A more straightforward approach is directly sorting the records 
without generating the key-index pairs by moving all of the 
records for each comparison. Unlike the key-index approach, this 
direct approach does not require random memory accesses to 
rearrange the records. However, it is difficult to efficiently use 
SIMD instructions for the direct approach because reading keys 
from multiple records into a vector register scatters the memory 
accesses, which incurs additional overhead and offsets the 
benefits of the SIMD instructions.  

In this paper, we report on a new stable sorting algorithm that 
can take advantage of SIMD instructions while avoiding the 
frequent cache misses caused by the random memory accesses. 
Our new algorithm, based on multiway mergesort, does the key 
encoding and record rearranging for each multiway merge stage, 
while the key-index approach does the encoding only at the 
beginning of the entire sorting operation and record 
rearrangement at the end. In each multiway merge stage, which 
reads input data from k input streams (k = 32 in our 
implementation) and writes the merged results into one output 
stream, we read the key from each record and pack the key and 
streamID that the records came from into an integer value (an 
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intermediate integer), merge the intermediate integers using 
SIMD instructions, and finally rearrange the records based on the 
streamIDs encoded in the intermediate integers. Unlike the key-
index approach, if the number of ways k is not too large compared 
to the numbers of cache and TLB entries, our approach will not 
cause excessive cache misses. We also describe our techniques to 
increase data parallelism within one SIMD instruction by using 
32-bit integers as the intermediate integers instead of using 64-bit 
integers. 

Our results on Xeon (SandyBridge-EP) showed that our 
approach implemented with the SSE instructions outperformed 
both the key-index approach and the direct approach also 
implemented with the SSE instructions by 2.1 and 2.3x, 
respectively, when sorting 512 million 16-byte records (4-byte 
key and 12-byte payload) using one core. Our approach exhibited 
better performance scalability with an increasing number of cores 
than the key-index approach unless main memory bandwidth was 
saturated. It also outperformed by 3.3x the std::stable_sort 
function of the STL delivered with gcc, which uses multiway 
mergesort without SIMD. Comparing our vectorized multiway 
mergesort of our approach against an optimized radix sort, our 
algorithm exhibited better performance when the size of a record 
was larger than 16 bytes on 1 core while the radix sort was almost 
comparable to our algorithm when each record was small (e.g. 8 
bytes). With the key-index approach, the vectorized mergesort 
outperformed the radix sort only when the record was larger than 
128 bytes. Hence, our new approach makes the vectorized 
mergesort a better choice than the radix sort in many workloads. 
Also, our algorithm yielded higher performance scalability with 
increasing numbers of cores compared to the radix sort due to the 
better memory access locality. 

The main contribution of our work is a new approach in the 
multiway mergesort for sorting an array of structures. We can 
effectively exploit the SIMD instructions while avoiding the 
random memory accesses. Avoiding the waste of memory 
bandwidth due to random memory accesses is quite important 
with multicore processors because the total computing capability 
of the cores in a processor has been growing faster than the 
memory bandwidth to the system memory. 

The rest of the paper is organized as follows. Section 2 
discusses related work and reviews existing SIMD-based 
multiway mergesort for sorting integer values and structures. 
Section 3 describes our approach for sorting the structures. 
Section 4 gives a summary of our results. Finally, Section 5 
summarizes the paper. 

2. BACKGROUND 
This section discusses related work and gives details about the 
vectorized multiway mergesort [1], the basis of our new algorithm. 

2.1 Related work 

Sorting is one of the most important operations in many 
workloads, and many sorting algorithms have been proposed. To 
efficiently exploit SIMD instructions and the multiple cores of 
today’s processors, multiway mergesort has gained popularity as a 
high-performance in-memory sorting algorithm for sorting 32-bit 
or 64-bit integer values in database systems [7-9] or in distributed 
sorting systems running on large-scale supercomputers [5] or 
clusters [6]. Because many widely used sorting algorithms, such 
as quicksort, are not suitable for exploiting the SIMD instructions, 
multiway mergesort outperforms them by exploiting the SIMD 
instructions. In the vectorized mergesort, we can reduce the 
overhead of branch mispredictions by integrating a branchless 

sorting network implemented on vector registers into the standard 
comparison-based merge operation.  

Inoue et al. [1] introduced a vectorized multiway mergesort 
algorithm, and their implementation on Cell BE and PowerPC 
970 outperformed the bitonic mergesort implemented with SIMD 
instructions, the vendor’s optimized library, and STL’s sort 
function by more than 3 times when sorting 32-bit integers. 
Chhungani et al. [2] improved that vectorized mergesort by using 
a sorting network larger than the width of vector registers to 
increase instruction-level parallelism. Their implementation for 
32-bit integers on a quad-core Core2 processor using the 4-wide 
SSE instruction set exhibited better performance than other 
algorithms. Satish et al. [3] compared the vectorized mergesort 
against the radix sort and found that the radix sort outperformed 
the vectorized mergesort unless the key size was larger than 8 
bytes on both the latest CPUs and GPUs. Using a new analytic 
model, they also showed that the vectorized mergesort may 
outperform the radix sort on future processors due to its efficiency 
with SIMD instructions and its lower memory bandwidth 
requirements.  

It is possible to sort a large number of records using a sorting 
network, such as a bitonic mergesort or an odd-even mergesort 
[10], without combining them with the standard comparison-
based mergesort. These sorting networks can be implemented 
efficiently using the SIMD instructions on CPUs [11] or GPUs 
[12]. However, due to the larger computational complexity of 
these algorithms, they cannot compete with the performance of 
the vectorized mergesort for large amounts of data. 

This paper focuses on the performance of the vectorized 
multiway mergesort for sorting an array of structures instead of an 
integer array. To sort a large array of structures, there are two 
approaches. One approach [3] is to first pack the key and index of 
each record into a 64-bit integer value (e.g. 32-bit key in the 
higher bits and a 32-bit index in the lower bits), sort the key-index 
pairs as integer values, then rearrange the records based on the 
sorted key-index pairs. This key-index approach can efficiently 
exploit SIMD instructions because sorting is done for key-index 
pairs that are packed into integer values. However, the final 
rearranging phase may cause frequent cache and TLB misses 
because it accesses main memory at random. Especially when the 
record size is much smaller than the size of a cache line of the 
processor, the random accesses during the rearrangement phase 
use the memory bandwidth inefficiently because only a part of the 
data in each cache line are actually used. Also, the hardware 
prefetcher of the processor does not work for the random memory 
accesses. Another approach is to directly sort the records without 
generating the key-index pairs by including each entire record 
during the sorting. This direct approach is not negatively affected 
by the overhead of random memory accesses. However, it is 
difficult to efficiently implement a direct approach using SIMD 
instructions because the keys are not stored contiguously in 
memory; hence, we need to use costly gather operations to load 
the keys into the vector registers. Because we cannot read the 
entire records into a vector register to fully exploit the data 
parallelism of the SIMD instructions, we load the keys into a 
vector register using the gather operation and associate the keys 
with the record locations. After merging them in the vector 
registers, we copy the entire records based on the merged results. 
The overhead due to the gather operations offsets the benefits we 
can gain from the SIMD instructions: data parallelism and 
reduced branch mispredictions. Also, the direct approach does 
more memory copying because it moves entire records during the 
sorting, while the key-index approach only moves integers. Our 
SIMD- and cache-friendly approach in the vectorized multiway 
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mergesort resolves the problems these two approaches have in 
sorting structures. 

Kim et al. [7] used the key-index approach with the vectorized 
mergesort to efficiently execute the sort-merge join in a DBMS. 
They concluded that the sort-merge join will be better than the 
hash join on future processors with wider SIMD and limited 
memory bandwidth. Our algorithm can potentially improve the 
performance of their sort-merge join by avoiding the overhead of 
rearranging after the join operation if the join operation makes a 
large number of outputs. They also reported that the performance 
of the sort-merge join will decrease if a key and index pair cannot 
fit into a 64-bit value. Our approach can avoid this problem even 
for a large number of inputs because it does not encode the record 
ID directly, as we discuss in Section 3.2. 

We improved the performance of sorting by using only a part 
of the key of each record to increase the data parallelism within 
each SIMD instruction. Zhou et al. [13] and Inoue et al. [14] also 
used a similar idea to improve the performance of the nested-loop 
join and the set intersection (merge join). 

2.2 Vectorized Multiway Mergesort for Sorting Integers 

2.2.1 Mergesort with SIMD instructions 

To efficiently exploit SIMD instructions in a 2-way merge of 
integer values, a standard technique involves combining an SIMD 
sorting network with a comparison-based merge operation [1]. 
Figure 1(a) shows the vectorized merge algorithm for two vector 
integer arrays va and vb, assuming that the size of each vector 
register is four, i.e., 32-bit integers in a 128-bit SIMD architecture. 
In each iteration, this code executes a merge operation of two 
vector registers, vMin and vMax, by using a sorting network, such 
as an odd-even merge or a bitonic merge, implemented with the 
SIMD minimum and maximum instructions to avoid conditional 
branches (vector_merge method). Then the contents of vMin, 
the four smallest values, are stored in memory as output. The 
pointer is advanced for the input stream whose next value is 
smallest. Here, a[aPos*4] (b[bPos*4]) is the first element of 
the next vector integer to read from va (vb). Figure 1(b) shows 
the data flow of the bitonic merge operation as an example of an 
implementation of the vector_merge method. When one vector 
register can hold fewer values, i.e., 64-bit integers in a 128-bit 
SIMD architecture, we can combine multiple vector registers to 
emulate a longer vector register. Implementing a sorting network 
whose input size is larger than the actual vector register size is 
better for higher performance because it hides the latency of the 
instructions by overlapping multiple comparisons to improve 
instruction-level parallelism [2]. 

There are two benefits from SIMD instructions in mergesort. 
The obvious benefit of SIMD instructions is the data parallelism 
available in each SIMD instruction. Second, the use of SIMD 
instructions reduces the number of conditional branches to select 
an array for the next data, which are difficult to predict in the 
branch predictor of the processors for random input data; 
therefore, we can reduce the overhead of branch mispredictions. 

2.2.2 Multiway Mergesort 

Multiway mergesort [15] enhances the standard (2-way) 
mergesort. It repeats the multiway merge operation, which reads 
input records from more than two data streams and outputs the 
merged records into one output stream, to sort all the input 
records. Multiway mergesort reduces the number of merging 
stages from log2(N) to logk(N), where N is the number of records 
and k is the number of ways. Mergesort scans all the elements in 
each merging stage; thus, using larger k reduces both the number 

of stages and amount of required memory bandwidth. This lower 
memory bandwidth is the key for both higher single-thread 
performance and more scalability with an increasing number of 
cores.  

To reduce the required memory bandwidth to the system 
memory in multiway mergesort using the 2-way vectorized merge 
operation shown in Figure 1 as a building block, we execute 
multiway merge operations consisting of multiple 2-way merge 
operations in a streaming manner using small memory buffers (4 
KB each in our implementation) that can fit within the processor’s 
cache memory. Figure 2 illustrates how we implement the 

aPos = bPos = outPos = 0;
vMin = va[aPos++];
vMax = vb[bPos++];
while (aPos < aEnd && bPos < bEnd) {
/*  merge vMin and vMax */
vector_merge(vMin, vMax);

/*  store the smaller vector as output*/
vMergedArray[outPos++] = vMin;

/*  load next vector and advance pointer */
/*  a[aPos*4] is first element of va[aPos] */
/*  and b[bPos*4] is that of vb[bPos] */
if (a[aPos*4] < b[bPos*4])

vMin = va[aPos++];
else

vMin = vb[bPos++];
}

(a)

A0 A1 A2 A3 B0 B1 B2 B3

sorted sorted
vector register A vector register B

sortedvector register A vector register B

input

output A0 A1 A2 A3 B0 B1 B2 B3

< < < < <

comparison

MIN MAX

< < < <

< < < <

(b)

Figure 1. (a) Pseudocode of vectorized merge operation and (b) 
data flow of bitonic merge operation for two vector registers 
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Figure 2. Overview of multiway merge operation with SIMD. 
Number of ways k = 8 in this example. It is efficient with SIMD 
for integers, but not for large structures.  
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multiway merge operation in the cache memory. We use k = 8 (8-
way merge) as an example. One 8-way merge operation includes 
three levels of 2-way merge operations, as shown in the figure. 
We execute this merge operation in a single thread. The 
intermediate results are stored in small memory buffers that can fit 
in the cache memory; hence, we need to access the system 
memory only at the first and last levels. We first fill all the 
intermediate buffers. Then we execute last-level 2-way merge 
operations until one of the two input buffers for the last-level 
merge operation becomes empty. When an intermediate buffer 
becomes empty, we refill the intermediate buffer by going back to 
the previous level of the 2-way merging. After filling the buffer, 
we restart the merge operation with the new records. We repeat 
these operations until we reach the ends of all of the input streams. 

2.2.3 Combsort with SIMD for small blocks 

For the vectorized mergesort to operate efficiently, each input 
stream must have a sufficient number of records. Hence, we first 
use another sorting algorithm for sorting small blocks then 
execute the multiway merge to merge these sorted blocks.  

For the initial sorting of the small blocks, we can use a 
vectorized combsort [1]. The combsort [16] extends bubble sort 
by comparing non-adjacent elements, in contrast to the bubble 
sort, which compares only adjacent elements. Comparing values 
with larger separations drastically improves performance because 
each value moves toward its final position more quickly. The 
separation is divided by a number so called shrink factor (1.3 in 
our implementation) in each iteration until it becomes one. Then 
the final loop with the separation of one is repeated until all of the 
data is sorted. The average computational complexity of combsort 
approximates N log(N) [16]. The vectorized combsort can 
eliminate almost all the data-dependent conditional branches and 
hence does not suffer from the branch misprediction overhead. 
Due to its simplicity and smaller misprediction overhead, the 
vectorized combsort can exhibit higher performance than the 
vectorized multiway mergesort for sorting a small block. However, 
because of its poor memory-access locality the performance of the 
vectorized combsort degrades drastically for data that are too large 
for the processor’s cache memory. That is why the vectorized 
combsort is most suitable for sorting small blocks before 
executing the vectorized multiway mergesort.  

2.2.4 Parallelization with multiple threads 

By using the two algorithms, vectorized multiway (k-way) 
mergesort and vectorized combsort, we can sort all the data using 
p threads, where p is the number of threads, in two phases:  
(1) Divide all the data to be sorted into p blocks and assign one 
thread for each block to sort in parallel using multiple threads. 
Each thread independently executes the vectorized mergesort and 
switches to the vectorized combsort when each input sequence 
becomes smaller than the predefined size (b records).  
(2) Merge the p sorted blocks with the vectorized k-way mergesort 
using multiple threads.  

In this first phase, each thread can run without synchronizing 
with the other threads. For parallelizing the second phase, 
multiple threads must cooperate on one multiway merge operation 
to fully exploit thread-level parallelism because the number of 
blocks becomes smaller than the number of threads. We divide 
each input stream into p sub-streams by using binary search to 
parallelize one merge operation. Then the i-th thread merges with 
the i-th sub-streams from each of the k input streams. Additionally, 
it rebalances the data among threads if the data size for each 

thread is not balanced [18]. After dividing the input streams into 
sub-streams, threads run without synchronizing with each other. 
Because the block size b is a constant independent from N, the 
entire computational complexity is determined by the complexity 
of the vectorized mergesort, which is O(N log(N)), even in the 
worst case. 

3. OUR APPROACH FOR SORTING 
STRUCTURES 

As described in Section 2, the two existing approaches to sort an 
array of structures have different drawbacks; the key-index 
approach is not cache friendly and the direct approach is not 
SIMD friendly. In this paper, we propose an approach with a 
vectorized multiway mergesort that is both SIMD and cache 
friendly. In this section, we assume that the size of each record is 
fixed. We initially assume that the size of each key is 32 bits 
before we consider how to handle larger keys. 

3.1 SIMD- and Cache-Friendly Multiway Merge Operation 

To avoid costly rearrangements of the records, we use a hybrid 
approach combining the direct and key-index approaches. Figure 
2 shows an overview of the multiway merge operation in the 
direct approach when a record to be sorted is a structure. We 
extend this multiway merge in Figure 2 to make it more efficient 
with SIMD instructions. 

The problem with the multiway merge in Figure 2 for merging 
structures is that it requires gather operations to read the keys 
from multiple records into vector registers because each record 
includes a payload, a part that is not used for sorting, in addition 
to the sorting key. The SIMD instructions of a modern processor 
perform best when the data are loaded from and stored to 
contiguous memory.  

Figure 3 shows an overview of the SIMD- and cache-friendly 
multiway merge operation of our approach. To make the overhead 
of the gather operation as small as possible, we encode the key 
and streamID into integer values (intermediate integers) at the 
beginning of the multiway merge operation, i.e. when the 2-way 
merge operations in the first level read the records from main 
memory, and merge them by using the SIMD instructions. At the 
end of the multiway merge, we rearrange the records based on the 
merged intermediate integers. In this step, we sequentially read 

processor’s cache memory

system memory
input streams

decode streamID
and copy records

stream
0

output stream

2-way
merge

2-way
merge

2-way
merge

extract key and encode {key, streamID} pair into an integer value  

2-way
merge

2-way
merge

2-way
merge
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Figure 3. Overview of SIMD- and cache- friendly multiway 
merge operation of our approach. k = 8 in this example. 
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records from k input streams and sequentially write them into one 
merged output stream. This avoids excessive cache and TLB 
misses due to random accesses to the system memory if k is not 
too large. Because the merge operation is executed for 
intermediate integers, we do not need gather operations to read 
the keys in all the levels except for the first level, which reads the 
records from the system memory and encodes them into the 
intermediate integers. Figure 4 compares the three approaches. 
Comparing our approach against the key-index approach, we 
rearrange records multiple times instead of only once to avoid 
excess cache misses in the rearranging phase in trade for larger 
memory copy overheads. When the record size is smaller than the 
cache line size, the cost of random memory accesses exceeds the 
cost of additional (sequential) memory copy of records with our 
approach. 

With our approach, the number of ways (k) is an important 
parameter to achieve high performance. Because we need to 
execute the key extraction at the beginning of the multiway merge 
and copy the entire records from an input stream to the output 
stream at the end of multiway merge operation, a larger k reduces 
the overhead for extracting keys and copying records. When k 
becomes too large, however, copying the records at the end of the 
multiway merge operation may potentially cause many cache and 
TLB misses. Hence k must be smaller than the number of cache or 
TLB entries to avoid this problem. Also a larger k makes the total 
size of the intermediate buffers used for the multiway merge 
operation larger. Thus larger k may also increase the cache misses 
during the merge operation. 

The key-index approach is almost equivalent to our approach 
with k = N. In another extreme case, our approach becomes almost 
identical to the direct approach when k = 2, i.e., rearranging 
records in every 2-way merge operation. Hence, our approach is a 
generalization of the two existing approaches parameterized by 
parameter k, but we found that the best value for k is between the 
two extreme values corresponding to these two approaches. In our 
implementation, we used k = 32 = 25. This means each multiway 
merge operation includes five levels, and each level executes a 2-
way vectorized merge operation. We can reduce the overhead for 
extracting keys (including the cost of the gather operations) and 
copying the objects to only 1/5 compared to the direct approach. 
Using the large k reduces these costs further, but the increased 
cache misses result in a net performance decline, as shown in the 
performance evaluations. Table 1 summarizes the three 
approaches.  

3.2 Key and StreamID Encoding 

With our approach, we encode each pair consisting of a key and 
its streamID (in the range of 0 to k-1) into intermediate integer 
values instead of a key and index pair (in the range of 0 to N-1) 
used in the key-index approach. The k is typically much smaller 
than N. We only need to encode the streamID instead of the index 

into the intermediate integer because the records within each input 
stream are already sorted; therefore, they cannot be reversed in the 
final output stream. We can guarantee the merged records are 
sorted by maintaining a pointer to the next records to copy for 
each input stream and incrementing a stream’s pointer when we 
copy a record from that stream to the output. We use higher bits to 
encode the keys to sort the integers based on the encoded keys 
and encode the streamIDs in the lower bits. 

An important advantage of our approach over the existing key-
index approach beyond performance is that our approach can sort 
larger arrays than the key-index approach. With the current key-
index approach, only 232 (= 4 G) records can be sorted because we 
only have 32 bits to encode the index when the key is 32 bits and 
the intermediate integer is 64 bits. With our approach, there is no 
limit on the total number of records because we only encode the 
streamID, which is a configurable parameter independent of the 
total number of records, into the intermediate integer values. We 
are limited by the number of ways k instead of the number of 
records N. However, this is not a problem because k must be 
smaller than the number of cache and TLB entries to achieve good 
performance and hence k cannot be too large. We used k = 32 in 
our evaluation and only 5 bits were needed for encoding the 
streamID. This means we can encode a larger key, up to 59 (= 64 
– 5) bits, and the streamID into each 64-bit integer. 

3.3 Optimization Techniques in Vectorized Merge Operation 

In this section we describe some optimization techniques to 
improve the efficiency of the SIMD instructions and the overall 
execution performance of our approach from Section 3.2. 

3.3.1 Increasing data parallelism 

As discussed in Section 3.2, our approach has an advantage over 
the existing key-index approach in the size of the ID (streamID or 
index) encoded in the intermediate integers. By exploiting this 
advantage, we can increase the data parallelism within each SIMD 

Table 1. Summary of three approaches with multiway mergesort 

 data type to sort number of memory copies  
for each record memory access pattern 

Key-index approach integer that encodes {key and 
index} pair 

only once – to move each record at end 
of sorting  

random access; not cache friendly, especially 
when each record is smaller than cache line 

Our approach integer that encodes {key and 
streamID} pair 

logk(N) times – to move each record at 
end of each k-way multiway merge stage sequential access if k is not too large 

Direct approach entire record (structure); 
not SIMD friendly 

log2(N) times – to move each record at 
each 2-way merge stage  sequential access 

· N: number of records to sort,  k: number of ways used in multiway merge operation 
· one additional copy per record may be necessary to copy back the records from an temporary array to the destination 
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instruction by encoding a key-streamID pair into a 32-bit integer 
instead of a 64-bit integer. When we use 128-bit vector registers 
(such as the SSE instruction set we used in our tests), we can 
execute 4 operations at one time for 32-bit integers but only 2 
operations for 64-bit integers. Hence, using 32-bit integers during 
the vectorized merge operation shown in Figure 3 boosts the 
performance over the same vectorized merge operation using 64-
bit integers by processing a larger number of elements at one time, 
yielding shorter path lengths and reduced branch misprediction 
overhead. 

When encoding the key-streamID pair into a 32-bit integer, we 
can only include a part of the 32-bit key. In the current 
implementation with k = 32, we can encode 27 bits out of the 32-
bit key. If the partial keys of multiple records have the same value 
while the entire keys are not the same (partial-key conflict), the 
order of the records with the conflicting partial key may be 
incorrect in the merged output stream. Hence, we need to confirm 
that the records in the merged output stream are correct by using 
the entire key. We merge the records based on the partial keys 
using SIMD instructions then check and possibly adjust the order 
of the records using the entire keys as we rearrange the records in 
the final phase of the multiway merge. We execute this check as 
an insertion sort using scalar (non-SIMD) comparisons. 

In this partial-key technique, an important question is how best 
to select the partial key from the entire key. The most naive way 
to select the bits to use in sorting from the key is to extract the 
most significant bits of the key. However, this naive selection 
might cause significant performance degradation. One obvious 
pathological example would be if all the partial keys from all the 
records have the same value, though the other bits differ, i.e. the 
keys are actually 5-bit integers stored in the 32-bit key field of the 
records. To avoid such cases and maximize performance, we 
encode the key in the following way: 
1) identify the minimum and maximum key values (min and 

max) in the records to merge by checking the first and last 
records of each input stream, 

2) calculate key_pos = count_leading_zeros(max - min), and 
3) encode the key (key) and streamID (sid) of each record into an 

intermediate integer ii as ii = ((((key - min) << key_pos) & 
key_mask) | sid). 
For example, if max = 0x1000000F and min = 0x10000000, 

then the naive partial key selection, which just selects the most 
significant bits, does not work well for sorting because all the 
keys share the same value in the most significant part. However, 
we can obtain good performance by selecting better partial keys; 
key_pos = count_leading_zeros(0xF) = 28; hence, for example, 
key 0x10000008 is encoded as ii = ((0x8 << 28) | sid). 

Our encoding scheme can reduce the frequency of the partial-
key conflicts, but it cannot totally prevent them. Therefore, when 
we use 32-bit integers during the vectorized merge operation to 
increase data parallelism, we still need to confirm that the 
complete records in the merged output stream are correct by using 
the entire key. We do this check when we copy the records from 
an input stream to the output stream with a scalar comparison. 
When we output a record, we compare the entire key of that 
record against the key of the previous record. If the two records 
are not in the correct order, we swap the two elements and repeat 
the comparison; thus, finding the correct position as an insertion 
sort. Our implementation ensures that the sorted results are not 
only sorted but also stable, i.e., the order of records having the 
same key is not altered by sorting. Because we do this scalar 
check only at the end of each multiway merge operation, the 
overhead due to this check is quite small compared to the benefits 

of using the 4-wide SIMD instructions during the merge operation, 
unless the partial-key conflicts are quite frequent. When the 
number of records to merge in one multiway merge operation 
becomes too large, the frequency of the partial-key conflicts could 
potentially increase too much. To avoid such a case, we use 4-
wide SIMD only when the total number of records to merge (i.e. 
the total number of records included in all the input streams) is 
small enough to justify the overhead of the check. We empirically 
determine the threshold for 4-wide SIMD in Section 4. 

3.3.2 Sorting network in vector registers 

The vector merge operation in vector registers is a key to the 
vectorized mergesort. The merge operations in the vector registers 
can be implemented without conditional branches by using the 
vector min/max instructions and vector permute instructions. 

For merging the 32-bit integer values in two vector registers 
with 128-bit SIMD instructions, Inoue et al. [1] used an odd-even 
merge on PowerPC and Cell BE processors. On Intel processors, 
Chhugani et al. [2] implemented a bitonic merge operation 
because the permute instruction of the Intel SSE SIMD instruction 
is not flexible enough to implement odd-even merge efficiently. 
Other implementations for Intel also use the bitonic merge.  

In this work, we used a much simpler data flow suitable for the 
instruction sets with limited permutation capabilities, such as the 
SSE. Our data flow can be implemented with only the min, max, 
and rotate instructions to merge 32-bit integer values in two 
vector registers, as shown in Figure 5 (merge_4x4_32bit function). 
Although it uses more comparisons than the bitonic merge (shown 

merge_4x4_32bit(__m128i &vA,   __m128i &vB,       // input 1 & 2
__m128i &vMin, __m128i &vMax) {   // output

__m128i vTmp; // temporary register
vTmp = _mm_min_epu32(vA, vB);
vMax = _mm_max_epu32(vA, vB);
vTmp = _mm_alignr_epi8(vTmp, vTmp, 4);
vMin = _mm_min_epu32(vTmp, vMax);
vMax = _mm_max_epu32(vTmp, vMax);
vTmp = _mm_alignr_epi8(vMin, vMin, 4);
vMin = _mm_min_epu32(vTmp, vMax);
vMax = _mm_max_epu32(vTmp, vMax);
vTmp = _mm_alignr_epi8(vMin, vMin, 4);
vMin = _mm_min_epu32(vTmp, vMax);
vMax = _mm_max_epu32(vTmp, vMax);
vMin = _mm_alignr_epi8(vMin, vMin, 4);

}

merge_8x8_32bit(__m128i &vA0,   __m128i &vA1,     // input 1
__m128i &vB0,   __m128i &vB1,     // input 2
__m128i &vMin0, __m128i &vMin1,   // output 
__m128i &vMax0, __m128i &vMax1) { // output

// 1st step
merge_4x4_32bit(vA1,vB1,vMin1,vMax1);
merge_4x4_32bit(vA0,vB0,vMin0,vMax0);

// 2nd step
merge_4x4_32bit(vMax0,vMin1,vMin1,vMax0);

}

(a)

A0 A1 A2 A3

sorted sorted
vector register A vector register B

sortedvector register A vector register B

input

output A0 A1 A2 A3 B0 B1 B2 B3

< < < <

< < <

<

< <

(b)

no operation

<

comparison

MIN MAX

B0 B1 B2 B3

Figure 5. (a) Pseudo code of in-register vector merge for 32-bit 
integers (b) data flow of merge_4x4_32bit method and (c)  

1279



in Figure 1) or the odd-even merge, it slightly outperformed the 
bitonic merge operation previously used on the Intel platform by 
avoiding the costly permute instructions. To increase data 
parallelism, we use a larger sorting network. We build this 
merging kernel by executing the odd-even merge at the vector 
register level using the smaller 4x4 merging kernel as the building 
block (merge_8x8_32bit in Figure 5). As discussed in Section 
2.2.1, using inputs larger than the hardware vector register size is 
important to improve instruction-level parallelism, which leads to 
higher throughput. Our data flow is much easier to implement 
compared to the complicated data flow of the bitonic merge, but it 
exhibited better performances on Xeon with SSE. 

For merging 64-bit integer values, we used an odd-even merge 
operation because the permutation instructions of the SSE are 
sufficiently flexible to efficiently implement the odd-even merge 
for 64-bit integer values, and the odd-even merge requires fewer 
comparisons compared to the bitonic merge. Our in-register merge 
operation for the 64-bit integers also takes two input data streams, 
each of which consists of four integers stored in two vector 
registers. There is some overhead for the in-register merge 
operations for 64-bit integers using SSE because the SSE does not 
support min and max instructions for 64-bit integers, therefore, we 
need to use one vector compare instruction and two vector blend 
instructions instead of a pair of vector min and max instructions. 
To reduce this overhead, we use the min and max instructions for 
double precision floating point values by encoding each integer 
value into the fraction part (52 bits) of the IEEE floating point 
format. Because our approach encodes a small streamID instead 
of the index of each record, the fraction part is large enough to 
encode the 32-bit key and streamID.  

3.4 Vectorized Combsort for Structures 

The overall algorithm to sort structures with our vectorized 
mergesort is similar to the existing sorting scheme for sorting 
integer values described in Section 2.2. We use the vectorized 
combsort when the size of one sorted sequence is small enough to 
fit within the processor’s cache memory.  

To exploit SIMD instructions efficiently in the combsort, we 
use a key-index pair approach. Because we use the vectorized 
combsort only for small blocks (of b records) that can fit within 
the processor’s cache memory, the random accesses to reorder 
records after sorting are not costly. We also use the 4-wide SIMD 
instructions by encoding the key and index (within each block to 
be sorted) into 32-bit integers instead of using 2-wide SIMD 
instructions for 64-bit integer values. The overall technique to 
encode key-index pairs into 32-bit integer values is almost the 
same as that used for the vectorized mergesort (described in 
Section 3.3.1). For example, if the size of a block is 1,024 records, 
we use 10 bits for the index and 22 bits for the (partial) key. 

We first extract and encode the key-index pairs from the 
records to sort into a temporary array. We implemented this part 
with scalar instructions because the SIMD instructions did not 
exhibit any performance improvement over the scalar 
implementation. Then we sort the 32-bit integers with the 
vectorized combsort implemented with SSE SIMD instructions. 
Finally, we rearrange the records based on the sorted key-index 
pairs. Because the sorting uses only a part of the key to increase 
data parallelism, we must check that the records are in the correct 
order by using the entire key, as described in Section 3.3.1.  

3.5 Sorting Records with Larger Keys 

Up to now, we have been assuming that the size of a key is 32 bits. 
Even when the size of a key is larger than 32 bits, such as a 64-bit 
integer, we can apply almost the same technique described for 32-

bit keys. We have already described the techniques to use only a 
part of the 32-bit keys to exploit the 4-wide SIMD instructions for 
32-bit data. The same technique can be used to sort records using 
2-wide or 4-wide SIMD instructions by using only a part of the 
64-bit keys. When sorting records with 64-bit or larger keys, we 
confirm that the sorted results from the partial keys are correct by 
using the entire key at the end of each multiway merge operation, 
even when we use 64-bit intermediate integers in the multiway 
merge operation. If the partial-key conflicts are frequent even 
when we use 64-bit intermediate integers, we can do the sorting 
hierarchically as in the MSB-radix sort. When we find too many 
records with the same value in the partial keys, we can execute 
our sorting algorithm for the records having the same partial key 
using the next few bytes of the key as the partial key for sorting. 

4. EVALUATIONS 
We implemented our new algorithm using SSE instructions and 
evaluated it on an Intel Xeon processor. We implemented the 
program in C++ using SSE intrinsics. The system used for our 
evaluation was equipped with two 2.9-GHz Xeon E5-2690 
(SandyBridge-EP) processors with 96 GB of system memory. 
Thus, the system had 16 cores. We do not use additional hardware 
threads provided by the 2-way SMT (Hyper Threading) of the 
processor in the experiments. The system ran under Redhat 
Enterprise Linux 6.4. We compiled all the programs as 64-bit 
binaries using gcc-4.8.2 with the –O3 option. We disabled 
dynamic frequency scaling (speed step and turbo boost) for more 
stable results. To fully utilize the main memory bandwidth 
available in the system, we executed all the programs with the 
interleave policy for NUMA memory allocation by using numactl 
--interleave=all command. Using the local allocation policy 
resulted in better performance with a small number of cores, 
where the main memory bandwidth did not limit the performance, 
but the interleave policy resulted in a higher peak performance 
with a larger number of cores when the performance was limited 
by the system memory bandwidth. We did not use the large pages 
in any of the experiments. The multiway mergesort (with all three 
approaches) and the radix sort use a temporary memory area of 
the same size as the data. The current implementation assumes a 
power of two in N and p. 

In the evaluations, we used our implementations of the 
vectorized multiway mergesort in our approach described in 
Section 3 and also the two existing approaches, the key-index and 
direct approaches. We implemented these three approaches with 
and without SIMD instructions. As already discussed, the direct 
approach is not SIMD-friendly; hence, we did not use SIMD 
instructions for the multiway mergesort, but we used the 
vectorized combsort for the initial sorting of the small blocks for 
fair comparisons. We also implemented a cache-conscious radix 
sort, which combines the MSB-radix sort and LSB-radix sort to 
efficiently exploit the cache memory of the processor by 
improving the memory-access locality [17]. We also applied the 
local-buffer-based optimization proposed by Satish et al. [3] to 
reduce the cache misses. These two optimization techniques 
exhibited more than 3x performance improvement over the naive 
implementation of the radix sort, and we believe that this 
implementation is reasonably fast to represent the performance of 
the state-of-the-art radix sort implementations. We used 8 bits as 
the digit size in the radix sort unless we explicitly show another 
digit size. 

We also graphed the performance of the parallel versions of 
the std::stable_sort function and std::sort function in the STL 
delivered with gcc. To enable the parallel version of the STL sort 
functions, we defined _GLIBCXX_PARALLEL and included the 
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<parallel/algorithm> header file instead of the standard 
<algorithm> header file in the source code. Among these tested 
algorithms, only the std::sort, which implements a variant of 
quicksort [20], is an unstable sorting algorithm. 

4.1 Performance Comparisons 

Figure 6 compares the performance of our approach with the 
multiway mergesort against two existing approaches, the key-
index and direct approaches, with and without using SIMD 
instructions for sorting 512M 16-byte records (8 GB total) or 
128M 48-byte records (6 GB total) with a 32-bit random integer 
key using only one thread. The figure also shows the performance 
of the radix sort and STL’s sort functions.  

Our approach implemented with SIMD showed the highest 
performance among the three approaches with the multiway 
mergesort. The performances of the three approaches for 16-byte 
records were almost comparable when implemented without 
SIMD, but our approach had the largest performance 
improvement of 3.0x from the use of SIMD instructions. For the 
other two approaches, the gains from the SIMD were 1.6x for the 
key-index approach and 1.4x for the direct approach. As a result 
of efficient SIMD exploitation, our approach outperformed the 
key-index approach by 2.1x and the direct approach by 2.3x when 
we used SIMD. As already discussed, the sorting part of the key-
index approach can benefit from the SIMD instructions, but the 
final rearranging phase did not benefit from SIMD because it only 
moves records within system memory, so its performance is 

limited by the memory system performance rather than 
computational performance. The use of SIMD also did not help 
the performance of the direct approach in the mergesort. We 
actually implemented the SIMD version of the mergesort with a 
direct approach, but the performance of the SIMD version was 
slower than the non-SIMD version due to the overhead of the 
noncontiguous memory accesses, so we used the non-SIMD 
version in our evaluations. The performance gain in the direct 
approach shown in the figure came from the use of vectorized 
combsort for the initial sorting for small blocks. We used 
std::stable_sort when we disabled SIMD, instead of using our 
vectorized combsort. Our approach also outperformed the other 
two approaches for 48-byte records. 

Comparing the performance of the vectorized multiway 
mergesort with our approach against the other algorithms, our 
approach achieved 3.3x higher performance than the standard 
stable_sort function included in STL. The performance of the 
cache-conscious radix sort was slightly better than our algorithm 
for 16-byte records (by 11.9%) and slower for 48-byte records (by 
61.7%) in this configuration. The radix sort achieved comparable 
or sometimes better performance than our algorithm for sorting 
16-byte or smaller records. However, its performance degraded 
more compared to the multiway mergesort when the records were 
larger.  

Figure 7 shows the performance scalability with an increasing 
number of cores for each algorithm when sorting 512M of 16-byte 
records or 128M of 48-byte records. Our approach yielded the 
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best performance among the three approaches with the multiway 
mergesort regardless of the number of cores used. The 
performance scalability was limited when using 16 cores, mostly 
due to the limited system memory bandwidth. As can be observed 
in Figure 7, using larger record sizes resulted in lower scalability 
because sorting an array of larger records requires more system 
memory bandwidth to copy the records in the system memory. 
Our algorithm achieved slightly better scaling than the radix sort 
when sorting 16-byte records; hence, it achieved better 
performance when using 16 cores. From these results, the 
vectorized mergesort with our approach can compete with 
optimized radix sort implementations even when sorting small 
records and can outperform the radix sort when sorting large 
records or sorting on multiple cores. 

Figure 8 shows performance with an increasing numbers of 
16-byte records (N) sorted on 1 core. Of the tested algorithms, 
only radix sort had O(N) computational complexity while the 
other algorithms had an average computational complexity of 
O(N log(N)). However, we did not observe significant differences 
in the scalability among the algorithms. For the radix sort, the 
number of cache misses increased with increasing number of 
records to be sorted, and the memory performance limited the 
scalability of the radix sort. The performance of the radix sort was 
also sensitive to digit-size tuning. The current digit size of 8 bits 
was selected to achieve best performance for a large amount of 
data, but the digit size of 9 bits resulted in better performance for 
sorting small datasets. 

Figure 9 compares the execution time for sorting 16M records 
of various record sizes on 1 core. For the radix sort, we selected 
the better number for each data point from performances with two 
different digit size configurations (8 bits or 9 bits) because neither 
configuration resulted in reasonable performance for all data 
points. The performance advantage of our approach over the key-
index approach became smaller with larger record sizes. This is 
because, as shown in Table 1, our approach moves all of the 
records at the end of each multiway merge operation and hence 
multiple times during the sorting process, while the key-index 
approach moves the records only once in the rearranging phase at 
the end of sorting. When the record size was large, the cost of 
moving the records offset the performance advantage of our 
approach, especially when the record size exceeded the size of a 
cache line, 64 bytes on Xeon. Rearranging records smaller than 
the cache line size wastes memory bandwidth because only a 
small portion of the transferred data was actually used, and the 
unused data wasted the memory bandwidth. We believe the 
processors with larger cache line sizes are affected by larger 
overhead due to the rearranging; hence, our approach may have a 
larger performance advantage. For sorting 8-byte records, our 
approach outperformed that for simply sorting 64-bit integers 
using 2-wide SIMD instructions by efficiently exploiting 4-wide 
SIMD instructions instead of 2-wide SIMD instructions.  

Comparing the vectorized multiway mergesort with our 
approach against the radix sort, the vectorized multiway mergesort 
outperformed the radix sort when the record size was larger than 
16 bytes, while the two algorithms achieved almost comparable 
performances for smaller records. The radix sort required more 
memory bandwidth than the vectorized multiway mergesort due to 
its random memory accesses for reorder records. Hence, the radix 
sort did not perform well with larger records because a larger 
record required more memory bandwidth. These performance 
improvements with the vectorized multiway mergesort and larger 
records are consistent with previous studies [3].  

To confirm that the rearranging really matters for the overall 
performance of the key-index approach, Figure 10 shows a 
breakdown of the execution times for the key-index approach in 

three phases: key extraction, sorting, and rearranging, when 
sorting 512M 16-byte records on 1 and 16 cores. On one core, 
about 32% of the total execution time was spent for extracting 
keys and rearranging records. As the number of cores increased, 
the sorting phase scaled very well, increasing to 15.2x with 16 
cores. However, the rearranging and key extraction phases scaled 
rather poorly, with these two phases only reaching 11.3x with 16 
cores. This is because these two phases are memory intensive, and 
the performance bottleneck was the system memory performance 
rather than the core computing capabilities. As a result, the key 
extraction and rearranging consumed about 39% of the execution 
time on 16 cores. This means that the key-index approach is 
negatively affected by the overhead of key extraction and record 
rearranging, especially when using many cores. We observed that 
the rearranging phase of the key-index approach alone caused 
more L2 cache misses than the total cache misses for our approach 
or the direct approach because the rearranging phase accesses the 
records randomly based on the sorted results. Due to the memory 
bus contentions of the frequent cache misses, the rearranging 
phase did not scale well with an increasing number of cores. 

To show the effect of the input data distribution, Figure 11 
compares the performance of algorithms with different numbers of 
random key bits. For example, key is initialized by rand32() & 

0.01

0.1

1

10

100

1M 2M 4M 8M 16M 32M 64M 128M 256M 512M

ex
ec

ut
io

n 
tim

e 
(s

ec
)

# records

Our approach
Key-index approach
Direct approach
Radix sort
STL stable_sort
STL sort (unstable)

lo
w

er
 is

  f
as

te
r

Figure 8. Performance scalability with increasing number of 16-
byte records on 1 core. Three approaches with multiway 
mergesort are implemented with SIMD. 

0

1

2

3

4

5

6

7

8 16 24 32 48 64 96 128 192 256

ex
ec

ut
in

 ti
m

e 
(s

ec
)

record size (byte)

Our approach
Key-index approach
Direct approach
Radix sort
STL stable_sort
STL sort (unstable)

lo
w

er
 is

  f
as

te
r

Figure 9. Execution times for sorting 16M records with various 
record sizes on 1 core. For radix sort, we selected better number 
for each data point from two different digit size configurations (8 
or 9 bits). Three approaches in multiway mergesort are 
implemented with SIMD. 

1282



0xFF when the number of bits was 8 bits. In the figure, 0 bits 
(leftmost) means that all the input records had the same key. 
When the number of key bits reduced (lower entropy), the 
performances of the direct approach and STL sort functions 
improved significantly because of the reduced branch 
misprediction overheads. The vectorized mergesort replaces many 
of the hard-to-predict conditional branches by the SIMD min and 
max instructions and hence the performance of the two algorithms 
based on the vectorized mergesort, our approach and key-index 
approach, were not significantly improved with the reduced 
entropy.  

To show that our approach can improve sorting performance in 
a wider range of applications, we evaluated its performance for 
sorting records with string keys. Figure 12 shows the performance 
for sorting fixed-size (16 bytes or 100 bytes) records with string 
keys. By following the dataset configuration of the Sort 
Benchmark (http://sortbenchmark.org/), which is widely used in 
database research projects (such as [6, 12]), we used 10-byte 
random ASCII string key and sorted the records into the order of 
the memcmp function (case-sensitive sorting) or strcasecmp 
function (case-insensitive sorting). To initialize the keys, we used 
the method from the input generator of the Sort Benchmark. For 
both record sizes, our approach exhibited the best performance 
among the tested algorithms for sorting with the string keys. 
Because comparing the string keys is more costly than comparing 
the simple integer keys, there were slight degradations in the 
performance for all algorithms. However, the degradations were 

smaller for our approach and the key-index approach compared to 
the direct approach or STL algorithms because most of the 
comparisons were done in an encoded form (intermediate 
integers) for our approach and key-index approach. The 
performance of the radix sort also degraded due to the larger key 
size. As already discussed for integer key sorting, the performance 
advantage of our algorithm was smaller for larger record size. 
However, there was about a 30% performance advantage over the 
key-index approach for sorting 100-byte records, which is the 
default record size for the Sort Benchmark. 

Figure 13 compares the performance to sort variable-sized 
records. In each record, the first two bytes show the length of the 
record and the other bytes are random ASCII string keys. The 
sizes of records are randomly distributed within the range of 12 
(i.e. 10-byte string) to 20 bytes or 12 to 84 bytes. Hence, the 
average sizes are 16 and 48 bytes respectively. We sort the 
records in case-insensitive order. Although additional overhead to 
access variable-sized records attenuated the benefit of our 
approach, it achieved the best performance among the four tested 
algorithms. The basic idea of our approach works for sorting 
variable-sized records without changes. Parallelizing the 
vectorized multiway mergesort for variable-sized records using 
multiple threads is less efficient compared to sorting for the fixed-
sized records because we cannot depend on the binary search for 
variable-sized records without preprocessing. The current 
implementations for variable-sized records do not support parallel 
sorting. Also, there are many algorithms specialized for sorting 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 core 16 cores

ex
ec

ut
io

n 
tim

e 
br

ea
kd

ow
n

rearranging sorting key extraction

total 
execution time 59.3 sec 4.3 sec

scaled 
almost 
linearly

scaled
poorly

scaled
poorly

Figure 10. Execution time breakdowns for key-index approach 
(implemented with SIMD) into key extraction, sorting, and 
rearranging when sorting 512M 16-byte records on 1 and 16 
cores. 

0

20

40

60

80

100

120

0 bits 4 bits 8 bits 12 bits 16 bits 20 bits 24 bits 28 bits 32 bits

ex
ec

ut
io

n 
tim

e 
(s

ec
)

number of  key bits 

Our approach Key-index approach
Direct approach Radix sort
STL stable_sort STL sort (unstable)

lo
w

er
  is

  f
as

te
r

(constant)

Figure 11. Execution times for sorting 512M 16-byte records 
with different random key bits. For 8-bit case, keys were 
initialized with rand32() & 0xFF. Three approaches withmultiway 
mergesort were implemented with SIMD. 

0

5

10

15

20

25

30

35

40

Our 
approach

Key-index 
approach

Direct 
approach

Radix sort STL
stable_sort

STL sort
(unstable)

ex
ec

ut
io

n 
tim

e 
(s

ec
)

32-bit integer key
10-byte string key (case sensitive)
10-byte string key (case insensitive)

0

20

40

60

80

100

120

140

160

Our 
approach

Key-index 
approach

Direct 
approach

Radix sort STL
stable_sort

STL sort
(unstable)

ex
ec

ut
io

n 
tim

e 
(s

ec
)

32-bit integer key
10-byte string key (case sensitive)
10-byte string key (case insensitive)

sh
or

te
r  

is
  f

as
te

r

SIMD multiway mergesort SIMD multiway mergesort

sh
or

te
r  

is
  f

as
te

r

512M 16-byte records 64M 100-byte records

Figure 12. Execution time on 1 core for sorting 512M 16-byte records and 64M 100-byte records with 32-bit integer keys or 10-byte 
ASCII string keys. We evaluated both case-sensitive sorting and case-insensitive sorting with string keys. 

1283



(variable-sized) strings. For example, Burstsort [19] uses a trie-
based data structure to represent string records for efficient 
comparisons and better memory-access locality. We did not use 
such advanced optimizations specialized for string sorting. How 
to integrate such techniques into our algorithm is an interesting 
topic for further performance improvements with sorting of the 
variable-length strings.  

4.2 Effect of Parameters 

In this section, we study in detail the effects of the three most 
important parameters in our approach implemented with SIMD 
instructions: the number of ways (k) in the vectorized multiway 
mergesort, the block size for the initial sorting (b) with the 
combsort, and the threshold to use the 4-wide SIMD comparison. 

Figure 14 shows how k affects the performance of sorting 
512M 16-byte records using 1 thread. We used 64 records as b 
and did not use the 4-wide SIMD comparisons. The x-axis is the k 
from 2 ways (standard binary mergesort) to 2048 ways. We found 
that k = 16 (16-way merge) to 128 (128-way merge) resulted in 
the best performance. In this range of k, k = 64 resulted in the best 
single-thread performance and k = 16 resulted in the best 
performance with 16 cores, but the performance differences were 
not significant. As already discussed, using a larger k reduced the 
overhead of copying records because our algorithm copies all of 
the records for each multiway merge operation. However, using a 
larger k requires more intermediate memory buffers, as shown in 
Figure 3, and this may result in more cache misses. Due to the net 
benefit of the reduced overhead of memory copies and the cost of 
the increased L1 cache misses, using k larger than 128 caused 
performance degradation. From these results, we used k = 32. 

Figure 15 shows the single-thread performances with various 
block sizes for the initial sorting. We used k = 32 and did not use 
the 4-wide SIMD comparisons. To confirm that using the 
vectorized combsort for the initial sorting matters for the overall 
performance of sorting large arrays, we also show the 
performance when we use the STL’s std::stable_sort function for 
the initial sorting. When using the vectorized combsort for the 
initial sorting, the overall performance was best with b = 16,384 
records. When b became larger than 65,536 records, performance 
significantly degraded. This is because the combsort has poor 
memory-access locality and we need to keep all the data within 
the processor’s cache memory (the 256-KB L2 cache in this case). 
When b was larger than 65,536 records, the intermediate 32-bit 
integers (256 KB) could not fit within the L2 cache memory. 
Another reason of poor performance with the vectorized combsort 
with excessively large b is the frequent partial-key conflicts. The 
frequency of the partial-key conflicts remained less than 1% of the 
total number of records sorted with the combsort for b = 8,192 
while it was more than 10% for b larger than 32,768. From these 
results, we used b = 8,192 for all of the evaluations because the 
processor supports two hardware threads that share the L2 cache 
on one core by using Hyper Threading and the effective size of 
the L2 cache per thread is halved when we use both hardware 
threads. The performance with the standard STL function for the 
initial sorting, which implements non-SIMD multiway mergesort, 
was best when b = 512 records. However, the best performance 
with the STL was about 1.8x slower than when we used the 
vectorized combsort for the initial sorting. This means that the 
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algorithm for the initial sorting is quite important for overall 
performance even when sorting large arrays. 

Figure 16 shows how the use of 4-wide SIMD in the multiway 
mergesort improved performance. We used k = 32 and b = 8,192. 
The x-axis shows the threshold to switch from 2-wide SIMD to 4-
wide SIMD. The leftmost point is performance when we used 2-
wide SIMD for all the mergesort stages and did not use the 4-wide 
SIMD. We observed that performance was best with 8M records 
as the threshold. The best performance was about 11.8% better 
than that without optimization (the leftmost point). In the 
evaluations discussed in Section 4.1, we used 8M records as the 
threshold for this optimization; hence, the first two stages of the 
multiway merge were executed using 4-wide SIMD instructions. 
We observed a significant increase in the frequency of the partial-
key conflicts, which may result in excessive overhead when we 
use a threshold larger than 8M records.  

5. SUMMARY 
We described our new sorting algorithm for sorting an array of 
structures by efficiently exploiting the SIMD instructions and 
cache memory. We showed that the key-index approach, which 
sorts only the key-index pairs using SIMD instructions then 
rearranges the records based on the sorted key-index pairs, caused 
significant overhead when rearranging the records due to random 
and scattered memory accesses. Our approach can prevent costly 
random accesses for rearranging the records while still efficiently 
exploiting the SIMD instructions.  

Our results showed that our new approach achieved up to 2.1x 
better single-thread performance than the key-index approach 
implemented with SIMD instructions when sorting 16-byte 
records. Our approach also yielded better performance when we 
used multiple cores. In real-world workloads, sorting is mostly 
used to reorder data structures according to their keys and hence 
our new algorithm can contribute to a wide range of applications 
by accelerating this important sorting operation.  
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