
SIMD- and Cache-Friendly Algorithm
for Sorting an Array of Structures

Hiroshi Inoue†‡ Kenjiro Taura‡
 †IBM Research – Tokyo, NBF Toyosu Canal Front, 5-6-52, Toyosu, Tokyo, 135-8511, Japan

‡University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan

inouehrs@jp.ibm.com, tau@eidos.ic.i.u-tokyo.ac.jp

ABSTRACT
This paper describes our new algorithm for sorting an array of
structures by efficiently exploiting the SIMD instructions and
cache memory of today’s processors. Recently, multiway
mergesort implemented with SIMD instructions has been used as
a high-performance in-memory sorting algorithm for sorting
integer values. For sorting an array of structures with SIMD
instructions, a frequently used approach is to first pack the key
and index for each record into an integer value, sort the key-index
pairs using SIMD instructions, then rearrange the records based
on the sorted key-index pairs. This approach can efficiently
exploit SIMD instructions because it sorts the key-index pairs
while packed into integer values; hence, it can use existing high-
performance sorting implementations of the SIMD-based
multiway mergesort for integers. However, this approach has
frequent cache misses in the final rearranging phase due to its
random and scattered memory accesses so that this phase limits
both single-thread performance and scalability with multiple cores.
Our approach is also based on multiway mergesort, but it can
avoid costly random accesses for rearranging the records while
still efficiently exploiting the SIMD instructions. Our results
showed that our approach exhibited up to 2.1x better single-thread
performance than the key-index approach implemented with
SIMD instructions when sorting 512M 16-byte records on one
core. Our approach also yielded better performance when we used
multiple cores. Compared to an optimized radix sort, our
vectorized multiway mergesort achieved better performance when
the each record is large. Our vectorized multiway mergesort also
yielded higher scalability with multiple cores than the radix sort.

1. INTRODUCTION
Sorting is a fundamental operation for many software systems;
hence, a large number of sorting algorithms have been devised.
Recently, multiway mergesort implemented with SIMD
instructions has been used as a high performance in-memory
sorting algorithm for sorting 32-bit or 64-bit integer values [1-9].
By using the SIMD instructions efficiently in the merge operation,
multiway mergesort outperforms other comparison-based sorting

algorithms, such as quicksort, that are not suitable for exploiting
the SIMD instructions. Multiway mergesort extends the standard
(2-way) mergesort by reading input data from more than two
streams and writing the output into one output stream. This
reduces the number of merge stages from log2(N) to logk(N),
where k is the number of ways and N is the total number of
records to sort. Hence, multiway mergesort can reduce the
required main memory bandwidth compared to the standard 2-
way mergesort because each stage of the mergesort accesses all
the data.

In real workloads, sorting is mostly used to rearrange
structures based on a sorting key included in each structure. We
call each structure to be sorted a record in this paper. For sorting
large records using SIMD instructions, a common approach is to
first pack the key and index for each record into an integer value,
such as combining each 32-bit integer key and a 32-bit index into
one 64-bit integer value. The key-index pairs are then sorted using
SIMD instructions, and the records are finally rearranged based
on the sorted key-index pairs [3]. This key-index approach can
efficiently exploit SIMD instructions because it sorts the key-
index pairs while packed into integer values, allowing it to use
existing high-performance sorting implementations of SIMD-
based multiway mergesort for integers. However, the key-index
approach causes frequent cache misses in the final rearranging
phase due to its random memory accesses, and this phase limits
both single-thread performance and scalability with multiple cores,
especially when the size of each record is smaller than the cache
line size of the processor. When the record size is small, only a
part of the transferred data is actually used; thus, a large amount
of unused data wastes the memory bandwidth.

A more straightforward approach is directly sorting the records
without generating the key-index pairs by moving all of the
records for each comparison. Unlike the key-index approach, this
direct approach does not require random memory accesses to
rearrange the records. However, it is difficult to efficiently use
SIMD instructions for the direct approach because reading keys
from multiple records into a vector register scatters the memory
accesses, which incurs additional overhead and offsets the
benefits of the SIMD instructions.

In this paper, we report on a new stable sorting algorithm that
can take advantage of SIMD instructions while avoiding the
frequent cache misses caused by the random memory accesses.
Our new algorithm, based on multiway mergesort, does the key
encoding and record rearranging for each multiway merge stage,
while the key-index approach does the encoding only at the
beginning of the entire sorting operation and record
rearrangement at the end. In each multiway merge stage, which
reads input data from k input streams (k = 32 in our
implementation) and writes the merged results into one output
stream, we read the key from each record and pack the key and
streamID that the records came from into an integer value (an

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain
permission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume were
invited to present their results at the 41st International Conference on Very
Large Data Bases, August 1st – September 4th 2015, Kohala Coast, Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 11
Copyright 2015 VLDB Endowment 2150-8097/15/07

1274

intermediate integer), merge the intermediate integers using
SIMD instructions, and finally rearrange the records based on the
streamIDs encoded in the intermediate integers. Unlike the key-
index approach, if the number of ways k is not too large compared
to the numbers of cache and TLB entries, our approach will not
cause excessive cache misses. We also describe our techniques to
increase data parallelism within one SIMD instruction by using
32-bit integers as the intermediate integers instead of using 64-bit
integers.

Our results on Xeon (SandyBridge-EP) showed that our
approach implemented with the SSE instructions outperformed
both the key-index approach and the direct approach also
implemented with the SSE instructions by 2.1 and 2.3x,
respectively, when sorting 512 million 16-byte records (4-byte
key and 12-byte payload) using one core. Our approach exhibited
better performance scalability with an increasing number of cores
than the key-index approach unless main memory bandwidth was
saturated. It also outperformed by 3.3x the std::stable_sort
function of the STL delivered with gcc, which uses multiway
mergesort without SIMD. Comparing our vectorized multiway
mergesort of our approach against an optimized radix sort, our
algorithm exhibited better performance when the size of a record
was larger than 16 bytes on 1 core while the radix sort was almost
comparable to our algorithm when each record was small (e.g. 8
bytes). With the key-index approach, the vectorized mergesort
outperformed the radix sort only when the record was larger than
128 bytes. Hence, our new approach makes the vectorized
mergesort a better choice than the radix sort in many workloads.
Also, our algorithm yielded higher performance scalability with
increasing numbers of cores compared to the radix sort due to the
better memory access locality.

The main contribution of our work is a new approach in the
multiway mergesort for sorting an array of structures. We can
effectively exploit the SIMD instructions while avoiding the
random memory accesses. Avoiding the waste of memory
bandwidth due to random memory accesses is quite important
with multicore processors because the total computing capability
of the cores in a processor has been growing faster than the
memory bandwidth to the system memory.

The rest of the paper is organized as follows. Section 2
discusses related work and reviews existing SIMD-based
multiway mergesort for sorting integer values and structures.
Section 3 describes our approach for sorting the structures.
Section 4 gives a summary of our results. Finally, Section 5
summarizes the paper.

2. BACKGROUND
This section discusses related work and gives details about the
vectorized multiway mergesort [1], the basis of our new algorithm.

2.1 Related work

Sorting is one of the most important operations in many
workloads, and many sorting algorithms have been proposed. To
efficiently exploit SIMD instructions and the multiple cores of
today’s processors, multiway mergesort has gained popularity as a
high-performance in-memory sorting algorithm for sorting 32-bit
or 64-bit integer values in database systems [7-9] or in distributed
sorting systems running on large-scale supercomputers [5] or
clusters [6]. Because many widely used sorting algorithms, such
as quicksort, are not suitable for exploiting the SIMD instructions,
multiway mergesort outperforms them by exploiting the SIMD
instructions. In the vectorized mergesort, we can reduce the
overhead of branch mispredictions by integrating a branchless

sorting network implemented on vector registers into the standard
comparison-based merge operation.

Inoue et al. [1] introduced a vectorized multiway mergesort
algorithm, and their implementation on Cell BE and PowerPC
970 outperformed the bitonic mergesort implemented with SIMD
instructions, the vendor’s optimized library, and STL’s sort
function by more than 3 times when sorting 32-bit integers.
Chhungani et al. [2] improved that vectorized mergesort by using
a sorting network larger than the width of vector registers to
increase instruction-level parallelism. Their implementation for
32-bit integers on a quad-core Core2 processor using the 4-wide
SSE instruction set exhibited better performance than other
algorithms. Satish et al. [3] compared the vectorized mergesort
against the radix sort and found that the radix sort outperformed
the vectorized mergesort unless the key size was larger than 8
bytes on both the latest CPUs and GPUs. Using a new analytic
model, they also showed that the vectorized mergesort may
outperform the radix sort on future processors due to its efficiency
with SIMD instructions and its lower memory bandwidth
requirements.

It is possible to sort a large number of records using a sorting
network, such as a bitonic mergesort or an odd-even mergesort
[10], without combining them with the standard comparison-
based mergesort. These sorting networks can be implemented
efficiently using the SIMD instructions on CPUs [11] or GPUs
[12]. However, due to the larger computational complexity of
these algorithms, they cannot compete with the performance of
the vectorized mergesort for large amounts of data.

This paper focuses on the performance of the vectorized
multiway mergesort for sorting an array of structures instead of an
integer array. To sort a large array of structures, there are two
approaches. One approach [3] is to first pack the key and index of
each record into a 64-bit integer value (e.g. 32-bit key in the
higher bits and a 32-bit index in the lower bits), sort the key-index
pairs as integer values, then rearrange the records based on the
sorted key-index pairs. This key-index approach can efficiently
exploit SIMD instructions because sorting is done for key-index
pairs that are packed into integer values. However, the final
rearranging phase may cause frequent cache and TLB misses
because it accesses main memory at random. Especially when the
record size is much smaller than the size of a cache line of the
processor, the random accesses during the rearrangement phase
use the memory bandwidth inefficiently because only a part of the
data in each cache line are actually used. Also, the hardware
prefetcher of the processor does not work for the random memory
accesses. Another approach is to directly sort the records without
generating the key-index pairs by including each entire record
during the sorting. This direct approach is not negatively affected
by the overhead of random memory accesses. However, it is
difficult to efficiently implement a direct approach using SIMD
instructions because the keys are not stored contiguously in
memory; hence, we need to use costly gather operations to load
the keys into the vector registers. Because we cannot read the
entire records into a vector register to fully exploit the data
parallelism of the SIMD instructions, we load the keys into a
vector register using the gather operation and associate the keys
with the record locations. After merging them in the vector
registers, we copy the entire records based on the merged results.
The overhead due to the gather operations offsets the benefits we
can gain from the SIMD instructions: data parallelism and
reduced branch mispredictions. Also, the direct approach does
more memory copying because it moves entire records during the
sorting, while the key-index approach only moves integers. Our
SIMD- and cache-friendly approach in the vectorized multiway

1275

mergesort resolves the problems these two approaches have in
sorting structures.

Kim et al. [7] used the key-index approach with the vectorized
mergesort to efficiently execute the sort-merge join in a DBMS.
They concluded that the sort-merge join will be better than the
hash join on future processors with wider SIMD and limited
memory bandwidth. Our algorithm can potentially improve the
performance of their sort-merge join by avoiding the overhead of
rearranging after the join operation if the join operation makes a
large number of outputs. They also reported that the performance
of the sort-merge join will decrease if a key and index pair cannot
fit into a 64-bit value. Our approach can avoid this problem even
for a large number of inputs because it does not encode the record
ID directly, as we discuss in Section 3.2.

We improved the performance of sorting by using only a part
of the key of each record to increase the data parallelism within
each SIMD instruction. Zhou et al. [13] and Inoue et al. [14] also
used a similar idea to improve the performance of the nested-loop
join and the set intersection (merge join).

2.2 Vectorized Multiway Mergesort for Sorting Integers

2.2.1 Mergesort with SIMD instructions

To efficiently exploit SIMD instructions in a 2-way merge of
integer values, a standard technique involves combining an SIMD
sorting network with a comparison-based merge operation [1].
Figure 1(a) shows the vectorized merge algorithm for two vector
integer arrays va and vb, assuming that the size of each vector
register is four, i.e., 32-bit integers in a 128-bit SIMD architecture.
In each iteration, this code executes a merge operation of two
vector registers, vMin and vMax, by using a sorting network, such
as an odd-even merge or a bitonic merge, implemented with the
SIMD minimum and maximum instructions to avoid conditional
branches (vector_merge method). Then the contents of vMin,
the four smallest values, are stored in memory as output. The
pointer is advanced for the input stream whose next value is
smallest. Here, a[aPos*4] (b[bPos*4]) is the first element of
the next vector integer to read from va (vb). Figure 1(b) shows
the data flow of the bitonic merge operation as an example of an
implementation of the vector_merge method. When one vector
register can hold fewer values, i.e., 64-bit integers in a 128-bit
SIMD architecture, we can combine multiple vector registers to
emulate a longer vector register. Implementing a sorting network
whose input size is larger than the actual vector register size is
better for higher performance because it hides the latency of the
instructions by overlapping multiple comparisons to improve
instruction-level parallelism [2].

There are two benefits from SIMD instructions in mergesort.
The obvious benefit of SIMD instructions is the data parallelism
available in each SIMD instruction. Second, the use of SIMD
instructions reduces the number of conditional branches to select
an array for the next data, which are difficult to predict in the
branch predictor of the processors for random input data;
therefore, we can reduce the overhead of branch mispredictions.

2.2.2 Multiway Mergesort

Multiway mergesort [15] enhances the standard (2-way)
mergesort. It repeats the multiway merge operation, which reads
input records from more than two data streams and outputs the
merged records into one output stream, to sort all the input
records. Multiway mergesort reduces the number of merging
stages from log2(N) to logk(N), where N is the number of records
and k is the number of ways. Mergesort scans all the elements in
each merging stage; thus, using larger k reduces both the number

of stages and amount of required memory bandwidth. This lower
memory bandwidth is the key for both higher single-thread
performance and more scalability with an increasing number of
cores.

To reduce the required memory bandwidth to the system
memory in multiway mergesort using the 2-way vectorized merge
operation shown in Figure 1 as a building block, we execute
multiway merge operations consisting of multiple 2-way merge
operations in a streaming manner using small memory buffers (4
KB each in our implementation) that can fit within the processor’s
cache memory. Figure 2 illustrates how we implement the

aPos = bPos = outPos = 0;
vMin = va[aPos++];
vMax = vb[bPos++];
while (aPos < aEnd && bPos < bEnd) {
/* merge vMin and vMax */
vector_merge(vMin, vMax);

/* store the smaller vector as output*/
vMergedArray[outPos++] = vMin;

/* load next vector and advance pointer */
/* a[aPos*4] is first element of va[aPos] */
/* and b[bPos*4] is that of vb[bPos] */
if (a[aPos*4] < b[bPos*4])

vMin = va[aPos++];
else

vMin = vb[bPos++];
}

(a)

A0 A1 A2 A3 B0 B1 B2 B3

sorted sorted
vector register A vector register B

sortedvector register A vector register B

input

output A0 A1 A2 A3 B0 B1 B2 B3

< < < < <

comparison

MIN MAX

< < < <

< < < <

(b)

Figure 1. (a) Pseudocode of vectorized merge operation and (b)
data flow of bitonic merge operation for two vector registers

input streams
stream

0

output stream

2-way
merge

2-way
merge

2-way
merge

2-way
merge

2-way
merge

2-way
merge

2-way
merge

stream
1

stream
2

stream
3

stream
4

stream
5

stream
6

stream
7

system memory

processor’s cache memory

multiway (8-way) merge operation

level 1

level 2

level 3

intermediate
buffer

Figure 2. Overview of multiway merge operation with SIMD.
Number of ways k = 8 in this example. It is efficient with SIMD
for integers, but not for large structures.

1276

multiway merge operation in the cache memory. We use k = 8 (8-
way merge) as an example. One 8-way merge operation includes
three levels of 2-way merge operations, as shown in the figure.
We execute this merge operation in a single thread. The
intermediate results are stored in small memory buffers that can fit
in the cache memory; hence, we need to access the system
memory only at the first and last levels. We first fill all the
intermediate buffers. Then we execute last-level 2-way merge
operations until one of the two input buffers for the last-level
merge operation becomes empty. When an intermediate buffer
becomes empty, we refill the intermediate buffer by going back to
the previous level of the 2-way merging. After filling the buffer,
we restart the merge operation with the new records. We repeat
these operations until we reach the ends of all of the input streams.

2.2.3 Combsort with SIMD for small blocks

For the vectorized mergesort to operate efficiently, each input
stream must have a sufficient number of records. Hence, we first
use another sorting algorithm for sorting small blocks then
execute the multiway merge to merge these sorted blocks.

For the initial sorting of the small blocks, we can use a
vectorized combsort [1]. The combsort [16] extends bubble sort
by comparing non-adjacent elements, in contrast to the bubble
sort, which compares only adjacent elements. Comparing values
with larger separations drastically improves performance because
each value moves toward its final position more quickly. The
separation is divided by a number so called shrink factor (1.3 in
our implementation) in each iteration until it becomes one. Then
the final loop with the separation of one is repeated until all of the
data is sorted. The average computational complexity of combsort
approximates N log(N) [16]. The vectorized combsort can
eliminate almost all the data-dependent conditional branches and
hence does not suffer from the branch misprediction overhead.
Due to its simplicity and smaller misprediction overhead, the
vectorized combsort can exhibit higher performance than the
vectorized multiway mergesort for sorting a small block. However,
because of its poor memory-access locality the performance of the
vectorized combsort degrades drastically for data that are too large
for the processor’s cache memory. That is why the vectorized
combsort is most suitable for sorting small blocks before
executing the vectorized multiway mergesort.

2.2.4 Parallelization with multiple threads

By using the two algorithms, vectorized multiway (k-way)
mergesort and vectorized combsort, we can sort all the data using
p threads, where p is the number of threads, in two phases:
(1) Divide all the data to be sorted into p blocks and assign one
thread for each block to sort in parallel using multiple threads.
Each thread independently executes the vectorized mergesort and
switches to the vectorized combsort when each input sequence
becomes smaller than the predefined size (b records).
(2) Merge the p sorted blocks with the vectorized k-way mergesort
using multiple threads.

In this first phase, each thread can run without synchronizing
with the other threads. For parallelizing the second phase,
multiple threads must cooperate on one multiway merge operation
to fully exploit thread-level parallelism because the number of
blocks becomes smaller than the number of threads. We divide
each input stream into p sub-streams by using binary search to
parallelize one merge operation. Then the i-th thread merges with
the i-th sub-streams from each of the k input streams. Additionally,
it rebalances the data among threads if the data size for each

thread is not balanced [18]. After dividing the input streams into
sub-streams, threads run without synchronizing with each other.
Because the block size b is a constant independent from N, the
entire computational complexity is determined by the complexity
of the vectorized mergesort, which is O(N log(N)), even in the
worst case.

3. OUR APPROACH FOR SORTING
STRUCTURES

As described in Section 2, the two existing approaches to sort an
array of structures have different drawbacks; the key-index
approach is not cache friendly and the direct approach is not
SIMD friendly. In this paper, we propose an approach with a
vectorized multiway mergesort that is both SIMD and cache
friendly. In this section, we assume that the size of each record is
fixed. We initially assume that the size of each key is 32 bits
before we consider how to handle larger keys.

3.1 SIMD- and Cache-Friendly Multiway Merge Operation

To avoid costly rearrangements of the records, we use a hybrid
approach combining the direct and key-index approaches. Figure
2 shows an overview of the multiway merge operation in the
direct approach when a record to be sorted is a structure. We
extend this multiway merge in Figure 2 to make it more efficient
with SIMD instructions.

The problem with the multiway merge in Figure 2 for merging
structures is that it requires gather operations to read the keys
from multiple records into vector registers because each record
includes a payload, a part that is not used for sorting, in addition
to the sorting key. The SIMD instructions of a modern processor
perform best when the data are loaded from and stored to
contiguous memory.

Figure 3 shows an overview of the SIMD- and cache-friendly
multiway merge operation of our approach. To make the overhead
of the gather operation as small as possible, we encode the key
and streamID into integer values (intermediate integers) at the
beginning of the multiway merge operation, i.e. when the 2-way
merge operations in the first level read the records from main
memory, and merge them by using the SIMD instructions. At the
end of the multiway merge, we rearrange the records based on the
merged intermediate integers. In this step, we sequentially read

processor’s cache memory

system memory
input streams

decode streamID
and copy records

stream
0

output stream

2-way
merge

2-way
merge

2-way
merge

extract key and encode {key, streamID} pair into an integer value

2-way
merge

2-way
merge

2-way
merge

2-way
merge

stream
1

stream
2

stream
3

stream
4

stream
5

stream
6

stream
7

multiway (8-way) merge operation for structures

move structures move integer values

•move only integer
values during merge
operations
•2-way merge can be
efficiently implemented
with SIMD

Figure 3. Overview of SIMD- and cache- friendly multiway
merge operation of our approach. k = 8 in this example.

1277

records from k input streams and sequentially write them into one
merged output stream. This avoids excessive cache and TLB
misses due to random accesses to the system memory if k is not
too large. Because the merge operation is executed for
intermediate integers, we do not need gather operations to read
the keys in all the levels except for the first level, which reads the
records from the system memory and encodes them into the
intermediate integers. Figure 4 compares the three approaches.
Comparing our approach against the key-index approach, we
rearrange records multiple times instead of only once to avoid
excess cache misses in the rearranging phase in trade for larger
memory copy overheads. When the record size is smaller than the
cache line size, the cost of random memory accesses exceeds the
cost of additional (sequential) memory copy of records with our
approach.

With our approach, the number of ways (k) is an important
parameter to achieve high performance. Because we need to
execute the key extraction at the beginning of the multiway merge
and copy the entire records from an input stream to the output
stream at the end of multiway merge operation, a larger k reduces
the overhead for extracting keys and copying records. When k
becomes too large, however, copying the records at the end of the
multiway merge operation may potentially cause many cache and
TLB misses. Hence k must be smaller than the number of cache or
TLB entries to avoid this problem. Also a larger k makes the total
size of the intermediate buffers used for the multiway merge
operation larger. Thus larger k may also increase the cache misses
during the merge operation.

The key-index approach is almost equivalent to our approach
with k = N. In another extreme case, our approach becomes almost
identical to the direct approach when k = 2, i.e., rearranging
records in every 2-way merge operation. Hence, our approach is a
generalization of the two existing approaches parameterized by
parameter k, but we found that the best value for k is between the
two extreme values corresponding to these two approaches. In our
implementation, we used k = 32 = 25. This means each multiway
merge operation includes five levels, and each level executes a 2-
way vectorized merge operation. We can reduce the overhead for
extracting keys (including the cost of the gather operations) and
copying the objects to only 1/5 compared to the direct approach.
Using the large k reduces these costs further, but the increased
cache misses result in a net performance decline, as shown in the
performance evaluations. Table 1 summarizes the three
approaches.

3.2 Key and StreamID Encoding

With our approach, we encode each pair consisting of a key and
its streamID (in the range of 0 to k-1) into intermediate integer
values instead of a key and index pair (in the range of 0 to N-1)
used in the key-index approach. The k is typically much smaller
than N. We only need to encode the streamID instead of the index

into the intermediate integer because the records within each input
stream are already sorted; therefore, they cannot be reversed in the
final output stream. We can guarantee the merged records are
sorted by maintaining a pointer to the next records to copy for
each input stream and incrementing a stream’s pointer when we
copy a record from that stream to the output. We use higher bits to
encode the keys to sort the integers based on the encoded keys
and encode the streamIDs in the lower bits.

An important advantage of our approach over the existing key-
index approach beyond performance is that our approach can sort
larger arrays than the key-index approach. With the current key-
index approach, only 232 (= 4 G) records can be sorted because we
only have 32 bits to encode the index when the key is 32 bits and
the intermediate integer is 64 bits. With our approach, there is no
limit on the total number of records because we only encode the
streamID, which is a configurable parameter independent of the
total number of records, into the intermediate integer values. We
are limited by the number of ways k instead of the number of
records N. However, this is not a problem because k must be
smaller than the number of cache and TLB entries to achieve good
performance and hence k cannot be too large. We used k = 32 in
our evaluation and only 5 bits were needed for encoding the
streamID. This means we can encode a larger key, up to 59 (= 64
– 5) bits, and the streamID into each 64-bit integer.

3.3 Optimization Techniques in Vectorized Merge Operation

In this section we describe some optimization techniques to
improve the efficiency of the SIMD instructions and the overall
execution performance of our approach from Section 3.2.

3.3.1 Increasing data parallelism

As discussed in Section 3.2, our approach has an advantage over
the existing key-index approach in the size of the ID (streamID or
index) encoded in the intermediate integers. By exploiting this
advantage, we can increase the data parallelism within each SIMD

Table 1. Summary of three approaches with multiway mergesort

 data type to sort number of memory copies
for each record memory access pattern

Key-index approach integer that encodes {key and
index} pair

only once – to move each record at end
of sorting

random access; not cache friendly, especially
when each record is smaller than cache line

Our approach integer that encodes {key and
streamID} pair

logk(N) times – to move each record at
end of each k-way multiway merge stage sequential access if k is not too large

Direct approach entire record (structure);
not SIMD friendly

log2(N) times – to move each record at
each 2-way merge stage sequential access

· N: number of records to sort, k: number of ways used in multiway merge operation
· one additional copy per record may be necessary to copy back the records from an temporary array to the destination

unsorted input

sorted output

Direct approachKey-index approach

key extract

rearrange

Our approach

unsorted input

sorted output

unsorted input

sorted output

a multiway
merge
stage
(e.g. 8-way
merge)

key extract

rearrange

key extract

rearrange

2-way merge
for structures

cache
unfriendly

SIMD
unfriendly

2-way merge
for integers

Figure 4. Overview of three approaches

1278

instruction by encoding a key-streamID pair into a 32-bit integer
instead of a 64-bit integer. When we use 128-bit vector registers
(such as the SSE instruction set we used in our tests), we can
execute 4 operations at one time for 32-bit integers but only 2
operations for 64-bit integers. Hence, using 32-bit integers during
the vectorized merge operation shown in Figure 3 boosts the
performance over the same vectorized merge operation using 64-
bit integers by processing a larger number of elements at one time,
yielding shorter path lengths and reduced branch misprediction
overhead.

When encoding the key-streamID pair into a 32-bit integer, we
can only include a part of the 32-bit key. In the current
implementation with k = 32, we can encode 27 bits out of the 32-
bit key. If the partial keys of multiple records have the same value
while the entire keys are not the same (partial-key conflict), the
order of the records with the conflicting partial key may be
incorrect in the merged output stream. Hence, we need to confirm
that the records in the merged output stream are correct by using
the entire key. We merge the records based on the partial keys
using SIMD instructions then check and possibly adjust the order
of the records using the entire keys as we rearrange the records in
the final phase of the multiway merge. We execute this check as
an insertion sort using scalar (non-SIMD) comparisons.

In this partial-key technique, an important question is how best
to select the partial key from the entire key. The most naive way
to select the bits to use in sorting from the key is to extract the
most significant bits of the key. However, this naive selection
might cause significant performance degradation. One obvious
pathological example would be if all the partial keys from all the
records have the same value, though the other bits differ, i.e. the
keys are actually 5-bit integers stored in the 32-bit key field of the
records. To avoid such cases and maximize performance, we
encode the key in the following way:
1) identify the minimum and maximum key values (min and

max) in the records to merge by checking the first and last
records of each input stream,

2) calculate key_pos = count_leading_zeros(max - min), and
3) encode the key (key) and streamID (sid) of each record into an

intermediate integer ii as ii = ((((key - min) << key_pos) &
key_mask) | sid).
For example, if max = 0x1000000F and min = 0x10000000,

then the naive partial key selection, which just selects the most
significant bits, does not work well for sorting because all the
keys share the same value in the most significant part. However,
we can obtain good performance by selecting better partial keys;
key_pos = count_leading_zeros(0xF) = 28; hence, for example,
key 0x10000008 is encoded as ii = ((0x8 << 28) | sid).

Our encoding scheme can reduce the frequency of the partial-
key conflicts, but it cannot totally prevent them. Therefore, when
we use 32-bit integers during the vectorized merge operation to
increase data parallelism, we still need to confirm that the
complete records in the merged output stream are correct by using
the entire key. We do this check when we copy the records from
an input stream to the output stream with a scalar comparison.
When we output a record, we compare the entire key of that
record against the key of the previous record. If the two records
are not in the correct order, we swap the two elements and repeat
the comparison; thus, finding the correct position as an insertion
sort. Our implementation ensures that the sorted results are not
only sorted but also stable, i.e., the order of records having the
same key is not altered by sorting. Because we do this scalar
check only at the end of each multiway merge operation, the
overhead due to this check is quite small compared to the benefits

of using the 4-wide SIMD instructions during the merge operation,
unless the partial-key conflicts are quite frequent. When the
number of records to merge in one multiway merge operation
becomes too large, the frequency of the partial-key conflicts could
potentially increase too much. To avoid such a case, we use 4-
wide SIMD only when the total number of records to merge (i.e.
the total number of records included in all the input streams) is
small enough to justify the overhead of the check. We empirically
determine the threshold for 4-wide SIMD in Section 4.

3.3.2 Sorting network in vector registers

The vector merge operation in vector registers is a key to the
vectorized mergesort. The merge operations in the vector registers
can be implemented without conditional branches by using the
vector min/max instructions and vector permute instructions.

For merging the 32-bit integer values in two vector registers
with 128-bit SIMD instructions, Inoue et al. [1] used an odd-even
merge on PowerPC and Cell BE processors. On Intel processors,
Chhugani et al. [2] implemented a bitonic merge operation
because the permute instruction of the Intel SSE SIMD instruction
is not flexible enough to implement odd-even merge efficiently.
Other implementations for Intel also use the bitonic merge.

In this work, we used a much simpler data flow suitable for the
instruction sets with limited permutation capabilities, such as the
SSE. Our data flow can be implemented with only the min, max,
and rotate instructions to merge 32-bit integer values in two
vector registers, as shown in Figure 5 (merge_4x4_32bit function).
Although it uses more comparisons than the bitonic merge (shown

merge_4x4_32bit(__m128i &vA, __m128i &vB, // input 1 & 2
__m128i &vMin, __m128i &vMax) { // output

__m128i vTmp; // temporary register
vTmp = _mm_min_epu32(vA, vB);
vMax = _mm_max_epu32(vA, vB);
vTmp = _mm_alignr_epi8(vTmp, vTmp, 4);
vMin = _mm_min_epu32(vTmp, vMax);
vMax = _mm_max_epu32(vTmp, vMax);
vTmp = _mm_alignr_epi8(vMin, vMin, 4);
vMin = _mm_min_epu32(vTmp, vMax);
vMax = _mm_max_epu32(vTmp, vMax);
vTmp = _mm_alignr_epi8(vMin, vMin, 4);
vMin = _mm_min_epu32(vTmp, vMax);
vMax = _mm_max_epu32(vTmp, vMax);
vMin = _mm_alignr_epi8(vMin, vMin, 4);

}

merge_8x8_32bit(__m128i &vA0, __m128i &vA1, // input 1
__m128i &vB0, __m128i &vB1, // input 2
__m128i &vMin0, __m128i &vMin1, // output
__m128i &vMax0, __m128i &vMax1) { // output

// 1st step
merge_4x4_32bit(vA1,vB1,vMin1,vMax1);
merge_4x4_32bit(vA0,vB0,vMin0,vMax0);

// 2nd step
merge_4x4_32bit(vMax0,vMin1,vMin1,vMax0);

}

(a)

A0 A1 A2 A3

sorted sorted
vector register A vector register B

sortedvector register A vector register B

input

output A0 A1 A2 A3 B0 B1 B2 B3

< < < <

< < <

<

< <

(b)

no operation

<

comparison

MIN MAX

B0 B1 B2 B3

Figure 5. (a) Pseudo code of in-register vector merge for 32-bit
integers (b) data flow of merge_4x4_32bit method and (c)

1279

in Figure 1) or the odd-even merge, it slightly outperformed the
bitonic merge operation previously used on the Intel platform by
avoiding the costly permute instructions. To increase data
parallelism, we use a larger sorting network. We build this
merging kernel by executing the odd-even merge at the vector
register level using the smaller 4x4 merging kernel as the building
block (merge_8x8_32bit in Figure 5). As discussed in Section
2.2.1, using inputs larger than the hardware vector register size is
important to improve instruction-level parallelism, which leads to
higher throughput. Our data flow is much easier to implement
compared to the complicated data flow of the bitonic merge, but it
exhibited better performances on Xeon with SSE.

For merging 64-bit integer values, we used an odd-even merge
operation because the permutation instructions of the SSE are
sufficiently flexible to efficiently implement the odd-even merge
for 64-bit integer values, and the odd-even merge requires fewer
comparisons compared to the bitonic merge. Our in-register merge
operation for the 64-bit integers also takes two input data streams,
each of which consists of four integers stored in two vector
registers. There is some overhead for the in-register merge
operations for 64-bit integers using SSE because the SSE does not
support min and max instructions for 64-bit integers, therefore, we
need to use one vector compare instruction and two vector blend
instructions instead of a pair of vector min and max instructions.
To reduce this overhead, we use the min and max instructions for
double precision floating point values by encoding each integer
value into the fraction part (52 bits) of the IEEE floating point
format. Because our approach encodes a small streamID instead
of the index of each record, the fraction part is large enough to
encode the 32-bit key and streamID.

3.4 Vectorized Combsort for Structures

The overall algorithm to sort structures with our vectorized
mergesort is similar to the existing sorting scheme for sorting
integer values described in Section 2.2. We use the vectorized
combsort when the size of one sorted sequence is small enough to
fit within the processor’s cache memory.

To exploit SIMD instructions efficiently in the combsort, we
use a key-index pair approach. Because we use the vectorized
combsort only for small blocks (of b records) that can fit within
the processor’s cache memory, the random accesses to reorder
records after sorting are not costly. We also use the 4-wide SIMD
instructions by encoding the key and index (within each block to
be sorted) into 32-bit integers instead of using 2-wide SIMD
instructions for 64-bit integer values. The overall technique to
encode key-index pairs into 32-bit integer values is almost the
same as that used for the vectorized mergesort (described in
Section 3.3.1). For example, if the size of a block is 1,024 records,
we use 10 bits for the index and 22 bits for the (partial) key.

We first extract and encode the key-index pairs from the
records to sort into a temporary array. We implemented this part
with scalar instructions because the SIMD instructions did not
exhibit any performance improvement over the scalar
implementation. Then we sort the 32-bit integers with the
vectorized combsort implemented with SSE SIMD instructions.
Finally, we rearrange the records based on the sorted key-index
pairs. Because the sorting uses only a part of the key to increase
data parallelism, we must check that the records are in the correct
order by using the entire key, as described in Section 3.3.1.

3.5 Sorting Records with Larger Keys

Up to now, we have been assuming that the size of a key is 32 bits.
Even when the size of a key is larger than 32 bits, such as a 64-bit
integer, we can apply almost the same technique described for 32-

bit keys. We have already described the techniques to use only a
part of the 32-bit keys to exploit the 4-wide SIMD instructions for
32-bit data. The same technique can be used to sort records using
2-wide or 4-wide SIMD instructions by using only a part of the
64-bit keys. When sorting records with 64-bit or larger keys, we
confirm that the sorted results from the partial keys are correct by
using the entire key at the end of each multiway merge operation,
even when we use 64-bit intermediate integers in the multiway
merge operation. If the partial-key conflicts are frequent even
when we use 64-bit intermediate integers, we can do the sorting
hierarchically as in the MSB-radix sort. When we find too many
records with the same value in the partial keys, we can execute
our sorting algorithm for the records having the same partial key
using the next few bytes of the key as the partial key for sorting.

4. EVALUATIONS
We implemented our new algorithm using SSE instructions and
evaluated it on an Intel Xeon processor. We implemented the
program in C++ using SSE intrinsics. The system used for our
evaluation was equipped with two 2.9-GHz Xeon E5-2690
(SandyBridge-EP) processors with 96 GB of system memory.
Thus, the system had 16 cores. We do not use additional hardware
threads provided by the 2-way SMT (Hyper Threading) of the
processor in the experiments. The system ran under Redhat
Enterprise Linux 6.4. We compiled all the programs as 64-bit
binaries using gcc-4.8.2 with the –O3 option. We disabled
dynamic frequency scaling (speed step and turbo boost) for more
stable results. To fully utilize the main memory bandwidth
available in the system, we executed all the programs with the
interleave policy for NUMA memory allocation by using numactl
--interleave=all command. Using the local allocation policy
resulted in better performance with a small number of cores,
where the main memory bandwidth did not limit the performance,
but the interleave policy resulted in a higher peak performance
with a larger number of cores when the performance was limited
by the system memory bandwidth. We did not use the large pages
in any of the experiments. The multiway mergesort (with all three
approaches) and the radix sort use a temporary memory area of
the same size as the data. The current implementation assumes a
power of two in N and p.

In the evaluations, we used our implementations of the
vectorized multiway mergesort in our approach described in
Section 3 and also the two existing approaches, the key-index and
direct approaches. We implemented these three approaches with
and without SIMD instructions. As already discussed, the direct
approach is not SIMD-friendly; hence, we did not use SIMD
instructions for the multiway mergesort, but we used the
vectorized combsort for the initial sorting of the small blocks for
fair comparisons. We also implemented a cache-conscious radix
sort, which combines the MSB-radix sort and LSB-radix sort to
efficiently exploit the cache memory of the processor by
improving the memory-access locality [17]. We also applied the
local-buffer-based optimization proposed by Satish et al. [3] to
reduce the cache misses. These two optimization techniques
exhibited more than 3x performance improvement over the naive
implementation of the radix sort, and we believe that this
implementation is reasonably fast to represent the performance of
the state-of-the-art radix sort implementations. We used 8 bits as
the digit size in the radix sort unless we explicitly show another
digit size.

We also graphed the performance of the parallel versions of
the std::stable_sort function and std::sort function in the STL
delivered with gcc. To enable the parallel version of the STL sort
functions, we defined _GLIBCXX_PARALLEL and included the

1280

<parallel/algorithm> header file instead of the standard
<algorithm> header file in the source code. Among these tested
algorithms, only the std::sort, which implements a variant of
quicksort [20], is an unstable sorting algorithm.

4.1 Performance Comparisons

Figure 6 compares the performance of our approach with the
multiway mergesort against two existing approaches, the key-
index and direct approaches, with and without using SIMD
instructions for sorting 512M 16-byte records (8 GB total) or
128M 48-byte records (6 GB total) with a 32-bit random integer
key using only one thread. The figure also shows the performance
of the radix sort and STL’s sort functions.

Our approach implemented with SIMD showed the highest
performance among the three approaches with the multiway
mergesort. The performances of the three approaches for 16-byte
records were almost comparable when implemented without
SIMD, but our approach had the largest performance
improvement of 3.0x from the use of SIMD instructions. For the
other two approaches, the gains from the SIMD were 1.6x for the
key-index approach and 1.4x for the direct approach. As a result
of efficient SIMD exploitation, our approach outperformed the
key-index approach by 2.1x and the direct approach by 2.3x when
we used SIMD. As already discussed, the sorting part of the key-
index approach can benefit from the SIMD instructions, but the
final rearranging phase did not benefit from SIMD because it only
moves records within system memory, so its performance is

limited by the memory system performance rather than
computational performance. The use of SIMD also did not help
the performance of the direct approach in the mergesort. We
actually implemented the SIMD version of the mergesort with a
direct approach, but the performance of the SIMD version was
slower than the non-SIMD version due to the overhead of the
noncontiguous memory accesses, so we used the non-SIMD
version in our evaluations. The performance gain in the direct
approach shown in the figure came from the use of vectorized
combsort for the initial sorting for small blocks. We used
std::stable_sort when we disabled SIMD, instead of using our
vectorized combsort. Our approach also outperformed the other
two approaches for 48-byte records.

Comparing the performance of the vectorized multiway
mergesort with our approach against the other algorithms, our
approach achieved 3.3x higher performance than the standard
stable_sort function included in STL. The performance of the
cache-conscious radix sort was slightly better than our algorithm
for 16-byte records (by 11.9%) and slower for 48-byte records (by
61.7%) in this configuration. The radix sort achieved comparable
or sometimes better performance than our algorithm for sorting
16-byte or smaller records. However, its performance degraded
more compared to the multiway mergesort when the records were
larger.

Figure 7 shows the performance scalability with an increasing
number of cores for each algorithm when sorting 512M of 16-byte
records or 128M of 48-byte records. Our approach yielded the

0
5

10
15
20
25
30
35
40
45

Our
approach

Key-index
approach

Direct
approach

Radix sort STL
stable_sort

STL sort
(unstable)

ex
ec

ut
io

n
tim

e
(s

ec
)

with SIMD without SIMD

0
10
20
30
40
50
60
70
80
90

100
110

Our
approach

Key-index
approach

Direct
approach

Radix sort STL
stable_sort

STL sort
(unstable)

ex
ec

ut
io

n
tim

e
(s

ec
)

with SIMD without SIMD

sh
or

te
r

is
 f

as
te

r

multiway mergesort multiway mergesort

sh
or

te
r

is
 f

as
te

r

512M 16-byte records 128M 48-byte records

Figure 6. Execution time on 1 core for sorting 512M 16-byte records and 128M 48-byte records with 32-bit random integer keys using
various algorithms implemented with and without SIMD instructions.

0

5

10

15

20

25

30

0 4 8 12 16

re
la

tiv
e

pe
rf

or
m

an
e

ov
er

 S
TL

's

st
d:

:s
ta

bl
e_

so
rt

on
 1

 c
or

e

number of cores

Our approach
Key-index approach
Direct approach
Radix sort
STL stable_sort
STL sort (unstable)

0

5

10

15

20

25

30

35

40

45

0 4 8 12 16

re
la

tiv
e

pe
rf

or
m

an
e

ov
er

 S
TL

's

st
d:

:s
ta

bl
e_

so
rt

on
 1

 c
or

e

number of cores

Our approach
Key-index approach
Direct approach
Radix sort
STL stable_sort
STL sort (unstable)

hi
gh

er
 is

 f
as

te
r

hi
gh

er
 is

 f
as

te
r

512M 16-byte records 128M 48-byte records

Figure 7. Performance scalability with increasing number of cores when sorting 512M 16-byte records and 128M 48-byte records. Three
approaches with multiway mergesort were implemented with SIMD

1281

best performance among the three approaches with the multiway
mergesort regardless of the number of cores used. The
performance scalability was limited when using 16 cores, mostly
due to the limited system memory bandwidth. As can be observed
in Figure 7, using larger record sizes resulted in lower scalability
because sorting an array of larger records requires more system
memory bandwidth to copy the records in the system memory.
Our algorithm achieved slightly better scaling than the radix sort
when sorting 16-byte records; hence, it achieved better
performance when using 16 cores. From these results, the
vectorized mergesort with our approach can compete with
optimized radix sort implementations even when sorting small
records and can outperform the radix sort when sorting large
records or sorting on multiple cores.

Figure 8 shows performance with an increasing numbers of
16-byte records (N) sorted on 1 core. Of the tested algorithms,
only radix sort had O(N) computational complexity while the
other algorithms had an average computational complexity of
O(N log(N)). However, we did not observe significant differences
in the scalability among the algorithms. For the radix sort, the
number of cache misses increased with increasing number of
records to be sorted, and the memory performance limited the
scalability of the radix sort. The performance of the radix sort was
also sensitive to digit-size tuning. The current digit size of 8 bits
was selected to achieve best performance for a large amount of
data, but the digit size of 9 bits resulted in better performance for
sorting small datasets.

Figure 9 compares the execution time for sorting 16M records
of various record sizes on 1 core. For the radix sort, we selected
the better number for each data point from performances with two
different digit size configurations (8 bits or 9 bits) because neither
configuration resulted in reasonable performance for all data
points. The performance advantage of our approach over the key-
index approach became smaller with larger record sizes. This is
because, as shown in Table 1, our approach moves all of the
records at the end of each multiway merge operation and hence
multiple times during the sorting process, while the key-index
approach moves the records only once in the rearranging phase at
the end of sorting. When the record size was large, the cost of
moving the records offset the performance advantage of our
approach, especially when the record size exceeded the size of a
cache line, 64 bytes on Xeon. Rearranging records smaller than
the cache line size wastes memory bandwidth because only a
small portion of the transferred data was actually used, and the
unused data wasted the memory bandwidth. We believe the
processors with larger cache line sizes are affected by larger
overhead due to the rearranging; hence, our approach may have a
larger performance advantage. For sorting 8-byte records, our
approach outperformed that for simply sorting 64-bit integers
using 2-wide SIMD instructions by efficiently exploiting 4-wide
SIMD instructions instead of 2-wide SIMD instructions.

Comparing the vectorized multiway mergesort with our
approach against the radix sort, the vectorized multiway mergesort
outperformed the radix sort when the record size was larger than
16 bytes, while the two algorithms achieved almost comparable
performances for smaller records. The radix sort required more
memory bandwidth than the vectorized multiway mergesort due to
its random memory accesses for reorder records. Hence, the radix
sort did not perform well with larger records because a larger
record required more memory bandwidth. These performance
improvements with the vectorized multiway mergesort and larger
records are consistent with previous studies [3].

To confirm that the rearranging really matters for the overall
performance of the key-index approach, Figure 10 shows a
breakdown of the execution times for the key-index approach in

three phases: key extraction, sorting, and rearranging, when
sorting 512M 16-byte records on 1 and 16 cores. On one core,
about 32% of the total execution time was spent for extracting
keys and rearranging records. As the number of cores increased,
the sorting phase scaled very well, increasing to 15.2x with 16
cores. However, the rearranging and key extraction phases scaled
rather poorly, with these two phases only reaching 11.3x with 16
cores. This is because these two phases are memory intensive, and
the performance bottleneck was the system memory performance
rather than the core computing capabilities. As a result, the key
extraction and rearranging consumed about 39% of the execution
time on 16 cores. This means that the key-index approach is
negatively affected by the overhead of key extraction and record
rearranging, especially when using many cores. We observed that
the rearranging phase of the key-index approach alone caused
more L2 cache misses than the total cache misses for our approach
or the direct approach because the rearranging phase accesses the
records randomly based on the sorted results. Due to the memory
bus contentions of the frequent cache misses, the rearranging
phase did not scale well with an increasing number of cores.

To show the effect of the input data distribution, Figure 11
compares the performance of algorithms with different numbers of
random key bits. For example, key is initialized by rand32() &

0.01

0.1

1

10

100

1M 2M 4M 8M 16M 32M 64M 128M 256M 512M

ex
ec

ut
io

n
tim

e
(s

ec
)

records

Our approach
Key-index approach
Direct approach
Radix sort
STL stable_sort
STL sort (unstable)

lo
w

er
 is

 f
as

te
r

Figure 8. Performance scalability with increasing number of 16-
byte records on 1 core. Three approaches with multiway
mergesort are implemented with SIMD.

0

1

2

3

4

5

6

7

8 16 24 32 48 64 96 128 192 256

ex
ec

ut
in

 ti
m

e
(s

ec
)

record size (byte)

Our approach
Key-index approach
Direct approach
Radix sort
STL stable_sort
STL sort (unstable)

lo
w

er
 is

 f
as

te
r

Figure 9. Execution times for sorting 16M records with various
record sizes on 1 core. For radix sort, we selected better number
for each data point from two different digit size configurations (8
or 9 bits). Three approaches in multiway mergesort are
implemented with SIMD.

1282

0xFF when the number of bits was 8 bits. In the figure, 0 bits
(leftmost) means that all the input records had the same key.
When the number of key bits reduced (lower entropy), the
performances of the direct approach and STL sort functions
improved significantly because of the reduced branch
misprediction overheads. The vectorized mergesort replaces many
of the hard-to-predict conditional branches by the SIMD min and
max instructions and hence the performance of the two algorithms
based on the vectorized mergesort, our approach and key-index
approach, were not significantly improved with the reduced
entropy.

To show that our approach can improve sorting performance in
a wider range of applications, we evaluated its performance for
sorting records with string keys. Figure 12 shows the performance
for sorting fixed-size (16 bytes or 100 bytes) records with string
keys. By following the dataset configuration of the Sort
Benchmark (http://sortbenchmark.org/), which is widely used in
database research projects (such as [6, 12]), we used 10-byte
random ASCII string key and sorted the records into the order of
the memcmp function (case-sensitive sorting) or strcasecmp
function (case-insensitive sorting). To initialize the keys, we used
the method from the input generator of the Sort Benchmark. For
both record sizes, our approach exhibited the best performance
among the tested algorithms for sorting with the string keys.
Because comparing the string keys is more costly than comparing
the simple integer keys, there were slight degradations in the
performance for all algorithms. However, the degradations were

smaller for our approach and the key-index approach compared to
the direct approach or STL algorithms because most of the
comparisons were done in an encoded form (intermediate
integers) for our approach and key-index approach. The
performance of the radix sort also degraded due to the larger key
size. As already discussed for integer key sorting, the performance
advantage of our algorithm was smaller for larger record size.
However, there was about a 30% performance advantage over the
key-index approach for sorting 100-byte records, which is the
default record size for the Sort Benchmark.

Figure 13 compares the performance to sort variable-sized
records. In each record, the first two bytes show the length of the
record and the other bytes are random ASCII string keys. The
sizes of records are randomly distributed within the range of 12
(i.e. 10-byte string) to 20 bytes or 12 to 84 bytes. Hence, the
average sizes are 16 and 48 bytes respectively. We sort the
records in case-insensitive order. Although additional overhead to
access variable-sized records attenuated the benefit of our
approach, it achieved the best performance among the four tested
algorithms. The basic idea of our approach works for sorting
variable-sized records without changes. Parallelizing the
vectorized multiway mergesort for variable-sized records using
multiple threads is less efficient compared to sorting for the fixed-
sized records because we cannot depend on the binary search for
variable-sized records without preprocessing. The current
implementations for variable-sized records do not support parallel
sorting. Also, there are many algorithms specialized for sorting

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 core 16 cores

ex
ec

ut
io

n
tim

e
br

ea
kd

ow
n

rearranging sorting key extraction

total
execution time 59.3 sec 4.3 sec

scaled
almost
linearly

scaled
poorly

scaled
poorly

Figure 10. Execution time breakdowns for key-index approach
(implemented with SIMD) into key extraction, sorting, and
rearranging when sorting 512M 16-byte records on 1 and 16
cores.

0

20

40

60

80

100

120

0 bits 4 bits 8 bits 12 bits 16 bits 20 bits 24 bits 28 bits 32 bits

ex
ec

ut
io

n
tim

e
(s

ec
)

number of key bits

Our approach Key-index approach
Direct approach Radix sort
STL stable_sort STL sort (unstable)

lo
w

er
 is

 f
as

te
r

(constant)

Figure 11. Execution times for sorting 512M 16-byte records
with different random key bits. For 8-bit case, keys were
initialized with rand32() & 0xFF. Three approaches withmultiway
mergesort were implemented with SIMD.

0

5

10

15

20

25

30

35

40

Our
approach

Key-index
approach

Direct
approach

Radix sort STL
stable_sort

STL sort
(unstable)

ex
ec

ut
io

n
tim

e
(s

ec
)

32-bit integer key
10-byte string key (case sensitive)
10-byte string key (case insensitive)

0

20

40

60

80

100

120

140

160

Our
approach

Key-index
approach

Direct
approach

Radix sort STL
stable_sort

STL sort
(unstable)

ex
ec

ut
io

n
tim

e
(s

ec
)

32-bit integer key
10-byte string key (case sensitive)
10-byte string key (case insensitive)

sh
or

te
r

is
 f

as
te

r

SIMD multiway mergesort SIMD multiway mergesort

sh
or

te
r

is
 f

as
te

r

512M 16-byte records 64M 100-byte records

Figure 12. Execution time on 1 core for sorting 512M 16-byte records and 64M 100-byte records with 32-bit integer keys or 10-byte
ASCII string keys. We evaluated both case-sensitive sorting and case-insensitive sorting with string keys.

1283

(variable-sized) strings. For example, Burstsort [19] uses a trie-
based data structure to represent string records for efficient
comparisons and better memory-access locality. We did not use
such advanced optimizations specialized for string sorting. How
to integrate such techniques into our algorithm is an interesting
topic for further performance improvements with sorting of the
variable-length strings.

4.2 Effect of Parameters

In this section, we study in detail the effects of the three most
important parameters in our approach implemented with SIMD
instructions: the number of ways (k) in the vectorized multiway
mergesort, the block size for the initial sorting (b) with the
combsort, and the threshold to use the 4-wide SIMD comparison.

Figure 14 shows how k affects the performance of sorting
512M 16-byte records using 1 thread. We used 64 records as b
and did not use the 4-wide SIMD comparisons. The x-axis is the k
from 2 ways (standard binary mergesort) to 2048 ways. We found
that k = 16 (16-way merge) to 128 (128-way merge) resulted in
the best performance. In this range of k, k = 64 resulted in the best
single-thread performance and k = 16 resulted in the best
performance with 16 cores, but the performance differences were
not significant. As already discussed, using a larger k reduced the
overhead of copying records because our algorithm copies all of
the records for each multiway merge operation. However, using a
larger k requires more intermediate memory buffers, as shown in
Figure 3, and this may result in more cache misses. Due to the net
benefit of the reduced overhead of memory copies and the cost of
the increased L1 cache misses, using k larger than 128 caused
performance degradation. From these results, we used k = 32.

Figure 15 shows the single-thread performances with various
block sizes for the initial sorting. We used k = 32 and did not use
the 4-wide SIMD comparisons. To confirm that using the
vectorized combsort for the initial sorting matters for the overall
performance of sorting large arrays, we also show the
performance when we use the STL’s std::stable_sort function for
the initial sorting. When using the vectorized combsort for the
initial sorting, the overall performance was best with b = 16,384
records. When b became larger than 65,536 records, performance
significantly degraded. This is because the combsort has poor
memory-access locality and we need to keep all the data within
the processor’s cache memory (the 256-KB L2 cache in this case).
When b was larger than 65,536 records, the intermediate 32-bit
integers (256 KB) could not fit within the L2 cache memory.
Another reason of poor performance with the vectorized combsort
with excessively large b is the frequent partial-key conflicts. The
frequency of the partial-key conflicts remained less than 1% of the
total number of records sorted with the combsort for b = 8,192
while it was more than 10% for b larger than 32,768. From these
results, we used b = 8,192 for all of the evaluations because the
processor supports two hardware threads that share the L2 cache
on one core by using Hyper Threading and the effective size of
the L2 cache per thread is halved when we use both hardware
threads. The performance with the standard STL function for the
initial sorting, which implements non-SIMD multiway mergesort,
was best when b = 512 records. However, the best performance
with the STL was about 1.8x slower than when we used the
vectorized combsort for the initial sorting. This means that the

0
10
20
30
40
50
60
70
80

2 4 8 16 32 64 12
8

25
6

51
2 1k 2k

ex
ec

ut
io

n
tim

e
(s

ec
)

number of ways

lo
w

er
 is

 f
as

te
r

Figure 14. Execution times for sorting 512M 16-byte records
with our algorithm using various k on 1 core.

0
10
20
30
40
50
60
70
80
90

100

64 128 256 512 1k 2k 4k 8k 16k 32k 64k 128k 256k

ex
ec

ut
io

n
tim

e
(s

ec
)

block size for the initial sorting (# records)

total time with vectorized combsort for initial sorting
total time with STL std::stable_sort for initial sorting
execution time of mergesort part (excluding initial sorting)

lo
w

er
 is

 f
as

te
r

execution time of initial sorting
with std::stable_sort execution time

of initial sorting
with combsort

Figure 15. Execution times for sorting 512M 16-byte records
with increasingly large blocks (b records) for the initial sorting
using two different algorithms.

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

27.0

28.0

29.0

30.0

31.0

32.0

33.0

no
 o

pt

64
k

12
8k

25
6k

51
2k 1M 2M 4M 8M 16
M

32
M

64
M

pa
rti

al
 k

ey
 c

on
fli

ct
 r

at
io

ex
ec

ut
io

n
tim

e
(s

ec
)

thresold to use 4-wide SIMD (# records)

executin time (left axis)
partial key conflict ratio (right axis)

lo
w

er
 is

 b
et

te
r

(non-zero
origin)

Figure 16. Execution times and partial conflict rate for sorting
512M 16-byte records with various thresholds for using 4-wide
SIMD comparisons. Partial key conflict ratio is ratio against
number of total records merged using multiway merge operation
(N * number of multiway merge stages).

0

5

10

15

20

25

30

Our
approach

Key-index
approach

Direct
approach

Radix sort

ex
ec

ut
io

n
tim

e
(s

ec
)

0
10
20
30
40
50
60
70
80
90

100

Our
approach

Key-index
approach

Direct
approach

Radix sort

ex
ec

ut
io

n
tim

e
(s

ec
)

sh
or

te
r

is
 fa

st
er

256M 12- to 20-byte records
(16 bytes on average)

64M 12- to 84-byte records
(48 bytes on average)

SIMD multiway mergesort SIMD multiway mergesort

Figure 13. Execution times for case-insensitive sorting of
variable-length string records with 256M records of 16-byte
length on average and 64M records of 48-byte length on average.

1284

algorithm for the initial sorting is quite important for overall
performance even when sorting large arrays.

Figure 16 shows how the use of 4-wide SIMD in the multiway
mergesort improved performance. We used k = 32 and b = 8,192.
The x-axis shows the threshold to switch from 2-wide SIMD to 4-
wide SIMD. The leftmost point is performance when we used 2-
wide SIMD for all the mergesort stages and did not use the 4-wide
SIMD. We observed that performance was best with 8M records
as the threshold. The best performance was about 11.8% better
than that without optimization (the leftmost point). In the
evaluations discussed in Section 4.1, we used 8M records as the
threshold for this optimization; hence, the first two stages of the
multiway merge were executed using 4-wide SIMD instructions.
We observed a significant increase in the frequency of the partial-
key conflicts, which may result in excessive overhead when we
use a threshold larger than 8M records.

5. SUMMARY
We described our new sorting algorithm for sorting an array of
structures by efficiently exploiting the SIMD instructions and
cache memory. We showed that the key-index approach, which
sorts only the key-index pairs using SIMD instructions then
rearranges the records based on the sorted key-index pairs, caused
significant overhead when rearranging the records due to random
and scattered memory accesses. Our approach can prevent costly
random accesses for rearranging the records while still efficiently
exploiting the SIMD instructions.

Our results showed that our new approach achieved up to 2.1x
better single-thread performance than the key-index approach
implemented with SIMD instructions when sorting 16-byte
records. Our approach also yielded better performance when we
used multiple cores. In real-world workloads, sorting is mostly
used to reorder data structures according to their keys and hence
our new algorithm can contribute to a wide range of applications
by accelerating this important sorting operation.

6. REFERENCES
[1] H. Inoue, T. Moriyama, H. Komatsu, and T. Nakatani. AA-

Sort: A New Parallel Sorting Algorithm for Multi-Core
SIMD Processors. In Proceedings of the International
Conference on Parallel Architectures and Compilation
Techniques, pp. 189–198, 2007.

[2] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog,
Y.-K. Chen, A. Baransi, S. Kumar, and P. Dubey. Efficient
implementation of sorting on multi-core SIMD CPU
architecture. In Proceedings of VLDB Endow., 1 (2), pp.
1313–1324, 2007.

[3] N. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W. Lee, D.
Kim, and P. Dubey. Fast sort on CPUs and GPUs: a case for
bandwidth oblivious SIMD sort. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of
Data, pp. 351–362, 2010.

[4] N. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W. Lee, D.
Kim, and P. Dubey. Fast sort on CPUs, GPUs and Intel MIC
architectures. Intel Technical report, 2010.

[5] H. Sundar, D. Malhotra, and G. Biros. HykSort: a new
variant of hypercube quicksort on distributed memory
architectures. In Proceedings of the 27th ACM International
conference on supercomputing, pp. 293–302, 2013.

[6] C. Kim, J. Park, N. Satish, H. Lee, P. Dubey, and J.
Chhugani. CloudRAMSort: fast and efficient large-scale
distributed RAM sort on shared-nothing cluster. In
Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pp. 841–850, 2012.

[7] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen,
N. Satish, J. Chhugani, A. D. Blas, and P. Dubey. Sort vs.
Hash revisited: fast join implementation on modern multi-
core CPUs. In Proceedings of VLDB Endow., 2(2), pp.
1378–1389, 2009.

[8] C. Balkesen, G. Alonso, and M. Ozsu. Multi-core, main-
memory joins: Sort vs. hash revisited. In Proceedings of the
VLDB Endow., 7(1), pp. 85–96, 2013.

[9] O. Polychroniou and K. A. Ross. A comprehensive study of
main-memory partitioning and its application to large-scale
comparison- and radix-sort. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data,
pp. 755–766, 2014.

[10] K. E. Batcher. Sorting networks and their applications. In
Proceedings of the AFIPS Spring Joint Computer
Conference 32. AFIPS, pp. 307–314, 1968.

[11] B. Gedik, R. R. Bordawekar, and P. S. Yu. CellSort: high
performance sorting on the cell processor. In Proceedings of
the 33rd International Conference on Very Large Data
Bases, pp. 1286–1297, 2007.

[12] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha.
GPUTeraSort: high performance graphics co-processor
sorting for large database management. In Proceedings of the
ACM SIGMOD International Conference on Management of
Data, pp. 325–336, 2006.

[13] J. Zhou and K. A. Ross. Implementing database operations
using SIMD instructions. In Proceedings of the ACM
SIGMOD International Conference on Management of Data,
pp. 145–156, 2002.

[14] H. Inoue, M. Ohara, and K. Taura. Faster Set Intersection
with SIMD instructions by Reducing Branch Mispredictions,
In Proceedings of VLDB Endow., 8(3), 2014.

[15] D. E. Knuth. The Art of Computer Programming. Vol. 3:
Sorting and Searching. 1973.

[16] S. Lacey, R. Box. A Fast, Easy Sort. In Byte Magazine
(April), pp. 315–320, 1991.

[17] D. J. González, J.-L. Larriba-Pey, and J. J. Navarro.
Communication conscious radix sort. In Proceedings of the
13th International Conference on Supercomputing, pp. 76–
82, 1999.

[18] R. Francis, I. Mathieson. A Benchmark Parallel Sort for
Shared memory Multiprocessors. IEEE Transactions on
Computers 37(12), pp. 1619–1626. 1988.

[19] R. Sinha and J. Zobel. Cache-conscious sorting of large sets
of strings with dynamic tries. J. Exp. Algorithmics 9, Article
1.5, 2004.

[20] D. R. Musser. Introspective Sorting and Selection
Algorithms. Software Practice and Experience 27(8), pp.
983–993, 1997.

1285

