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ABSTRACT

Users make choices among multi-attribute objects in a data set in

a variety of domains including used car purchase, job search and

hotel room booking. Individual users sometimes have strong pref-

erences between objects, but these preferences may not be univer-

sally shared by all users. If we can cast these preferences as derived

from a quantitative user-specific preference function, then we can

predict user preferences by learning their preference function, even

though the preference function itself is not directly observable, and

may be hard to express.

In this paper we study the problem of preference learning with

pairwise comparisons on a set of entities with multiple attributes.

We formalize the problem into two subproblems, namely prefer-

ence estimation and comparison selection. We propose an inno-

vative approach to estimate the preference, and introduce a binary

search strategy to adaptively select the comparisons. We introduce

the concept of an orthogonal query to support this adaptive selec-

tion, as well as a novel S-tree index to enable efficient evaluation

of orthogonal queries.

We integrate these components into a system for inferring user

preference with adaptive pairwise comparisons. Our experiments

and user study demonstrate that our adaptive system significantly

outperforms the naı̈ve random selection system on both real data

and synthetic data, with either simulated or real user feedback. We

also show our preference learning approach is much more effective

than existing approaches, and our S-tree can be constructed effi-

ciently and perform orthogonal query at interactive speeds.

1. INTRODUCTION
Users often have to choose entities of interest from a large set of

multi-attribute objects. While most systems allow users to specify

selection conditions on individual attributes to reduce the size of

the set, users may not always be good at tightly specifying such

conditions. Furthermore, even within acceptable ranges of values

for each individual attribute, there may still be too many entities for

users to examine individually to choose the ones that they prefer.

∗This work was supported in part by NSF grant IIS-1250880.

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivs 3.0 Unported License. To view a copy of this li
cense, visit http://creativecommons.org/licenses/byncnd/3.0/. Obtain per
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st  September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 11
Copyright 2015 VLDB Endowment 21508097/15/07.

Consider a hotel booking scenario. Every user may wish for an

inexpensive hotel with luxury amenities located right on the beach.

In the absence of such a hotel, each user has to trade off between

these attributes. These tradeoffs are individualistic, and hard for

most users to state explicitly as an objective formula. For example,

few would say explicitly that every 100m distance to the beach is

worth 10 dollars in the room rate, even if that is the function they

are intuitively applying to make their choices. This paper focuses

on learning such quantitative user preference [1, 19].

Skyline queries have been proposed to address such queries. How-

ever, they often return a large fraction of the data set, particularly in

a multi-attribute scenario. Furthermore, users often have very dif-

ferent individual preferences (whereas techniques such as skyline

queries focus on global preferences). This is perhaps most obvious

in an online dating scenario, but is equally true of hotels, houses,

jobs and so on. We will show this heterogeneity later in this paper.

In cognitive psychology, the Thurstone’s Law of Comparative

Judgement indicates that pairwise comparison is a more effective

way to learn a preference function than directly choosing the set

of preferred entities or deriving the overall ranking, In fact, there

is considerable literature on learning and ranking by pairwise com-

parison in the machine learning community [26]. Recent works in

crowdsourced ranking [10, 35] also leverage pairwise comparisons.

In this paper, we study the problem of quantitative preference

learning by pairwise comparison on structured entities. Specifi-

cally, given a set of entities with associated attributes, we choose a

set of entity pairs and ask the user which entity is more preferable

in each pair. Based on the feedback we estimate the overall quanti-

tative preference function. Once a system learns a user preference

function, it can use it in many ways. For example, imagine a travel

site that knows your preferences and automatically ranks hotels in

your preferred order; or a shopping site that sends you an email

when a promotion on a particular camera makes it likely to be your

top choice. It is easy to come up with many such uses, and devel-

oping these is outside the scope of this paper, which is focused on

a formulation of preference learning that can be used in such sce-

narios. We note that other notions of preference learning have been

posed, in other contexts [18, 26]. We discuss them in Section 7.

For such a preference learning scheme to be practical, it must

meet three conditions. First, pairwise comparisons should be easy

to answer. Second, one should be able to learn at least an approx-

imation of the preference function with only a few comparisons.

And third, the system must be able to pose such comparison ques-

tions at interactive speed. The first condition is immediately satis-

fied in most applications of interest: given two object instances, a

user is quickly able to determine which one is preferred. The re-

maining two conditions are challenging, and addressing them con-

stitutes the bulk of the technical work that follows.
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To summarize, this paper has the following contributions:

• We formalize the problem of preference learning by pairwise

comparison on structured data, and define two subproblems,

preference estimation and comparison selection (Section 2).

• We study the problem of preference estimation based on pair-

wise comparison feedback. We transform the problem to a

maximum margin optimization problem, which can be easily

solved by a typical SVM (Section 3).

• We develop a theoretical analysis of the comparison selection

problem and introduce adaptive comparison selection, with ef-

fectiveness comparable to a theoretical optimum (Section 4).

• We introduce a new type of query, namely orthogonal query, to

facilitate the adaptive comparison selection. We further propose

S-tree, an innovative high-dimensional index on unit sphere for

efficient orthogonal query execution (Section 5).

• We implement a system integrating all these parts. We show

that our adaptive system significantly outperforms a random

system on both synthetic and real data, with either simulated or

real feedback. We also show our preference learning approach

is much more effective than existing approaches, and our S-tree

index can be easily built and supports our orthogonal queries in

interactive speed (Section 6).

2. PROBLEM FORMALIZATION
We situate our problem in the context of quantitative prefer-

ence [1, 19]. We denote an entity by e and the set of all entities

by E. Without loss of generality, we define the preference to be

a function O : E → R. Intuitively, we say e is preferable to e′

if O(e) > O(e′), and vice versa. Transitivity is trivially implied.

Given N input entities, our task is to learn the user preference func-

tion O, which is not directly observable. We assume no ties and

will further discuss this assumption at the end of Section 3 and 4.

Definition 1 (Pairwise Comparison and Feedback) Given an en-

tity set E and a preferenceO, a pairwise comparison is an ordered

pair 〈e, e′〉 ∈ E × E. The feedback is a function C : E × E →
{−1, 1}, such that:

C(〈e, e′〉) =
ß

1 if O(e) > O(e′)
−1 if O(e) < O(e′) (1)

D ⊆ E × E is a set of pairwise comparisons, with feedback

C(D) = {C(〈e, e′〉)|〈e, e′〉 ∈ D}.

Since C(〈e, e′〉) = −C(〈e′, e〉), we only need to consider one of

the two. We define the candidate comparisons of E to be D(E) =
{〈ei, ej〉|ei, ej ∈ E; i < j}. We now define the problem:

Definition 2 (Preference Learning by Pairwise Comparison) Given a

set of entities E, an unobservable preference O, choose a set of

pairwise comparisons D ⊆ D(E), and derive O based on C(D).

While this problem definition is general, it can be impractical if

the number of comparisons needed (|D|) is large. Clearly, pairwise

comparison of each pair in D(E) is enough, requiring that the user

labels N(N−1)/2 pairs. We can improve this quite a bit if we fol-

low a standard sorting algorithm, where in the worst case we need

the user to label N · log(N) comparisons to derive the complete

preference O. Even in the best case, we need N − 1 comparisons

to derive O. Unfortunately, N can often be large in real scenarios.

For instance, there may be hundreds of potential hotels and thou-

sands of potential movies to consider. It is not reasonable to expect

the user to label N pairs. In fact, one major motivation to learn a

preference function is so that we can determine a user’s preference

for an item with only limited prior user input.

How can we infer a relative preference for an object for which the

user has told us nothing? This is what we need to do, if we cannot

afford N comparisons. One direction is followed by recommender

systems, which try to guess based on other users’ preference for the

object. However, such schemes work well only if we have access to

large communities of somewhat similar users. They further require

that every object be rated by at least some users. These assumptions

may not hold in many real applications. In such cases, we may still

be able to induce a preference as a function of object attributes.

For instance, in the hotel booking scenario, a hotel may have

attributes such as stars, location, price, etc. Intuitively, the user

preference should be correlated with these attributes. As a result,

by looking at the user feedbacks to several comparisons, even if we

do not have any comparison involving a specific hotel, we should

still be able to predict how likely the user would prefer it, according

to its attributes. This is the direction we explore in this paper.

For this reason, we model each entity as a structured tuple. Specif-

ically, we assume the set of attributes is universal across the entity

set, and denote it by A = {A1,A2, ...,Ak}. We use e[Ai] to denote

the value on attribute Ai of entity e. For convenience, we further as-

sume all these attribute values are numeric. (Categorical attributes

can be mapped to numeric values using standard SVM convention).

For a given e, we represent the entity by a k dimensional vector #—e :

#—e = (e[A1], e[A2], ..., e[Ak])
T

(2)

Furthermore, for each e, we assume O(e) to be a linear combina-

tion of these attribute values. Specifically:

O(e) = #—w · #—e (3)

where #—w is a k dimensional weight vector. Here we omit the con-

stant offset since it has no impact on comparisons. Similarly, be-

cause the comparisons are independent of the magnitude of #—w, we

assume ‖ #—w‖ = 1. Note that, under these assumption, #—w uniquely

characterizes O. For this reason, we call #—w the preference vector.

In practice, we do not know that the preference function is linear.

However, it is common to build linear models as approximations of

reality, and they often turn out to be good enough. If need be,

individual attribute values can be scaled non-linearly, for example,

through the use of a logarithm or some kernel function. Thus, linear

regression is used widely, as are linear models in machine learning.

We thus refine our preference learning problem as the following.

Definition 3 (Preference Learning by Pairwise Comparison) Given a

set of entities E, where each entity e is a k-dimensional vector, and

a preference function O(e) = #—w · #—e where #—w is a normalized k-

dimensional vector not directly observable, select a set of pairwise

comparisons D ⊆ D(E), and estimate #—w based on C(D).

Definition 3 comprises two subproblems: 1) select a subset of

the candidate pairwise comparisons to ask the user for feedback

and 2) estimate the preference vector #—w based on the feedback.

We name the first subproblem pairwise comparison selection and

the second preference estimation. We first discuss the preference

estimation problem in Section 3, and then study the pairwise com-

parison selection problem in Section 4.

3. PREFERENCE ESTIMATION
Suppose we have already selected a set of pairwise comparisons

D, in this section we focus on estimating the weight vector #—w
based on the user feedback C(D). We first describe some intuitions

about the preference estimation problem under the linear prefer-

ence model, and then formalize the problem and propose an algo-

rithm to estimate #—w. We denote our estimate of #—w by #̂—w and the
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Figure 1: A Simple Preference Estimation in 2-D.

true value of #—w by #—w0. To give an intuitive geometric interpre-

tation, we begin with an assumption that the user makes no error

in reporting pairwise comparisons. In other words, for every pair

〈e, e′〉 ∈ D, C(〈e, e′〉) = 1 if and only if ( #—e − #—e ′) · #—w0 > 0. We

will relax this assumption at the end of this section.

Recall that #—w is a k-dimensional vector and ‖ #—w‖ = 1, all #—w
form a hypersphere S

k = { #—w|‖ #—w‖ = 1} in the k-dimensional

space. Now, imagine we assign a pairwise comparison 〈e, e′〉 to

the user. The user returns 1 if e is preferable to e′, and -1 if e′ is

preferable to e. If we review Equation 1, this can be rewritten as1:

C(〈e, e′〉) · (O(e)−O(e′)) > 0 (4)

By substituting Equation 3, we obtain:

C(〈e, e′〉) · ( #—e − #—e ′) · #—w0 > 0 (5)

This implies the following geometric intuition. A pairwise com-

parison 〈e, e′〉 and its feedback C(〈e, e′〉) uniquely identify a hy-

perplane with normal vector C(〈e, e′〉)·( #—e− #—e ′) in the k-dimensional

vector space of #—w. The hyperplane cuts S
k into two symmetric

hemispheres, and #—w0 must be on the hemisphere { #—w | #—w ∈ S
k, C(〈e, e′〉)·

( #—e − #—e ′) · #—w > 0}. In other words, each such hyperplane prunes

half of Sk on which #—w0 could reside. For this reason, we call such

a hyperplane the pruning plane and denote it by P〈e,e′〉. Since the

pruning is independent of the magnitude of the normal vector, we

normalize it and define #—n〈e,e′〉 = C(〈e, e′〉) ·( #—e − #—e ′)/‖ #—e − #—e ′‖.
We further denote the hemisphere on the same side of #—n〈e,e′〉 by

S
k
〈e,e′〉, and call it the remaining hemisphere. Formally, Sk

〈e,e′〉 =

{ #—w| #—n〈e,e′〉 · #—w > 0, #—w ∈ S
k}.

Intuitively, the more pairwise comparison feedbacks we obtain,

the fewer possible values remain for #—w. Specifically, given a set

of pairwise comparisons D, the remaining possible values for #—w
can be characterized by the intersection of all the remaining hemi-

spheres
⋃

〈e,e′〉∈D
S
k
〈e,e′〉, which forms a spherical polygon in k

dimensions. We denote this spherical polygon by S
k
D and simply

call it the remaining sphere.

Under our error-free assumption, #—w0 must exist in the remain-

ing sphere S
k
D. Therefore, we should estimate #—w within S

k
D. The

following example illustrates the intuition in two dimensions.2

Example 1 (Simple 2-D Estimation) Suppose our entities have only

two attributes, A1 and A2. Furthermore, we assume an extreme

1We use the dot operator to represent both scalar multiplication and
vector inner product when the context is clear.
2Hereafter, we will omit the subscript 〈e, e′〉 of #—n〈e,e′〉 for readi-
bility when the context is clear.

case, where the preference is only determined by A2. In other

words, #—w0 = (0, 1). Suppose we have two comparisons, 〈e1, e′1〉
and 〈e2, e′2〉, where #—e1− #—e1

′ = (2, 1) and #—e2− #—e2
′ = (−2, 1). Un-

der the error-free assumption, C(〈e1, e′1〉) = C(〈e2, e′2〉) = 1. As

a result, #—n1 = (2, 1)/
√
5 and #—n2 = (−2, 1)/

√
5. In 2-dimension,

the two pruning planes corresponding to #—n1 and #—n2 degrade to

two lines shown in Figure 1. The remaining sphere S2
D degrades to

the bold arc on the unit circle. In this case, a reasonable estimate

of #̂—w lies in the middle of #—n1 and #—n2, which overlaps #—w0.

The above example indicates that the estimate in the “middle” of

the normal vectors of all pruning planes may be a “good” estimate.

In order to formalize this intuition, we first define such “goodness”.

Let us first examine the simple case, where the user submits a

feedback C(〈e, e′〉) to a pairwise comparison 〈e, e′〉. To recall,

this creates a pruning plane P〈e,e′〉 with normal vector #—n〈e,e′〉 =
C(〈e, e′〉) · ( #—e − #—e ′). On one extreme, if #—w0 is orthogonal to P

(parallel to #—n ), we can tell this is a very straightforward compar-

ison. Because, the difference between #—e and #—e ′ is maximized by
#—w0. Thus the user should have little difficulty in answering the

comparison. On the other extreme, if #—w0 is almost parallel to P

(orthogonal to #—n ), the comparison would be very difficult. Because

the difference between #—e and #—e ′ is only slightly reflected by the

projection on #—w0. Intuitively, we prefer estimate #—w to be parallel

to #—n , since it tends to render the comparison more confident for the

user. The notion of confidence is formalized below:

Definition 4 (Confidence) Given a pairwise comparison 〈e, e′〉 and

an estimated weight vector #̂—w, the confidence of this estimate is

C
#̂—w
〈e,e′〉 =

#—n〈e,e′〉 · #̂—w.

Note that, the confidence must be positive according to the error-

free assumption.

Informally, our goal is to maximize this confidence for all com-

parisons. If there is only one comparison, the estimate parallel to
#—n is the optimal solution. In case of multiple comparisons, there

are various ways to define the overall confidence. For example, we

could define the overall confidence to be the sum of all individual

confidences, which leads to the following problem definition:

Definition 5 (Preference Estimation by Total Confidence) Given a set

of pairwise comparison D and the user feedback C(D), find a pref-

erence estimate #̂—w, such that
∑

〈e,e′〉∈D
C

#̂—w
〈e,e′〉 is maximized.

The solution to this problem is trivial, where we estimate #̂—w to

be parallel to
∑

#—n〈e,e′〉. However, such #̂—w may not always satisfy

C
#̂—w
〈e,e′〉 > 0. For instance, in Example 1, if we continue to receive

dozens of comparison feedbacks with normal vectors around #—n2,
#̂—w will be pulled to #—n2 and fall out of S2

D, as shown in Figure 1.

This violates our error free assumption.

In fact, we prefer a metric such that repetitive comparisons with

same or similar normal vectors do not shift our final estimate. In

the previous example, ideally, no matter how many comparisons

overlap #—n1 or #—n2, a fair estimate of #—w should always point to the

middle, the same as #—w0 in Figure 1.

In fact, if we have various additional comparisons with normal

vectors between #—n1 and #—n2, they should contribute little to the

estimate, because their ability to constrain S
2
D is dominated by #—n1

and #—n2. In other words, the only comparisons that matter are those

whose normal vectors are most orthogonal to #—w0. And according

to our definition of confidence, these are exactly the comparisons

the user is least confident with, which matches our intuition. In

this case, our goal is to maximize those confidence values, which

is formalized by the following revised problem statement:
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Definition 6 (Preference Estimation by Maximal Least Confidence) Given a

set of pairwise comparison D and the user feedback C(D), find

a preference vector estimate #̂—w, such that min〈e,e′〉∈D C
#̂—w
〈e,e′〉 is

maximized. Or formally, obtain:

argmax
#—w

min
〈e,e′〉∈D

C
#—w
〈e,e′〉

subject to: ‖ #—w‖ = 1
(6)

Since the magnitude of #—w does not matter, we remove the con-

straint ‖ #—w‖ = 1 and transform the above problem into the follow-

ing standard maximum margin optimization problem:

argmin
#—w

‖ #—w‖ subject to:

∀〈e, e′〉 ∈ D, #—n〈e,e′〉 · #—w ≥ 1
(7)

In this revised problem, the margin to be maximized is our mini-

mal confidence value. Therefore, we can use a linear SVM to solve

it efficiently. Specifically, for each comparison the user made, we

create a positive example ( #—n, 1) and a negative example (− #—n,−1)
and call SVM to train all the support vectors. We then use the sum

of these support vectors weighted on α as our estimate #̂—w. Details

about the algorithm can be found in Section 5.2.

In case the user feedback is error-prone, no #—w will yield a pos-

itive confidence margin. To solve this, we adopt the typical slack

variant methods commonly used in SVM to enable error-tolerance.

The problem is then revised as follows.

Definition 7(Noise-tolerance Preference Estimation by Maximal

Least Confidence) Given a set of pairwise comparison D and the

user feedback C(D), find a preference vector estimate #̂—w, such that:

argmin
#—w

‖ #—w‖+ C
∑

ξ〈e,e′〉 subject to:

∀〈e, e′〉 ∈ D, #—n〈e,e′〉 · #—w ≥ 1− ξ〈e,e′〉

(8)

where C is the slack variant indicating the error tolerance level.

This also implies the following. If the entities being compared

have very similar preferences, the user does not need to explicitly

specify a tie. Even if she gives the wrong feedback, the error con-

tributes little to the final precision.

4. COMPARISON SELECTION
So far we have discussed how to estimate the weight vector #—w

given a set of pairwise comparisons D. We now consider how

these pairwise comparisons are selected. Admittedly, a randomly

selected set of comparisons could still lead to a reasonably good

estimate. The question is, can we do better?

To give a clear geometric interpretation, we keep the error-free

assumption. Later, we will illustrate how user errors are fixed when

Noise-tolerance Preference Estimation is applied.

To recall, each comparison 〈e, e′〉 with its feedback C(〈e, e′〉)
uniquely identifies a pruning plane Pk

〈e,e′〉, which prunes half of the

k-dimensional sphere S
k. These planes keep pruning and finally

restrict #—w to a spherical polygon S
k
D, the remaining sphere.

Both #—w0 and our estimate #̂—w lie on this remaining sphere. Ob-

viously, the best estimate is the one that is close to #—w0. We define

the precision of an estimate #̂—w to be the inner product #̂—w · #—w0.

Intuitively, the higher the precision is, the better the estimate #̂—w
is. Given this definition, the worst precision we could have given

S
k
D and #—w0 is min #̂—w∈Sk

D

#̂—w · #—w0. Considering the fact that #—w0

can be anywhere inside S
k
D, the worst precision given only S

k
D

is min #—w1,
#—w2∈Sk

D

#—w1 · #—w2. We define the precision of Sk
D by this

worst precision and denote it by P(Sk
D). We define the angle be-

tween such #—w1 and #—w2 in the worst case to be the diameter of Sk
D

and denote it by D(Sk
D). Since ‖ #—w‖ = 1, P(Sk

D) = cos(D(Sk
D)).

In other words, the diameter of the remaining sphere determines

its precision. Intuitively, the more user comparisons we have, the

smaller the remaining sphere is, the smaller its diameter is and the

higher the precision we obtain. However, because each comparison

places a user burden, the total number of cuts is limited in practice.

Also, due of user error, we cannot indefinitely refine the remaining

sphere to achieve arbitrarily high precision. Based on these obser-

vations, we formalize the comparison selection problem:

Definition 8 (Pairwise Comparison Selection) Given a set of en-

tities E and a positive integer M , find a sequence of pairwise com-

parisons D = {〈e1, e′1〉, 〈e2, e′2〉, ..., 〈eM , e′M 〉}, where 〈ei, e′i〉 ∈
D(E), i ∈ 1..M , such that P(Sk

D) is maximized.

In the remainder of this section, we start with a naı̈ve approach

with random selection, and theoretically analyze it. We then pro-

pose a novel selection strategy that is theoretically optimal.

4.1 A Naı̈ve Approach
To recall, each comparison identifies a pruning plane that cuts

the k-sphere Sk across origin into two equal halves and prunes one

of them according to the user feedback. Consequently, all the N
comparisons will cut Sk into many small pieces, each of which is a

spherical polygon. Under the error-free assumption, exactly one of

these spherical polygons forms the remaining sphere S
k
D.

Here we analyze the best case average precision one can obtain

after M randomly chosen cuts. Since #—w0 can fall into any of the

remaining sphere, the best case is achieved when the sphere S
k is

uniformly cut. Using V(·) to denote volume, the best case average

volume of the remaining sphere can be estimated as:

V(S
k
D
) =

V(Sk)

Mk(M)
(9)

where Mk(M) is the number of spherical polygons cut by M
pruning planes in the k-dimensional space. According to the lit-

erature [17]:

Mk
(M) = 2 ·

îÄ
M − 1

0

ä
+

Ä
M − 1

1

ä
+ ...+

Ä
M − 1

k − 1

äó
(10)

Also, the volume of a k-sphere3 with radius R is:

Vk = 2 ·
πk/2Rk−1

Γ( k
2
)

(11)

Since S
k has radius one, its volume is:

V(S
k
) = 2 ·

πk/2

Γ( k
2
)

(12)

By substituting Equation 12 into Equation 9, we have:

V(S
k
D
) =

2

Mk(N)
·
πk/2

Γ( k
2
)

(13)

On the other hand, given the remaining sphere with volume V(Sk
D),

the best precision is achieved when the remaining sphere is as evenly

distributed as possible. When the remaining sphere is small enough,

this can be approximated as a ball in the k− 1 dimension. Accord-

ing to the literature, the volume of a k-ball with radius R is:

Uk =
πk/2Rk

Γ(1 + k
2
)

(14)

3We define the k-sphere in the k-dimensional space instead of the
(k − 1)-dimensional space.
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Therefore, we have:

V(S
k
D
) = Uk−1 =

π
k−1

2 Rk−1

Γ( k+1

2
)

(15)

Substituting Equation 15 into Equation 13 and solving R results:

R =

Å
2
√
π

Mk(M)
·
Γ( k+1

2
)

Γ( k
2
)

ã 1
k−1

(16)

For a small remaining sphere S
k
D shaped like a ball in the (k-1)-

dimensional space, its diameter D(Sk
D) can be estimated by 2R.

Therefore, its precision can be obtained by:

P(S
k
D
) = cos(2R) (17)

Substituting Equation 16 into Equation 17 results in:

P(S
k
D
) = cos

Ç
2 ·

Å
2
√
π

Mk(M)
·
Γ( k+1

2
)

Γ( k
2
)

ã 1
k−1

å
(18)

As a final note for this section, sinceMk(M) is upper bounded

by 2 · (M − 1)k−1 for M > 1, we have:

V(S
k
D
) ≥

V(Sk)

2 · (M − 1)k−1
=

1

(M − 1)k−1
·
πk/2

Γ( k
2
)

(19)

for M > 1. That is to say, for any given dimension k, one cannot

reduce the volume of the remaining sphere more than polynomially

with respect to the number of comparisons using a random cutting

strategy, where the volume determines final precision. If we want

to break this limit, a new cutting strategy has to be innovated.

4.2 Binary Cutting Strategy
In this section, we consider if we can perform any better than a

random cutting strategy. Without loss of generality, we assume that

given an arbitrary hyperplane, there always exists in the candidates

a comparison whose pruning plane overlaps the given hyperplane.

We will remove this assumption in Section 4.3.

If we have only one comparison to prepare, the problem is straight-

forward. Indeed, a random cut of the initial sphere Sk is the optimal

choice. This is because, no matter what the user feedback is, the

corresponding pruning plane will prune half of the sphere, or re-

duce half of the volume. However, if we continue to perform more

cuts, their positions matter.

Example 2 (Cutting Strategy) We continue to illustrate the sim-

ple case in two-dimension, where S
2 degrades to a unit circle, as

shown in Figure 2. Suppose we first ask the user to compare entity

e1 and e′1. This comparison identifies a pruning plane P〈e1,e
′
1
〉 with

normal vector #—e1 − #—e1
′, as shown in Figure 2. We further assume

the user feedback C(〈e1, e′1〉) equals 1. Consequently, the plane

prunes the bottom left half of the unit circle, leaving a remaining

sphere highlighted by the bold arc Q̂T .

Now consider the next comparison. Assume there are two can-

didates: 〈e2, e′2〉 and 〈e3, e′3〉, with corresponding pruning planes

and normal vectors illustrated in Figure 2. If we choose 〈e2, e′2〉
as the next comparison, the pruning effect will depend on the user

feedback. Specifically, if C(〈e2, e′2〉) = 1, the top-left side of P〈e2,e
′
2
〉

will be pruned, leaving arc R̂T . If C(〈e2, e′2〉) = −1, the bottom-

right part of P〈e2,e
′
2
〉 will be pruned and arc Q̂R will remain.

This is not an ideal choice, because in the worst case, only a

small portion of the remaining sphere (Q̂R) will be pruned. Over-

all, it will result in a worse average precision because our preci-

sion function is concave with respect to volume. In contrast, if we

choose 〈e3, e′3〉 instead, regardless of the user feedback, half of the

remaining sphere (either Q̂S or ŜT ) will be pruned.
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′
3
〉

Figure 2: Binary Cutting Example in 2-Dimensions. (Example 2)

Example 2 elicits the following theory:

Theory 1 (Binary Cutting Strategy) In order to maximize the best

case average precision, each comparison should cut the current re-

maining sphere into two equal halves.

The intuition behind the theory is similar to the traditional binary

search. We omit the proof due to space.

If we manage to choose a sequence of comparisons strictly satis-

fying the condition in Theorem 1, after M comparisons, the volume

of the remaining sphere is:

V(S
k
D
) =

V(Sk)

2M
(20)

Compared with Equation 13 for random cut, this is much better

because we can reduce the volume of the remaining sphere expo-

nentially with respect to the number of comparisons.

By substituting Equation 12 into Equation 20, we obtain:

V(S
k
D
) =

1

2M−1
·
πk/2

Γ( k
2
)

(21)

Following a similar analysis as in Section 4.1, we can obtain the

theoretical upper bound of the precision after M comparisons:

P(S
k
D
) = cos

Ç
2 ·

Å √
π

2M−1
·
Γ( k+1

2
)

Γ( k
2
)

ã 1
k−1

å
(22)

By fixing P(Sk
D) and solving M in the above equation, we ob-

tain the number of optimal cuts to achieve a certain precision:

Moptimal =
log2 π

2
+log2

Γ( k+1

2
)

Γ( k
2
)

+(k−1)· log2

2

arccos(P(Sk
D
))

(23)

On the other hand, we have:

lim
k→+∞

log2

Γ( k+1

2
)

Γ( k
2
)

=
ψ{0}( k

2
)

2
=

log( k
2
)

2
(24)

In Equation 23, the first term is a constant, the second term con-

verges to (log2 k− 1)/2, and the third term is the product of k− 1
and a value determined by the target precision. To give an intuition,

by setting the precision to 0.95, we need to perform approximately

2.65 optimal cuts per additional dimension.

4.3 Adaptive Comparison Selection
In the previous section we presented a theoretical analysis of the

optimal comparison sequence. To recall, each time we desire the

next comparison to cut the remaining sphere into two equal halves.

Unfortunately, such an optimal comparison rarely exists in practice,

because we have a limited number of comparison candidates. In
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this section, we instead examine the problem of finding adaptively

the next comparison that cuts the remaining sphere as equally as

possible. We also show how this strategy deals with noisy answers.

We start by following the two-dimensional scenario in Exam-

ple 2. After the initial cut, the remaining sphere degrades to arc

QT . Since the center of QT is S, one should select a comparison

whose pruning plane is closest to the center S. This is trivial in 2-

d, because the pruning plane degrades to a line passing through the

origin. Thus, we only need to find the comparison whose decision

plane (line) has the smallest angle with the line passing through the

origin and the “center” of the remaining sphere (arc), which can be

accomplished by a simple binary search. However, the following

example demonstrates its complexity in higher dimensions.
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Figure 3: Two Pairwise Comparison Candidates in 3-Dimension

Example 3 (Comparison Selection in 3D) For simplicity, assume

the remaining sphere S
k
D is uniformly distributed around center #̂—w

on the unit 3-sphere, as shown in Figure 3. Suppose we have two

candidate comparisons: one with pruning plane identified by nor-

mal vector #—n1 and the other with pruning plane identified by #—n2.

Intuitively, the plane with #—n1 is the better pick because it cuts the

remaining sphere more evenly.

This examples indicates the following two points. First, the prob-

lem is non-trivial in higher dimension, because there is no static

ordering of the candidate comparisons. Indeed, the order of can-

didates are dependent on the current estimate #̂—w. Therefore, the

simple binary search strategy in 2-d no longer applies. As a result,

the naı̈ve approach requires a scan of all the candidate comparisons,

whose number is square of the total number of entities.

Second, the notion of “closeness” between the pruning plane and
#̂—w is no longer effective, because the pruning plane is a hyperplane

in general. This leads us to think about the relationship between
#̂—w and the normal vector #—n , which is a better characteristic of the

pruning plane. In fact, given a pruning plane with normal vector #—n

and a remaining sphere with estimated center #̂—w, we notice that the

more orthogonal #—n is with respect to #̂—w, the more evenly the plane

cuts the remaining sphere. To quantify this, we have:

Definition 9 (Orthogonality) Given two unit vectors #—u and #—v ,

the orthogonality between #—u and #—v is 1−| #—u · #—v |. Given a remain-

ing sphere with center estimate #̂—w and a candidate pruning plane

with normal vector #—n , we also say the orthogonality between the

pruning plane and the remaining sphere is 1− | #—n · #̂—w|.

Since both vectors are normalized, their orthogonality ranges

from zero to one. It achieves its maximum when #—n · #̂—w equals

zero, or when the pruning plane passes through #̂—w. For simplicity,

hereafter we will use the normal vector, the pruning plane and the

corresponding comparison interchangeably, if the context is clear.

We also note, even a comparison with orthogonality one may not

cut the remaining sphere into exactly equal halves. This is because

the remaining sphere in practice has a very complex geometry. To

distinguish such comparison from the optimal comparison we dis-

cussed in Section 4.2 , we call such comparison the best next com-

parison and have the following problem definition.

Definition 10 (Adaptive Best Next Comparison Selection) Given

an estimate #̂—w, find among all the remaining pairwise comparisons

D(E)\D the best comparison, such that the orthogonality between

the comparison and #̂—w is maximized. Formally, obtain:

argmin
〈e,e′〉∈D(E)\D

∣
∣ #—n〈e,e′〉 · #̂—w

∣
∣ (25)

This problem can be generalized as to find the vector that is most

orthogonal to a given vector. This is very different from the tradi-

tional geographic queries which mostly focus on the nearest neigh-

bors. To distinguish, we name this type of query orthogonal query.

Further, we give an intuition why this method will be noise-

tolerance. Recall that the maximum margin optimization with slack

variant relaxes the condition for those answers which is too hard to

be satisfied. That is to say, when noise occurs, it will usually not

used as the pruning plane since its condition is not satisfied. In

the query selection phase, suppose one question is answered incor-

rectly, then the preference estimation will fall into another remain-

ing sphere. However, as more and more questions are asked in the

orthogonal plane of the estimation, the optimization function will

choose to relax the condition of the noise comparison. Intuitively,

the false plane are finally removed and the new estimation will live

in the correct remaining sphere.

In case the user is not able to answer the most orthogonal com-

parison and has to specify a tie, our approach can be easily extended

to return the top-k orthogonal comparisons, and ask the user the

next most orthogonal question if she fails the previous one.

5. EVALUATING ORTHOGONAL QUERIES
From the previous section we know that the system must eval-

uate an orthogonal query to find good candidate pairs for obtain-

ing user feedback next. Orthogonal queries in higher dimension

are nontrivial because a naı̈ve approach requires a scan of all the

candidate comparisons. But do we really need to consider all the

candidates? Assume #̂—w points to the north pole of the sphere, all

we care about are comparisons whose normal vectors are near the

equator. We may not want to scan normal vectors near either polar

circle because they are unlikely to be orthogonal to the north pole,

especially when we are sure better choices do exist near the equa-

tor. In this section, we develop the notion of a spherical cap as an

effective way to cluster similar candidates and organize them in a

novel index structure called the spherical tree.

5.1 Spherical Cap
We would like to assign the normal vectors of all the candidate

comparisons into smaller groups on the sphere for bounding and

pruning. Ideally, these groups should have as few parameters as

possible, while still being effective in pruning. A Spherical Cap

offers such properties.
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Definition 11 (Spherical Cap) Given a center normal vector #—c
and an angular radius θ, a spherical cap in dimension k, denoted

by S
k
#—c ,θ , is the set of all vectors on the unit k-sphere, such that the

angle between these vectors and #—c is no larger than θ. Formally:

S
k
#—c ,θ = { #—n | #—n ∈ S

k ∧ arccos( #—n · #—c ) ≤ θ} (26)
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Figure 4: Three Spherical Caps on a Unit 3-Sphere

Figure 4 illustrates three spherical caps on the unit 3-Sphere.

Each cap is identified by the center vector #—c and the angular ra-

dius θ. Given a normal vector #—n and a spherical cap, for instance,

we can easily obtain the range of angle between #—n and the vectors

in the spherical cap. For instance, in Figure 4, given normal vector
#—n which points to the north pole and S #—c 1,θ1 , it is straightforward

that the range is [α− θ1, α+ θ1], where α = arccos( #—n · #—c 1).
This indicates we can easily bound the orthogonality between

any vector in a given spherical cap and a given vector as follows:

Definition 12 (Lower and Upper Bounds of Orthogonality) Given

a normal vector #—n and a spherical cap S #—c ,θ , the upper bound of

the orthogonality between #—n and vectors in S #—c ,θ is:

UB( #—n , S #—c ,θ) =
{

1 if α− θ < π/2 < α+ θ
1−min(| cos(α+ θ)|, | cos(α− θ)|) otherwise

(27)

Similarly, the lower bound is:

LB( #—n , S #—c ,θ) =
{

0 if α < θ or α+ θ > π
1−max(| cos(α+ θ)|, | cos(α− θ)|) otherwise

(28)

We can use these bounds to prune candidate comparisons effec-

tively. For example, in Figure 4, given an estimate #̂—w that points to

the north pole, we do not need to consider S #—c 2,θ2 given S #—c 1,θ1 , be-

cause LB( #̂—w, S #—c 1,θ1) > UB( #̂—w, S #—c 2,θ2). However, we still have

to consider S #—c 3,θ3 , because UB( #̂—w, S #—c 3,θ3) > LB( #̂—w, S #—c 1,θ1),
even if they do not intersect geometrically.

Algorithm 1 shows how to find the best next comparison using

spherical cap pruning, given all candidate normal vectors have been

partitioned into a set of spherical caps (see Section 5.2).

The algorithm takes as input the estimate and the set of spheri-

cal caps. It maintains a priority queue (line 2), where the priority

is the inverse of the orthogonality upper bound (i.e., the queue top

has the smallest upper bound). It also records the current maximum

of lower bound in the queue (line 3). For every spherical cap, we

prune it if its upper bound is smaller than the current maximum

queue lower bound (line 5). Otherwise we push it into the queue

Algorithm 1 Spherical Cap Pruning

1: procedure SC-PRUNING(w,S)

2: Q← ∅
3: maxLB ← 0
4: for S ∈ S do

5: if UB(w, S) < maxLB then

6: continue

7: while UB(w,Q.top()) < LB(w, S) do

8: Q.pop()

9: if LB(w, S) > maxLB then

10: maxLB = LB(w, S)

11: Q.push(S)

12: return Q

(line 11). Before the actual push we repeatedly remove the queue

top if its upper bound is smaller than the lower bound of the en-

queuing spherical cap (line 7-8), and update the queue lower bound

accordingly (line 9-10). The vector most orthogonal to the estimate

must be in one of the returned spherical caps.

As one can imagine, the algorithm strongly depends on how in-

dependent the [LB, UB] intervals are for the input spherical caps.

In case these intervals largely overlap with each other, poor prun-

ing results. We will address this problem in Section 5.3. In the next

section, we first show how to construct the set of spherical caps.

5.2 Spherical Clustering
We need to cluster the candidate normal vectors into spherical

caps before we can use the caps to find the best next comparison.

An intuitive choice is K-means clustering based on cosine similar-

ity (we omit the pseudo code due to space). In short, we adopt

K-means clustering to iteratively partition the set of vectors into L
groups, until the average center shift for these groups is less than a

threshold (or the average dot product of the new and old centers is

larger than p).

We need to further construct the spherical caps using these clus-

ters. Meanwhile, we need these spherical caps to be as small as

possible. Because the larger the clusters are, the larger the [LB,

UB] intervals are and the higher chances they overlap, and the less

effective our pruning algorithm becomes. Specifically, we have the

following problem definition:

Definition 13 (Minimum Spherical Cap Construction) Given a

set of normal vectors V, find the minimum spherical cap that con-

tains V. Formally, obtain:

Smin(V) = argmin
S( #—c ,θ)

θ (29)

subject to:V ⊂ S( #—c , θ) (30)

Because given the center #—c and the constraint V ⊂ S( #—c , θ), we

can lower bound θ by max #—n∈V arccos( #—c · #—n), we can rewrite

Equation 29 to:

Smin(V) = argmin
S( #—c ,θ)

max
#—n∈V

arccos( #—c · #—n) (31)

Again, this is very similar to Equation 25, and can be reduced to

the maximum margin classifier problem, where #—c · #—n is just the

margin between he origin and the classifier boundary. Therefore,

we can use the existing quadratic programming algorithm to easily

find the supporting vectors, and calculate #—c and θ for Smin(V)
accordingly, as shown in Algorithm 2.

We use S.V to refer to the set of vectors V that constructs the

cap. Hereafter, by saying “vectors in a spherical cap S” we mean

S.V rather than the vectors in Definition 11. If V contains only one

vector #—n , the cap degrades to a point with #—c = #—n and θ = 0.
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Algorithm 2 Spherical Cap Construction

1: procedure SC-CONSTRUCTION(N)

2: N+ ← ∅, N− ← ∅
3: for n ∈ N do

4: N+.push(n, 1)
5: N−.push(−n,−1)
6: (sv, α)← SVM(N+,N−)
7: c = Σsv · α
8: θ = arccosminv∈sv c · v
9: return S(c, θ,V)

5.3 Spherical Tree
Now we have the set of spherical caps and the pruning algorithm,

let us focus on the question at the end of Section 5.1. In case the

bounding intervals overlap a lot, the algorithm will return many

spherical caps. Consequently, the follow-up algorithm has to scan

all the vectors in these caps, and find the one with the maximum

orthogonality, which is inefficient.

To improve this, we note that both input and output of Algo-

rithm 1 are sets of spherical caps. For each of the returned caps, if

we further partition them into smaller groups, we can recursively

call Algorithm 1 for efficient branch-and-bound. This motivates a

hierarchical index structure of the spherical caps, which is similar

to the traditional R-Tree. We call this structure a spherical tree.

Definition 14 (S-Tree) A spherical tree, or S-Tree in short, is a

tree structure satisfying the following properties:

• It has a root, which is the whole unit sphere.

• Each node (except the root) is a spherical cap.

• Each node has exactly L children, except for the leaves.

• Each leaf contains no more than L vectors.

Because we assume a static entity set, the S-tree is static too. Thus

here we do not consider operations such as insertion/deletion. Rather,

we focus on answering the orthogonal query using S-tree.

We build the S-tree by extending our spherical clustering algo-

rithm. We adopt a top-down hierarchical K-means clustering algo-

rithm to recursively partition the vectors at each level of the tree,

and generate the spherical cap from each partition. The recursion

is terminated when the S-tree node has no more than L vectors.

We now introduce our algorithm to find the most orthogonal vec-

tor using S-tree, as shown in Algorithm 3. It is a depth-first search

with a bounding variable best, which stores the current global best

answer. In termination cases, we pick the most orthogonal vector

among the vectors in the leaf and the current best (line 3). Other-

wise, we call SC-Pruning on the children spherical caps and obtain

the set of possible candidate caps (line 4). We reverse the order

of these caps by a stack (line 5-8). We then recurse on the child

spherical caps from higher upper bound to lower upper bound, with

respect to the query vector q (line 12). Each recursion updates the

current best so subsequent sibling caps with lower upper bound are

likely to be pruned (line 11).

6. EXPERIMENT
We have assembled the preference estimation and adaptive com-

parison selection into an adaptive system. Our system first builds

an S-Tree from all the candidate comparisons and randomly picks

an initial comparison. It then iteratively refines the preference esti-

mation. In each iteration, the system asks for user feedback for the

given comparison. It adjusts the sign of the comparison’s normal

vector according to the feedback, and estimates the preference us-

ing all answered comparisons as described in Section 3. It then uses

Algorithm 3 Orthogonal Search

1: procedure ORTHOGONALSEARCH(node, q, best)
2: if node.isLeaf() then

3: return argmaxv∈node.V ∪{best} orth(v, q)

4: Q← SC-PRUNING(q, node.children())
5: S← ∅ ⊲ Initialize stack

6: while !Q.isEmpty() do

7: S.push(Q.top())
8: Q.pop()

9: while !S.isEmpty() do

10: t← S.top()
11: if UB(t, q) > orth(best, q) then

12: best← ORTHOGONALSEARCH(t, q, best)

13: S.pop()

14: return best
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Figure 5: Number of Comparisons Required to Achieve a 0.95 Pre-

cision, for the Naı̈ve System, the Optimum, and Our System

the current estimation to query the S-Tree for the most orthogonal

comparison, and use that comparison to repeat the iteration.

In this section we describe our evaluation of the adaptive sys-

tem. The most important question is whether the correct preference

function can be learned. We measure this correctness in terms of

precision: the fraction of test (pairwise) comparisons correctly la-

beled by the system. We do so on both real and synthetic data. We

also report results on additional experiments to evaluate the perfor-

mance of the S-tree index structure.

As a baseline, we compare adaptive against a system that ran-

domly chooses comparison pairs for training. This random system

still performs cuts in space and correctly computes the preference

function based on observed preferences (following the same esti-

mation in Section 3). Thus, the superior results obtained by our

algorithm can then all be attributed to its adaptive binary selection.

The algorithms were implemented in C++ referencing LIBSVM [9].

All experiments were run on a unix machine with a 2.7 GHz Intel

i7 processor and 8GB 1600 MHz DDR3 memory. The user study

was built with a web user interface referencing the system via CGI.

6.1 Experiment With Synthetic Data
The synthetic experiment is set up as follows. For each dimen-

sion, we randomly generated ten sets of one hundred entities. For

each entity set, we randomly generated ten #—w0. And for each #—w0,

we repeated the experiment ten times. We averaged the number of

comparisons needed over all these variables. We randomly gener-
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Figure 6: Precision Achieved by Various Systems w.r.t. the Number of Comparisons Performed on Synthetic Data with Demension 2 to 10

ated the source of truth #—w0, used Equation 1 to simulate the user

feedback, estimated #̂—w according to the discussion in Section 3,

and calculated the precision as #—w0 · #̂—w.

We first measured the average number of comparisons needed to

achieve a target precision of 0.95. The result is shown in Figure 5.

According to the result, adaptive dramatically outperforms ran-

dom, which randomly selects the next candidate comparison. On

average, our system requires 40% less comparisons to achieve the

same precision. This is because, the random strategy does not guar-

antee the quality of the next cut. As the remaining sphere shrinks, it

is increasingly hard for a random cut to pass through the remaining

sphere. Even for the cuts that do pass through, they are likely to be

imbalanced. In consequence, the random system requires a much

larger number of total comparisons.

We also plot the theoretical optimum, assuming that perfect bi-

nary cutting is possible, as described in Section 4.2, and results in a

number of comparisons according to Equation 23 and a worst case

precision defined in Equation 22. This is an analytically computed

worst case number. Our adaptive system actually performs similar

to and slightly better than this theoretical optimum. Note that this is

not a contradiction. The theoretical optimum is defined with worst

case precision, while in our system the precision is the observed

average, which is better than the worst case.

To better understand the behavior beyond the target precision,

we conducted a second experiment examining the precision change

with respect the the number of comparisons performed. We kept

the same experiment settings except we did not terminate the pro-

cess when a target precision is reached. Instead, for each run, we

performed one hundred comparisons, and recorded the average pre-

cision achieved after each comparison. We repeated the experiment

for each dimension from 2 to 10. The result, as well as the theoret-

ical optimum (derived from Equation 22) are shown in Figure 6a.

In general, the precision increases with the number of compar-

isons performed. It also decreases with dimension, because the

higher the dimension is, the larger radius the remaining sphere has

(see Equation 16). We also notice that, below 1-10−5, the preci-

sion obtained by our adaptive system is very close to the theoret-

ical optimum. Our adaptive outperforms the optimum for small

number of comparisons because the approximation we used for the

theoretical bound is only valid for larger number of comparisons.

For comparison purposes, we performed the same experiment on

the random system with random selection and the result is shown

in Figure 6b. The result shows that the precision for the random

system is significantly less than the optimum. By comparing this

result with Figure 6a, we see the error rate for adaptive (1 − p) is

three orders of magnitude less than the random system.

In Figure 6a, we also notice that our precision reaches an up-

per bound after a certain number of comparisons. This is due to

the limited number of entities in practice. In theory, we can cut

the remaining sphere infinitely, thus achieving arbitrarily high pre-

cision. Unfortunately, in practice, once we arrive at a remaining

sphere such that no candidate comparison further cuts it, we can-

not improve our estimate anymore. And the average precision we

can obtain on such a finest remaining sphere is determined by the

number of entities.

Our last synthetic experiment compares our preference learning

system with existing approaches. The first approach we compare

with is Preference Mining [18], which detects strict partial order

preferences from user log data. Since our system has no user log,

we combine the pairs of entities in all performed pairwise compar-

isons and use them as input.The input data has a positive feedback

if the corresponding entity is preferred in the pairwise comparison,

and has a negative feedback otherwise. We also compare with a

direct SVM application widely adopted in the information retrieval

community. The SVM directly trains a preference using the same

labeled entities set described above.

We generated 10 synthetic datasets. For each generation, we

trained the preference and generated 100 test pairs to compare the

precision in terms of percent of correctly estimated preference, for

our adaptive approach, the random approach, Preference Mining

and the direct SVM. The result is shown in Figure 7a.

The result shows that both our adaptive and random approaches

significantly outperform the other two approaches. The poor per-

formance of Preference Mining can attribute to its lack of quanti-

tative internal model. Because it mines the preference from value

frequency, it is not able to derive reliable preference when the in-

put size is small. The direct SVM performs worse than our ran-

dom approach, because the input can be highly inconsistent (E.g.,

even both entities in a given comparison are highly preferred, one

of them has to receive a negative label). In contract, our adaptive

and random approaches both train on the difference between enti-

ties, guaranteeing consistency according to our pairwise compari-

son formulation in Section 2.
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Figure 7: Precision Achieved by Various Systems w.r.t. the Number of Comparisons Performed on Yahoo Used Cars Dataset

6.2 Experiment with Real Data
To further demonstrate the improvement introduced by our adap-

tive comparison selection, we conducted a second experiment on

real data. We used the Yahoo Used Car Dataset and randomly

picked one thousand cars (one million comparisons). For each car,

we represented it using nine dimensions including price, mileage,

year etc., and normalized the data.

We measured the precision change with respect to the number of

comparisons made, with the same settings as the previous experi-

ment, expect that we replaced the synthetic data with the real used

car dataset. The result is shown in Figure 7b.

Overall, we observe a drop in precision for both our adaptive

system and the random system, compared to the previous exper-

iment with synthetic data. This is because, the real data cannot

guarantee uniform distribution, for several reasons. For instance,

the distributions of some attributes are quite skewed by themselves

(e.g., price and mileage). Furthermore, certain categorical attributes

are split, causing the comparison vectors to have very few values

on certain dimensions.

Despite the overall drop, our adaptive system still significantly

outperforms the random system. After 40 comparisons, the adap-

tive precision is 10% higher. We also notice that the adaptive pre-

cision is capped after around 60 comparisons, while the random

system is catching up. Intuitively, this cap is introduced by the un-

even distribution of real data. The random system will eventually

reach the cap but with a much slower convergence rate.

6.3 User Study
Since real users may not have linear preference and may make

mistakes while providing feedback, we conducted a user study to

further analyze our system in real scenarios. We recruited ten sub-

jects and asked them to complete an online survey. The subjects

were recruited from among university students and recent gradu-

ates in Singapore and United States. 6 were male, 4 were female,

and they ranged in age from 18 to 30. The survey consisted of one

hundred pairwise comparisons of used cars. The cars are from the

same set of one thousand cars used in the previous experiment.

We separated the one hundred comparisons into three buckets:

An adaptive training bucket with thirty adaptively selected com-

parisons, a random training bucket with thirty randomly selected

comparisons, and a testing bucket with forty random comparisons.

We randomized the order of these buckets to counterbalance the

learning effect.

We respectively trained the user preference on the adaptive train-

ing bucket and random training bucket, and tested the preference on

the testing bucket. The result is illustrated in Figure 7c.

According to the result, our adaptive system is slightly worse

than the random system before 15 comparisons. This is because

our adaptive algorithm is much more sensitive to user errors in

early stages. After 20 comparisons, our adaptive system signifi-

cantly outperforms the random system. Furthermore, after around

20 comparisons, the precision obtained with real user responses

(Figure 7c) is almost as good as the precision with simulated re-

sponses (Figure 7b). For example, at 30 comparisons, the precision

with real user feedback is 83% and 75% for adaptive and random

respectively, while it is 87% and 77% with simulated (ideal) feed-

back. This demonstrates that the linear preference assumption is

reasonable and our system is error-tolerant in practice.

Finally, we conducted an experiment to determine the impor-

tance of computing individual preferences. For this purpose, we

trained a baseline general preference from the union of all train-

ing data from all users, and tested this preference function on each

user’s individual testing bucket. The resulting precision averaged

over users is also displayed in Figure 7c. This precision is signifi-

cantly lower than both the adaptive and the random precisions. This

indicates that real users do exhibit very heterogenous preference in

the used car scenario and there is not a universal preference that

can satisfy all the users.

6.4 Stree and Orthogonal Search Performance

In the previous section we show that our system is able to achieve

very high precision (close to the practical upper bound determined

by the total number of entities) with just a few user labeled compar-

isons. However, in real-life databases we have thousands of entities

and millions of comparisons. In such cases, selecting the next best

candidate comparison to ask the user can be expensive. On the

other hand, since such selection is adaptive, it has to be done at

interactive speed. In this section, we evaluate the performance of

our adaptive selection and show that we are able to build the S-tree

within reasonable time and answer orthogonal queries within sec-

onds, for millions of comparisons. We do not evaluate the perfor-

mance for preference estimation because the time for the estimation

is negligible given the small number of labeled comparisons.

6.4.1 Stree Construction

We first measured the time to construct the S-tree, by varying the

entity dimension from 2 to 10, and the number of entities from 50
to 500. We set L to 50 and p to 0.95 for K-means. Every data point

was averaged over ten runs.
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The result in Figure 8 shows that the S-tree can be constructed

within seconds for an entity set with reasonable size (note N = 500
indicates 125K difference vectors to index). In theory, given a

number of M vectors, SVM is able to learn the center vector in

O(M3) time. In practice, we can achieve between O(M2) and

O(M3). Since M squares N , the overall complexity is propor-

tional to O(N4−6). However, this increase is not tremendous with

N < 500.

In case of larger N where SVM is no longer applicable, we have

two choices. First, we can sample the whole dataset to a relatively

smaller subset, and learn the preference from the subset of entities.

This will sacrifice some precision upper bound, but has no effect

on the convergence rate or the number of comparisons needed to

achieve a target precision below the upper bound. Alternatively,

we can loosen the criteria for spherical clustering. For example, we

can decrease p for the K-means clustering or even replace the SVM

call in Algorithm 2 with a simple average function. This will results

in larger spherical caps and more intersections between them, thus

degrading the overall orthogonal query performance.

6.4.2 Orthogonal Query

We evaluated orthogonal query performance with the S-tree in-

dex. We varied the dimension from 2 to 10, and the number of

entities N from 100 to 1000. For each combination, we randomly

generated a query vector and repeated the query for ten times. The

average query time is shown in Figure 9.

The result shows using S-tree we are able to answer orthogonal

queries within one second for millions of comparisons. The query

time presents no significant increase with respect to the number of

entities at this scale. It also increases steadily for small dimensions.

7. RELATED WORK
Preferences have been extensively studied in the literature, in-

cluding preference logics [34, 16], preference reasoning [33, 5] and

logic programming [13, 29]. Recently, research on preferences has

attracted broad interest in the database community [19, 11, 22].

This work can be classified into two categories, qualitative and

quantitative. Qualitative preference is defined directly as binary

preference relations [4, 11, 22, 23], while quantitative preference

is defined with a numeric scoring function [1, 19]. While these

works study the formulation of preferences in the context of rela-

tional database query, the preference in our paper is user-specific

and query independent. As a result, we focus on deriving the hid-

den user preference rather than applying the preference in queries.

Since we adopt a user-interactive approach with simple input

(pairwise comparison), an expressive preference formulation in-

creases the risk for over fitting, according to Occam’s razor prin-

ciple. Therefore, we define our preference as a simple quantitative

function, similar to previous quantitative preference work [1, 19].

Learning to order things [30] studies the ranking problem when

transitivity is not guaranteed among comparison results. It takes as

input the results of a set of comparisons between entities with no

internal structure, and tries to find a ranking that minimizes the in-

consistency among these comparison results. In contrast, our paper

focuses on learning a general quantitative preference function from

just a few input pairwise comparisons on structured entities.

User preferences have been recognized as important in ranking

results in information retrieval. However, the database tradition has

been to return all results the satisfy a specified predicate, unranked,

leaving to the user the burden of tuning the predicate to get the

desired results. Our work is aimed at decreasing this user burden.

There is a large body of literature on learning to rank, which

employs machine learning techniques to construct ranking mod-

els[26, 25]. Recent learning to rank approaches using pairwise

comparisons include Active Ranking [20, 36, 14], RankNet [6],

IR SVM [8] and LambdaRank [7]. While learning to rank requires

the query in the ranking model, our work is fundamentally differ-

ent in that we require no query and learn the user preference from

pairwise comparison feedbacks.

Active Ranking [20] adopts active learning [31] in ranking. It

models the query as a common reference point in R
d and the rank-

ing as the distance from the entities to that point. This is compa-

rable to our work, where we define the preference to be the inner

product between the entities and the user preference vector. How-

ever, active ranking neither guarantees the quality of the selected

comparison nor illustrates how to select them. In contrast, our work

provides specific algorithms to select the next comparison that is

guaranteed to cut the remaining sphere as equally as possible.

Our work is also strongly related to traditional high dimensional

database indexing, which includes a variety of multi-dimensional

tree indices such as R-tree [15], R*-tree [3] and M-tree [12]. How-

ever, there are two essential differences. First, our data points (com-

parison vectors) are normalized and distributed on a unit sphere, as

opposed to traditional geometric objects which are in R
d. Second,

our S-tree is specially designed for orthogonal query, which it not

supported by any of the existing tree indices. As a result, indices

such as R-tree cannot be directly applied to our case. M-tree offers

a general indexing technique for objects whose relative distances

form a general metric space. Unfortunately, our orthogonality does

not satisfy the triangle inequality requested by the metric space.

The problem of searching vectors that is orthogonal to a given

vector also has a lot of potential applications outside our scenario.

For instance, in computer vision [28, 21] and signal processing [24,

2], algorithms were developed to find the residual vector of a given
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vector from a huge search space. S-tree proposed in this paper is

potentially helpful to boost their search performance.

There is also a recent trend for crowdsourced ranking [10, 35,

27, 32]. However, most of them focus on learning a single ranking

function across the population, while our work assumes different

preferences among individuals.

8. CONCLUSIONS
Users often have complicated and individualized preference func-

tions over multi-attribute data. Given a large collection of data, it

is important for database systems to understand these preferences

to be able to return results that are immediately useful. Preference

understanding becomes particularly important as data sets grow in

size: it is unlikely a user will want to wade through a thousand

candidate used cars returned by a database.

To address this need, we have studied the problem of preference

learning on structured entities from pairwise comparisons. Under

a linear preference assumption, we formalized the problem and de-

composed it into two subproblems, preference estimation and adap-

tive comparison selection.

For preference estimation, we derived the mathematical founda-

tion of the problem and solved it using an innovative application

of SVM. For adaptive comparison selection, we theoretically ana-

lyzed a random selection approach and an optimal binary selection

strategy, and proposed our adaptive selection approach. We ab-

stracted the adaptive selection into an innovative orthogonal query,

and proposed a new type of index S-tree to answer it.

We described our algorithms for various parts and integrated

them into a preference learning system. We further implemented

the system and evaluated its effectiveness and performance. Our

experiment with synthetic data showed that our system is able to

achieve a high precision with just a few comparisons, coming close

to the theoretical binary selection optimum. Both our experiment

and user study with real data demonstrated that our system signif-

icantly outperforms the random selection system. We also showed

that our preference learning approach is much more effective than

existing approaches, and our S-tree index can be built efficiently

and serve orthogonal query in interactive speed with reasonable

scale. Our experiments also showed that our linear preference as-

sumption is reasonable in practice, and our method is able to toler-

ate natural user inconsistencies in pairwise preference reporting.

In the current approach, the user still needs to performs dozens

of comparisons in order to achieve a practical precision. One possi-

ble direction to further boost the convergence rate it to analyze the

distribution of the data set and refine our adaptive selection accord-

ingly. Also, our current work solves the problem for each individ-

ual separately. Given the potential similarities between individuals,

there indeed are opportunities for cross-learning, which can further

decrease the number of questions required. Finally, combining our

approach with offline log data learning would potentially boost the

starting precision. We will pursue these directions in future work.
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