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ABSTRACT

Materialized views (MVs), stored pre-computed results, are widely
used to facilitate fast queries on large datasets. When new records
arrive at a high rate, it is infeasible to continuously update (main-
tain) MVs and a common solution is to defer maintenance by batch-
ing updates together. Between batches the MVs become increas-
ingly stale with incorrect, missing, and superfluous rows leading
to increasingly inaccurate query results. We propose Stale View
Cleaning (SVC) which addresses this problem from a data clean-
ing perspective. In SVC, we efficiently clean a sample of rows from
a stale MV, and use the clean sample to estimate aggregate query
results. While approximate, the estimated query results reflect the
most recent data. As sampling can be sensitive to long-tailed dis-
tributions, we further explore an outlier indexing technique to give
increased accuracy when the data distributions are skewed. SVC
complements existing deferred maintenance approaches by giving
accurate and bounded query answers between maintenance. We
evaluate our method on a generated dataset from the TPC-D bench-
mark and a real video distribution application. Experiments con-
firm our theoretical results: (1) cleaning an MV sample is more
efficient than full view maintenance, (2) the estimated results are
more accurate than using the stale MV, and (3) SVC is applicable
for a wide variety of MVs.

1. INTRODUCTION

Storing pre-computed query results, also known as materializa-
tion, is an extensively studied approach to reduce query latency
on large data [7,14,21]. Materialized Views (MVs) are now sup-
ported by all major commercial vendors. However, as with any pre-
computation or caching, the key challenge in using MVs is main-
taining their freshness as base data changes. While there has been
substantial work in incremental maintenance of MVs [7,18], ea-
ger maintenance (i.e., immediately applying updates) is not always
feasible.

In applications such as monitoring or visualization [23,33], ana-
lysts may create many MVs by slicing or aggregating over different
dimensions. Eager maintenance requires updating all affected M Vs
for every incoming transaction, and thus, each additional MV re-
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Figure 1: In SVC, we pose view maintenance as a sample-and-
clean problem and show that we can use a sample of clean (up-
to-date) rows from an MV to correct inaccurate query results
on stale views.

duces the available transaction throughput. This problem becomes
significantly harder when the views are distributed and computa-
tional resources are contended by other tasks. As a result, in pro-
duction environments, it is common to batch updates together to
amortize overheads [7]. Batch sizes are set according to system
constraints, and can vary from a few seconds to even nightly.

While increasing the batching period gives the user more flexi-
bility to schedule around system constraints, a disadvantage is that
MVs are stale between maintenance periods. Other than an edu-
cated guess based on past data, the user has no way of knowing
how incorrect their query results are. Some types of views and
query workloads can be sensitive to even a small number of base
data updates, for example, if updates disproportionately affect a
subset of frequently queried rows. Thus, any amount of staleness
is potentially dangerous, and this presents us a dichotomy between
facing the cost of eager maintenance or coping with consequences
of unknown inaccuracy. In this paper, we explore an intriguing
middle ground, namely, we can derive a bounded approximation of
the correct answer for a fraction of the cost. With a small amount
of up-to-date data, we can compensate for the error in aggregate
query results induced by staleness.

Our method relies on modeling query answering on stale MVs
as a data cleaning problem. A stale MV has incorrect, missing, or
superfluous rows, which are problems that have been studied in the
data cleaning literature (e.g., see Rahm and Do for a survey [30]).
Increasing data volumes have led to development of new, efficient
sampling-based approaches for coping with dirty data. In our prior
work, we developed the SampleClean framework for scalable ag-
gregate query processing on dirty data [32]. Since data cleaning
is often expensive, we proposed cleaning a sample of data and us-
ing this sample to improve the results of aggregate queries on the
full dataset. Since stale M Vs are dirty data, an approach similar to
SampleClean raises a new possibility of using a sample of “clean”
rows in the M Vs to return more accurate query results.

1370



Stale View Cleaning (SVC illustrated in Figure 1) approximates
aggregate query results from a stale MV and a small sample of up-
to-date data. We calculate a relational expression that materializes
a uniform sample of up-to-date rows. This expression can be in-
terpreted as “cleaning” a stale sample of rows. We use the clean
sample of rows to estimate a result for an aggregate query on the
view. The estimates from this procedure, while approximate, re-
flect the most recent data. Approximation error is more manageable
than staleness because: (1) the uniformity of sampling allows us to
apply theory from statistics such as the Central Limit Theorem to
give tight bounds on approximate results, and (2) the approximate
error is parametrized by the sample size which the user can control
trading off accuracy for computation. However, the MV setting
presents new challenges that we did not consider in prior work. To
summarize our contributions:(1) a hashing-based technique that ef-
ficiently materializes an up-to-date sample view, (2) algorithms for
processing general aggregate queries on a sample view and bound-
ing results in confidence intervals, (3) an outlier indexing technique
to reduce sensitivity to skewed datasets that can push the index up
to derived relations, and (4) an evaluation of this technique on real
and synthetic datasets to show that SVC gives highly accurate re-
sults for a relatively small maintenance cost.

The paper is organized as follows: In Section 2, we give the
necessary background for our work. Next, in Section 3, we for-
malize the problem. In Sections 4 and 5, we describe the sampling
and query processing of our technique. In Section 6, we describe
the outlier indexing framework. Then, in Section 7, we evaluate
our approach. We discuss Related Work in Section 8. Finally, we
present our Conclusions in Section 9.

2. BACKGROUND

2.1 Motivation and Example

Materialized view maintenance can be very expensive resulting
in staleness. Many important use-cases require creating a large
number of views including: visualization, personalization, privacy,
and real-time monitoring. The problem with eager maintenance is
that every view created by an analyst places a bottleneck on in-
coming transactions. There has been significant research on fast
MYV maintenance algorithms, most recently DBToaster [18] which
uses SQL query compilation and higher-order maintenance. How-
ever, even with these optimizations, some materialized views are
computationally difficult to incrementally maintain. For example,
incremental maintenance of views with correlated subqueries can
grow with the size of the data. It is also common to use the same
infrastructure to maintain multiple MVs (along with other analyt-
ics tasks) adding further contention to computational resources and
reducing overall available throughput. When faced with such chal-
lenges, one solution is to batch updates and amortize maintenance
overheads.

Log Analysis Example: Suppose we are a video streaming com-
pany analyzing user engagement. Our database consists of two ta-
bles Log and Video, with the following schema:

Log(sessionld, videold)
Video(videold, ownerld, duration)

The Log table stores each visit to a specific video with primary key
(sessionId) and a foreign-key to the Video table (videoId).
For our analysis, we are interested in finding aggregate statistics
on visits, such as the average visits per video and the total num-
ber of visits predicated on different subsets of owners. We could
define the following MV that counts the visits for each videoId
associated with owners and the duration.

1371

CREATE VIEW visitView

AS SELECT videold, ownerld,
count(1l) as visitCount
FROM Log, Video WHERE Log. videold
GROUP BY videold

duration ,

Video . videold

As Log table grows, this MV becomes stale, and we denote the
insertions to the table as:

LogIns(sessionld, videold)

Staleness does not affect every query uniformly. Even when the
number of new entries in LogIns is small relative to Log, some
queries might be very inaccurate. For example, views to newly
added videos may account for most of LogIns, so queries that
count visits to the most recent videos will be more inaccurate. The
amount of inaccuracy is unknown to the user, who can only esti-
mate an expected error based on prior experience. This assumption
may not hold in rapidly evolving data. We see an opportunity for
approximation through sampling which can give bounded query
results for a reduced maintenance cost. In other words, a small
amount of up-to-date data allows the user to estimate the magni-
tude of query result error due to staleness.

2.2 SampleClean [32]

SampleClean is a framework for scalable aggregate query pro-
cessing on dirty data. Traditionally, data cleaning has explored ex-
pensive, up-front cleaning of entire datasets for increased query ac-
curacy. Those who were unwilling to pay the full cleaning cost
avoided data cleaning altogether. We proposed SampleClean to
add an additional trade-off to this design space by using sampling,
i.e., bounded results for aggregate queries when only a sample of
data is cleaned. The problem of high computational costs for ac-
curate results mirrors the challenge faced in the MV setting with
the tradeoff between immediate maintenance (expensive and up-
to-date) and deferred maintenance (inexpensive and stale). Thus,
we explore how samples of “clean” (up-to-date) data can be used
for improved query processing on MVs without incurring the full
cost of maintenance.

However, the metaphor of stale MVs as a Sample-and-Clean
problem only goes so far and there are significant new challenges
that we address in this paper. In prior work, we modeled data clean-
ing as a row-by-row black-box transformation. This model does not
work for missing and superfluous rows in stale MVs. In particular,
our sampling method has to account for this issue and we propose a
hashing based technique to efficiently materialize a uniform sample
even in the presence of missing/superfluous rows. Next, we greatly
expand the query processing scope of SampleClean beyond sum,
count, and avg queries. Bounding estimates that are not sum,
count, and avg queries, is significantly more complicated. This
requires new analytic tools such as a statistical bootstrap estima-
tion to calculate confidence intervals. Finally, we add an outlier
indexing technique to improve estimates on skewed data.

3. FRAMEWORK OVERVIEW

3.1 Notation and Definitions

SVC returns a bounded approximation for aggregate queries on
stale M Vs for a flexible additional maintenance cost.
Materialized View: Let D be a database which is a collection of
relations {R;}. A materialized view S is the result of applying a
view definition to D. View definitions are composed of standard
relational algebra expressions: Select (o4), Project (1I), Join (),
Aggregation (), Union (U), Intersection (N) and Difference (—).
We use the following parametrized notation for joins, aggregations
and generalized projections:



® 114, as,....a; (R): Generalized projection selects attributes
{a1,az,...,ax} from R, allowing for adding new attributes
that are arithmetic transformations of old ones (e.g., a1 +a2).

® Dy(r1,r2) (R1, R2): Join selects all tuples in Ry x Rq that
satisfy ¢ (71, 72). We use i< to denote all types of joins even
extended outer joins such as ><t, 4, I<T.

e v7,4(R): Apply the aggregate function f to the relation R
grouped by the distinct values of A, where A is a subset of
the attributes. The DISTINCT operation can be considered
as a special case of the Aggregation operation.

The composition of the unary and binary relational expressions can
be represented as a tree, which is called the expression tree. The
leaves of the tree are the base relations for the view. Each non-
leave node is the result of applying one of the above relational ex-
pressions to a relation. To avoid ambiguity, we refer to tuples of the
base relations as records and tuples of derived relations as rows.

Primary Key: We assume that each of the base relations has a pri-
mary key. If this is not the case, we can always add an extra column
that assigns an increasing sequence of integers to each record. For
the defined relational expressions, every row in a materialized view
can also be given a primary key [11,35], which we will describe
in Section 4. This primary key is formally a subset of attributes
u C {a1,ag, ..., ar} such that all s € S(u) are unique.

Staleness: For each relation R; there is a set of insertions AR;
(modeled as a relation) and a set of deletions VR;. An “update”
to R; can be modeled as a deletion and then an insertion. We refer
to the set of insertion and deletion relations as “delta relations”,
denoted by 9D:
0D = {ARu,....,AR,} U{VR1,...,VRy}

A view S is considered stale when there exist insertions or dele-
tions to any of its base relations. This means that at least one of the
delta relations in 9D is non-empty.

Maintenance: There may be multiple ways (e.g., incremental main-
tenance or recomputation) to maintain a view S, and we denote the
up-to-date view as S’. We formalize the procedure to maintain the
view as a maintenance strategy M. A maintenance strategy is a
relational expression the execution of which will return S’. Tt is a
function of the database D, the stale view S, and all the insertion
and deletion relations OD. In this work, we consider maintenance
strategies composed of the same relational expressions as material-
ized views described above.

S" = M(S,D,0D)

Staleness as Data Error: The consequences of staleness are in-
correct, missing, and superfluous rows. Formally, for a stale view
S with primary key u and an up-to-date view S”:

e Incorrect: Incorrect rows are the set of rows (identified by
the primary key) that are updated in S’. For s € S, let s(u)
be the value of the primary key. An incorrect row is one such
that there exists a s € S with s’(u) = s(u) and s # s’

e Missing: Missing rows are the set of rows (identified by the
primary key) that exist in the up-to-date view but not in the
stale view. For s’ € ', let s’ (u) be the value of the primary
key. A missing row is one such that there does not exist a
s € S with s(u) = ' (u).

e Superfluous: Superfluous rows are the set of rows (identi-
fied by the primary key) that exist in the stale view but not in
the up-to-date view. For s € S, let s(u) be the value of the
primary key. A superfluous row is one such that there does
notexista s’ € S" with s(u) = s'(u).

Uniform Random Sampling: We define a sampling ratio m €
[0,1] and for each row in a view S, we include it into a sample
with probability m. We use the “hat” notation (e.g., §) to denote
sampled relations. The relation Sisa uniform sample of S if
(WVseS:s€8; (2 Pr(siel)=Pr(ssel)=m.

We say a sample is clean if and only if it is a uniform random
sample of the up-to-date view S’.

EXAMPLE 1. In this example, we summarize all of the key con-
cepts and terminology pertaining to materialized views, stale data
error, and maintenance strategies. Our example view, visitView,
joins the Log table with the Video table and counts the visits for
each video grouped by videold. Since there is a foreign key rela-
tionship between the relations, this is just a visit count for each
unique video with additional attributes. The primary keys of the
base relations are: sessionld for Log and videold for Video.

If new records have been added to the Log table, the visitView is
considered stale. Incorrect rows in the view are videos for which
the visitCount is incorrect and missing rows are videos that had
not yet been viewed once at the time of materialization. While not
possible in our running example, superfluous rows would be videos
whose Log records have all been deleted. Formally, in this example
our database is D = {V'ideo, Log}, and the delta relations are
0D = {LogIns}.

Suppose, we apply the change-table IVM algorithm proposed
in[14]:

1. Create a “delta view” by applying the view definition to Lo-
glns. That is, calculate the visit count per video on the new
logs:

~v(Video <t LogIns)

2. Take the full outer join of the “delta view” with the stale view
visitView (equality on videold).

VisitView <t v(Video <t LogIns)

3. Apply the generalized projection operator to add the visit-
Count in the delta view to each of the rows in visitView where
we treat a NULL value as 0:

II(VisitView <t y(Video <1 LogIns))
Therefore, the maintenance strategy is:
M({VisitView}, {Video, Log},{LogIns})
= I(VisitView >t v(Video <1 LogIns))

3.2 SVC Workflow

Formally, the workflow of SVC is:

1. We are given a view S.

2. M defines the maintenance strategy that updates S at each
maintenance period.

3. The view S is stale between periodic maintenance, and the
up-to-date view should be S”.

4. (Problem 1. Stale Sample View Cleaning) We find an expres-
sion C derived from M that cleans a uniform random sample
of the stale view S to produce a “clean” sample of the up-to-
date view 5.

5. (Problem 2. Query Result Estimation) Given an aggregate
query g and the state query result g(.S), we use S and S to
estimate the up-to-date result.

6. We optionally maintain an index of outliers o for improved
estimation in skewed data.

Stale Sample View Cleaning: The first problem addressed in this
paper is how to clean a sample of the stale materialized view.

PROBLEM 1  (STALE SAMPLE VIEW CLEANING). We are
given a stale view S, a sample of this stale view S with ratio m, the
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maintenance strategy M, the base relations D, and the insertion
and deletion relations OD. We want to find a relational expression
C such that:

5§ =c(8,p,oD),

where S’ is a sample of the up-to-date view with ratio m.

Query Result Estimation: The second problem addressed in this
paper is query result estimation.

PROBLEM 2 (QUERY RESULT ESTIMATION). Letq be anag-
gregate query of the following form ':

SELECT agg(a) FROM View WHERE Condition(A);

If the view S is stale, then the result will be incorrect by some
value c:

q(S") =q(S) +¢
Our objective is to find an estimator f such that:

a(S") = f(q(5),8,5)

EXAMPLE 2. Suppose a user wants to know how many videos
have received more than 100 views.

SELECT COUNT(1) FROM visitView WHERE visitCount > 100;

Let us suppose the user runs the query and the result is 45. How-
ever, there have now been new records inserted into the Log ta-
ble making this result stale. First, we take a sample of visitView
and suppose this sample is a 5% sample. In Stale Sample View
Cleaning (Problem 1), we apply updates, insertions, and deletions
to the sample to efficiently materialize a 5% sample of the up-to-
date view. In Query Result Estimation (Problem 2), we estimate
aggregate query results based on the stale sample and the up-to-
date sample.

4. EFFICIENTLY CLEANING A SAMPLE

In this section, we describe how to find a relational expression C
derived from the maintenance strategy M that efficiently cleans a
sample of a stale view Sto produce s

4.1 Challenges

To setup the problem, we first consider two naive solutions to
this problem that will not work. We could trivially apply M to the
entire stale view S and update it to S’, and then sample. While
the result is correct according to our problem formulation, it does
not save us on any computation for maintenance. We want to avoid
materialization of up-to-date rows outside of the sample. However,
the naive alternative solution is also flawed. For example, we could
just apply M to the stale sample Sanda sample of the delta rela-
tions D. The challenge is that M does not always commute with
sampling.

4.2 Provenance

To understand the commutativity problem, consider maintaining
a group by aggregate view:

SELECT videold ,
GROUP BY videold

count (1) FROM Log

The resulting view has one row for every distinct videoId. We
want to materialize a sample of S’, that is a sample of distinct
videoId. If we sample the base relation Log first, we do not
get a sample of the view. Instead, we get a view where every count
is partial.

1For simplicity, we exclude the group by clause for all queries in the paper, as it can
be modeled as part of the Condition.

VisitView(videold,
ownerld, Y
duration,
visitCount)

R( (sesslonld videold),
ownerld,

/ \ duratlon)

Log(sessionld, Video(videold,
videold) ownerld,
duration)

Figure 2: Applying the rules described in Definition 2, we illus-
trate how to assign a primary key to a view.

To achieve a sample of S’, we need to ensure that for each s €
S’ all contributing rows in subexpressions to s are also sampled.
This is a problem of row provenance [11]. Provenance, also termed
lineage, has been an important tool in the analysis of materialized
views [11] and in approximate query processing [35].

DEFINITION 1  (PROVENANCE). Letr be a row in relation R,
let R be derived from some other relation R = exp(U) where
exp(-) be a relational expression composed of the expressions de-
fined in Section 3.1. The provenance of row r with respect to U
is pu(r). This is defined as the set of rows in U such that for an
update to any row u & pu (r), it guarantees that r is unchanged.

4.3 Primary Keys

For the relational expressions defined in the previous sections,
this provenance is well defined and can be tracked using primary
key rules that are enforced on each subexpression [11]. We recur-
sively define a set of primary keys for all relations in the expression
tree:

DEFINITION 2 (PRIMARY KEY GENERATION). For every re-
lational expression R, we define the primary key attribute(s) of ev-
ery expression to be:

o Base Case: All relations (leaves) must have an attribute p
which is designated as a primary key.

e o4(R): Primary key of the result is the primary key of R

o 1Ly, .....a.)(R): Primary key of the result is the primary key
of R. The primary key must always be included in the projec-
tion.

® Xy(r1,r2) (R1, Re): Primary key of the result is the tuple of
the primary keys of R1 and Ro.

e s a(R): The primary key of the result is the group by key A
(which may be a set of attributes).

o Ri1URy: Primary key of the result is the union of the primary
keys of R1 and R2

o Ri N Ra: Primary key of the result is the intersection of the
primary keys of R1 and R»

o Ri — Ro: Primary key of the result is the primary key of R1

For every node at the expression tree, these keys are guaranteed to
uniquely identify a row.

These rules define a constructive definition that can always be ap-
plied for our defined relational expressions.

EXAMPLE 3. A variant of our running example view that does
not have a primary key is:
CREATE VIEW visitView AS SELECT count (1) as visitCount

FROM Log, Video WHERE Log.videold = Video.videold
GROUP BY videold

We illustrate the key generation process in Figure 2. Suppose there
is a base relation, such as LOg, that is missing a primary key (ses-
sionld)®. We can add this attribute by generating an increasing

21l does not make sense for Video to be missing a primary key in our running example
due to the foreign key relationship
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sequence of integers for each record in Log. Since both base tables
Video and Log have primary keys videold and sessionld respec-
tively, the result of the join will have a primary key (videold, ses-
sionld). Since the group by attribute is videold, that becomes the
primary key of the view.

4.4 Hashing Operator

The primary keys allow us to determine the set of rows that con-
tribute to a row r in a derived relation. If we have a deterministic
way of mapping a primary key to a Boolean, we can ensure that all
contributing rows are also sampled. To achieve this we use a hash-
ing procedure. Let us denote the hashing operator 74, (R). For
all tuples in R, this operator applies a hash function whose range
is [0, 1] to primary key a (which may be a set) and selects those
records with hash less than or equal to m >.

In this work, we study uniform hashing where the condition
h(a) < m implies that a fraction of approximately m of the rows
are sampled. Such hash functions are utilized in other aspects of
database research and practice (e.g. hash partitioning, hash joins,
and hash tables). Hash functions in these applications are designed
to be as uniform as possible to avoid collisions. Numerous em-
pirical studies establish that many commonly applied hash func-
tions (e.g., Linear, SDBM, MD5, SHA) have negligible differences
with a true uniform random variable [16,22]. Cryptographic hashes
work particularly well and are supported by most commercial and

open source systems, for example MySQL provides MD5 and SHAT.

To avoid materializing extra rows, we push down the hashing
operator through the expression tree. The further that we can push
n down, the more operators (i.e., above the sampling) can benefit.
This push-down is analogous to predicate push-down operations
used in query optimizers. In particular, we are interested in find-
ing an optimized relational expression that materializes an identi-
cal sample before and after the push-down. We formalize the push-
down rules below:

DEFINITION 3 (HASH PUSH-DOWN). For a derived relation
R, the following rules can be applied to push 1q,m(R) down the
expression tree.

e 04(R): Pushn through the expression.

® Il(a,,....a,) (R): Pushmn through if a is in the projection.
DMy(r1,r2) (R1, R2): No push down in general. There are
special cases below where push down is possible.

~vf,4(R): Push n through if a is in the group by clause A.
R1 U Ry: Push n through to both R1 and R2

R1 N Ra: Push n through to both Ry and R2

Ri1 — Ry Push n through to both R1 and Ra2

Special Case of Joins: In general, a join R b S blocks the push-
down of the hash operator 7q,m (R) since a possibly consists of
attributes in both R and S. However, when there is a constraint
that enforces these attributes are equal then push-down is possible.

Foreign Key Join. If we have a join with two foreign-key rela-
tions Ry (fact table with foreign key a) and R> (dimension table
with primary key b C a) and we are sampling the key a, then we
can push the sampling down to ;. This is because we are guaran-
teed that for every r1 € Ry there is only one 2 € Ra.

Equality Join. 1If the join is an equality join and a is one of the
attributes in the equality join condition R1.a = R2.b, then n can be
pushed down to both R; and R2. On R, the pushed down operator
is Na,m (R1) and on Ry the operator is 7, m (R2).

3For example, if hash function is a 32-bit unsigned integer which we can normalize
by MAXINT to be in [0, 1].

Un-Optimized Optimized

N(primaryKey,5%) n

! !

A X

N n(primaryKey,S%) Y “Delta View”

visitView Y “Delta View” visitView DTQ
t
N n(prim"ryKey,S%) n(primaryKey,S%)
7N
Logins  Video Loglns  Video

Figure 3: Applying the rules described in Section 4.4, we illus-
trate how to optimize the sampling of our example maintenance
strategy.

EXAMPLE 4. We illustrate our hashing procedure in terms of
SQL expressions on our running example. We can push down the
hash function for the following expressions:

SELECT x FROM Video WHERE Condition(-)

SELECT « FROM Video,Log WHERE Video.videold = Log.videold
SELECT videold, count(1) FROM Log GROUP BY videold

The following expressions are examples where we cannot push-
down the hash function:

SELECT * FROM Video, Log

SELECT ¢, count(1)

FROM (
SELECT videold, count(1) as c¢ FROM Log
GROUP BY videold

)
GROUP BY c

In Theorem 1, we prove the correctness of our push-down rules.

THEOREM 1. Given a derived relation R, primary key a, and
the sample g, m (R). Let S be the sample created by applying na.,m
without push-down and S’ be the sample created by applying the
push-down rules to na,m(R). S and S’ are identical samples with
sampling ratio m.

PROOF SKETCH. We can prove this by induction. The base
case is where the expression tree is only one node, trivially making
this true. Then, we can induct considering one level of operators in
the tree. o, U, N, — clearly commutes with hashing a. II commutes
only if a is in the projection. For 1<, a sampling operator on () can
be pushed down if « is in either &, or ks, or if there is a constraint
that links &, to ks. For group by aggregates, if a is in the group
clause (i.e., it is in the aggregate), then hashing the operand filters
all rows that have a which is sufficient to materialize the derived
row. [l

4.5 Efficient View Cleaning

If we apply the hashing operator to M, we can get an optimized
cleaning expression C that avoids materializing unnecessary rows.
When applied to a stale sample of a view S, the database D, and the
delta relations 9D, it produces an up-to-date sample with sampling
ratio m:

S =¢(S,D,oD)
Thus, it addresses Problem 1 from the previous section.

EXAMPLE 5. We illustrate our proposed approach on our ex-
ample view visitView with the expression tree listed in Figure
3. We start by applying the hashing operator to the primary key
(videoId). The next operator we see in the expression tree is a
projection that increments the visitCount in the view, and this
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allows for push-down since primary key is in the projection. The
second expression is a hash of the equality join key which merges
the aggregate from the “delta view” to the old view allowing us
to push down on both branches of the tree using our special case
for equality joins. On the left side, we reach the stale view so we
stop. On the right side, we reach the aggregate query (count) and
since the primary key is in group by clause, we can push down the
sampling. Then, we reach another point where we hash the equal-
ity join key allowing us to push down the sampling to the relations
Loglns and Video.

4.6 Corresponding Samples
We started with a uniform random sample S of the stale view
S. The hash push down allows us to efficiently materialize the

sample S’. 5" is a uniform random sample of the up-to-date view
S. While both of these samples are uniform random samples of
their respective relations, the two samples are correlated since 5
is generated by cleaning S. In particular, our hashing technique
ensures that the primary keys in s depend on the primary keys in
S. Statistically, this positively correlates the query result q(§ ") and
q(§ ). We will see how this property can be leveraged to improve
query estimation accuracy (Section 5.1).

PROPERTY 1 (CORRESPONDENCE). Suppose S and S are
uniform samples 0[ S’ anAd S, respectively. Let u denote the pri-

mary key. We say S’ and S correspond if and only if:

e Uniformity: 5" and S are uniform random samples of S’ and
S respectively with a sampling ratio of m

e Removal of Superfluous Rows: D = {Vs € S s’ € S
s(u) =s'(u)}, DNS" =0

o Sampling of Missing Rows: I = {Vs' € S PseS: s(u)
SWLE(INS [)=m|I|

e Key Preservation for Updated Rows: For all s € S and not
inDorl, s €8 :s(u) = s(u).

S. QUERY RESULT ESTIMATION

SVC returns two corresponding samples, Sand S’ Sisa “dirty”
sample (sample of the stale view) and S’ is a “clean” sample (sam-
ple of the up-to-date view). In this section, we first discuss how to
estimate query results using the two corresponding samples. Then,
we discuss the bounds and guarantees on different classes of aggre-
gate queries.

5.1 Result Estimation

Suppose, we have an aggregate query g of the following form:
:= SELECT f(attr) FROM View WHERE cond ()

q(View)

We quantify the staleness c of the aggregate query result as the
difference between the query applied to the stale view .S compared
to the up-to-date view S":
a(S') =a(S) +c

The objective of this work is to estimate ¢(S’). In the Approx-
imate Query Processing (AQP) literature, sample-based estimates
have been well studied [3,28]. This inspires our first estimation al-
gorithm, SVC+AQP, which uses SVC to materialize a sample view
and an AQP-style result estimation technique.

SVC+AQP: Given a clean sample view S, the query ¢, and a
scaling factor s, we apply the query to the sample and scale it by s:
q(S') = s-q(S")

For example, for the sum and count the scaling factor is % For
the avg the scaling factor is 1. Refer to [3,28] for a detailed dis-

cussion on the scaling factors.
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SVC+AQP returns what we call a direct estimate of ¢(S"). We
could, however, try to estimate c instead. Since we have the stale
view S, we could run the query ¢ on the full stale view and es-
timate the difference c using the samples S and §’. We call this
approach SVC+CORR, which represents calculating a correction
to ¢(.5) instead of a direct estimate.

SVC+CORR: Given a clean sample S its corresponding dirty
sample S, a query q, and a scaling factor s:

1. Apply SVC+AQP t0 §": Tesr_presh = s - q(S")

2. Apply SVC+AQP t0 S: reat_state = s - q(5)

3. Apply q to the full stale view: rs¢aie = q(S)

4. Take the difference between (1) and (2) and add it to (3):
q(Sl) X Tstale + (Test,f'r'esh - Test,stule)

A commonly studied property in the AQP literature is unbiased-
ness. An unbiased result estimate means that the expected value
of the estimate over all samples of the same size is ¢(S’) *. We
can prove that if SVC+AQP is unbiased (there is an AQP method
that gives an unbiased result) then SVC+CORR also gives unbiased
results.

LEMMA 1. Ifthere exists an unbiased sample estimator for q(S’)
then there exists an unbiased sample estimator for c.

PROOF SKETCH. Suppose, we have an unbiased sample esti-
mator g of g. Then, it follows that E[e,(S")] = q(S") If we
substitute in this expression: ¢ = E [eq(g’)] — q(S). Applying the

O

~

linearity of expectation: ¢ = E[eq(S5) — q(9)]

Some queries do not have unbiased sample estimators, but the bias
of their sample estimators can be bounded. Example queries in-
clude: median, percentile. A corollary to the previous lemma,
is that if we can bound the bias for our estimator then we can
achieve a bounded bias for c as well.

EXAMPLE 6. We can formalize our earlier example query in
Section 2 in terms of SVC+CORR and SVC+AQP. Let us suppose
the initial query result is 45. There now have been new log records
inserted into the Log table making the old result stale, and suppose
we are working with a sampling ratio of 5%. For SVC+AQP, we
count the number of videos in the clean sample that currently have
counts greater than 100 and scale that result by ﬁ = 20. If the
count from the clean sample is 4, then the estimate for SVC+AQP is
80. For SVC+CORR, we also run SVC+AQP on the dirty sample.
Suppose that there are only two videos in the dirty sample with
counts above 100, then the result of running SVC+AQP on the dirty
sample is 20 - 2 = 40. We take the difference of the two values
80 — 40 = 40. This means that we should correct the old result by
40 resulting in the estimate of 45 + 40 = 85.

5.2 Confidence Intervals

To bound our estimates in confidence intervals we explore three
cases: (1) aggregates that can be written as sample means, (2) ag-
gregates that can be bounded empirically with a statistical boot-
strap, and (3) min and max. For (1), sum, count, and avg can
all be written as sample means. sum is the sample mean scaled by
the relation size and count is the mean of the indicator function
scaled by the relation size. In this case, we can get analytic confi-
dence intervals which allows us to analyze the efficiency tradeoffs.
In case (2), for example median, we lose this property and have
to use an empirical technique to bound the results. Queries such

4The avg query is considered conditionally unbiased in some works.



as min and max fall into their own category as they cannot eas-
ily be bounded empirically [2], and we discuss these queries in our
Technical Report [19].

5.2.1 Confidence Intervals For Sample Means

The first case is aggregates that can be expressed as a sample
mean (sum, count, and avg) Sample means for uniform random
samples (also called sampling without replacement) converge to the
population mean by the Central Limit Theorem (CLT). Let jz be a
sample mean calculated from & samples, o2 be the variance of the
sample, and p be the population mean. Then, the error (u — fi) is
normally distributed: N (0, %2) Therefore, the confidence interval
is given by:

2
pxy %
where ~y is the Gaussian tail probability value (e.g., 1.96 for 95%,
2.57 for 99%).

We discuss how to calculate this confidence interval in SQL for
SVC+AQP. The first step is a query rewriting step where we move
the predicate cond(*) into the SELECT clause (1 if true, O if false).
Let attr be the aggregate attribute and m be the sampling ratio. We
define an intermediate result ¢{rans which is a table of transformed
rows with the first column the primary key and the second column
defined in terms of cond () statement and scaling. For sum:

trans= SELECT pk,1.0/m-attr-cond(*) as trans_attr FROM s

For count:

trans= SELECT pk, 1.0/m - cond(*) as trans_attr FROM s

For avg since there is no scaling we do not need to re-write the
query:
trans= SELECT pk, attr as trans_attr FROM s WHERE cond (%)

SVC+AQP: The confidence interval on this result is defined as:
SELECT ~-stdev (trans_attr)/sqrt(count(1l)) FROM trans

To calculate the confidence intervals for SVC+CORR we have to
look at the statistics of the difference, i.e., ¢ = g(S) — ¢(S"), from
a sample. If all rows in S existin S’ we could use the associativity
of addition and subtraction to rewrite this as: ¢ = q(S —S’), where
— is the row-by-row difference between S and S’. The challenge
is that the missing rows on either side make this ill-defined. Thus,
we defined the following null-handling with a subtraction operator
we call —.

DEFINITION 4 (CORRESPONDENCE SUBTRACT). Given an ag-

gregate query, and two corresponding relations Ry and Ro with

the schema (a1, a2, ...) where a1 is the primary key for R1 and Ra,

and as is the aggregation attribute for the query. — is defined as a

projection of the full outer join on equality of R1.a1 = Ra.a1:
IR, .a5—Rs.a0 (R1 T R2)

Null values ) are represented as zero.

Using this operator, we can define a new intermediate result di f f:
dif f := trans(g/);trans(g)

SVC+CORR: Then, as in SVC+AQP, we bound the result using
the CLT:

SELECT ~-stdev (trans_attr)/sqrt(count(1)) FROM diff

5.2.2 AQP vs. CORR For Sample Means

In terms of these bounds, we can analyze how SVC+AQP com-
pares to SVC+CORR for a fixed sample size k. SVC+AQP gives

an estimate that is proportional to the variance of the clean sample

2
view: % SVC+CORR to the variance of the differences: %f
Since the change is the difference between the stale and up-to-date
view, this can be rewritten as
0% 4 0% — 2cou(S, S)

Therefore, a correction will have less variance when:
oz < 2cov(8, S

As we saw in the previous section, correspondence correlates the
samples. If the difference is small, i.e., S is nearly identical to S’,
then cov(S, ') ~ o%. This result also shows that there is a point
when updates to the stale MV are significant enough that direct
estimates are more accurate. When we cross the break-even point
we can switch from using SVC+CORR to SVC+AQP. SVC+AQP
does not depend on cov (S, S’) which is a measure of how much
the data has changed. Thus, we guarantee an approximation error

2
of at most % In our experiments (Figure 6(b)), we evaluate this
break even point empirically.

5.2.3  Selectivity For Sample Means

Let p be the selectivity of the query and & be the sample size; that
is, a fraction p records from the relation satisfy the predicate. For
these queries, we can model selectivity as a reduction of effective

sample size k - p making the estimate variance: O( kip). Thus,

the confidence interval’s size is scaled up by ﬁ. Just like there
is a tradeoff between accuracy and maintenance cost, for a fixed
accuracy, there is also a tradeoff between answering more selective
queries and maintenance cost.

5.2.4 Optimality For Sample Means

Optimality in unbiased estimation theory is defined in terms of
the variance of the estimate [10].

PROPOSITION 1. An estimator is called a minimum variance
unbiased estimator (MVUE) if it is unbiased and the variance of
the estimate is less than or equal to that of any other unbiased
estimate.

A sampled relation R defines a discrete distribution. It is impor-
tant to note that this distribution is different from the data generat-
ing distribution, since even if R has continuous valued attributes R
still defines a discrete distribution. Our population is finite and we
take a finite sample thus every sample takes on only a discrete set
of values. In the general case, this distribution is only described by
the set of all of its values (i.e., no smaller parametrized representa-
tion). In this setting, the sample mean is an MVUE. In other words,
if we make no assumptions about the underlying distribution of
values in R, SVC+AQP and SVC+CORR are optimal for their re-
spective estimates (q(S”) and ¢). Since they estimate different vari-
ables, even with optimality SVC+CORR might be more accurate
than SVC+AQP and vice versa. There are, however, some cases
when the assumptions, namely zero-knowledge, of this optimality
condition do not hold. As a simple counter example, if we knew
our data were exactly on a line, a sample size of two is sufficient
to answer any aggregate query. However, even for many paramet-
ric distributions, the sample mean estimators are still MVUEs, e.g.,
poisson, bernouilli, binomial, normal, and exponential. It is often
difficult and unknown in many cases to derive an MVUE other than
a sample mean. Our approach is valid for any choice of estimator
if one exists, even though we do the analysis for sample mean esti-
mators and this is the setting in which that estimator is optimal.
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5.2.5 Bootstrap Confidence Intervals

In the second case, we explore bounding queries that cannot be
expressed as sample means. We do not get analytic confidence in-
tervals on our results, nor is it guaranteed that our estimates are
optimal. In AQP, the commonly used technique is called a sta-
tistical bootstrap [3] to empirically bound the results. In this ap-
proach, we repeatedly subsample with replacement from our sam-
ple and apply the query to the sample. This gives us a technique to
bound SVC+AQP the details of which can be found in [2,3,35]. For
SVC+CORR, we have to propose a variant of bootstrap to bound
the estimate of c. In this variant, repeatedly estimate ¢ from sub-
samples and build an empirical distribution for c.

SVC+CORR: To use bootstrap to find a 95% confidence interval:

1. Subsample S’ and S, with replacement from S’ and S
respectively

. Apply SVC+AQP to 5, and Ssus

. Record the difference -(agp(S’.;) — aqp(Ssus))

. Return to 1, for k iterations.

. Return the 97.5% and the 2.5% percentile of the distribution
of results.

AW N

6. OUTLIER INDEXING

Sampling is known to be sensitive to outliers [5,8]. Power-laws
and other long-tailed distributions are common in practice [8]. The
basic idea is that we create an index of outlier records (records
whose attributes deviate from the mean value greatly) and ensure
that these records are included in the sample, since these records
greatly increase the variance of the data.

6.1 Indices on the Base Relations

The first step is that the user selects an attribute of any base re-
lation to index and specifies a threshold ¢ and a size limit k. In a
single pass of updates (without maintaining the view), the index is
built storing references to the records with attributes greater than
t. If the size limit is reached, the incoming record is compared to
the smallest indexed record and if it is greater then we evict the
smallest record. The same approach can be extended to attributes
that have tails in both directions by making the threshold ¢ a range,
which takes the highest and the lowest values. However, in this
section, we present the technique as a threshold for clarity.

There are many approaches to select a threshold. We can use
prior information from the base table, a calculation which can be
done in the background during the periodic maintenance cycles. If
our size limit is k, for a given attribute we can select the the top-k
records with that attributes. Then, we can use that top-k list to set
a threshold for our index. Then, the attribute value of the lowest
record becomes the threshold ¢. Alternatively, we can calculate the
variance of the attribute and set the threshold to represent c standard
deviations above the mean. This threshold can be adaptively set at
each maintenance period.

6.2 Adding Outliers to the Sample

Given this index, the next question is how we can use this infor-
mation in our materialized views. We need to propagate the indices
upwards through the expression tree. We add the condition that
the only eligible indices are ones on base relations that are being
sampled (i.e., we can push the hash operator down to that relation).
Therefore, in the same iteration as sampling, we can also test the
index threshold and add records to the outlier index. We formalize
the propagation property recursively. Every relation can have an
outlier index which is a set of attributes and a set of records that

exceed the threshold value on those attributes. The main idea is
to treat the indexed records as a sub-relation that gets propagated
upwards with the maintenance strategy.

DEFINITION 5 (OUTLIER INDEX PUSHUP). Define an out-
lier index to be a tuple of a set of indexed attributes, and a set
of records (I,0). The outlier index propagates upwards with the
Sfollowing rules:

e Base Relations: Outlier indices on base relations are pushed
up only if that relation is being sampled, i.e., if the sampling
operator can be pushed down to that relation.

e 04(R): Push up with a new outlier index and apply the se-
lection to the outliers (I,04(0))

o Iy, .....ap)(R): Pushupwards (I N (a1, ..., ax), O).

® Dy (r1,r2) (Rl, Rg) Push upwards (11 U Ia, 01 02)

o ¢ a(R): For group-by aggregates, we set I to be the aggre-
gation attribute. For the outlier index, we do the following
steps. (1) Apply the aggregation to the outlier index ¢, 4 (O),
(2) for all distinct A in O select the row in vy, a(R) with the
same A, and (3) this selection is the new set of outliers O.

e RiURjy: Push up with a new outlier index (I, N1z, 01 UO>).
The set of index attributes is combined with an intersection
to avoid missed outliers.

e RiNRz: Pushup with a new outlier index (I:N12, O1NO02).

e Ri—Ry: Pushup with a new outlier index (I1UI2, O1—02).

For all outlier indices that can propagate to the view (i.e., the top
of the tree), we get a final set O of records. Given these rules, O
is, in fact, a subset of our materialized view S’. Thus, our query
processing can take advantage of the theory described in the previ-
ous section to incorporate the set O into our results. We implement
the outlier index as an additional attribute on our sample with a
boolean flag true or false if it is an outlier indexed record. If a row
is contained both in the sample and the outlier index, the outlier
index takes precedence. This ensures that we do not double count
the outliers.

6.3 Query Processing

For result estimation, we can think of our sample S’ and our
outlier index O as two distinct parts. Since O C S’, and we give
membership in our outlier index precedence, our sample is actu-

ally a sample restricted to the set (5ij) For a given query, let

Creg be the correction calculated on (S — O) using the technique
proposed in the previous section and adjusting the sampling ratio
m to account for outliers removed from the sample. We can also
apply the technique to the outlier set O since this set is determinis-
tic the sampling ratio for this set is m = 1, and we call this result
Cout- Let N be the count of records that satisfy the query’s con-
dition and ! be the number of outliers that satisfy the condition.
Then, we can merge these two corrections in the following way:
v = %cmg + %cout. For the queries in the previous section that
are unbiased, this approach preserves unbiasedness. Since we are
averaging two unbiased estimates c,cq and coy¢, the linearity of the
expectation operator preserves this property. Furthermore, since
Cout 1s deterministic (and in fact its bias/variance is 0), ¢reg and
Cout are uncorrelated making the bounds described in the previous
section applicable as well.

EXAMPLE 7. We chose an attribute in the base data to index,
for example duration, and an example threshold of 1.5 hours.
We apply the rules to push the index up, and this materializes the
entire set of rows whose duration is longer than 1.5 hours. For
SVC+AQP, we run the query on the set of clean rows with durations
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longer than 1.5 hours. Then, we use the update rule in Section 6.3
to update the result based on the number of records in the index
and the total size of the view. For SVC+CORR, we additionally run
the query on the set of dirty rows with durations longer than 1.5
hours and take the difference between SVC+AQP. As in SVC+AQP,
we use the update rule in Section 6.3 to update the result based on
the number of records in the index and the total size of the view.

7. RESULTS

We evaluate SVC first on a single node MySQL database to eval-
uate its accuracy, performance, and efficiency in a variety of mate-
rialized view scenarios. Then, we evaluate the outlier indexing ap-
proach in terms of improved query accuracy and also evaluate the
overhead associated with using the index. After evaluation on the
benchmark, we present an application of server log analysis with a
dataset from a video streaming company, Conviva.

7.1 Experimental Setup

Single-node Experimental Setup: Our single node experiments
are run on a r3.large Amazon EC2 node (2x Intel Xeon E5-2670,
15.25 GB Memory, and 32GB SSD Disk) with a MySQL ver-
sion 5.6.15 database. These experiments evaluate views from a
10GB TPCD-Skew dataset. TPCD-Skew dataset [6] is based on
the Transaction Processing Council’s benchmark schema (TPCD)
but is modified so that it generates a dataset with values drawn
from a Zipfian distribution instead of uniformly. The Zipfian dis-
tribution [25] is a long-tailed distribution with a single parameter
z = {1,2,3,4} where a larger value means a more extreme tail
and z = 1 corresponds to the basic TPCD benchmark. In our
experiments, we use use z = 2 unless otherwise noted. The in-
cremental maintenance algorithm used in our experiments is the
“change-table” or “delta-table” method used in numerous works in
incremental maintenance [14,15,18]. In all of the applications, the
updates are kept in memory in a temporary table, and we discount
this loading time from our experiments. We build an index on the
primary keys of the view, but not on the updates. Below we de-
scribe the view definitions and the queries on the views’:

Join View: In the TPCD specification, two tables receive inser-
tions and updates: lineitem and orders. Out of 22 parametrized
queries in the specification, 12 are group-by aggregates of the join
of lineitem and orders (Q3, Q4, Q5, Q7, Q8, Q9, Q10, Q12, Q14,
Q18, Q19, Q21). Therefore, we define a materialized view of the
foreign-key join of lineitem and orders, and compare incremental
view maintenance and SVC. We treat the 12 group-by aggregates
as queries on the view.

Complex Views: Our goal is to demonstrate the applicability
of SVC outside of simple materialized views that include nested
queries and other more complex relational algebra. We take the
TPCD schema and denormalize the database, and treat each of the
22 TPCD queries as views on this denormalized schema. The 22
TPCD queries are actually parametrized queries where parameters,
such as the selectivity of the predicate, are randomly set by the
TPCD qgen program. Therefore, we use the program to generate
10 random instances of each query and use each random instance
as a materialized view. 10 out of the 22 sets of views can benefit
from SVC. For the 12 excluded views, 3 were static (i.e, there are
no updates to the view based on the TPCD workload), and the re-
maining 9 views have a small cardinality not making them suitable
for sampling.

For each of the views, we generated queries on the views. Since
the outer queries of our views were group by aggregates, we picked

5Refer to our extended paper on more details about the experimental setup [19].

a random attribute a from the group by clause and a random at-
tribute b from aggregation. We use a to generate a predicate.
For each attribute a, the domain is specified in the TPCD stan-
dard. We select a random subset of this domain, e.g., if the at-
tribute is country then the predicate can be countryCode > 50 and
countryCode < 100. We generated 100 random sum, avg, and
count queries for each view.

Distributed Experimental Setup: We evaluate SVC on Apache
Spark 1.1.0 with 1TB of logs from a video streaming company,
Conviva [1]. This is a denormalized user activity log corresponding
to video views and various metrics such as data transfer rates, and
latencies. Accompanying this data is a four month trace of queries
in SQL. We identified 8§ common summary statistics-type queries
that calculated engagement and error-diagnosis metrics. These 8
queries defined the views in our experiments. We populated these
view definitions using the first 800GB of user activity log records.
We then applied the remaining 200GB of user activity log records
as the updates (i.e., in the order they arrived) in our experiments.
We generated aggregate random queries over this view by taking
either random time ranges or random subsets of customers.

7.1.1 Metrics and Evaluation

No maintenance (Stale): The baseline for evaluation is not ap-
plying any maintenance to the materialized view.

Incremental View Maintenance (IVM): We apply incremental
view maintenance (change-table based maintenance [14,15,18]) to
the full view.

SVC+AQP: We maintain a sample of the materialized view using
SVC and estimate the result with AQP-style estimation technique.
SVC+CORR: We maintain a sample of the materialized view
using SVC and process queries on the view using the correction
which applies the AQP to both the clean and dirty samples, and
uses both estimates to correct a stale query result.

Since SVC has a sampling parameter, we denote a sample size
of % as SVC+CORR-x or SVC+AQP-x, respectively. To evaluate
accuracy and performance, we define the following metrics:
Relative Error: For a query result r and an incorrect result 7', the

relative error is “;—’Jl When a query has multiple results (a group-
by query), then, unless otherwise noted, relative error is defined as
the median over all the errors.

Maintenance Time: We define the maintenance time as the time
needed to produce the up-to-date view for incremental view main-
tenance, and the time needed to produce the up-to-date sample in
SVC.

7.2 Join View

In our first experiment, we evaluate how SVC performs on a ma-
terialized view of the join of lineitem and orders. We generate a
10GB base TPCD-Skew dataset with skew z = 2, and derive the
view from this dataset. We first generate 1GB (10% of the base
data) of updates (insertions and updates to existing records), and
vary the sample size.

Performance: Figure 4(a) shows the maintenance time of SVC
as a function of sample size. With the bolded dashed line, we note
the time for full IVM. For this materialized view, sampling allows
for significant savings in maintenance time; albeit for approximate
answers. While full incremental maintenance takes 56 seconds,
SVC with a 10% sample can complete in 7.5 seconds.

The speedup for SVC-10In the next figure, Figure 4(b), we eval-
uate this speedup. We fix the sample size to 10% and plot the
speedup of SVC compared to IVM while varying the size of the
updates. On the x-axis is the update size as a percentage of the
base data. For small update sizes, the speedup is smaller, 6.5x for
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Figure 4: (a) On a 10GB view with 1GB of insertions and up-
dates, we vary the sampling ratio and measure the maintenance
time of SVC. (b) For a fixed sampling ratio of 10%, we vary the
update size and plot the speedup compared to full incremental
maintenance.
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Figure 5: For a fixed sampling ratio of 10% and update size
of 10% (1GB), we generate 100 of each TPCD parameterized
queries and answer the queries using the stale materialized
view, SVC+CORR, and SVC+AQP. We plot the median rela-
tive error for each query.

a 2.5% (250MB) update size. As the update size gets larger, SVC
becomes more efficient, since for a 20% update size (2GB), the
speedup is 10.1x. The super-linearity is because this view is a join
of lineitem and orders and we assume that there is not a join index
on the updates. Since both tables are growing sampling reduces
computation super-linearly.

Accuracy: At the same design point with a 10% sample, we
evaluate the accuracy of SVC. In Figure 5, we answer TPCD
queries with this view. The TPCD queries are group-by aggregates
and we plot the median relative error for SVC+CORR, No Main-
tenance, and SVC+AQP. On average over all the queries, we found
that SVC+CORR was 11.7x more accurate than the stale baseline,
and 3.1x more accurate than applying SVC+AQP to the sample.

SVC+CORR vs. SVC+AQP: While more accurate, it is true
that SVC+CORR moves some of the computation from mainte-
nance to query execution. SVC+CORR calculates a correction to
a query on the full materialized view. On top of the query time on
the full view (as in IVM) there is additional time to calculate a cor-
rection from a sample. On the other hand SVC+AQP runs a query
only on the sample of the view. We evaluate this overhead in Fig-
ure 6(a), where we compare the total maintenance time and query
execution time. For a 10% sample SVC+CORR required 2.69 secs
to execute a sum over the whole view, IVM required 2.45 secs, and
SVC+AQP required 0.25 secs. However, when we compare this
overhead to the savings in maintenance time it is small.

SVC+CORR is most accurate when the materialized view is less
stale as predicted by our analysis in Section 5.2.2. On the other
hand SVC+AQP is more robust to the staleness and gives a consis-
tent relative error. The error for SVC+CORR grows proportional
to the staleness. In Figure 6(b), we explore which query processing
technique, SVC+CORR or SVC+AQP, should be used. For a 10%
sample, we find that SVC+CORR is more accurate until the update
size is 32.5% of the base data.

7.3 Complex Views

In this experiment, we demonstrate the breadth of views sup-
ported by SVC by using the TPCD queries as materialized views.

Join View: SVC+CORR vs. SVC+AQP
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Figure 6: (a) For a fixed sampling ratio of 10% and update size
of 10% (1GB), we measure the total time incremental mainte-
nance + query time. (b) SVC+CORR is more accurate than
SVC+AQP until a break even point.
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Figure 7: (a) For 1GB update size, we compare maintenance
time and accuracy of SVC with a 10% sample on different
views. V21 and V22 do not benefit as much from SVC due to
nested query structures. (b) For a 10% sample size and 10%
update size, SVC+CORR is more accurate than SVC+AQP and
No Maintenance.

We generate a 10GB base TPCD-Skew dataset with skew z = 2,
and derive the views from this dataset. We first generate 1GB (10%
of the base data) of updates (insertions and updates to existing
records), and vary the sample size. Figure 7 shows the maintenance
time for a 10% sample compared to the full view. This experiment
illustrates how the view definitions plays a role in the efficiency
of our approach. For the last two views, V21 and V22, we see
that sampling does not lead to as large of speedup indicated in our
previous experiments. This is because both of those views contain
nested structures which block the pushdown of hashing. V21 con-
tains a subquery in its predicate that does not involve the primary
key, but still requires a scan of the base relation to evaluate. V22
contains a string transformation of a key blocking the push down.
These results are consistent with our previous experiments showing
that SVC is faster than IVM and more accurate than SVC+AQP and
no maintenance.

7.4 Outlier Indexing

In our next experiment, we evaluate our outlier indexing with
the top-k strategy described in Section 6. In this setting, outlier
indexing significantly helps for both SVC+AQP and SVC+CORR.
We index the |_extendedprice attribute in the lineitem table. We
evaluate the outlier index on the complex TPCD views. We find that
four views: V3, V5, V10, V15, can benefit from this index with our
push-up rules. These are four views dependent on |_extendedprice
that were also in the set of “Complex” views chosen before.
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Figure 8: (a) For one view V3 and 1GB of updates, we plot
the 75% quartile error with different techniques as we vary
the skewness of the data. (b) While the outlier index adds an
overhead this is small relative to the total maintenance time.
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Figure 9: (a) We compare the maintenance time of SVC with
a 10% sample and full incremental maintenance, and find that
as with TPCD SVC saves significant maintenance time. (b) We
also evaluate the accuracy of the estimation techniques.
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In our first outlier indexing experiment (Figure 8(a)), we analyze
V3. We set an index of 100 records, and applied SVC+CORR and
SVC+AQP to views derived from a dataset with a skew parameter
z = {1,2,3,4}. We run the same queries as before, but this time
we measure the error at the 75% quartile. We find in the most
skewed data SVC with outlier indexing reduces query error by a
factor of 2. Next, in Figure 8 (b), we plot the overhead for outlier
indexing for V3 with an index size of 0, 10, 100, and 1000. While
there is an overhead, it is still small compared to the gains made
by sampling the maintenance strategy. We note that none of the
prior experiments used an outlier index. The caveat is that these
experiments were done with moderately skewed data with Zipfian
parameter = 2, if this parameter is set to 4 then the 75% quartile
query estimation error is nearly 20% (Figure 8a). Outlier indexing
always improves query results as we are reducing the variance of
the estimation set, however, this reduction in variance is largest
when there is a longer tail.

7.5 Conviva

We derive the views from 800GB of base data and add 80GB
of updates. These views are stored and maintained using Apache
Spark in a distributed environment. The goal of this experiment
is to evaluate how SVC performs in a real world scenario with a
real dataset and a distributed architecture. In Figure 9(a), we show
that on average over all the views, SVC-10% gives a 7.5x speedup.
For one of the views full incremental maintenance takes nearly 800
seconds, even on a 10-node cluster, which is a very significant cost.
In Figure 9(b), we show that SVC also gives highly accurate re-
sults with an average error of 0.98%. These results show consis-
tency with our results on the synthetic datasets. This experiment

highlights a few salient benefits of SVC: (1) sampling is a rela-
tively cheap operation and the relative speedups in a single node
and distributed environment are similar, (2) for analytic workloads
like Conviva (i.e., user engagement analysis) a 10% sample gives
results with 99% accuracy, and (3) savings are still significant in
systems like Spark that do not support selective updates.

8. RELATED WORK

SVC proposes an alternative model for view maintenance where
we allow approximation error (with guarantees) for queries on ma-
terialized views for vastly reduced maintenance time. Sampling
has been well studied in the context of query processing [3,12,27].
Both the problems of efficiently sampling relations [27] and pro-
cessing complex queries [2], have been well studied. In SVC, we
look at a new problem, where we efficiently sample from a main-
tenance strategy, a relational expression that updates a materialized
view. We generalize uniform sampling procedures to work in this
new context using lineage [11] and hashing. We look the problem
of approximate query processing [2,3] from a different perspective
by estimating a “correction” rather than estimating query results.
Srinivasan and Carey studied a problem related to query correction
which they called compensation-based query processing [31] for
concurrency control but did not study this for sampled estimates.

Sampling has also been studied from the perspective of main-
taining samples [29]. In [17], Joshi and Jermaine studied indexed
materialized views that are amenable to random sampling. While
similar in spirit (queries on the view are approximate), the goal
of this work was to optimize query processing and not to address
the cost of incremental maintenance. There has been work using
sampled views in a limited context of cardinality estimation [20],
which is the special case of our framework, namely, the count
query. Nirkhiwale et al. [26], studied an algebra for estimating con-
fidence intervals in aggregate queries. The objective of this work
is not sampling efficiency, as in SVC, but estimation. As a special
case, where we consider only views constructed from select and
project operators, SVC’s hash pushdown will yield the same results
as their model. There has been theoretical work on the maintenance
of approximate histograms, synopses, and sketches [9,13], which
closely resemble aggregate materialized views. The objectives of
this work (including techniques such as sketching and approximate
counting) have been to reduce the required storage, not to reduce
the required update time.

Meliou et al. [24] proposed a technique to trace errors in an MV
to base data and find responsible erroneous tuples. They do not,
however, propose a technique to correct the errors as in SVC. Cor-
recting general errors as in Meliou et al. is a hard constraint sat-
isfaction problem. However, in SVC, through our formalization of
staleness, we have a model of how updates to the base data (mod-
eled as errors) affect MVs, which allows us to both trace errors and
clean them. Wu and Madden [34] did propose a model to correct
“outliers” in an MV through deletion of records in the base data.
This is a more restricted model of data cleaning than SVC, where
the authors only consider changes to existing rows in an MV (no
insertion or deletion) and do not handle the same generality of re-
lational expressions (e.g., nested aggregates). Challamalla et al. [4]
proposed an approximate technique for specifying errors as con-
straints on a materialized view and proposing changes to the base
data such that these constraints can be satisfied. While comple-
mentary, one major difference between the three works [4,24,34]
and SVC is that they require an explicit specification of erroneous
rows in a materialized view. Identifying whether a row is erroneous
requires materialization and thus specifying the errors is equivalent
to full incremental maintenance. We use the formalism of a “main-
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tenance strategy”, the relational expression that updates the view,
to allow us to sample rows that are not yet materialized. However,
while not directly applicable for staleness, we see SVC as com-
plementary to these works in the dirty data setting. The sampling
technique proposed in Section 4 of our paper could be used to ap-
proximate the data cleaning techniques in [4,24,34] and this is an
exciting avenue of future work.

9. CONCLUSION

Materialized view maintenance is often expensive, and in prac-
tice, eager view maintenance is often avoided due to its costs. This
leads to stale materialized views which have incorrect, missing, and
superfluous rows. In this work, we formalize the problem of stale-
ness and view maintenance as a data cleaning problem. SVC uses a
sample-based data cleaning approach to get accurate query results
that reflect the most recent data for a greatly reduced computational
cost. To achieve this, we significantly extended our prior work
in data cleaning, SampleClean [32], for efficient cleaning of stale
MVs. This included processing a wider set of aggregate queries,
handling missing data errors, and proving for which queries opti-
mality of the estimates hold. We presented both empirical and the-
oretical results showing that our sample data cleaning approach is
significantly less expensive than full view maintenance for a large
class of materialized views, while still providing accurate aggregate
query answers that reflect the most recent data.

Our results are promising and suggest many avenues for future
work. In this work, we focused on aggregate queries and showed
that accuracy decreases as the selectivity of the query increases.
Sampled-based methods are fundamentally limited in the way they
can support “point lookup” queries that select a single row, and
we believe we can address this problem with new results in non-
parametric machine learning instead of using single-parameter esti-
mators. In particular, we are interested in deeper exploration of the
multiple MV setting. There are also many interesting design prob-
lems such as given storage constraints and throughput demands,
optimize sampling ratios over all views.
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