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ABSTRACT

Highly expressive declarative languages, such as datalog, are
now commonly used to model the operational logic of data-
intensive applications. The typical complexity of such dat-
alog programs, and the large volume of data that they pro-
cess, call for result explanation. Results may be explained
through the tracking and presentation of data provenance,
and here we focus on a detailed form of provenance (how-
provenance), defining it as the set of derivation trees of a
given fact. While informative, the size of such full prove-
nance information is typically too large and complex (even
when compactly represented) to allow displaying it to the
user. To this end, we propose a novel top-k query language
for querying datalog provenance, supporting selection crite-
ria based on tree patterns and ranking based on the rules
and database facts used in derivation. We propose an effi-
cient novel algorithm based on (1) instrumenting the dat-
alog program so that, upon evaluation, it generates only
relevant provenance, and (2) efficient top-k (relevant) prove-
nance generation, combined with bottom-up datalog evalua-
tion. The algorithm computes in polynomial data complex-
ity a compact representation of the top-k trees which may
be explicitly constructed in linear time with respect to their
size. We further experimentally study the algorithm per-
formance, showing its scalability even for complex datalog
programs where full provenance tracking is infeasible.

1. INTRODUCTION

Many real-life applications rely on an underlying database
in their operation. In different domains, such as declarative
networking [40], social networks [49], and information ex-
traction [23], it has recently been proposed to use datalog
for the modeling of such applications.

Consider, for example, AMIE [23], a system for mining
logical rules from Knowledge Bases (KBs), based on ob-
served correlations in the data. After being mined, rules
are then treated as a datalog program (technically, a syntax
of Inductive Logic Programming is used there) which may
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be evaluated with respect to a KB of facts (e.g. YAGO
[53]) that, in turn, were directly extracted from sources
such as Wikipedia. This allows addressing incompleteness
of KBs, gradually deriving additional new facts and intro-
ducing them to the KB.

Datalog programs capturing the logic of real-life applica-
tions are typically quite complex, with many, possibly recur-
sive, rules and an underlying large-scale database. In such
complex systems, accompanying derived facts with prove-
nance information, i.e. an explanation of the ways they were
derived, is of great importance. Such provenance informa-
tion may provide valuable insight into the system’s behavior
and output data, useful both for the application developers
and their users. For instance, AMIE rules are highly com-
plex and include many instances of recursion and mutual
recursion. Furthermore, since AMIE rules are automatically
mined, there is an inherent uncertainty with respect to their
validity. Indeed, many rules mined in such a way are not
universally valid, but are nevertheless very useful (and used
in practice), since they contribute to a higher recall of facts.
When viewing a derived fact, it is thus essential to also view
an explanation of the process of its derivation.

A conceptual question in this respect is what constitutes
a “good” explanation. An approach advocated by previous
work is to define provenance by looking at derivations of
facts, and distinguishing between alternative and joint use of
facts in such derivations. In the context of datalog programs,
a notion of explanations that follows this approach is based
on derivation trees [29]. A derivation tree of an intensional
fact ¢, defined with respect to a datalog program and an
extensional database, completely specifies the rules instan-
tiations and intermediate facts jointly used in the gradual
process of deriving t. Derivation trees are particularly ap-
pealing as explanations, since not only they include the facts
and rules that support a given fact but they also describe
how they support it, providing insight on the structure of
inference. A single fact may have multiple derivation trees
(alternative derivations), and the set of all such trees (each
serving as “alternative explanation”) is the fact provenance.
Defining provenance as the set of possible derivation trees
leads to a challenge: the number of possible derivation trees
for a given program and database may be extremely large
and even infinite in presence of recursion in the program,
and may be prohibitively large even in absence of recursion.

We next outline our approach and main contributions in
addressing this problem, as well as the challenges that arise
in this context.



Novel query language for datalog provenance. We ob-
serve that while full provenance tracking for datalog may be
costly or even infeasible, it is often the case that only parts
of the provenance are of interest for analysis purposes. To
this end, we develop a query language called selPQL that al-
lows analysts to specify which derivation trees are of interest
to them. A selPQL query includes a derivation tree pattern,
used to specify the structure of derivation trees that are of
interest. The labels of nodes in the derivation tree pattern
correspond to facts (possibly with wildcards replacing con-
stants), and edges may be regular or “transitive”, matching
edges or paths in derivation trees, respectively. A simple use
of the patterns is to limit provenance tracking to particular
facts of interest; but the language is rich enough to also allow
specifying complex features of derivations that are of inter-
est. For instance, in the AMIE example, by viewing deriva-
tions that involve integration of data from different sources
(e.g. ontologies), one may gain insight into the usefulness of
the integration or reliability of obtained facts. From a differ-
ent perspective, if one ontology is less trustworthy than the
other, the application owner may wish to see explanations
based only on the more reliable source; etc.

Importantly, and since the number of qualifying derivation
trees may still be very large (and in general even infinite),
we support the retrieval of a ranked list of top-k qualifying
trees for each fact of interest. To this end, we allow analysts
to assign weights to the different facts and rules. These
weights are aggregated to form the weight of a tree (our
solution supports a rich class of aggregation functions).

Novel algorithm for selective provenance tracking. We
then turn to the problem of efficient provenance tracking
for datalog, guided by a selPQL query. We observe (and
experimentally prove) that materializing full provenance (or
alternatively grounding of the datalog program with respect
to the database), and then querying the provenance, is a
solution that fails to scale. On the other hand, discard-
ing partial derivations “on-the-fly” is also challenging, since
their inclusion in the answer set may depend on consequent
derivation steps (as well as on other derivations which may
or may not be ranked higher). Our solution then consists of
two main steps:

1. Static (i.e. independent of the underlying database)
“instrumentation” of the datalog program P with re-
spect to the selPQL query (in fact, its tree pattern
component p). We introduce a precise definition of
the output of this instrumentation (see proposition
4.2), which is a new datalog program P, that “guide”
provenance tracking based on p. Intuitively, P, sat-
isfies that for every database D, the derivation trees
induced by P and D are also induced (up to renaming
of relations) by P, and D, and crucially the trees that
follow the pattern p are exactly those that involve par-
ticularly marked relations. The fact that a program
satisfying this property (for every database) can be
effectively computed is non-trivial, and a major chal-
lenge here is that P may involve recursion. Our novel
solution is based on encoding, using datalog rules, a
“require/guarantee” relation for satisfaction of parts
of the tree pattern. Namely, for each pair of (rela-
tion of P, part of p) we design a novel relation name
and corresponding rules whose body relations together
“guarantee” satisfaction of the pattern part.
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2. Bottom-up evaluation of P, w.r.t. an underlying database

D while generating a compact representation of the
top-k relevant trees (of P) for each (relevant) output
tuple. Here again, our solution consists of two steps.
The first involves computing the top-1 tree side-by-side
with bottom-up datalog evaluation. The basic idea
here is somewhat inspired by prior work on computing
the best derivation weight for Context Free Grammars
(see section T), but requires significant efforts to (1)
account for datalog and (2) generate a compact rep-
resentation of the tree itself (whose size may be pro-
hibitively large) rather than just its weight. We fur-
ther design a novel algorithm for computing the top-
k derivation trees, by exploring modifications of the
top-1 tree. Challenges in the design of this algorithm
include, among others, (1) the avoidance of generat-
ing multiple trees that are the same up to renaming
(i.e. correspond to a single tree of P); and (2) avoiding
costly materialization of trees.
The final step of the algorithm is then the materialization
of only the top-k trees based on the compact representation.

Complexity analysis and experimental study. We an-
alyze the performance of our evaluation algorithm from a
theoretical perspective, showing that the complexity of com-
puting a compact representation of selected derivation trees
is polynomial in the input database size, with the exponent
depending on the size of the datalog program and the selPQL
query; the enumeration of trees from this compact represen-
tation is then linear in the output size (size of top-k trees).
We have further implemented our solution, and have ex-
perimented with different highly complex and recursive pro-
grams. Our experimental results indicate the effectiveness
of our solution even for complex programs and large-scale
data where full provenance tracking is infeasible.

2. PRELIMINARIES

We provide necessary preliminaries on datalog and the
provenance of output data computed by datalog programs.

2.1 Datalog

We assume that the reader is familiar with standard dat-
alog concepts [1]. Here we review the terminology and illus-
trate it with an example. A datalog program is a finite set
of datalog rules. A datalog rule is an expression of the form
Ri(u1) : —R2(u2)...Rn(un) where R;’s are relation names,
and ui,...un are sets of variables with appropriate arities.
Ri(uy) is called the rule’s head, and Rz(uz)...Rn(un) is
called the rule’s body. Every variable occurring in u; must
occur in at least one of ua,...un. We make the distinction
between extensional (edb) and intensional (idb) facts and
relations. A datalog program is then a mapping from edb
instances to idb instances, whose semantics may be defined
via the notion of the consequence operator. First, the imme-
diate consequence operator induced by a program P maps a
database instance D to an instance D |J{A} if there exists
an instantiation of some rule in P (i.e. a consistent replace-
ment of variables occurring in the rule with constants) such
that the body of the instantiated rule includes only atoms in
D and the head of the instantiated rule is A. Then the con-
sequence operator is defined as the transitive closure of the
immediate consequence operator, i.e. the fixpoint of the re-
peated application of the immediate consequence operator.



exports
Country | Product

imports
Country | Product

France wine Cuba wine
Cuba tobacco Mexico wine
Cuba coffee beans Mexico tobacco
France tobacco
dealsWith (edb copy)
Country, | Countryy
Mexico France
Table 1: Database
T2} dealsWith(Cuba, France)

T dealsWith(Cuba, France)
dealsWith(France, Cuba)

imports(Cuba, wine) exports(France, wine) \
imports(France, tobacco) exports(Cuba, tobacco)

T3 dealsWith(Cuba, France)

dealsWith(Mexico, France)
dealsWith(Mexico, Cuba)
imports(Mexico, tobacco) n)m‘,n\m. tobacco)

dealsWith(Cuba, Mexico)

Figure 1: Derivation Trees

Finally, given a database D and a program P we use P(D)
to denote the restriction to idb relations of the database in-
stance obtained by applying to D the consequence operator
induced by P.

EXAMPLE 2.1. AMIE [23] is a system for the automatic
inference of rules, by identifying “patterns” in a Knowledge
Base (KB). Rules of AMIE form a datalog program and are
then evaluated with respect to a database instance (which is
a KB) to compute an idb instance (which is an extended
KB). We consider the program inferred by AMIE based on
patterns in YAGO. Among many others, the idb instance
includes a binary relation dealsWith, including information
on international trade relations (an edb “copy” of this rela-
tion appears as well, with rules for copying its content that
are omitted for brevity). The program includes the following
rule, intuitively specifying that dealsWith is a symmetric
relation (ignore for now the numbers in parentheses).
r1(0.8) dealsWith(a, b):- dealsWith(b, a)

Many other rules with the dealsWith relation occurring in
their head were mined by AMIE, including some additional
rules whose validity is questionable (imports and exports
are additional binary edb relations):
r2(0.5) dealsWith(a, b):- imports(a, c), exports(b, c)
r3(0.7) dealsWith(a, b):- dealsWith(a, f), dealsWith(f, b)

The rules 11,712,735 form a datalog program (which is a
strict subset of the actual program obtained by AMIE).

2.2 Datalog Provenance

It is common to characterize the process of datalog evalua-
tion through the notion of derivation trees. A derivation tree
of a fact ¢ with respect to a datalog program and a database
instance D is a finite tree whose nodes are labeled by facts.
The root is labeled by ¢, leaves are labeled by edb facts
from D, and internal nodes by idb facts. The tree structure
is dictated by the consequence operator of the program: the
labels set of the children of node n corresponds to an in-
stantiation of the body of some rule r, such that the label

dealsWith(Cuba, *)
dealsWith(Cuba, )|
.
(exports(Cuba, tobac(:o)Fl (*-YAGO()] ([ *-DBP() ]

([dealsWith(Cuba, *)]

(a) Pattern pq

(b) Pattern po

(c) Pattern p3
)

(d) Pattern py4

Figure 2: Tree Pattern Examples

of n is the corresponding instantiation of r’s head (we refer
to this as an occurrence of r in the tree). Given a datalog
program P and a database D, we denote by trees(P, D,t)
the set of all possible derivation trees for ¢ € P(D), and
define trees(P, D) = U,cp(p) trees(P, D, t).

EXAMPLE 2.2. Three derivation trees for the fact

t = dealsWith(Cuba, France), based on the program given
in Exzample 2.1 and the example database given in Table 1,
are presented in Figure 1. Already in the small-scale demon-
strated example there are infinitely many derivation trees for
t (due to the presence of recursion in rules); for the full pro-
gram and database many trees are substantially different in
nature (based on different rules and/or rules instantiated
and combined in different ways).

3. QUERYING DATALOG PROVENANCE

We introduce a query language for derivation trees, based
on two facets: (1) boolean criteria describing derivations of
interest, and (2) a ranking function for derivations.

3.1 Derivation Tree Patterns

Recalling our definition of provenance as a possibly infinite
set of trees, we next introduce the notion of derivation tree
patterns, used to query derivations.

DEFINITION 3.1. A derivation tree pattern is a node-labeled
tree. Labels are either wildcards (%), or edb/idb facts, in
which wildcards may appear instead of some constants. Edges
may be marked as regular (/) or traunsitive (//), and in the
latter case may be matched to a path of any length.

The boolean operators -, V and A can also be applied to
tree patterns (with the expected semantics).

EXAMPLE 3.2. Several tree patterns are presented in Fig-
ure 2. The pattern p1 specifies interest in all derivations
of facts of the form dealsWith(Cuba,*) (any constant may
replace the wildcard). The other patterns further query the
structure of derivation. Specifically, p2 specifies that the an-
alyst is interested in derivations of such facts that are (di-
rectly or indirectly) based on the fact that Cuba exports to-
bacco. The patterns ps and pa are relevant when (omitted)
rules integrate two ontologies (YAGO and DBPedia). We
use *_.YAGO() and *_DBP() * to match all relations from
YAGO and DBPedia resp.; then ps selects derivations of
facts dealsWith(Cuba, *) that are based on integrated data

!This requires a slight change of the definition of patterns,
which is easy to support, to allow * in relation names.
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from both sources, and ps selects derivations that use facts
from YAGO but no fact from DBPedia. Both patterns shed
light on the usefulness of integration in this context.

We next define the semantics of derivation tree patterns,
i.e. the notion of matching a given derivation tree.

DEFINITION 3.3. Given a derivation tree T and a deriva-
tion tree pattern p, a match of p in 7 is a mapping h from
the nodes of p to nodes of T, and from the regular (transi-
tive) edges of p to edges (resp. paths) of T such that (1) the
root of p is mapped to the root of T, (2) a node labeled by
a label | which does not contain wildcards, is mapped to a
node labeled by I, (8) a node labeled by a label | which in-
cludes wildcards is mapped to a node labeled by ', where I’
may be obtained from | by replacing wildcards by constants,
(4) a node labeled by a wildcard can be mapped to any node
wm 7. (5) If n,m are nodes of p and e is the directed (tran-
sitive) edge from m to n, then h(e) is an edge (path) in T
from h(m) to h(n) and (6) for any two edges ex and ez in
p, their corresponding edge/path in T are disjoint.

DEFINITION 3.4. Given a (possibly infinite) set S of deriva-
tion trees and a derivation tree pattern p, we define p(S)
(“the result of evaluating p over S”) to be the (possibly in-
finite) subset S’ consisting of the trees in S for which there
ezists a match of p. Given a pattern p, a datalog program P
and an extensional database D, we use p(P, D) as a short-
hand for p(trees(P, D)).

ExAMPLE 3.5. Consider the datalog program P given in
Ezxample 2.1, the database instance given in Table 1 and
the tree pattern p2 in Figure 2b. The set p2(P, D) includes
infinitely many derivation trees, including in particular
and T3 shown in Figure 1.

3.2 Ranking Derivations

Even when restricting attention to derivation trees that
match the pattern, their number may be too large or even
infinite, as exemplified above. We thus propose to rank
different derivations based on the rules and facts used in
them. We allow associating weights with the input database
facts as well as the individual rules, and aggregating these
weights. Different choices of weights and aggregation func-
tions may be used, capturing different interpretations. We
support a general class of such functions via the notion of an
ordered monoid, which is a structure (M, +,0, <) such that
M is a set of elements, + is a binary operation which we
require to be commutative, associative, and monotone non-
increasing in each argument, i.e. = 4+ y < min(z,y) (with
respect to the structure’s order), 0 is the neutral value with
respect to +, and < is a total order on M.

DEFINITION 3.6. A weight-aware datalog instance is a
triple (P, D,w) where w maps rules in P and tuples in D
to elements of an ordered monoid (M,+,0,<). The monoid
operation is referred to as the aggregation function.

EXAMPLE 3.7. We demonstrate multiple choices of monoid
and the corresponding applications.
Derivation size To rank derivation trees by their size we
may use the monoid (Z~,+,0,<), and set the weight of ev-
ery rule to be —1; then the weight of a derivation tree is the
negative of its size.

Derivation (total) confidence Another way to rank deriva-
tions is to associate confidence values with rules. In AMIE,
such confidence values reflect the rules’ support in underly-
ing data. Here we use the monoid ([0,1],-,1,<). This is the
example that will be used in the sequel; rules weights are
specified next to them and facts weights are all 1.

Derivation minimal confidence One could alternatively
impose a preference relation on trees based on the confi-
dence in their “weakest” rule/fact (so that top trees are
those whose least trusted component is best trusted among all
trees). This can be captured by the ([0,1], min, 1, <) monoid.
Access control Consider the case where each fact/rule is
associated with a different access control credential, e.g. one
of A = {Top secret (T), Secret (S), Confidential (C), Unclas-
sified (U)}. We may rank trees based on their overall creden-
tial (typically defined as the mazimum credential of fact/rule
used), so that non-secret trees are preferable as explanations.
Here we use (A, min, U, <), where T <S < C < U.

DEFINITION 3.8. The weight of a derivation tree T with
respect to a weight-aware datalog instance, denoted, abusing
notation, as w(t), is defined as Y, w(r) + Y, w(t) where
the sums (performed in the weights monoid) range over all
rules and tuples occurrences in T.

EXAMPLE 3.9. Using the weight function w defined by
the confidence value associated with rules (appearing next
to them, in brackets) and aggregating via multiplication, the
weights of exemplified trees (Figure 1) are w(m) = 0.5,
w(r2) =0.5-0.8 = 0.4 and w(rs) = 0.7-0.8 - 0.5 = 0.28.

Last, we may define top-k queries and their results.

DEFINITION 3.10. Given a pattern p, a weight-aware dat-
alog instance (P, D,w) and a natural number k, we use top—
k(p, P, D,w) to denote the set containing for each fact t in
P(D) the k derivation trees of t that are of highest weight
(ties are decided arbitrarily) out of those in p(P, D). We use
TOP-K to denote the problem of finding top—k(p, P, D, w)
given the above input.

EXAMPLE 3.11. In general, there are infinitely many fi-
nite derivation trees for the fact dealWith(Cuba, France)
(due to the recursive rule r1), as well as infinite derivations
which we algorithmically avoid generating (see Section 5).
The top-2 results w.r.t. the pattern given in Figure 2b are
T2 and T3 in Figure 1 with weights of 0.4 and 0.28 respec-
tively. Note that 1 does not match the pattern.

Note. There is an intuitive correspondence between our we-
ighted model and that of semiring provenance [29]. In the
model of [29], two abstract operations are used: multiplica-
tion (in a semiring) is used to combine provenance of facts
participating in a single derivation, and semiring addition
is used to combine provenance of multiple derivations of
the same fact. Our aggregation function (4 of the monoid)
thus intuitively has the same role as semiring multiplica-
tion, while our counterpart of the semiring addition is fixed
to be the top-k operation (which allows us to support a con-
cise presentation of results). Indeed, our above examples of
aggregation functions were all shown to be useful as prove-
nance (but the problem of computing top-k derivation trees
based on such function was not previously considered). We
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Instrument P
with respect to p

Program P,
[ ) Patternp

Instrumente'd Top-K Top-k trees
) program P’ )

Database D

Figure 3: High-level Framework

further note that one could consider a probabilistic inter-
pretation of weights (this requires some care to guarantee
that the semantics indeed induces a probability distribu-
tion), but (as also noted in the context of semiring prove-
nance), a probabilistic semantics would not allow to capture
ranking by arbitrary monoids such as e.g. the “derivation
minimal confidence” or “access control” examples above.

In the following sections we propose a two-step algorithm
for solving TOP-K, as explained in the Introduction and de-
picted in Figure 3. The algorithm will serve as proof for the
following theorem.

THEOREM 3.12. For any Program P, pattern p and database

D, we can compute the top-k derivation trees for each fact
matching the root of p in O(k* - |D|O(‘P‘w(p)) + |out|) time
where w(p) is the pattern width (i.e. the maximal number of
children of a node in p) and |out| is the output size.

The worst case time complexity is polynomial in the database

size with exponential dependency on the program size (which
is typically much smaller), double exponential in the pat-
tern width (which is typically even smaller), and linear in
the output size.

4. PROGRAM INSTRUMENTATION

We now present the first step of the algorithm for solv-
ing TOP-K, which is instrumenting the program with respect
to the pattern. We first present an algorithm for a single
pattern instrumentation, and then generalize it to Boolean
combinations of patterns.

4.1 A single pattern

We first define relation names for the output program,
and then its rules.

New relation names. We say that a pattern node v is a
transitive child if it is connected with a transitive edge to its
parent. For every relation name R occurring in the program
and for every pattern node v we introduce a relation name
RY. If v is a, transitive child we further introduce a rela-
tion name R . Intuitively, derivations for facts in R” must
match the sub-pattern rooted by v; derivations for RY" must
include a sub-tree that matches the sub-pattern rooted by
v. These will be enforced by the generated rules, as follows.

New rules. We start with some notations. Let v be a
pattern node, let v, ..., v, be the immediate children of v.
Given an atom (in the program) atom, we say that it locally
matches v if the label of v is atom, or the label of v may
be obtained from atom through an assignment A mapping
variables of atom to constants or wildcards (if such assign-
ment exists, it is unique). We further augment A so that
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a variable x mapped to a wildcard, is now mapped to it-
self (Intuitively, this is the required transformation to the
atom so that a match with the pattern node is guaranteed).
Overloading notation, we will then use A(8), where 8 is a
rule body, i.e. a set of atoms, to denote the set of atoms
obtained by applying A to all atoms in .

Algorithm 1: Instrumentation w.r.t. tree pattern

input : Weighted Program P and a pattern p
output: “Instrumented” Program P,

1 foreach pattern node v € p do
2 Let vo,...,vn be the immediate children of v;
3 foreach rule [R(zo,...,xm) : —3] in P do
4 if R(zo,...,xm) locally-matches v through partial
assignment A then
5 Let (yo, -, ym) := A(zo, ..., Tm);
6 if v is a leaf then
7 | Add [R”(yo, .., ym) : —A(B)] to Pp;
8 else
9 foreach g’ € ex(A(B),{vo, ...,vn}) do
10 | Add [R”(yo, ..., ym) : —=B'] to Pp;
11 if v is a transitive child then
12 foreach g’ € tr — ex(3,v) do
13 L Add [R”t(aco, vy Tm) + =] to Pp;
14 foreach rule [RY(yo, ..., ym) : —B] for transitive v do
15 | | Add [BY (yo, . ym) - =] to Pp;
16 | HandleEDB ();

17 Clean failed rules in Pp ;
18 return the union of rules in P and Pp;

Algorithm 1 then generates a new program, instrumented
by the pattern, as follows. For brevity we do not specify the
weight of the new rules: they are each simply assigned the
weight of the rule from which they originated, or 0 (neutral
value of the monoid) if there is no such rule. The algorithm
traverses the pattern in a top-down fashion, and for every
pattern node v it looks for rules in the program whose head
locally matches v (lines 3-4). For each such rule it generates
a new rule as follows: if v is a leaf (lines 6-7), then intuitively
this “branch” of the pattern is guaranteed to be matched
and we add rules which are simply the “specializations” of
the original rule, meaning that we apply to their body the
same assignment used in the match.

Otherwise (lines 8-10), we need derivations of atoms in
the body of the rule to satisfy the sub-trees rooted in the
children of v. To this end we define the set of “expansions”
ex(atoms, {vo, ...,vn}) as follows. Consider all one-to-one
(but not necessarily onto) functions f that map the set
{vo, ..., vn} to the set atoms = {ao, ..., ar }. Each such func-
tion defines a new set of atoms obtained from atoms by re-
placing atom a; = R(zo, ..., Zm) by R" (zo, ..., xm) if f(v;)

a; and v; is not a transitive child, or by R"i (zo, ..., Tm) if v;
is a transitive child (atoms to which no node is mapped re-
main intact). We then define ex(atoms, {vo,...,vn}) as the
set of all atoms sets obtained for some choice of function
f. In line 10 the algorithm generates a rule for each set in
these sets of atoms. Intuitively, each such rule corresponds
to alternative “assignment of tasks” to atoms in the body,
where a “task” is to satisfy a sub-pattern (see Example 4.1).

The algorithm thus far deals with satisfaction of the sub-
tree rooted at v, by designing rules that propagate the satis-



[ri]dealsWith0 (Cuba, b) :-dealsWith?i (b, Cuba)
[rh] exports”{ (Cuba, tobacco):- exports(Cuba, tobacco)

Figure 4: Two rules of the instrumented program

faction of the sub-trees rooted at the children of v to atoms
in the bodies of relevant rules. However if the current pat-
tern node v is transitive (lines 11-13), then more rules are
needed, to account for the possibility of the derivation sat-
isfying the tree rooted at v only in an indirect fashion. A
possibly indirect satisfaction is either through a direct sat-
isfaction (and thus for every rule for R"(...) we will have a
copy of the same rule for R“t(...), lines 14-15), or through
(indirect) satisfaction by an atom in the body. For the latter,
we define tr — ex(atoms, v) as the set of all atoms sets ob-
tained from atoms by replacing a single atom R(zo, ..., Zm)

in atoms by R“t(a:o7 ...y Tm) (and keeping the other atoms
intact), and add the corresponding rules (line 13). Then
the function HandleEDB adds rules for nodes that locally
match edb facts, copying matching facts into the new rela-
tions T%(...) and T“t(. ..). The final step of the algorithm
is “cleanup” (line 17), removing unreachable rules.

ExAMPLE 4.1. Consider the program P given in Eram-
ples 2.1, and the tree pattern shown in Figure 2b, where vo
is the root node in p2 and vy is the leaf. Two out of the rules
of the output program are shown in Figure 4, and we next il-
lustrate their generation process. Since all rules in P locally
match vy through the assignment A = {a < Cuba,b < x},
vo is not a leaf and {dealsWith”i (b, Cuba)} is the only
B’ obtained for rule r1 and ex(A(dealsWith(b,a)),v1), we
have that in line 10 the algorithm adds the rule ry. Intu-
itively derivations for facts in dealsWith®(...) must match
the sub-pattern rooted by vo. Then derivations for facts in
dealsWith“i(...) must include a sub-tree that matches the
sub-pattern rooted by vi, and generated rules for
dealsWith”i(...) enforce that (since a dealsWith atom can-
not satisfy vi) one of the atoms in the body of a used rule
will be derived in a way eventually satisfying vi. Rule v is
added by Hand1eEDB since exports(a,b) locally matches v1.

The instrumented program satisfies the following funda-
mental property. Given an atom R(...), R"(...) or R“t(...)
we define its origin to be R(...), i.e. the atom obtained by
deleting the annotation v or v* (if exists). For a derivation
tree 7 we define origin(7) as the tree obtained from 7 by re-
placing each atom by its origin and pruning branches added
due to the function Hand1eEDB (“copying” edb facts).

We now have:

PROPOSITION 4.2. Let P, be the output of Algorithm 1
for input which is a program P and pattern p with root vg.
For every database D, we have that:

trees(P, D) = U

TEtrees(Pp,D)
p(P,D)= U
t=RY0(...) T€trees(Pp,D,t)

w(origin(r)) = w(r) V7 € trees(Pp, D) (3)

origin(T) (1)

origin(T) (2)

We refer to v and v’ in R(...) and R (...) as annotations.
Intuitively, the first part of the proposition means that for

every database, P, defines the same set of trees as P if we
ignore the annotations (in particular we generate the same
set of facts up to annotations); the second part guarantees
that by following the annotations we get exactly the deriva-
tion trees that interest us for provenance tracking purposes;
and the third part guarantees that the weights are kept.
This will be utilized in the next step, where we evaluate the
instrumented program while retrieving relevant provenance.

Complexity and output size. Given a datalog program P
of size |P| and a pattern p, the algorithm traverses the pat-
tern, and for each node v € p iterates over the program rules.
Let w(p) be the width of p, i.e. the maximal number of chil-
dren of a node in p. The maximal number of new rules the
algorithm adds is O(|P|*®). The exponential dependency
on the pattern width (which is small in practical cases) is
due to the need to consider all “expansions”. Furthermore,
we next show that a polynomial dependency on the program
and pattern is impossible to achieve (proof deferred to the
online version [22]).

PROPOSITION 4.3 (LOWER BOUND). There is a class of
patterns {p1, ...} and a class of programs {P1, ...}, such that
w(pn) = O(n), |P.| = O(n) and there is no program P,
of size polynomial in n that satisfies the three conditions of
Proposition 4.2 with respect to Py, pn.

Optimizations. The bound we have established on the in-
strumented program size is only a worst case one, realized
when e.g. all pattern nodes match all program rules. To im-
prove performance in practice, we employ further optimiza-
tions that simplify the instrumented program (thus reducing
the time of the top-k computation that follows). A particu-
lar such optimization relates to the existence of constants in
facts that label the pattern nodes. Recall that the algorithm
assigns corresponding constants in generated rules. When
these constants appear in labels of non-transitive nodes (i.e.
nodes not connected to their parents through transitive edges),
our optimization then “propagates” the assignment of con-
stants in a bottom-up manner, thus generating rules that
are more specific to assignments that will eventually lead
to valid derivations. Additionally, for non-transitive leaves
labeled by edb facts, the algorithm leads to generation of
rules that simply copy the content of an edb relation to an
idb relation; our optimization avoids this redundant step.

4.2 Boolean combinations of patterns

Algorithm 1 allows intersection of a single pattern with a
program. We next explain how to use (modifications of) the
algorithm to account for boolean combinations of patterns,
i.e. negation, conjunction, and disjunction. The time com-
plexity and output program size remain polynomial in the
size of the original program, with exponential dependency
on the size of the pattern (the exponent is multiplication of
the individual size of patterns, in the case of conjunction).

Negation. The algorithm for intersecting a negation of a
pattern is similar to Algorithm 1 with some modifications,
as follows. We use relation names R and R for ev-
ery relation name R in the program and for every pattern
node v. Derivations for R™ should not maftch the sub-
pattern rooted by v and derivations for R™ should not
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include a descendant that matches the sub-pattern rooted
by v. We then extend the idea of “expansion set” to define
neg — ex(atoms, {vo, ..., vn }) where atoms is a set of atoms
and the v;’s are pattern nodes as follows: if |atoms| > n,
then neg — ex(...) is the set of all atoms sets obtained from
atoms by replacing, for each v;, every atom R(zo,...,Tm)
in atoms by R (20, -y Tm), if v; is a transitive node and
R™"(xo, ..., Tm) otherwise. If |[atoms| < n then neg—ex(...)
is the set that contains only the set atoms. Then, in the case
where R(...) locally-matches v (line 4), if v is a leaf, we do not
add a derivation rule for R" since we want ignore derivation
that match v. Otherwise (in line 10), we add for each 8’ €
neg — ex(A(B), {vo, ..., vn}) the rule R™"(yn, ..., Ym) : —f'.
Intuitively, a derivation that does not match sub-pattern
rooted by v, in the case where the root r(...) locally-matches
v, either has less than n children in the derivation, where
n is number of the children of v, or the derivation rooted
by at least one of R(...)’s children does not match one of
the children of v, which is captured by the neg — ex(...) set.
In addition, for any rule R(...) : —f in P, when R(...) does
not locally-match v, we add the rule R7"(...) : —8. For
the case where v is a transitive child (line 11) we modify the
new rules body to be neg—ex(A(S), {v}). Finally, instead of
adding rules for edb atoms that locally-match v, the function
HandleEDB adds the rules T7%(xo,...,Zm) : —T(Zo, ..., Tm)
and Tﬁvt(xo,...,xm) : =T(zo,...,zm) for each edb atom
T(zo, ..., Tm) that does not locally-matches v.

Disjunction and Conjunction. Disjunction of patterns may
be performed by repeatedly intersecting the original pro-
gram with each of the disjuncts (in arbitrary order), accu-
mulating the obtained rules into a single program. As for
conjunction, we again perform repeated intersection with
the conjuncts, but this time use the output of each intersec-
tion step as the input for the next step.

S. FINDING TOP-K DERIVATION TREES

The second step of the algorithm is finding top-k deriva-
tion trees that conform to the pattern, based on the in-
strumented program and now also the input database. We
next describe the algorithm for top-k; then we will present
a heuristic optimization.

The algorithm operates in an iterative manner. We start
by explaining the algorithm for finding the top-1 derivation.
The generation of the top-1 qualifying tree is done alongside
with bottom-up standard (provenance-oblivious) evaluation
of the datalog program with respect to the database. We
then extend the construction to top-k for k& > 1.

5.1 Top-1

Algorithm 2 computes the top-1 derivation in a bottom-up
manner. Each entry in the data structure DT able represents
the top-1 derivation tree of a fact ¢, and contains the fact
itself, its top-1 derivation weight, and pointers to the en-
tries in the table corresponding to the derivation trees of
the “children” of ¢ in the derivation. Starting with a set of
all edb facts (with empty trees) in DT able (line 1), in each
iteration, the algorithm finds the set of facts that can be
derived via facts in DTable using a single application of a
rule in P (line 3). For each such candidate we compute its
best derivation out of those using facts in DT'able and a sin-
gle rule application (this is done by a procedure called Top).

The fact for which the maximal (in terms of weight) such
derivation is found is added to DTable (Line 4). Finally, the
algorithm returns the entries in DT able of facts that match
the root node vy of the pattern.

Algorithm 2: Top-1
input : Weighted Datalog Program P, Database D
output: Top-1 tree for facts of the form RY0(...)
1 Init DTable with (¢,0,null) for all t € D;

while DTable changes do
3 L Let Cand be the set of all facts derived via facts in

[N

DTable and are not in it;
Add [arg max; ¢ cqng Top(t, DTable, P)] to DT able

5 return the entries of all e € DT able s.t. the fact ¢ of e is
of the form RY0(...);

ExXAMPLE 5.1. Consider the two rules given in FExample
4.1, and the database D shown in Table 1. Algorithm 2
first initializes DTable with the edb atoms from D, each
with its weight (in this case all weights are 1). Then, in
lines 2-4, the algorithm finds the set of facts that can be de-
rived via the facts in DTable. In the first iteration the fact

t3 = eavports”I (Cuba, tobacco) can be derived with weight
1 using the edb fact t1 = exports(Cuba,tobacco) and the
rule denoted 4 in Example 4.1. Other facts can be de-
rived in the first iteration but ts is the fact with maximal
weight. The algorithm thus adds (ts,1,{xt1}) to DTable,
where *xt1 is a pointer to the entry of t1 in DTable. In
the next iteration, the algorithm can derive the fact t4 =

deal sWith! (France, Cuba) using ts and the edb fact to =
imports(France, tobacco) with overall weight of 0.5. When
ta is selected in Line 4 (other facts may be chosen due to
ties), the algorithm adds (t4,0.5, {xt2,*t3}) to DTable. Af-
ter t4 is added to DTable, the fact ts =

dealsWith*® (Cuba, France) can be derived with overall weight
0f0.5-0.8 =04, and (t5,0.4, {*t4}) is added to DT able.

5.2 Top-k

The algorithm for TOP-K computes the top-i derivations
for each fact ¢ € P,(D) in a bottom-up manner for 2 < ¢ < k.
For each i it essentially repeats the procedure of Algorithm
2, but starting with DTable consisting of the top-(i — 1)
trees, i.e. 7] for all t € P,(D) and j < 4. A subtlety is
that different trees in P,(D) may have the same origin in
P(D), thus computing top-k using the instrumented pro-
gram should be done carefully in order to avoid generating
the same tree (up to annotations) over and over again.

To this end, we say that a derivation tree 7¢ for a fact
t is a top-i candidate, if one of the following holds: (i) 7
uses at least one “new” fact that was added in the i’'th it-
eration or (ii) the last derivation step in 7; is different from
the last derivation step in 77 for all 1 < j < 4, such that
origin(re) # origin(r}). Given the top-(i — 1) derivation
trees, to compute i’th best tree for each fact we compute
in a bottom up manner top-i candidates that can be de-
rived from facts in DTable using a single rule application.
Then we select the candidate 7+ with maximal weight (out
of candidates computed for all facts) and add it to a new
entry t' in DTable. The step of computing the i’th best
tree terminates when there are no more new facts to add to
DTable. To find the top-k derivations we may simply com-
pute the top-i for each 1 < i < k. After the k’th iteration
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DTable contains a compact representation the top-k deriva-
tion trees. The enumeration of top-k trees for each fact may
then simply be done by pointer chasing.

Overall Complexity. The algorithm for TOP-K computes
for each 1 < ¢ < k the top-i derivation trees for each fact.
For each ¢, the computation of the top-i trees consists of
at most DT able iterations, each polynomial in DT able with
exponent |P|“P). A subtlety is in the verification that two
compactly represented trees do not have the same origin:
we note that a recursive such comparison may be performed
in time that is polynomial in DTable with the exponent
depending on the maximal tree width (maximal number of
children of a tree node), which in turn depends only on the
program size. Next, DTable contains at most k entries for
each fact t € P,(D) where P, is the instrumented program
given the program P and pattern p. The number of facts
t € P,(D) is at most |D|/rl = |D|<|P|w<p)), where | D] is the
extensional database size, thus on the i’th step, the size of
DTable is bounded by i - |D|(‘P|w(m). Therefore the time

complexity of the i’th step is O(i? - |D|O(‘P‘w(p))). The com-
plexity of computing the top-k derivation trees is therefore

k
>0 - DI = ok - D)

i=1

Finally, generating the top-k trees from DTable is linear in
the output size, and thus the overall complexity of TOP-K is

O(k?* - |D|o(‘P‘w(m) + |out|), where |out| is the output size.

5.3 Alternative heuristic top-k computation

An alternative approach for finding top-k derivations is
based on ideas of the algorithm for k£ shortest paths in a
graph [18]. The basic idea is to obtain the i’th best deriva-
tion tree of a fact ¢ by modifying one of the top-(i — 1)
derivation trees of t. Each node u with children uo, ..., um
in a derivation tree T for a fact t € P,(D), corresponds to
an instantiation of a derivation rule r in P,. Given a node
u € T, a modification of uw in 7 is using a different instanti-
ation to derive u, i.e. using different derivation rule v’ € P,
or a different assignment to the variables in r s.t. for the
obtained tree 7’ it holds that origin(r) # origin(r’). We
say that two modifications are different if for their results 71
and T2 satisfy origin(m) # origin(rz).

Given a derivation tree 7, we denote by 7, the deriva-
tion tree obtained by modifying » in 7 using r and 0. We
define 6(u,r,0) = w(r) — W(Tu,r,0). Intuitively, §(u,r, o)
is the “cost” of the modification. Note that the i’st best
derivation tree can be obtained by a modification of any
one of the top-(¢ — 1) trees. Given the top-(¢ — 1) derivation
trees for the fact ¢, the next best derivation can be com-
puted as follows: traverse each one of the top-i trees 7 in a
top-down fashion, compute the cost of all possible different
modifications (without recomputing trees that were already
considered; this can be done by tracking the rules and assign-
ment used for each modification), and find the modification
of minimal cost. The algorithm for top-k computes, for each
output fact, the top-k derivation trees as described above,
and terminates when we find top-k derivation or when there
are no more modifications to apply on the trees found by
the algorithm. Note that the consideration of modifications
can be done without materializing the derivation trees, but
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rather only using DTable. A subtlety is that a fact ¢ may
have multiple occurrences in a derivation tree 7, however it
appears only once in DT'able. Thus, modifying the entry of ¢
in DT able would result in modifying the sub-trees rooted at
all occurrences of ¢ (instead of modifying a subtree rooted at
one occurrence of t). To avoid these modifications, we gen-
erate a new copy of all the facts in the path from the root
of 7 to t (including t) for each modification of #’s sub-tree.

6.

We have implemented our algorithms in a system proto-
type called selP (for “selective provenance”, demonstrated
in [15]). The system is implemented in JAVA and its archi-
tecture is depicted in Figure 3: the user feeds the system
with a datalog program and a selPQL query, and the instru-
mented program is computed and fed, along with an input
database, to the TOP-K component. This component is im-
plemented by modifying and extending IRIS [31], a JAVA-
based system for in-memory datalog evaluation. Users may
then choose a tuple of interest from the output DB and view
a visualization of the top-k qualifying explanations (accord-
ing to the pattern) for the chosen tuple.

We have conducted experiments to examine the scalability
and usefulness of the approach, in various settings. We next
describe the dedicated benchmark (including both synthetic
and real data) developed for the experiments, and then the
experimental results.

6.1 Evaluation Benchmark
We have used the following datasets, each with multiple

selPQL queries, and for increasingly large output databases.The

weights in the reported results are all elements of the monoid
([0,1],+,1, <); we have experimented with all other monoids
given in Example 3.7, but omit the results for them since
the observed effect of monoid choice was negligible.

1. IRIS We have used the non-recursive datalog program
and database of the benchmark used to test IRIS per-
formance in [31]. The program consists of 8 rules and
generates up to 4.26M tuples; weights have been ran-
domly assigned in the range [0,1].

AMIE We have used a recursive datalog program con-
sisting of rules mined by AMIE [23], automatically
translated into datalog syntax, with weights assigned
by AMIE and reflecting rule confidence. The underly-
ing input database is that of YAGO [53]. The program
consists of 23 rules (many of which involve recursion
and mutual recursion) for Information Extraction that
generate up to 1.2M tuples.

Explain We have used a variant of the recursive data-
log program described in [3], as a use-case for the “ex-
plain” system, see discussion of related work (arith-
metic operations were treated through dedicated re-
lations, and aggregation was omitted). The database
was randomly populated and gradually growing so that
the output size is up to 1.17M tuples, and weights have
been randomly assigned in the range [0,1].
Transitive Closure. Last, we have used a recursive
datalog program consisting of 3 rules and computing
Transitive Closure in an undirected weighted graph.
The database was randomly populated to represent
undirected fully connected weighted graphs, yielding
output sizes of up to 1.7M tuples.

IMPLEMENTATION AND EXPERIMENTS



Baseline algorithms. To our knowledge, no solution for
evaluation of top-k queries (or tree patterns) over datalog
provenance has been previously proposed. To nevertheless
gain insight on alternatives, we have tested two “extreme”
choices: (1) standard, semi-naive evaluation with no prove-
nance tracking, using IRIS implementation; and (2) com-
pact representation of full provenance, based on the notion
of equations systems from [29], where for each idb fact there
is an equation representing its dependency on other idb facts
and on edb facts, with additional optimizations that allow
for “sharing” of identical parts between different equations.
All experiments were executed on Windows 7, 64-bit, with
8GB of RAM and Intel Core Duo i7 2.10 GHz processor.

6.2 Experimental Results

Figure 5 presents the execution time of standard sem-
inaive evaluation and of selective provenance tracking for
the four datasets and for different selPQL queries of inter-
est (fixing k = 3 for this experiments set). Full provenance
tracking has incurred execution time that is greater by order
of magnitude, and is thus omitted from the graphs and only
described in text.

In Figure 5a, the results for the IRIS dataset are presented
for 4 different patterns: (p1) binary tree pattern with three
nodes without transitive edges and (p2) with two transitive
edges, (ps) three nodes chain pattern with two transitive
edges, and (p4) six node pattern with three levels and four
transitive edges. The pattern width and structure unsur-
prisingly has a significant effect on the execution time, but
the overhead with respect to seminaive evaluation was very
reasonable: 38% overhead w.r.t. the evaluation time of sem-
inaive even for the complex six-node pattern and only 3%
- 21% for the other patterns. The absolute execution time
is also reasonable: 56—65 seconds for the different patterns
and for output database of over 4.2M tuples (note that for
this output size, the execution time of standard semi-naive
evaluation is already 53 seconds In contrast, generation of
full provenance was infeasible (in terms of memory consump-
tion) beyond output database of 1.6M tuples, taking over 5
minutes of computation for this size.

As explained above, the program we have considered for
the AMIE dataset is much larger and more complex. Full
provenance tracking was completely infeasible in this com-
plex settings, failing due to excessive memory consumption
beyond output database of 100K tuples. Of course, the com-
plex structure leads to significantly larger execution time
also for semi-naive and selective provenance tracking. It
also leads to a larger overhead of selective provenance track-
ing, since instrumentation yields an even larger and more
complex program. Still, the performance was reasonable for
patterns of the flavor shown as examples throughout the pa-
per. We show results for the AMIE dataset and 9 different
representative patterns. 5 patterns without any constants
(only wildcards): (ps) a single node pattern, (ps) a 2-node
pattern with a regular edge and (p7) with a transitive edge,
(ps) a binary 3-node pattern with regular edges, and (po)
with one transitive edge. The other 4 patterns are (p;) for
all 6 <14 <9, where each (p;) has the same nodes and edges
of (p;), but with half of the wildcards replaced by constants.
The results are shown in Figure 5b. We observe that the
“generality” of the pattern, i.e. the part of provenance that
it matches, has a significant effect on the performance. For
the “specific” patterns p;, the computation time and over-
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head was very reasonable: the computation time for 1.2M
output tuples was only 44.5 seconds (1.3 times slower than
seminaive) for pg. For p7 and the same number of out-
put tuples it took 62 seconds (less than 2 times slower than
seminaive), 44.6 seconds (1.3 times slower than seminaive)
for pg and 105 seconds (3.2 times slower than seminaive)
for p3. The patterns containing only wildcards lead to a
larger instrumented program, which furthermore has more
eventual matches in the data, and so computation time was
greater (but still feasible). the computation time for 1.2M
output tuples was less than a minute (and 61% overhead
w.r.t. seminaive in average) for ps, less than 2 minutes (3.5
times slower than seminaive) for pg, 2.6 minutes (4.8 times
slower) for pr7, and less than 2 and 2.9 minutes (3.6 and 5.4
times slower) for ps and pg respectively.

In Figure 5¢c we present the results for the TC dataset
and 4 different patterns: (pio) a single node, (p11) 3-nodes
binary tree pattern with regular edges, (p12) 3-nodes chain
pattern with 2 transitive edges, and (p13) binary tree pat-
tern with three nodes and 2 transitive edges. We observe
a non-negligible but reasonable overhead with respect to
semi-naive evaluation (and the execution time is generally
smaller than for the AMIE dataset). The execution time
for 1.7M output tuples for pip was 31 seconds (and 56%
overhead with respect to seminaive in average), 33 seconds
for p11 (1.8 times slower than seminaive in average), 74 sec-
onds for pi2 (4 times slower) and 82 seconds for pis (4.5
times slower than seminaive). Here full provenance track-
ing was extremely costly, requiring over 6.5 hours for output
database size of 1.7M tuples.

Figure 5d displays the results for the “explain” dataset.
We considered 3 different patterns: (p14) a single node, (p15)
a 3-nodes binary tree pattern with regular edges and (pis)
a 2-node pattern with a transitive edge. The computation
time for 1.16M output tuples was less than 3.2 minutes (7%
overhead w.r.t seminaive) for pi4, 3.3 minutes (10% over-
head w.r.t seminaive) for p15 and 4.4 minutes (85% over-
head w.r.t the evaluation time of seminaive) for pig. Full
provenance tracking has required over 2 hours even for an
output database size of 115K.

From top-1 to top-k. So far we have shown experiments
with a fixed value of £k = 3. In Figure 6 we demonstrate
the effect of varying k, using the TC dataset and fixing the
pattern to be p1g. The overhead due to increasing k is rea-
sonable, due to our optimization using the heuristic algo-
rithm for TOP-K (after top-1 trees were computed): about
6%, 13%, and 21% average overhead for top-3, top-5 and
top-7 respectively with respect to top-1 execution time. Sim-
ilar overheads were observed for other patterns and for the
other datasets. Our optimization was indeed effective in
this respect, outperforming the non-optimized version with
a significant gain, e.g. average of 64% for k = 3, 77% for
k =5 and 82% for k = 7 (and again the trend was similar
for the other patterns and datasets).

Discussion. Recall that the algorithm consists of two steps:
program instrumentation and top-k evaluation. The instru-
mentation step is extremely fast (less than 1 second in all
experiments), since it is independent of the database. A cru-
cial factor affecting the performance of the top-k step is the
complexity of the obtained instrumented program, which
in turn is highly dependent on the size and complexity of
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the pattern and of the original program). As observed in
the experiments, “simple” patterns (small, containing con-
stants rather than wildcards) lead to smaller programs and
good performance, while more complex patterns can lead
to meeting the lower bound of Prop. 4.2, and consequently
to a greater overhead (yet, unlike full provenance tracking,
execution time was still feasible even for the complex pro-
grams and patterns we have considered). We note that the
optimizations outlined in section 4 have indeed improved the
algorithm’s performance by as much as 50%, due to reducing
the number of rules.

7. RELATED WORK

We next overview multiple lines of related work.

Data provenance models. Data provenance has been stud-
ied for different data transformation languages, from rela-
tional algebra to Nested Relational Calculus, with different
provenance models (see e.g. [6, 29, 28, 24, 35, 11, 55, 7,
19]) and applications [54, 42, 50, 41, 26], and with different
meauns for efficient storage (e.g. [5, 9, 46, 19]). In particular,
semiring-based provenance for datalog has been studied in
[29], and a compact way to store it, for some class of semir-
ings, was proposed in [17]. However, no notion of selective
provenance was proposed in this work. Consequently, (1)
the resulting structure is very complex and difficult to un-
derstand (it is not geared towards presentation, thus there
is no support of ranking or selection criteria), and (2) as
we have experimentally showed, tracking full datalog prove-
nance fails to scale.

Selective provenance for non-recursive queries. There
are multiple lines of work on querying data provenance,
where the provenance is tracked for non-recursive queries
(e.g. relational algebra or SQL). Here there are two ap-
proaches: one that tracks full provenance and then allows
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the user to query it (as in [34, 32]), and one that allows on-
demand generation of provenance based on user-specified
criteria. A prominent line of work in the context of the
latter is that of [27, 25], where the system (called Perm)
supports SQL language extensions to let the user specify
what provenance to compute. Three distinct features in our
settings are (1) the presence of recursion (we support recur-
sive datalog rather than SQL), (2) the use of tree patterns
to query derivations (which is natural for datalog), and (3)
the support of ranking of results. These differences lead to
novel challenges and consequently required novel modeling
and solutions (as explained in the Introduction and in the
description of the technical content).

Explanation for deductive systems. There is a wealth of
work on explaining executions for deductive DBMSs. For
instance, in [3] the authors present an explanation facility
called “explain” for CORAL, a deductive database system.
It allows users to specify subsets of rules as different “mod-
ules”, and then to set provenance tracking “on” or “off” for
each module. For the chosen modules, the system main-
tains a record of all instantiations of rules that have been
generated during the program execution. This is a coun-
terpart of our notion of full provenance, since all derivation
trees may be obtained from this structure. Once full prove-
nance is tracked, one may analyze it (e.g. using further
CORAL queries), or browse through it using a dedicated
Graphical User Interface. In contrast to our work, this line
of work focuses on analyzing the full provenance, and cannot
be used to specify in advance the structure of derivations
that should be tracked (in-advance specification is limited
to the coarse-grain specification of modules). As we have
shown, tracking full provenance is infeasible for large-scale
data and complex programs. Indeed, experiments in [3] are
reported only for a relatively small scale data (up to 30K
rule instantiations, which implies less than 30K tuples in
the output database). Consequently, we focus on static in-
strumentation that allows to avoid full provenance tracking.
This then leads to the need for a careful design of a declara-
tive language (and corresponding algorithms) for specifying
selective provenance tracking, such that the language is rich
enough to express properties and ranking functions of inter-
est, while allowing for feasibility of instrumentation (which
was not addressed in [3]). Indeed, selPQL allows the spec-
ification of expressive queries through the combination of
tree patterns and ranking, while still allowing for efficient
instrumentation. These major distinctions in the problem
setting also naturally imply that our technical development
is novel. The same distinctions apply to other works in this



context, such as the debugging system for the LDL deduc-
tive database presented in [51]. A feature that is present
in [51] and absent here is the ability to query missing facts,
i.e. explore why a fact was not generated. Incorporating
such feature (e.g. to find ranked explanations for absence of
facts) is an intriguing direction for future work.

Program slicing. In [10, 47] the authors study the notion
of program slicing for a highly expressive model of func-
tional programs and for Nested Relational Calculus, where
the idea is to trace only relevant parts of the execution.
While the high-level idea is similar to ours, and the trans-
formation languages they account for are more expressive,
our focus here is on supporting provenance for programs
whose output data is large (in contrast, the output size for
the programs in the experiments of [10, 47] is much smaller
than in our experiments). We have thus chosen datalog as a
formalism, leading to our tree-based language for patterns,
to our theoretical complexity guarantees (which naturally
could not be obtained for arbitrary functional programs),
and to our experimental study supporting large-scale out-
put data. Importantly, our ranking mechanism and top-k
computation are also absent from this line of work.

Workflow provenance. Different approaches for capturing
workflow provenance appear in the literature (e.g. [14, 13,
2, 30, 20, 52, 43]), however there the focus is typically on
the control flow and the dataflow between process modules,
treating the modules themselves and their processing of the
data as black boxes. A form of “instrumenting” executions
in preparation for querying the provenance is proposed in [4],
but again the data is abstracted away, the queries are limited
to reachability queries and there is no ranking mechanism.

Context Free Grammars. Analysis of the different parses
of Context Free Grammars (CFGs) has been studied in dif-
ferent lines of work. In [38] the author proposes an algorithm
for finding the top-1 weight of a derivation in a weighted
CFG; other works have studied the problem of finding top-
k parses of a given string (where, unlike in our case, the
derivation size is bounded) in a probabilistic context free
grammar. In [12] the authors study the problem of query-
ing the space of parse trees of strings for a given probabilistic
context free grammar, using an expressive query language,
but focus on computing probabilities of results, where the
probability is obtained by summation over all possible parse
trees satisfying a pattern.

There are technical similarities between datalog and CFGs;
but perhaps the most significant conceptual difference is that
in datalog there is a separation between the program and the
underlying data, which has no counterpart in CFGs. In par-
ticular, we have shown that it is essential for the algorithm
performance that we avoid grounding the program (which
is the equivalent of full provenance generation) and instead
instrument it without referring to a particular database in-
stance. These are considerations that are of course absent
when working with CFGs. This means that no counter-
part of our novel instrumentation algorithm (or of the key
Proposition 4.2) appears in these works. Then, the top-k
trees computation requires again a novel algorithm and sub-
tle treatment of different cases. We have highlighted some
of the novel challenges in this respect in the Introduction.

Probabilistic XML. Different works have studied models
and algorithms for representing and querying probabilistic
distributions over XML documents (see e.g. [36, 37, 39]).
Top-k queries over probabilistic XML was studied in e.g. [44,
8, 39]. A technical similarity is in the use of tree patterns
for querying a compactly represented set of trees, each asso-
ciated with a probability value (the counterpart of weights
in our model). However our different motivation of querying
datalog provenance is then reflected in many technical dif-
ferences. First, the separation between the program and the
underlying data and the need for instrumentation that is in-
dependent of the data (as explained in the Introduction and
in the discussion of CFGs above) is also absent from models
for probabilistic XML, and leads to novel challenges and a
novel instrumentation algorithm, which also significantly af-
fects the further development for top-k computation (due to
the need to avoid generation of trees that are duplicates up
to “instrumentation annotations”). An additional difference
is due to our use of a general weight function rather than
probabilities. We further note that beyond the difference in
the model, the problem typically considered for probabilistic
XML is different than ours. The problem typically studied
in these works is that of finding the probability of an “an-
swer” (e.g. a match), or the top-k such answers based on
the answers probabilities. The difference is that the prob-
ability of an answer is defined as a sum over all possible
worlds (e.g. all possible trees in which this match appears),
where we are computing a mazimum (or top-k) over the pos-
sible trees. This is a different problem with different motiva-
tion and different techniques for solutions. Furthermore, for
most realistic models this problem becomes #P-hard in gen-
eral (while ours is PTIME), and various restrictions which
are not imposed in our case are required in the context of
probability computation to allow for tractability.

Markov Logic Networks and other probabilistic mod-
els. The combination of highly expressive logical reasoning
and probability has been studied in multiple lines of work.
These include Markov Logic Networks [48, 33, 45] which may
be expressed as a first-order knowledge base with probabil-
ities attached to formulas, and probabilistic datalog where
probabilities are attached to rules (e.g. [21, 16]). However,
the focus in these lines of work is on the problem of prob-
abilistic inference, i.e. computing the probability of a fact
or formula (by summing over all possible worlds in which
the fact appears/the formula is satisfied); to our knowledge,
no counterparts of our query language or techniques were
studied in these contexts. In contrast, the various formu-
lations of probabilistic inference typically lead to very high
complexity, with solutions that involve approximation algo-
rithms based on sampling.

8. CONCLUSION

We have presented in this paper selPQL, a top-k query
language for datalog provenance, and an efficient algorithm
for tracking selective provenance guided by a selPQL query.
We have showed that the algorithm incurs polynomial data
complexity and have experimentally studied its performance
for various datalog programs and selPQL queries. There
are many intriguing directions for future work, including
further optimizations and incorporating considerations such
as diversification and user feedback.
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