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ABSTRACT

There has been an increased growth in a number of appli-
cations that naturally generate large volumes of uncertain
data. By the advent of such applications, the support of
advanced analysis queries such as the skyline and its variant
operators for big uncertain data has become important. In
this paper, we propose the effective parallel algorithms us-
ing MapReduce to process the probabilistic skyline queries
for uncertain data modeled by both discrete and continuous
models. We present three filtering methods to identify prob-
abilistic non-skyline objects in advance. We next develop a
single MapReduce phase algorithm PS-QP-MR by utilizing
space partitioning based on a variant of quadtrees to dis-
tribute the instances of objects effectively and the enhanced
algorithm PS-QPF-MR by applying the three filtering meth-
ods additionally. We also propose the workload balancing
technique to balance the workload of reduce functions based
on the number of machines available. Finally, we present the
brute-force algorithms PS-BR-MR and PS-BRF-MR with
partitioning randomly and applying the filtering methods.
In our experiments, we demonstrate the efficiency and scal-
ability of PS-QPF-MR compared to the other algorithms.

1. INTRODUCTION
There has been an increased growth recently in a num-

ber of applications such as social network [1], data inte-
gration [15] and sensor data management [13] that natu-
rally produce large volumes of probabilistic/uncertain data.
In such applications, uncertainty is inherent due to various
factors such as data randomness and incompleteness, limita-
tions of measuring equipments and so on. By the advent of
such applications, the support of advanced analysis queries
such as the skyline and its variant operators [8, 12, 20] for
big uncertain data has become important.

Given a set of certain objects D = {p1, p2, · · · , p|D|} where
each object pi is represented by a d-dimensional point 〈pi(1),
pi(2), · · · , pi(d)〉 and pi(k) is the k-th coordinate of pi, the
skyline is the set of all objects that are not dominated by
any other object in D. An object pi is said to dominate an
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object pj , denoted by pi ≺ pj , if the following two conditions
hold: (1) for every k with 1≤k≤d, we have pi(k) ≤ pj(k)
and (2) there exists k with 1≤k≤d such that pi(k) < pj(k).

The notion of the probabilistic skyline was first introduced
in [22] for uncertain data. An uncertain object can be de-
scribed by the discrete or continuous uncertainty model. In
the discrete model, an object U is modeled as a set of in-
stances and denoted by U = {u1, u2, . . . , u|U|} where ui is
a d-dimensional point with its existence probability. In the
continuous model, an object U is modeled as an uncertainty
region with its probabilistic distribution function (pdf).

Given a set of uncertain objects D represented by the dis-
crete model, a possible world is a set of instances from ob-
jects in D where at most a single instance may be selected
from each object. The skyline probability of an instance is
the probability that it appears in a possible world and is
not dominated by every instance of the other objects in the
possible world. Then, the skyline probability of an object
is the sum of the skyline probabilities of its all instances.
Similarly, for the continuous model, we define the skyline
probability of an object by using its uncertainty region and
pdf. Given a probability threshold Tp, regardless of the un-
certainty models used, the probabilistic skyline is the set of
uncertain objects whose skyline probabilities are at least Tp.
The modern world is full of devices with sensors and pro-

cessors. Such deployments of computational resources en-
able us to measure, collect and process large data from bil-
lions of connected devices serving many applications. For
example, consider a large number of devices equipped with
sensors to measure NO2 and SO2 concentrations in the air
and are deployed in a wide area to monitor the air pollu-
tion. A common characteristics of such sensors is that every
measured value is associated with some measurement error,
resulting in uncertain data. The pairs of measured NO2 and
SO2 values by the sensors in each device may be modeled
as an object with its uncertainty region and pdf. On the
other hand, each device can be also modeled as an object
where each pair of measured values can be considered as
an instance of the object. To find less polluted locations,
we can consider the locations of the devices whose pairs of
measured NO2 and SO2 values are in the probabilistic sky-
line. Since these types of applications have the potential to
generate a large amount of uncertain data, computing the
probabilistic skyline for such big data is challenging today.

Google’s MapReduce [11] or its open-source equivalent
Hadoop [4] is a powerful and widely used tool that provides
easy development of scalable parallel applications such as
large-scale graph processing, text processing and machine
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learning to process big data on large clusters of commodity
machines. At Google, more than 10,000 distinct programs
have been implemented using MapReduce [11].

Many serial algorithms have been proposed to process sky-
line and its variant queries [8, 12, 20]. Due to the trend
of increasing data volumes, several parallel algorithms us-
ing MapReduce were developed to process skyline related
queries [21, 27] for certain data. Recently, Pei et al. [22] pro-
posed serial algorithms for probabilistic skyline queries. Pro-
cessing probabilistic skyline queries with MapReduce was
also considered in [14] for the special case of discrete model
in which each object has a single instance.

In this paper, we propose the effective parallel algorithms
using MapReduce to process the probabilistic skyline queries
for the general case of when each object is expressed by a set
of instances in the discrete model or an uncertainty region
with its pdf in the continuous model. To the best of our
knowledge, processing probabilistic skylines using MapRe-
duce for the general case has not been addressed yet. This
paper makes the following contributions:

Early pruning of non-skyline objects: After present-
ing how to calculate the upper bound of the skyline proba-
bility of an object U with a sample of data D, we show that
U is not a skyline object if the upper bound is less than the
probability threshold Tp. We also demonstrate that we can
prune an instance dominated by an instance of another ob-
ject in a sample of D in every possible world, after providing
how to find such instances. Finally, we present how to main-
tain and use a small number of objects with high dominating
power to reduce the dominance relationship comparisons.

Effective space partitioning by a PSQtree: We di-
vide the uncertain objects D into partitions according to the
space split by a variant of a quadtree, called PSQtree, which
is produced quickly from a sample of D. Since we can iden-
tify a leaf node of a PSQtree in which every instance can
not dominate all instances in another leaf node based on
the spatial relationships of regions represented by the leaf
nodes, we avoid the useless comparisons between instances
in advance. We also present how to exploit the early pruning
methods presented previously in the presence of a PSQtree.

Implementation on MapReduce: We develop the sin-
gle MapReduce phase algorithm PS-QP-MR by partition-
ing the space with a PSQtree. It calculates the skyline ob-
jects in each partition independently by a reduce function.
For workload balancing and small transmission overhead, we
split data D into several partitions by a PSQtree and clus-
ter them into groups such that (1) the number of groups
is a multiple of the number of machines available, (2) the
number of objects in every group is similar, (3) the number
of instances required to compute the skyline probabilities of
the objects in every group is similar and (4) each group is
handled by a reduce function with maximum memory usage.
We next propose the enhanced algorithm PS-QPF-MR by
our early pruning methods. We also present the brute-force
MapReduce algorithms PS-BR-MR and PS-BRF-MR based
on random partitioning. Finally, by conducting performance
study with datasets represented by discrete and continuous
uncertainty models, we show that PS-QPF-MR is the most
effective and scalable algorithm in diverse environments.

2. RELATED WORK
Skyline processing was first investigated in the context of

databases in [8]. Dynamic and reverse skylines were intro-

duced in [20] and [12], respectively. In addition, several algo-
rithms have been proposed for skyline queries in [16, 20, 24].
Kossman et al. [16] proposed a Nearest Neighbor (NN) ap-
proach to retrieve skylines. Papadias et al. [20] improved the
NN algorithm by using the branch-and-bound (BBS) strat-
egy. Many existing algorithms utilize R*-trees [6] to check
dominance relationships between points.

Due to the importance of supporting applications dealing
with uncertain data, the techniques for processing uncer-
tain queries such as probabilistic top-K [23] and similarity
join [18] queries have been proposed. Refer to [26] for the
summary of processing uncertain queries.

The serial algorithms for probabilistic skyline processing
over uncertain data have been introduced in [5, 22]. The sky-
line probabilities of all objects in the discrete model are com-
puted without considering the minimum probability thresh-
old in [5]. Skyline computation with the minimum proba-
bility threshold is considered in [22] for both discrete and
continuous models, but every instance of each object has
the same existence probability. To parallelize such serial al-
gorithms, we need two MapReduce phases. The first phase
splits data into partitions randomly and computes the par-
tial skyline probabilities of every object in each partition in-
dependently. The second phase computes the skyline prob-
ability of each object by collecting its partial skyline proba-
bilities from different partitions. In this paper, we address a
generalized problem of both [5] and [22], and we compute the
probabilistic skylines with the minimum probability thresh-
old for the discrete and continuous models.

Recently, parallel skyline processing algorithms with Map-
Reduce for certain and uncertain data were presented in [2,
21, 27] and [14], respectively. We can develop the parallel
algorithms for uncertain data by simply performing one of
the algorithms for certain data in [2, 21, 27] for every pos-
sible world. However, due to a lot of possible worlds, naive
extensions of such algorithms to uncertain data are very in-
efficient and impractical. The most relevant work to ours is
the MapReduce algorithm PSMR [14], but PSMR can com-
pute the probabilistic skylines only for the case where each
uncertain object has a single instance in the discrete model.

3. PRELIMINARIES
We first introduce the definition of the probabilistic sky-

line [22] by the popular possible worlds semantics [3, 10] and
next present the state-of-the-art in [14].

3.1 Probabilistic Skylines
The discrete model: Given a set of uncertain objects

D, an object U ∈ D is modeled as a set of instances and de-
noted by U = {u1, u2, · · · , u|U|} where ui is associated with
an existence probability P (ui) such that

∑
ui∈U P (ui) ≤ 1.

A possible world is a materialized set of instances from ob-
jects. Since all instances of U are mutually exclusive, multi-
ple instances of U cannot belong to a possible world simul-
taneously. The probability that an instance ui ∈ U appears
in a possible world is P (ui) and the probability that any
instance of an object U does not appear is 1−

∑
ui∈U P (ui).

When a possible world contains an instance ui ∈ U , if any
instance vj of every other object V ∈ D dominating ui does
not exist in the possible world, ui is a skyline instance in the
possible world. Since such a probability is

∏
V ∈D,V 6=U (1 −∑

vj∈V,vj≺ui
P (vj)), the skyline probability of ui, denoted

by Psky(ui), can be written as follows [5]:
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Psky(ui) = P (ui) ×
∏

V ∈D,V 6=U

(1 −
∑

vj∈V,vj≺ui

P (vj)). (1)

We define the skyline probability of an object U , denoted
by Psky(U), as the sum of the skyline probabilities of all its
instances (i.e., Psky(U) =

∑
ui∈U Psky(ui)).

The continuous model: An uncertain object U ∈ D is
modeled as an uncertainty region U.R with its probabilistic
distribution function U.f(·) [7, 17, 22]. We assume that
each uncertainty region is a hyper-rectangle as in [17]. The
probability that an instance of U is located at a point u in
U.R is U.f(u) where

∫
U.R

U.f(u)du = 1.
Given an object U ∈ D, Psky(U) is defined in [22] as:

Psky(U) =

∫

U.R

U.f(u)
∏

V ∈D,V 6=U

(1 −

∫

V.R

V.f(v)1(v ≺ u)dv)du (2)

where 1(v ≺ u) is an indicator function which returns 1 if v
dominates u, and 0 otherwise.

Definition 3.1.: [Probabilistic Skyline Problem] For
a set of uncertain objects D and a probability threshold Tp,
the probabilistic skyline, denoted by pSL(D, Tp), is the set of
all objects whose skyline probabilities are at least Tp. That
is, pSL(D, Tp) = {U ∈ D | Psky(U) ≥ Tp}.

Example 3.2.: Consider a set of objects D = {W,X, Y, Z}
with the discrete model in Figure 1(a). Each instance of ob-
jects represents a pair of measured values of NO2 and SO2

concentrations. In Figure 1(b), we plot every instance in D

into a 2-dimensional space. Since y1 is dominated by w1,
w2, x1, x2 and z2, the skyline probability of y1 computed by
Equation (1) is Psky(y1)=P (y1)(1−P (w1)−P (w2))(1−P (x1)
−P (x2))(1−P (z2))=0.024. Similarly, Psky(y2)=0.012. The
skyline probability of Y is Psky(Y )=Psky(y1)+Psky(y2)=0.036.
Furthermore, Psky(W )=0.9, Psky(X)=0.4 and Psky(Z)=0.74.
When Tp is 0.5, pSL(D, Tp) is {W,Z} by Definition 3.1.

3.2 PSMR: The State-of-the-art Algorithm
The algorithm PSMR in [14] works with two MapReduce

phases as follows.

The first phase: It computes the local candidate and
affect sets. The candidate set contains possible probabilistic
skyline objects and the affect set includes the probabilistic
non-skyline objects required to compute the skyline proba-
bilities of the objects in the candidate set. The first state-
ment in Lemma 3.3 is used to find the candidate skyline
objects. Then, it applies the second statement in Lemma
3.3 to discover the affect set among probabilistic non-skyline
objects. Note that S in the following lemma represents the
set of objects to be processed in each machine.

Lemma 3.3.: [14] For a set S ⊂ D, if an object U = {u} in
D satisfies P (u)

∏
V ∈S

(1−
∑

v∈V,v≺u P (v)) < Tp, it is a prob-

abilistic non-skyline object in D (i.e., U 6∈ pSL(D, Tp)). Fur-
thermore, if an object U = {u} satisfies

∏
V ∈S

(1−
∑

v∈V,v≺u

P (v)) < Tp, it does not belong to the affect set.

At the end of the first phase, PSMR generates the candidate
and affect sets by combining the local candidate and affect
sets produced by all machines, respectively.

The second phase: PSMR first divides the union of
the candidate and affect sets into several partitions each of
which is allocated to a different machine. After broadcasting
the candidate set to every machine, each machine computes
the partial skyline probabilities of all broadcast candidate
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Figure 1: An example of an uncertain dataset

objects by using the objects in its allocated partition. Then,
they gather all partial skyline probabilities of each object
from different machines into one of the machines to calculate
the skyline probabilities of all candidate objects in parallel.

The second phase is necessary in PSMR to compare every
candidate object with all other objects in the candidate and
affect sets. In contrast, our proposed algorithms PS-QP-MR
and PS-QPF-MR consist of a single MapReduce phase.

4. KEY IDEAS OF OUR ALGORITHMS

4.1 Early Pruning Techniques
If we know that an object cannot be a probabilistic skyline

object, we can avoid computing its skyline probability.

4.1.1 Upper-bound Filtering

The following propositions address that the skyline proba-
bility of an object U by considering a sample S of the objects
in D only is an upper bound of Psky(U) for both discrete and
continuous models.

Proposition 4.1.: Consider an object U in the discrete
model. For an instance ui ∈ U , the value of Psky(ui) com-
puted by Equation (1) with V ′ ⊆ V and S ⊂ D instead is the
upper bound of Psky(ui). The sum of the upper bounds of
Psky(ui)s with all ui ∈ U is the upper bound of Psky(U).

Proposition 4.2.: Consider an object U modeled by its
uncertainty region U.R with a pdf U.f(·). The value of Psky(U)
computed by Equation (2) with S ⊂ D and a sub-region V.R′

of V.R becomes the upper bound of Psky(U).

By keeping the upper bounds of the skyline probabilities
of all instances in each object, we can identify probabilistic
non-skyline objects. As shown in Figure 1(c), all instances
in 〈[50, 100), [50, 100)〉 are dominated by w1. Note that
Psky(y1)=P (y1)

∏
V ∈D,V 6=Y (1-

∑
vj∈V,vj≺y1

P (vj))=0.024 by

Equation (1). Due to Proposition 4.1, we have Psky(y1) ≤
P (y1)(1-P (w1))=0.4 which is obtained by using S = {W}
and V ′ = {w1}. Similarly, the upper bound of Psky(y2) be-
comes 0.1. Thus, the upper bound of Psky(Y ) becomes 0.5
by adding the upper bounds of Psky(y1) and Psky(y2). If Tp

is 0.6, since Psky(Y ) ≤ 0.5 < Tp, Y is a non-skyline object.
We now present how to compute the upper bound of the

skyline probability of every object in each partition for our
upper-bound filtering. Let R.min be the point whose k-
th coordinate is the minimum in the k-th dimension for a
rectangular region R.

Definition 4.3.: For an instance ui of an object U ∈ D, a
set of objects S ⊂ D and a rectangular region R(ui) including
ui, we define

β(U, S, R(ui)) =

∏
V ∈S

(1−
∑

vj∈V,vj≺R(ui).min P (vj))

1−
∑

uk≺R(ui).min,uk∈U P (uk)
(3)

and up(ui, U, S, R(ui)) = P (ui)× β(U, S, R(ui)).
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The upper bound of the skyline probability of an instance
can be computed by utilizing the following lemma.

Lemma 4.4.: Consider an instance ui of an object U ∈ D

and a rectangular region R(ui) which contains ui. For a set
of objects S ⊂ D, we have Psky(ui) ≤ up(ui, U, S, R(ui)).

Proof: Let Dui and DR be the sets of the instances in
D which dominate ui and R(ui).min, respectively. Since
every instance dominating R(ui).min also dominates ui, we
have DR ⊆ Dui . We derive Psky(ui) ≤ up(ui, U, S, R(ui))
as follows:

Psky(ui) ≤ P (ui)
∏

V ∈S,V 6=U






1 −

∑

vj∈V ∩DR

P (vj)






(by Proposition 4.1)

= P (ui)
∏

V ∈S,V 6=U






1 −

∑

vj∈V ∩DR

P (vj)







1 −
∑

ui∈U∩DR
P (ui)

1 −
∑

ui∈U∩DR
P (ui)

≤ P (ui)

∏

V ∈S

(

1 −
∑

vj∈V ∩DR
P (vj)

)

1 −
∑

uk∈U∩DR
P (uk)

= P (ui)

∏

V ∈S(1 −
∑

vj∈V,vj≺R(ui).min P (vj))

1 −
∑

uk≺R(ui).min,uk∈U P (uk)
= up(ui, U, S, R(ui))

(since {vj ∈ V |vj ≺ R(ui).min} = V ∩ DR)

Corollary 4.5.: Consider an object U∈D and let R(ui)
be a rectangular region containing an instance ui of U . For
a set of objects S⊂D, if we have

∑
ui∈U up(ui, U, S, R(ui))

< Tp, U is not a probabilistic skyline object.

By Corollary 4.5, we do not compute the skyline proba-
bility of an uncertain object U if we have

∑
ui∈U up(ui, U, S,

R(ui)) < Tp. We call such pruning the upper-bound filtering.
We can prune even further when every object has a single
instance only as follows.

Lemma 4.6.: When every object in D has a single in-
stance, consider an instance u of an object U and a rectan-
gular region R(u) containing u. For a set of objects S ⊂ D, if
we have up(u, U, S, R(u)) = P (u)× β(U, S, R(u)) < Tp, U is
not a skyline object. Furthermore, if β(U, S, R(u)) < Tp also
holds, there is no object in the probabilistic skyline whose
instance is dominated by u.

Proof: Since every object has a single instance, we have
Psky(U) = Psky(u) ≤ up(u, U, S, R(u)) ≤ Tp by Lemma 4.4
and U is not a skyline object due to Corollary 4.5.

We next prove the second case of when β(U, S, R(u)) <
Tp by contradiction. Assume that there is a skyline ob-
ject W whose instance w is dominated by u (i.e., u ≺ w).
By Proposition 4.1, we have Psky(W ) ≤ P (w)

∏
V ∈S

(1 −∑
v∈V,v≺w P (v)). Since R(u) contains u, R(u).min ≺ u ≺ w

holds and hence R(u).min ≺ w. Furthermore, because ev-
ery instance v such that v ≺ R(u).min also dominates w,
we have {v ∈ V |v ≺ R(u).min} ⊆ {v ∈ V |v ≺ w} and get

P (w)
∏

V ∈S

(1-
∑

v∈V,v≺w

P (v)) ≤ P (w)
∏

V ∈S

(1-
∑

v∈V,v≺R(u).min

P (v)).

When U has a single instance u which does not domi-
nate R(u).min, we have

∑
u≺R(u).min,u∈U P (u) = 0 result-

ing that β(U, S, R(u)) =
∏

V ∈S
(1 −

∑
v∈V,v≺R(u).min P (v))

from Definition 4.3. Thus, we have Psky(W ) ≤ P (w) ×
β(U, S, R(u)). Now assume that β(U, S, R(u)) < Tp holds.
Then, we obtain Psky(W ) < Tp. It contradicts to the as-
sumption that W is a skyline object.

The following corollary shows that the Lemma 3.3 used
by PSMR [14] is a special case of our Lemma 4.6 since
β(U, S, R(u)) =

∏
V ∈S

(1 −
∑

vj∈V,vj≺u P (vj)) when R(u)

degenerates to the minimum bounding rectangle containing
only a single instance u.

Corollary 4.7.: When every object in D has a single
instance, consider an instance u of an object U and a subset
S ⊂ D. If P (u)

∏
V ∈S

(1−
∑

vj∈V,vj≺u P (vj)) < Tp, U is not

a skyline object. Furthermore, when β(U, S, R) =
∏

V ∈S
(1−∑

vj∈V,vj≺u P (vj)) < Tp also holds, there is no object in the

probabilistic skyline whose instance is dominated by u.

The continuous model: We define uppdf (u, U, S, R(u))
by replacing the summations in Definition 4.3 with integra-
tions over all points contained in V.R for every object V ∈ S.

Definition 4.8.: For an object U∈D with its uncertainty
region U.R, a point u located in U.R, a subset S⊂D and
a rectangular region R(u) which contains u, uppdf (u, U, S,
R(u)) is defined as follows:

uppdf (u, U, S, R(u)) = U.f(u)

∏

V ∈S
(1-

∫

V.R
V.f(v)1(v ≺ R(u).min)dv)

1-
∫

U.R
U.f(w)1(w ≺ R(u).min)dw

where R(u).min is the point whose k-th coordinate is the
minimum in the k-th dimension for R(u).

The following lemma states the condition of when an ob-
ject is not a probabilistic skyline object. Since the proof is
similar to that of Lemma 4.4, we omit it.

Lemma 4.9.: Consider the skyline threshold Tp, an object
U∈D and a point u in U.R. Let R(u) be a rectangular region
containing u. For an object U∈D and a subset S⊂D, when∫
U.R

uppdf (u, U, S, R(u))du<Tp, U is not a skyline object.

4.1.2 Zero-probability Filtering

Recall that the skyline probability of ui ∈ U is Psky(ui) =
P (ui)

∏
V ∈D,V 6=U (1-

∑
vj∈V,vj≺ui

P (vj)). When Psky(ui)=0,

there exists an object V such that
∑

vj∈V,vj≺ui
P (vj)=1.

Thus, an instance of V dominating ui always appears in
every possible world and ui cannot contribute to computing
the skyline probability of every other object.

Lemma 4.10.: Consider an instance ui of an object U ∈ D

and a rectangular region R(ui) containing ui. For a subset
S⊂D, when

∏
V ∈S

(1-
∑

vj∈V,vj≺R(ui).min P (vj))=0, the sky-

line probability of ui is zero and we can delete ui from U .

Proof: By Lemma 4.4, we have Psky(ui) ≤ up(ui, U, S, R(
ui)) = P (ui)×β(U, S, R(ui)). If

∏
V ∈S

(1-
∑

vj∈V,vj≺R(ui).min

P (vj))=0 (i.e., the numerator in Equation (3) of β(U, S, R(
ui)) is zero), we have 0≤Psky(ui)≤up(ui, U, S, R(ui))=0.

We refer to the pruning technique based on Lemma 4.10
as the zero-probability filtering.

The continuous model: When uppdf (u, U, S, R(u)) = 0
holds for all u ∈ U.R, we have

∫
U.R

uppdf (u, U, S, R(u))du =
0 and U is not a skyline object by Lemma 4.9. Thus, we
can delete U .

4.1.3 Dominance-Power Filtering

Wemaintain a small number of objects with the high dom-
inating power and use them for checking the dominance re-
lationship to handle large data.

Definition 4.11.: Consider a d-dimensional space 〈[0, b(1)),
· · · , [0, b(d))〉 where [0, b(k)) is its range of the k-th di-
mension. The dominating power of an instance vj=〈vj(1),

· · · , vj(d)〉, denoted by DP (vj), is
∏d

k=1(b(k)−vj(k)). Fur-
thermore, the dominance power of an object V , denoted by
DP (V ) is

∑
vj∈V (P (vj)×DP (vj)).
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As the existence probability of an instance vj of an object
V increases, the skyline probability of ui of another object
U dominated by vj decreases. In addition, the number of
instances of other objects dominated by vj tends to be larger
as the dominating power DP (vj) grows. Thus, we utilize
DP (V ) to estimate the dominating power of V . We refer to
the set of top-K objects with the largest dominating powers
as a dominating object set F .

For an object U with a dominating object set F , if we have∑
ui∈U P (ui)

∏
V ∈F,V 6=U (1 −

∑
vj∈V,vj≺ui

P (vj)) < Tp, U

is not a probabilistic skyline object in D and thus we do not
compute its skyline probability. We call the strategy the
dominance-power filtering.

To maintain the K objects with the largest dominating
powers and identify non-skyline objects at the same time,
we invoke the procedure DP-Filter which utilizes a min-heap
H to store the K dominating objects. For an object U , if
the value of Psky(U) which is computed by considering H
instead of D is less than Tp, DP-Filter returns FALSE to
indicate that U is not a probabilistic skyline object due to
Proposition 4.1. Otherwise, it returns TRUE. In this case,
we also update H by inserting U . In other words, if the
number of objects in H is less than K, we insert the object
U into H. When the number of objects in H is K and the
dominance power of U is larger than that of the object O
with the minimum dominance power in H, we delete O from
H and insert U to H.

The continuous model: Consider a d-dimensional space
〈[0,b(1)),· · · ,[0,b(d))〉. The dominance power of an object U
in the continuous model, represented by DPpdf (U), is de-

fined as
∫
U.R

U.f(u)
∏d

k=1(b(k) − u(k))du. We keep top-K
objects with the highest dominating powers as the domi-
nating object set F . The only change is to utilize Proposi-
tion 4.2 instead of Proposition 4.1. If

∫
U.R

U.f(u)
∏

V ∈F,V 6=U

(1−
∫
V.R

V.f(v)1(v ≺ u)dv)du < Tp holds for an object U ,
DP-Filter returns FALSE. Otherwise, it returns TRUE and
update H with U .

4.2 Utilization of a PSQtree for Pruning
To divide the data space into several sub-spaces, we de-

velop a variant of sky-quadtrees in [21], called the PSQtree.

4.2.1 Generating a PSQtree

We recursively divide d-dimensional space into equi-sized
2d sub-spaces, each of which is associated with a node in
a PSQtree, until the number of points in each sub-space
does not exceed the split threshold, denoted by ρ. We re-
fer to the region represented by a node n as n.region =
〈[n(1)−, n(1)+), · · · , [n(d)−, n(d)+)〉 where [n(k)−, n(k)+) is
the k-th dimensional range. We also define n.min (n.max)
as the n.region’s closest (farthest) corner of a leaf node n
from the origin. Each node n is assigned with an id ac-
cording to the method in [21] and the node with an id “i”
is represented by node(i). To build a PSQtree quickly, we
utilize a random sample S of the objects in D. Figure 1(c)
shows an example of a PSQtree produced by the subset
S = {W,Z} of D in Figure 1(a).

4.2.2 Exploiting a PSQtree for Filtering

In this section, we show how the filtering techniques pre-
sented previously can be exploited by using a PSQtree.

Definition 4.12.: Consider a dataset D, and a leaf node
n of a PSQtree built by a sample S ⊂ D. We define n.Pmin(S)

=
∏

V ∈S
(1 −

∑
vj∈V,vj≺n.min P (vj)) for the discrete model

and n.Pmin(S) =
∏

V ∈S
(1−

∫
V.R

V.f(v)1(v ≺ n.min)dv) for
the continuous model.

By traversing the PSQtree, we set n.Pmin(S) in each leaf
node n where S is the sample used to build the PSQtree
and initially n.Pmin(S)=1. In each leaf node n, we scan
every object V ∈S to check whether n.min is dominated by
an instance vj of V and compute the sum of P (vj) of every
instance vj dominating n.min. We next update n.Pmin(S)
by multiplying (1−

∑
vj∈V,vj≺n.min P (vj)) to itself according

to Definition 4.12. For the continuous model, we generate
the points in V.R for each object V ∈ S by following V.f(·)
and build a PSQtree by using the generated points.

Upper-bound filtering: We can utilize n.Pmin(S) for
the upper-bound filtering due to the following corollary. The
proof of the corollary is analogous to that of Lemmas 4.4 and
4.9 by letting R(ui).min = n(ui).min.

Corollary 4.13.: For a PSQtree T generated by a sam-
ple S ⊂ D and an instance ui of an object U , let n(ui)
be the leaf node of T whose region contains ui. Depending
on an uncertainty model, the skyline probability of U (i.e.,
Psky(U)) is upper bounded by upT (U, S) where

upT (U, S) =















∑

ui∈U

P (ui)×n(ui).Pmin(S)

1−
∑

uk≺n(ui).min,uk∈U P (uk)

∫

U.R

U.f(ui)×n(ui).Pmin(S)

1−
∫

U.R U.f(w)1(w≺n(ui).min)dw
dui.

Zero-probability filtering: We also use n.Pmin(S)
for the zero-probability filtering by the following corollary
whose proof is similar to that of Lemma 4.10.

Corollary 4.14.: For a leaf node n of a PSQtree built by
a sample S⊂D, when n.Pmin(S)=0, the skyline probability of
every instance in the n.region is zero and thus we can delete
the instances of all objects in the n.region from D.

To build a PSQtree, the procedure GenQtree is called with
a sample S of the objects in D. We omit the pseudocode of
GenQtree since it is straightforward.

4.2.3 Partitioning Objects by a PSQtree

For an object U ∈ D, if we distribute its instances to sev-
eral partitions, we need an additional aggregation phase to
compute the skyline probability of U by summing the sky-
line probabilities of its instances in multiple partitions. To
guarantee that the skyline probability of each object can
be computed without an extra MapReduce phase, we allo-
cate all instances of each object U to a single partition by
utilizing U.max defined as follows.

Definition 4.15.: For the discrete model, the max and
min points of an object U , represented by U.max and U.min,
are defined as U.max(k) = maxui∈Uui(k) and U.min(k) =
minui∈Uui(k), respectively, for k = 1, . . . , d. For the con-
tinuous model, where U is modeled by an uncertainty region
U.R with pdf, U.max (U.min) is the farthest (closest) corner
point in U.R from the origin.

Let M(D, nℓ) be the set of objects whose max points be-
long to a leaf node nℓ of a PSQtree. We need to identify all
the other objects required to compute the skyline probabil-
ity of every object U ∈ M(D, nℓ). To do this efficiently, we
use the dominance relationship between a pair of leaf nodes.

Definition 4.16.: For a pair of nodes n1 and n2 in a
PSQtree, if n1.min(k) < n2.max(k) for k = 1, · · · , d, we
say n1 weakly dominates n2 and represent it by n1 � n2.
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Function PS-QPF-MR(D, Tp, ρ)
D: uncertain dataset, Tp: probability threshold, ρ: split threshold
begin

1. S = Sample(D);
2. PSQtree = GenQtree(S, ρ);
3. Broadcast PSQtree; Broadcast Tp;
4. pSL = RunMapReduce(PS-QPFC-MR, D);
5. return pSL;
end

Figure 2: The PS-QPF-MR algorithm

Consider the PSQtree in Figure 1(c). The min point of
node(00) (i.e., node(00).min) is 〈0, 0〉 and the max point of
node(11) (i.e., node(11).max) is 〈100, 100〉. Since node(00).
min(1)<node(11).max(1) and node(00).min(2)<node(11).
max(2), node(00) � node(11). We also have node(00).min(k)
<node(01).max(k) for every k and node(00) � node(01).
However, since node(01).min(2)≥node(10).max(2), node(01)
does not weakly dominate node(10).
For each leaf node nℓ, Lemma 4.17 shows that the ex-

act skyline probabilities of the objects in M(D, nℓ) can be
computed by considering only the instances located in the
region of every leaf node which weakly dominates nℓ in both
discrete and continuous models.

Lemma 4.17.: Consider a dataset D, a leaf node nℓ of a
PSQtree and an object U ∈ M(D, nℓ). In the discrete model,
for each instance ui of U , if an instance vj of another object
V ∈ D is contained in the region of a leaf node n such that
n 6� nℓ, vj does not dominate ui. In the continuous model,
if V.R.min does not dominate nℓ.max for another object
V ∈ D, V does not affect the skyline probability of U .

Proof: Since the object U is in M(D, nℓ), U.max is con-
tained in nℓ.region. Consider the discrete model first. For
an instance ui∈U , ui(k)≤U.max(k)<nℓ.max(k) holds for
k = 1, · · · , d. Since n 6�nℓ, there exists a value k such that
nℓ.max(k)≤n.min(k). Because vj is contained in n.region,
we have n.min(k)≤vj . Thus, we have ui(k)<nℓ.max(k)≤
n.min(k)≤vj and vj does not dominate ui. Similarly, we
can prove the case of the continuous model.

According to Lemma 4.17, we define the set of instances
of an object V 6∈ M(D, nℓ) required to compute the skyline
probability of every object U in M(D, nℓ).

Definition 4.18.: For a leaf node nℓ, let Iw(D, nℓ) be all
instances of an object in D − M(D, nℓ) which are in a leaf
node n satisfying n � nℓ. In other words, Iw(D, nℓ) = {vj ∈
V |V 6∈ M(D, nℓ) ∧ n(vj) � nℓ}.

Consider the dataset D and the PSQtree in Figure 1.
Iw(D, node(10)) is {w1, w2, z2} since node(00) and node(10)
weakly dominate node(10) as well as M(D, node(10))={X}.

5. MAPREDUCE ALGORITHMS WITH

QUADTREE PARTITIONING
In this section, we develop the algorithms with a single

MapReduce phase by distributing the objects based on the
space split by a PSQtree.

5.1 PS-QPF-MR: The Algorithm with Quadtree
Partitiong and Filtering

We first present the MapReduce algorithm PS-QP-MR
(Probabilistic Skyline algorithm by Quadtree Partitioning)
which utilizes a PSQtree. Then, we provide the MapReduce
algorithm PS-QPF-MR which enhances PS-QP-MR by ap-
plying the filtering techniques described in Section 4.

PS-QP-MR: We build a PSQtree with a sample S of
data D in a single machine by calling GenQtree introduced

Function PS-QPFC-MR.setup()
begin

1. H = InitMinHeap(); PSQtree = LoadPSQtree();
end

Function PS-QPFC-MR.map(U)
U : an uncertain object
begin

1. Tp = LoadThreshold();
2. U ′ = ZeroProb(U , PSQtree);
3. upper = UpperBound(U ′, PSQtree);
4. cand = FALSE;
5. if upper ≥ Tp then

6. cand = DP-Filter(U ′, Tp, H);
7. if cand then emit(n(U ′.max), (U ′, ‘C’));
8. for each leaf node nℓ in PSQtree do

9. if cand = True and nℓ = n(U ′.max) then continue;
10. I = NewList();
11. for each ui in U ′ do

12. if n(ui) � nℓ then

13. I.add(ui));
14. emit(nℓ, (I, ‘W’, cand))
end

Function PS-QPFC-MR.reduce(nℓ, L)
begin

1. (LC , LT
W , LF

W ) = SplitList(L);
2. Tp = LoadThreshold();
3. for each object U in LC do

4. skyline prob = SkylineProb(U , LC , LT
W , LF

W );
5. if skyline prob ≥ Tp then

6. emit( U , skyline prob );
end

Figure 3: The PS-QPFC-MR algorithm

in Section 4.2. We next split D using MapReduce into par-
titions each of which corresponds to a leaf node nℓ of the
PSQtree and contains the objects in M(D, nℓ) as well as the
instances in Iw(D, nℓ) (by Definition 4.18). We then com-
pute the skyline probability of each object U in M(D, nℓ)
and output U if U is a probabilistic skyline object.

PS-QPF-MR: The only difference of PS-QPF-MR from
PS-QP-MR is to check whether each object U is a skyline
candidate object or not by using the three filtering tech-
niques and to compute the skyline probabilities of only sky-
line candidate objects. We present the pseudocode of PS-
QPF-MR in Figure 2 and that of the procedure PS-QPFC-
MR called by PS-QPF-MR in Figure 3 (line 4 in Figure 2).

Setup function: Before map functions are called, the
setup function of each mapper task initializes a min-heap H
and loads a PSQtree to share them across the map functions.
The min-heap H maintains the dominating object set F for
the dominance-power filtering introduced in Section 4.1.3.

Map function: The map function invoked with an object
U loads the probability threshold Tp (line 1 of PS-QPFC-
MR.map). We apply the zero-probability, upper-bound and
dominance-power filtering techniques by invoking ZeroProb,
UpperBound and DP-Filter, respectively (lines 2-6). We re-
fer to U ′ as the object after pruning U ’s instances by Ze-
roProb. If the upper bound of the Psky(U

′) computed by
UpperBound is at least Tp, DP-Filter is invoked to check
whether U ′ is a candidate object or not. If U ′ is a candidate
object (i.e., cand =TRUE), the map function emits the key-
value pair 〈n(U ′.max), (U ′, ‘C’)〉 where n(U ′.max) is the
leaf node containing U ′.max and ‘C’ represents that U ′ is a
skyline candidate contained in M(D, n(U ′.max)) (line 7).
For each leaf node nℓ, we emit each instance ui of U ′

which is required to compute the exact skyline probabilities
of objects in M(D, nℓ) (i.e., ui ∈ I(D, nℓ)) (lines 8-14). For
an instance ui ∈ U ′, if n(ui) 6� nℓ, ui does not dominate the
instances of the objects in M(D, nℓ) by Lemma 4.17. Thus,
if n(ui) � nℓ, the map function puts ui into the list I. After
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W={(<10,40>,0.5), (<75,10>,0.4)}

X={(<55,20>,0.2), (<65,30>,0.2)}

Y={(<95,60>,0.8), (<80,70>,0.2)}

Z={(<5,80>,0.5), (<90,25>,0.5)}

M
a
p

key value

00 W,{(<10,40>,0.5)},'W',TRUE
01
11

10 W,{(<10,40>,0.5),(<75,10>,0.4)},'C'

10 X,{(<55,20>,0.2),(<65,30>,0.2)},'W',FALSE
11

W,{(<10,40>,0.5),(<75,10>,0.4)},'W',TRUE
W,{(<10,40>,0.5)},'W',TRUE

X,{(<55,20>,0.2),(<65,30>,0.2)},'W',FALSE
11 Y,{(<95,60>,0.8),(<80,70>,0.2)},'C'

01
10
11

Z,{(<5,80>,0.5)},'W',TRUE

Z,{(<5,80>,0.5),(<90,25>,0.5)},'C'
Z,{(<90,25>,0.5)},'W',TRUE

S
h
u
ffle

key value

00

10

10

11

01

11
11

01

11

10

R
e
d
u
c
e

key value

W 0.9

Z 0.74

(a) (b) (c) (d)

W,{(<10,40>,0.5)},'W',TRUE
W,{(<10,40>,0.5)},'W',TRUE
Z,{(<5,80>,0.5)},'W',TRUE
W,{(<10,40>,0.5),(<75,10>,0.4)},'C'

X,{(<55,20>,0.2),(<65,30>,0.2)},'W',FALSE
Z,{(<90,25>,0.5)},'W',TRUE

Z,{(<5,80>,0.5),(<90,25>,0.5)},'C'
Y,{(<95,60>,0.8),(<80,70>,0.2)},'C'

X,{(<55,20>,0.2),(<65,30>,0.2)},'W',FALSE
W,{(<10,40>,0.5),(<75,10>,0.4)},'W',TRUE

Figure 4: The steps of PS-QPFC-MR

every instance of U ′ is evaluated for nℓ, the map function
outputs the key-value pair 〈nℓ, (I, ‘W’, cand)〉 where ‘W’
denotes that the instances are in I(D, nℓ) and cand repre-
sents that U ′ is a candidate object or not (line 14). Note
that when U ′ is a candidate object and nℓ = n(U ′.max), we
do nothing (line 9) since it is already sent in line 7.

Reduce function: In the shuffling phase, the key-value
pairs emitted by all map functions are grouped by each dis-
tinct leaf node, and a reduce function is called with each
node nℓ and a value list L. The value list L is split into
LC , L

T
W and LF

W where LC is M(D, nℓ), L
T
W is the subset of

Iw(D, nℓ) whose instances are marked with cand = TRUE,
and LF

W is Iw(D, nℓ)−LT
W (line 1 of PS-QPFC-MR.reduce).

To split L into three partitions LC , LT
W and LF

W effec-
tively, we exploit the functionality of secondary sorting [19]
provided by the MapReduce framework which arranges the
elements in L with a specific ordering such that all elements
belonging to LC always appear first, all elements belonging
to LT

W are located next and the elements belonging to LF
W

are placed last.
Once all elements in LC are loaded into main memory, the

reduce function computes the skyline probability of every
object U in LC by invoking SkylineProb (lines 2-4). Since
we keep only the elements of LC in main memory, we require
O(|LC |)=O(|M(D, nℓ)|) memory.

To discover non-skyline objects earlier, we first compute
Psky(U) with other objects in LC since LC is already in
main memory. Then, Psky(U) is updated with LT

W and next
updated with LF

W . The reason why LF
W is read in last is

that all instances in LF
W tend to have less dominance power

than the instances in LT
W since they belong to non-skyline

objects (i.e., cand=FALSE).
Let O be the set of objects whose instances were used to

compute Psky(U) up to now. Note that, by Proposition 4.1
with S = O, the skyline probability of U computed by using
O becomes an upper bound of Psky(U). Thus, whenever the
skyline probability of U updated currently is less than Tp,
SkylineProb returns zero to indicate that U is a non-skyline
object. Otherwise, we output U with Psky(U) (lines 5-6).

Example 5.1.: Consider the data D and the PSQtree in
Figure 1 with the probability threshold Tp=0.5. Figures 4(a)-
(d) show the data flow in PS-QPF-MR. After the PSQtree
is broadcast to all map functions, each map function is called
with an uncertain object as illustrated in Figure 4(a). Con-
sider the map function called with X. Since the upper bound
of the skyline probability of X is node(10).Pmin · P (x1) +
node(10).Pmin · P (x2) = 0.4 < Tp = 0.5, X is not a skyline
candidate object (due to Corollary 4.5). Note that every in-
stance of X is contained in the region of node(10). The map
function emits the key-value pairs 〈10, ({(〈55, 20〉, 0.2), (〈65,
30〉, 0.2)},“W”, False)〉 and 〈11,({(〈55, 20〉, 0.2), (〈65, 30〉,
0.2)},“W”, False)〉 since node(10) weakly dominates node(10)
itself and node(11). Figure 4(b) shows the key-value pairs
emitted by all map functions. The key-value pairs grouped
by each distinct key are provided in Figure 4(c). As shown

in Figure 4(d), the probabilistic skyline objects W and Z
are output by the reduce functions called with node(10) and
node(11), respectively.

The continuous model: We utilize the Monte Carlo
integration [9] to calculate the skyline probabilities of ob-
jects. We sample points u from U.R uniformly and Psky(U)
in Equation (2) is calculated as the average value of |U.R|×
U.f(u)

∏
V ∈D,V 6=U PLS (u, V ) where PLS(u, V ) = 1 −

∫
V.R

V.f(v)1(v ≺ u)dv. The integral to calculate PLS(u, V ) is
also computed by the Monte Carlo integration.

The pseudocode of PS-QPFC-MR is the same as that of
PS-QPFC-MR for the discrete model except that it utilizes
the filtering techniques for the continuous model and the
lines 10-14 of the map function in Figure 3 are replaced
by the lines below. Due to Lemma 4.17, when U.R.min ≺
nℓ.max holds, we send U to the reduce function of nℓ.

10. if U.R.min ≺ nℓ.max then
11. emit(nℓ, (U , ‘W’, cand));

5.2 Optimizations of PS-QPF-MR
When a map function is invoked with an object V , each

instance vj ∈ V is transmitted to the reduce function corre-
sponding to every leaf node nℓ dominated weakly by n(vj)
(i.e., the leaf node whose region includes vj). To minimize
the number of transmissions by all map functions, we can ac-
tually cluster the leaf nodes of a PSQtree into several groups
such that a single reduce function processes all leaf nodes of
each group with the main memory available in each machine.

When we cluster the leaf nodes, we should balance work-
loads for all reduce functions too. Let a group Gi be a set of
leaf nodes {ni1 , . . . , ni|Gi|

}. The input of a reduce function

with a group Gi consists of the objects whose max points
are in the region of a leaf node nik∈Gi and the instances vj
such that n(vj) weakly dominates a leaf node nik∈Gi. Thus,
we estimate the number of the objects as well as the number
of the instances in each group by utilizing the sample used
to build a PSQtree and force the input size of every reduce
function to be similar for workload balancing.

5.2.1 Reducing Network Overhead by Clustering

Let G be a set of groups {G1, · · · , G|G|} where Gi is a
group of leaf nodes {ni1 , . . . , ni|Gi|

}. Then, let M(D, Gi) =⋃
nik

∈Gi
M(D, nik ) and Iw(D, Gi) =

⋃
nik

∈Gi
Iw(D, nik ).

The reduce function called for a group Gi computes the
skyline probability of every object in M(D, Gi) by using the
other objects in M(D, Gi) and all instances in Iw(D, Gi).
As mentioned in Section 5.1, the reduce function called for

each leaf node nℓ requires O(|M(D, nℓ)|) memory only since
we utilize the secondary sorting. Let the size of main mem-
ory be s(mem) and the average size of an object be s(obj).
When we group leaf nodes, since each reduce function for a
group Gi requires O(|M(D, Gi)|) memory, we should have
|M(D, Gi)| · s(obj) ≤ s(mem) so that M(D, Gi) can be
kept in the main memory. In addition, since the number of
transmissions by all map functions is

∑
Gi∈G(|Iw(D, Gi)| +
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|M(D, Gi)|) and
∑

Gi∈G |M(D, Gi)| is a constant regardless

of leaf node grouping, we should minimize
∑

Gi∈G |Iw(D, Gi)|
to reduce the number of transmissions. Therefore, our leaf
node grouping problem can be formulated as follows:

Definition 5.2.: [Leaf node grouping problem] Let
the average size of an object be s(obj), the size of main
memory assigned to each reduce function be s(mem) and
N={n1, · · · , n|N|} be the set of all leaf nodes in a PSQtree.
Assume |M(D, nℓ)|·s(obj) ≤ s(mem) for every nℓ ∈ N . The
problem is to find a set of disjoint groups G={G1, · · · , G|G|}
such that G1 ∪ · · · ∪G|G| = N , |M(D, Gi)| · s(obj)≤s(mem)
for all i=1, . . . , |G| and

∑
Gi

|Iw(D, Gi)| is minimized.

Since this problem can be reduced from the well-known
NP-Complete bin packing problem [25] by setting |Iw(D, Gi)|
=1 for every group Gi, it is NP-Complete and thus we devise
a greedy algorithm. Let G̃ be the set of groups created so
far in our algorithm. It takes each leaf node nℓ of a PSQtree
one by one and inserts nℓ into the group Gi ∈ G̃ which can
accommodate nℓ (i.e., |M(D, Gi ∪{nℓ})| · s(obj) ≤ s(mem))
with the minimum of (|Iw(D, Gi ∪ {nℓ})| − |Iw(D, Gi)|). If
there is no group to accommodate nℓ, we create an empty
group Gj , put nℓ into Gj and insert Gj into G̃.

To apply our heuristics, we need |M(D, Gi)| and |Iw(D,
Gi)|. With the sample S to build the PSQtree, by assuming
that |M(D, Gi)| and |Iw(D, Gi)| are proportional to |M(S, Gi)|

and |Iw(S, Gi)| respectively, we estimate them as |M̂(D, Gi)|

= |M(S, Gi)| ·
|D|
|S|

and |Îw(D, Gi)| = |Iw(S, Gi)| ·
|D|
|S|

.

5.2.2 Workload Balancing of Reduce Functions

After applying leaf node grouping, |M(D, Gi)| of every
group Gi ∈ G becomes similar and the sum of |Iw(D, Gi)|s
over all groups Gi ∈ G is minimized. However, since the
sizes of Iw(D, Gi)s may be skewed, the execution times of
reduce functions can be quite different. Let the input of
the reduce function for a group Gi be X(Gi) which actu-
ally consists of M(D, Gi) and Iw(D, Gi). We balance the
workloads of reduce functions for the groups Gi with large
|Iw(D, Gi)| by splitting Iw(D, Gi) into mGi disjoint parti-
tions {Iw(D, Gi, 1), · · · , Iw(D, Gi,mGi)} such that every in-
stance of the each object is in the same partition. With re-
spect toX(Gi), we next generate a set X (Gi)={X1(Gi), · · · ,
XmGi

(Gi)} where Xk(Gi) is composed of M(D, Gi) and a

partition Iw(D, Gi, k), and invoke a reduce function with
Xk(Gi) to calculate partial skyline probability of each in-
stance u of an object U in M(D, Gi). Then, the skyline
probability of U is computed in the main function by collect-
ing all partial skyline probabilities of every instance u∈U .

The skyline probability of each instance u of every object
U ∈ M(D, Gi) can be computed by using the reduce func-
tions each of whose input is Xk(Gi) ∈ X (Gi). Given a set
of partitions I(Gi) = {Iw(D, Gi, 1), · · · , Iw(D, Gi,mGi)} of
Iw(D, Gi), let S(D, Gi, k) be the set of objects whose in-
stances are contained in the k-th partition Iw(D, Gi, k) ∈
I(Gi) and P (D, Gi, k) be the probability that every instance
vj of an object V in S(D, Gi, k) which dominates u does not
exist in a possible world (i.e., P (D, Gi, k) =

∏
V ∈S(D,Gi,k)

(1−
∑

vj∈V,vj≺u P (vj))). For the instance u, since every ob-

ject V such that there exists an instance vj ∈ V domi-
nating u is contained in one of M(D, Gi), S(D, Gi, 1), · · · ,
S(D, Gi,mGi−1) and S(D, Gi,mGi), the skyline probability
of u can be computed as follows:

Psky(u) = P (u) ×
∏

V ∈D,V 6=U

(1 −
∑

vj∈V,vj≺u

P (vj))

= P (u) ×
∏

V ∈M(D,Gi),V 6=U

(1 −
∑

vj∈V,vj≺u

P (vj)) ×

mGi
∏

k=1

P (D, Gi, k)

While the reduce function invoked with Xk(Gi) computes
P (D, Gi, k) using Iw(D, Gi, k), one of the reduce functions
calculates P (u)×

∏
V ∈M(D,Gi),V 6=U ( 1−

∑
vj∈V,vj≺u P (vj)).

Then, we can compute the skyline probability of u by using
the above equation.

After leaf node grouping, the number of reduce functions
processed by each machine is either ⌊|G|/t⌋ or ⌊|G|/t⌋+1
where t is the number of machines. Thus, we set the number

of reduce function calls to ⌈ |G|
t
⌉ · t which is at least |G| and

the smallest multiple of t so that each machine processes the
same number (i.e., ⌈|G|/t⌉) of reduce functions. To do this,
our workload balancing problem is defined as follows:

Definition 5.3.: [Workload balancing problem] Given
a set of groups G = {G1, · · · , G|G|} which is the result of the
leaf node grouping problem and a number of machines t, the
problem is to find X (Gi) = {X1(Gi), · · · , XmGi

(Gi)} such

that (1) Iw(D, Gi) is split into disjoint partitions I(Gi) =
{Iw(D, Gi, 1), · · · , Iw(D, Gi,mGi)} for each group Gi ∈ G,
(2) Xk(Gi) is composed of M(D, Gi) as well as Iw(D, Gi, k) ∈

I(Gi), (3) ⌈
|G|
t
⌉·t =

∑
Gi

mGi and (4) maxGi∈G,Xk(Gi)∈X (Gi)

|Iw(D, Gi, k)| is minimized. Note that
∑

Gi
mGi is the total

number of reduce functions utilized by all groups.

We next present the greedy algorithm GreedyWorkload for
the workload balancing problem. Let m̃Gi be the number
of partitions in X (Gi) for each group Gi. Initially, m̃Gi=1.
At each step of GreedyWorkload, we repeatedly select the
group Gi with the maximum |Iw(D, Gi)|/m̃Gi and increase

m̃Gi by one until
∑

Gi
m̃Gi=⌈ |G|

t
⌉ · t. As we did in leaf node

grouping previously, we estimate |Iw(D, Gi)| by utilizing a
sample S of the objects in D.
After GreedyWorkload terminates, for every group Gi, we

split Iw(D, Gi) into {Iw(D, Gi, 1), · · · , Iw(D, Gi, m̃Gi)}. We
broadcast G and m̃Gi of every Gi ∈ G to all map functions.
To make the size of every partition similar, when a map
function is called with an object whose instances belong to
Iw(D, Gi), the map function chooses a random number k
between 1 and m̃Gi and sends the instances to the reduce
function handling Xk(Gi).

Lemma 5.4.: When Iw(D, Gi) can be split into equi-sized
partitions for every Gi∈G, the procedure GreedyWorkload
finds an optimal solution for the workload balancing problem.

Proof: Due to the space limitation, we omit the proof.
Since we may not split Iw(D, Gi) into equi-sized partitions

such that every instance of each object lies in the same par-
tition, GreedyWorkload does not guarantee the optimality.

5.3 Sample Size and Split Threshold of a PSQtree
In leaf node grouping, although we require s(obj)·|M(D, Gi)|

≤s(mem) for every group Gi, the reduce function handling
Gi may suffer from the lack of memory space since we esti-
mate |M(D, Gi)| approximately by using a sample S of D. To

avoid such deficiency, we enforce s(obj)·|M̂(D, Gi)|≤α·s(mem)

(e.g., α=0.8) where |M̂(D, Gi)| is the estimate of |M(D, Gi)|.
We refer to it as the memory utilization heuristics.

Finding a proper sample size: We study how to choose
the sample size to estimate |M(D, Gi)| accurately. When

s(obj)· |M̂(D, Gi)|<α·s(mem) but s(mem)<s(obj)·| M(D,
Gi)|, it is problematic. Thus, we want the probability that

|M̂(D, Gi)| <α·|M(D, Gi)| is less than a threshold δ.
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Lemma 5.5.: Given a group Gi, a threshold δ and a sam-

ple S ⊂ D, if |S| ≥ −2·|D|·ln δ

(1−α)2·|M(D,Gi)|
, we have P [|M̂(D, Gi)| <

α · |M(D, Gi)|] < δ.
Proof: Let Xj be a random variable that is 1 if j-th ob-
ject in S belongs to M(D, Gi) and 0 otherwise. Since we
do uniform random sampling, X1, · · · , X|S| are independent
Bernoulli trials with P (Xj=1) = |M(D, Gi)|/|D|. The num-
ber of objects in S belonging to M(D, Gi) is X =

∑
j Xj

and the expected value of X is µ=E[X]=|S|·|M(D, Gi)|/|D|.

We have P [|M̂(D, Gi)| < α·|M(D, Gi)|] = P [X·|D|/|S| <

α · |M(D, Gi)|] since |M̂(D, Gi)| is X·|D|/|S|.
Chernoff bounds state that for 0<ǫ≤1, we have P [X<(1-

ǫ)µ]<exp(-µǫ2/2). Rewriting the probability to conform to

the Chernoff bounds, we get P [X<(1-(1-α·|S|·|M(D,Gi)|
|D|µ

))µ]<δ.

Then, we obtain exp(-µ
2
(1-α·|S|·|M(D,Gi)|

|D|µ
)2)≤δ by applying

the Chernoff bounds. Substituting µ=|S| · |M(D, Gi)|/|D|
and solving it for |S|, we obtain the lower bound of |S|.

To compute the above bound for every problematic group
Gi satisfying s(obj)·|M(D, Gi)| > s(mem), by letting |M(D,

Gi)| =
s(mem)
s(obj)

, we have |S|≥−2·|D|·ln δ·s(obj)

(1−α)2·s(mem)
since the lower

bound of |S| is maximized when |M(D, Gi)| is minimized.

Setting the split threshold ρ: When we build a PSQ-
tree with a sample S, we split a node n if the number of
instances in n exceeds the split threshold ρ. To apply leaf
node grouping with the memory utilization heuristics, we
should guarantee that s(obj)·|M(D, nℓ)|≤α·s(mem) for each
nℓ since every group Gi contains at least a single leaf node.

After the PSQtree is generated, we assume that the num-
ber of instances of objects appearing in each leaf node nℓ is
at most ρ·|D|/|S|. Let nI be the average number of instances
in each object. Then, under the assumption of uniform dis-
tribution, we have |M(D, nℓ)| ≤ ρ/nI · |D|/|S|. Thus, we set
ρ = α · s(mem) ·nI · |S|/(s(obj) · |D|) obtained by finding the
minimum ρ satisfying s(obj) · ρ/nI · |D|/|S| ≤ α · s(mem).

6. MAPREDUCE ALGORITHMS WITH

RANDOM PARTITIONING
In this section, we present the MapReduce algorithm PS-

BRF-MR which utilizes random partitioning as well as the
filtering techniques in Section 4.1. We refer to the brute-
force algorithm based on random partitioning without such
filtering techniques as PS-BR-MR. Due to the space limita-
tion, we omit the detailed pseudocodes for both algorithms.

Generally, random partitioning is not suitable to the con-
tinuous model since all objects required to compute the sky-
line probability of an object U by performing the integration
in Equation (2) cannot be in the same partition containing
U . To apply random partitioning to the continuous model,
we adapt a specific integration method, Monte Carlo inte-
gration [9], which is based on sample points (refer to [9] for
details). Thus, for each object U , the partial values required
to compute the integration for the skyline probabilities are
computed using the sample points selected in each partition.
Then, we calculate the skyline probability of U by integrat-
ing the partial values of all partitions.

PS-BRF-MR: When a dataset D is split into disjoint
partitions, P1, . . . , Pm, to calculate the skyline probability
of an instance ui ∈ U , we compute its k-th local skyline
probability PLS(ui, U, k) in every partition Pk.

Definition 6.1.: For disjoint partitions P1, . . . , Pm of
a dataset D and an instance ui ∈ U , the k-th local skyline

Algorithm Description

PS-QP-MR The algorithm with quadtree partitioning

PS-QPF-MR
The algorithm with
quadtree partitioning and filtering

PS-BR-MR The algorithm with random partitioning

PS-BRF-MR
The algorithm with
random partitioning and filtering

PSMR The state-of-the-art algorithm in [14]

Table 1: Implemented algorithms

probability of ui, denoted by PLS(ui, U, k), is
∏

V ∈Pk,V 6=U (1-∑
vj∈V,vj≺ui

P (vj)). By Equation (1), we obtain

Psky(ui) = P (ui)
m
∏

k=1

PLS(ui, U, k). (4)

The algorithm PS-BRF-MR consists of two MapReduce
phases. In the first MapReduce phase, the filtering tech-
niques presented in Section 4 are applied to identify the
non-skyline objects so that we can compute the skyline prob-
abilities for the skyline candidate objects only. In the second
MapReduce phase, we gather every local skyline probability
of each instance to compute the skyline probabilities of all
objects. PS-BRF-MR consists of the following three phases:

(1) PSQtree building phase: We build a PSQtree with
a sample S ⊂ D by calling the procedure GenQtree in Sec-
tion 4.2.2. Recall that it is done without using MapReduce.

(2) Local skyline probability phase: After broad-
casting a PSQtree and Tp, each map function checks if each
object is a candidate by the filtering methods in Section 4.
We divide the data objects D into disjoint partitions, P1,

. . . , Pm. For every partition-pair (Pi, Pj) with 1≤i≤j≤m,
we compute the local skyline probabilities of the instances in
Pi and Pj in parallel. For each partition-pair (Pi, Pj), when
i = j, for every instance u of each candidate object U in Pi,
we compute the i-th local skyline probability PLS(u, U, i) de-
fined in Definition 6.1. When i < j, we compute PLS(u, U, j)
for every u of U in Pi by considering the instances v ∈ V in
Pj and calculate PLS(v, V, i) for every v of each candidate
object V in Pj by considering the instances u in Pi. To
reduce the number of comparisons, we compare the skyline
candidate objects with other skyline candidate objects first
and then compare them to non-skyline objects by using the
secondary sorting illustrated in Section 5.1.

(3) Global skyline phase: We gather the local skyline
probabilities computed in the previous phase and calculate
the exact skyline probabilities of the instances of every sky-
line candidate object using Equation (4). For a candidate
object U , if Psky(U) =

∑
u∈U P (u)

∏m

i=1 PLS (u, U, i) ≥ Tp,
we output U as a skyline object.

The continuous model: For the continuous model, we
use a specific integration method, Monte Carlo integral [9]
which samples points u from the uncertainty region U.R
uniformly. In the local skyline probability phase, for each
partition-pair (Pi, Pj), when Pi=Pj , it calculates

∏
V ∈Pi,U 6=V

PLS(u, V ) for all U ∈ Pi where PLS(u, V ) is 1−
∫
V.R

V.f(v)1(
v ≺ u)dv. If Pi 6=Pj , we compute

∏
V ∈Pj

PLS (u, V ) for U ∈

Pi and
∏

U∈Pi
PLS(v, U) for V ∈ Pj . In the global skyline

phase, we compute Psky(U) by utilizing the
∏

V ∈Pi,U 6=V PLS(

u, V ) obtained in the previous phase since Psky(U) is the av-
erage value of |U.R|×U.f(u)

∏
V ∈D,V 6=U PLS(u, V ) by using

Monte Carlo integration as in Section 5.1.

7. EXPERIMENTS
Experiments were done mainly on a cluster of 50 machines

with Intel i3 3.3GHz CPU and 4GB of memory running
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Parameter Range Default

No. of samples (|S|) 1000 ∼ 10,000 1000 for PS-QPF-MR

2000 for PS-QP-MR

10000 for PS-BRF-MR

No. of 50 ∼ 5000 100 for PS-QPF-MR

dominating objects (|F |) 1000 for PS-BRF-MR

No. of objects (|D|) 105 ∼ 108 107

No. of dimensions (d) 2 ∼ 8 4
Probability threshold (Tp) 0.1 ∼ 0.6 0.3
No. of inst. per object (ℓ) 1 ∼ 400 40
No. of machines (t) 10 ∼ 200 25

Table 2: Parameters
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Figure 5: Selection of |S| and |F |

Linux. We also used Amazons EC2 Infrastructure as a Ser-
vice (IaaS) cloud to show the scalability of PS-QPF-MR up
to 200 machines with Intel Xeon 2.5GHz CPU and 3.75GB of
memory. The implementations of all algorithms were com-
piled by Javac 1.6. We used Hadoop 1.2.1 for MapReduce.
The execution times in the graphs are plotted in log scale.
We do not report the execution times which exceed 6 hours.
The tested algorithms are summarized in Table 1.

7.1 Experimental Environments
Datasets: We generated the synthetic datasets with cor-

related, independent and anti-correlated distributions, re-
ferred to as COR, IND and ANTI respectively, since they
are typically used to evaluate the performance of skyline
algorithms [8, 21, 22]. For a d-dimensional space, we gener-
ated the center c of each object using the three distributions
where each dimension has a domain of [1, 10000). In the dis-
crete model, for each object U , we selected the number of
U ’s instances using the uniform distribution in the range
[1, ℓ], where ℓ is 40 by default. Each instance was gener-
ated inside the rectangle centered at c whose edge size is
uniformly distributed in the range [1, 200]. The ratio of the
objects U with

∑
ui∈U P (ui) = 1 to all objects in the dataset

was set to 0.5. In the continuous model, for each object U ,
we selected the length of k-th dimension of U.R in [1, 200],
and assumed U.f(·) is the uniform distribution. The sizes of
resulting synthetic datasets are varied from 88MB to 86GB
depending on the number of points (|D|), the number of di-
mensions (d) and the number of instances per each object
(ℓ). We also varied the probability threshold Tp from 0.1 to
0.6 to produce diverse probabilistic skyline queries. We set
Tp = 0.3 as the default value. The parameters used by our
algorithms are summarized in Table 2.

Default value of m: In the random partitioning algo-
rithms (i.e., PS-BR-MR and PS-BRF-MR), we split data D

into m partitions. Since such algorithms split all pairs of
objects into m(m + 1)/2 partition-pairs, we set m to the
minimum natural number satisfying m(m+1)/2 ≥ t so that
each machine can process at least a single partition-pair.

Default values of |S| and |F |: By the discussion in Sec-
tion 5.3, the sample size |S| should be at least 700 objects

since |S|≥−2·|D|·ln δ·s(obj)

(1−α)2·s(mem)
=700 with s(mem)=4GB, s(obj)=

1KB, |D|=107, α=0.8 and δ=0.01. Thus, to find the proper
sizes of a sample S and a dominating object set F (i.e., |S|
and |F |), we ran our algorithms with varying |S| from 1, 000

Tp PS-QPF PS-BRF # of candidate # of skyline
-MR (sec) -MR (sec) objects objects

0.1 400 1905 259009 1057
0.2 223 1469 204964 509
0.3 164 1452 165907 329
0.4 161 1267 140129 234
0.5 151 1164 121678 172
0.6 151 1115 106530 127

Table 3: Varying the probability threshold (Tp)

to 10, 000 and |F | from 50 to 5, 000, respectively. The av-
erage execution times over all datasets with varying |S| and
|F | are shown in Figures 5(a) and 5(b), respectively. Since
PS-BR-MR does not utilize a PSQtree and a dominating
object set F , we do not plot its execution times in Figure 5.
Although more objects are filtered by the upper-bound

and dominance-power filtering as |S| and |F | increase, the
costs for computing upper bounds and maintaining domi-
nating object set increase. Consequently, we set the default
values of |S| and |F | with which each algorithm show the
best performance. For instance, the best performance of
PS-QPF-MR is obtained with |S| = 1000 and |F | = 100.

7.2 Performance Analysis
We presented the experiment results with the discrete

model first and the continuous model next.

Varying |D|: We plotted the running times of the tested
algorithms with varying the number of objects |D| from 105

to 108 with each dataset in Figures 6(a), (b) and (c), re-
spectively. PS-QPF-MR with COR is faster than that with
the other datasets since most of instances are dominated
by a few instances in COR and the three filtering methods
can identify non-skyline objects effectively. The best perfor-
mance is shown by PS-QPF-MR which utilizes the three fil-
tering methods and the quadtree partitioning. PS-QPF-MR
is also found to be at least 1.7 times faster than PS-BRF-
MR. Since PS-QPF-MR and PS-BRF-MR are always faster
than PS-QP-MR and PS-BR-MR, respectively, due to the
three filtering methods, we showed only the execution times
of PS-QPF-MR and PS-BRF-MR in the rest of the paper.

Varying d: The execution times with varying the num-
ber of dimensions d from 2 to 8 were reported in Figure 7.
Since the time complexity of checking the dominance rela-
tionship between instances is O(d), the execution times of
both algorithms become larger as d grows. We found that
PS-QPF-MR is 4.4 times faster than PS-BRF-MR on the
average since quadtree partitioning is very effective. How-
ever, PS-BRF-MR performs fast for COR with high dimen-
sion since there are a small number of candidate objects and
merging their skyline probabilities can be done quickly.

Varying Tp: We showed the execution time, number of
candidate objects and number of skyline objects on average
with varying Tp from 0.1 to 0.6 in Table 3. Since all filtering
methods are applied before data partitioning, the average
numbers of candidate objects by both algorithms are the
same. With increasing Tp, since the numbers of candidate
and skyline objects decrease, the execution times decrease.

t 10 20 25 30 40 50

PS-QPF IND 401 242 212 197 167 162
-MR COR 177 89 85 79 78 64

(|D| = 107) ANTI 429 228 196 175 152 135
PS-BRF IND 4373 2089 1872 1469 1177 912
-MR COR 361 205 179 160 130 117

(|D| = 107) ANTI 4893 2409 2307 1664 1338 959

PS-QPF IND 8107 4555 3569 2698 2268 1811
-MR COR 1119 627 541 471 398 351

(|D| = 108) ANTI 8442 3874 3738 3002 2206 1987

Table 4: Varying t with our cluster (sec)
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Figure 6: Varying the number of objects (|D|)
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Figure 7: Varying the number of dimensions (d)
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Figure 8: Varying ℓ and |D| when ℓ = 1

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 10  20  25  30  40  50

R
el

at
iv

e 
sp

ee
d

Number of machines

PS-QPF-MR (IND)
PS-QPF-MR (COR)
PS-QPF-MR (ANTI)

Ideal

(a) With our cluster

 1

 2

 3

 4

 5

 6

 7

 8

 25  50  75  100  125  150  175  200

R
el

at
iv

e 
sp

ee
d

Number of machines

PS-QPF-MR(IND, 10^8)
PS-QPF-MR(COR, 10^8)
PS-QPF-MR(ANTI, 10^8)

Ideal

(b) With Amazon EC2

Figure 9: Relative speedups with |D| = 108

PS-QPF-MR is up to 7.9 times faster than PS-BRF-MR.

Varying ℓ: We evaluated both algorithms with changing
the number of instances per object ℓ from 1 to 400. We
also tested the state-of-the-art algorithm PSMR for the spe-
cific case where each object has only a single instance. We
showed the average execution times over all datasets in Fig-
ure 8(a). Since PSMR is only applicable when ℓ=1, we plot-
ted the execution time of PSMR only when ℓ=1. Although
PS-BRF-MR is worse than PSMR with large datasets, PS-
QPF-MR is 2.1 times faster than PSMR. We also reported
the execution times of all algorithms with varying |D| from
105 to 4 × 108 when ℓ=1 in Figure 8(b). We found that
PS-QPF-MR is 2.3 times faster than PSMR on the average.

Varying t: With increasing the number of machines t
up to 50 in our cluster, we presented the execution times
with the default-sized datasets (|D|=107) and large datasets
(|D|=108) in Table 4. For the large datasets, since PS-BRF-
MR finished within 6 hours only when t = 40, 50 with COR,
we reported execution times and relative speedup to 10 ma-
chines of PS-QPF-MR only in Table 4 and Figure 9(a), re-
spectively.

To show the scalability of PS-QPF-MR, we also tested
with large datasets (|D|=108) on Amazon EC2 Infrastruc-
ture consisting of 200 machines and showed the execution
time as well as relative speedup to 25 machines in Table 5
and Figure 9(b), respectively.

In both experiments using large datasets, PS-QPF-MR
shows linear speedup with IND and ANTI, but sub-linear

t 25 50 75 100 125 150 175 200

IND 8783 4936 3252 2485 1961 1565 1293 1198
COR 1234 712 546 466 437 426 351 316
ANTI 12655 5713 4783 3186 2451 2352 2315 2080

Table 5: Varying t on Amazon EC2 with |D|=108 (sec)

Filtering technique IND COR ANTI

Zero-probability (# of inst.) 12806654 172962353 4352818
Upper-bound (# of obj.) 882787 8614581 490691
Dominance-power (# of obj.) 9773641 9986907 9605070

Table 6: Filtered objects per filtering technique

Dataset IND COR ANTI Average

PS-QPF-MR (ALL) 212 85 196 164
PS-QPF-MR (D) 226 123 207 185

Table 7: Effects of the filtering techniques (sec)

speedup with COR. It is because the number of probabilistic
skyline objects in the correlated data is very small and the
benefit of using a large number of machines is marginal.

The effects of filtering techniques: We first presented
the number of instances removed for zero-filtering technique
and the numbers of non-skyline objects detected not to com-
pute their skyline probabilities for each of the other filtering
techniques in Table 6. We found that dominance-power fil-
tering detects more non-skyline objects than upper-bound
filtering. In Table 7, we showed the execution times of PS-
QPF-MR by applying dominance-power filtering only (D) or
all filtering techniques (ALL). When all filtering techniques
were used, we applied them in the order of zero-probability
filtering, upper-bound filtering and dominance-power filter-
ing. Applying all filtering techniques is faster than applying
dominance-power filtering only in PS-QPF-MR.

The effects of optimization techniques: In Table 8,
we reported the average execution times and average number
of transmitted instances by PS-QPF-MR without leaf node
grouping and workload balancing (NONE), PS-QPF-MR
with leaf node grouping only (L) and PS-QPF-MR with both
methods (L and W). PS-QPF-MR with leaf node group-
ing (L) has 49% of transmitted instances than PS-QPF-MR
without both methods (NONE). Since the workload balanc-
ing technique splits the instances required to compute the
skyline probabilities of objects in each group in order to uti-
lize all machines available, PS-QPF-MR with L and W is
the most efficient as shown in Table 8.

The effect of quadtree partitioning: To show the
effectiveness of quadtree partitioning, we experimented with
datasets of |D| = 107 using 200 machines on Amazon EC2
and presented the execution times as well as the numbers
of checking dominance relationships between instances of
objects by both algorithms in Table 9. While PS-QPF-MR
has 1.37 times smaller number of dominance relationship
comparisons than PS-BRF-MR, PS-QPF-MR is 2.33 times

PS-QPF-MR L and W L NONE

Execution time (sec) 164 301 329

# of transmitted instances (×106) 454 454 894

Table 8: Effects of optimization techniques
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Figure 10: Varying the number of objects (|D|) for the continuous model

|D| = 107 Algorithm IND COR ANTI

Execution PS-QPF-MR 164 82 198
time (sec) PS-BRF-MR 473 143 470

# of dominance PS-QPF-MR 59579 2037 58834
comparisons (×106) PS-BRF-MR 72844 3432 70369

Table 9: Effect of quadtree partitioning using EC2

faster than PS-QPF-MR, on average. Since PS-QPF-MR
has a single MapReduce phase but PS-BRF-MR consists of
two MapReduce phases, the performance gain in terms of
execution time is higher than that in terms of dominance
relationship comparisons for PS-QPF-MR.

The continuous model: We set the default values of
(|S|, |F |) to (10000, 2000) and (2000, 1000) for PS-QPF-MR
and PS-BRF-MR, respectively, since they performed the
best with those values. We omit the experimental results
with varying |S| and |F | since they show similar patterns
with those for the discrete model. In Figure 10, we plotted
the execution times of both algorithms with varying |D|. We
found that PS-QPF-MR runs up to 7.72 times faster and is
2.37 times faster on the average than PS-BRF-MR.

8. CONCLUSION
We studied the probabilistic skyline query processing on

MapReduce for both discrete and continuous models. To
identify probabilistic non-skyline objects in advance, we pro-
posed the upper-bound, zero-probability and dominance-
power filtering techniques. To get the probabilistic skyline
with a single MapReduce phase, we developed the algorithm
PS-QP-MR by using a PSQtree to distribute the instances of
objects effectively. We next devised the algorithm PS-QPF-
MR by additionally applying the three filtering techniques to
PS-QP-MR. We also proposed the leaf node grouping tech-
nique to reduce network overhead and the workload balanc-
ing technique to balance the workload of reduce functions
based on the number of machines available. As baseline al-
gorithms, we developed the algorithm PS-BR-MR with two
MapReduce phases by using random partitioning only and
the algorithm PS-BRF-MR by applying the three filtering
techniques to PS-BR-MR. Our experiments showed that PS-
QPF-MR is much faster and more scalable than the other
algorithms. As future work, we will study the parallel algo-
rithms for probabilistic dynamic and reverse skyline queries.
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