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ABSTRACT
Given two sets of vertices in a graph, it is often of a great interest
to find out how these vertices are connected, especially to identify
the vertices of high prominence defined on the topological struc-
ture. In this work, we formally define a Vertex Set Bonding query
(shorted as VSB), which returns a minimum set of vertices with
the maximum importance w.r.t total betweenness and shortest path
reachability in connecting two sets of input vertices. We find that
such a kind of query is representative and could be widely applied
in many real world scenarios, e.g., logistic planning, social com-
munity bonding and etc. Challenges are that many of such appli-
cations are constructed on graphs that are too large to fit in sin-
gle server, and the VSB query evaluation turns to be NP-hard. To
cope with the scalability issue and return the near optimal result
in almost real time, we propose a generic solution framework on a
shared nothing distributed environment. With the development of
two novel techniques, guided graph exploration and betweenness
ranking on exploration, we are able to efficiently evaluate queries
for error bounded results with bounded space cost. We demon-
strate the effectiveness of our solution with extensive experiments
over both real and synthetic large graphs on the Google’s Cloud
platform. Comparing to the exploration only baseline method, our
method achieves several times of speedup.

1. INTRODUCTION
In this work, we study a novel graph query, namely the Vertex

Set Bonding query (VSB query for short), which extracts the most
prominent vertices, called bonding agents, in connecting two sets of
input vertices. The prominence of a vertex is defined on its contri-
bution to the shortest path connectivity between input vertex sets.
Intuitively, given two input sets of vertices X and Y , the desired
bonding agents are the minimum set of vertices to remove in order
to enlarge every pair of shortest path distance between X and Y .
We find this query could be widely applied in various real world
applications. We elaborate with two following examples.

Example 1.1 (Network Flow Monitoring). To identify poten-
tial bottlenecks for large volume data transfer initiated randomly
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Figure 1: Vertex set bonding example

on a P2P network is critical to improve the overall network per-
formance [11]. For example, Figure 1 shows that the data transfer
plan among two vertex sets X and Y , where edges are the data
transfer paths, and v1,...,v9 are clients contributing to the data
forwarding. For illustration purpose, we assume that all clients
have the same capacity and all links are identical. The VSB query
will return the minimum set of clients that dominates the overall
data transfer performance. More importantly, the returned bond-
ing agents will be the minimum set of vertices to monitor in order
to obtain a complete statistics on the transfer between X and Y .

Example 1.2 (Community Bonding). A common interest of
social network study is to find the “bonding” of communities [8],
which is vital in understanding information propagation and hidden
correlations [23]. Two people are usually considered to be tightly
connected by the ones residing on the shortest path between them.
Intuitively, an ideal bonding agent would reside on as many cross
group pairwise shortest paths as possible, and meanwhile connect
as large portion of two groups as possible. Such agents could best
serve the message passing between two groups.

The above two examples imply an essential need to efficiently
discover the most valuable bonding agents between two sets of ver-
tices, which could be given at ad hoc. As a matter of fact, such
a demand is common in many real world applications, like ad hoc
logistics planning [38], or extracting and querying correlations in
knowledge graphs on input facts [41], and etc.

There is a rich literature on structure oriented graph queries, such
as shortest path, reachability, subgraph matching, influential max-
imization [28] and etc. However, we find that none of these ex-
isting graph queries could be directly applied to the scenarios we
discussed above. We briefly review the most relevant graph queries
and elaborate the novelty of the VSB query. As VSB is defined
on the shortest path semantic, it makes betweenness centrality a
reasonable metric to employ. Top-k betweenness computing or k-
betweenness are classic queries employed to find important vertices
in a network. However, due to the local dominance property of
the betweenness metric, such queries cannot serve the vertex sets
bonding properly. For example, in Figure 1, v2 has a much higher
betweenness than v4. However, v2 is completely dominated by v1,
meaning v1 resides on every shortest path between X and Y that
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passes v2. On the contrary, without v4, the shortest path distance
between x3 and y1 would increase. It makes v4 an indispensable
bonding agent.

Influential maximization is a cool idea to identify a set of im-
portant vertices (referred as seeds) to maximize the expected num-
ber of vertices to be influenced following certain cascading model.
However, a practical cascading model is the key to guide the seed
selection, which cannot be directly transferred to our applications
scenarios. Moreover, a widely adopted heuristic is to select seeds
that are far away from other vertices as long as the cascading func-
tion allows. Therefore, such a query cannot return the crucial set of
vertices in connecting two vertex sets topologically.

Minimum cut [25] finds the minimum set of edges to remove
to turn a graph into two disjoint subgraphs. However, it does not
offer any insight on how other vertices contributes to the connection
between X and Y . Moreover, minimum cut does not help to find
the bonding agents. Because a bonding agent could reside on every
pairwise shortest path between vertex sets X and Y , and not be
incident to any edge from the minimum cut.

We believe that the VSB query is a novel query to explore, given
none of existing well studied graph queries could properly serve the
application scenarios discussed above. The VSB query ranks a ver-
tex’s prominence in bonding two vertex sets with two factors taken
into consideration: betweenness and the shortest path connectiv-
ity. Although the metric for a vertex’s prominence varies depend-
ing on application scenarios, such a vertex bonding query pattern is
generic. In this work, we evaluate VSB queries based on between-
ness, as it is a popular centrality measurement in practice. Although
there are other centrality metrics, like closeness, eigenvector, per-
colation and etc., we consider other semantics as a future extension
of this work.

Moreover, we find that the VSB query inherently asks for a much
more efficient evaluation strategy which has never been explored in
the existing literature. To evaluate VSB queries efficiently, consid-
ering the fact that graph G could be stored in a shared nothing dis-
tributed setting, simply a combination of existing techniques may
not be the optimal choice. To elaborate, a straightforward solu-
tion to answer a VSB query is to first extract the subgraph G that
contains all pairwise shortest paths between two input vertex sets
X and Y , then assess the bonding vertices based on a ranking of
betweenness and shortest path connectivity. However, identifying
G on arbitrary input vertex sets is computational costly based on
any BSP model developed for generic graph processing, as many
redundant vertices would be accessed during the computation. Re-
cent research shows that such an exploration-based path computa-
tion cannot be bounded in terms of vertex accessing [17]. As the
best known betweenness computation algorithm [6] requires G to
be available in the first place, which is highly impractical. More-
over, computing the all vertices’ exact or approximated between-
ness for further selection would introduce redundant computational
cost. Because only a partial ranking of some important vertices
would be sufficient to answer the query. Therefore, Not only the
state-of-art graph processing framework like Pregel [34] needs be
employed to explore the maximum parallelism of query evaluation,
we also need delicate and lightweight index structures to support
efficient filtering and scheduling. It is nontrivial to combine the
distributed index and generic graph processing framework to per-
form selective queries over graph data.

To address the challenge, we propose two novel building blocks
for the efficient VSB query evaluation: guided graph exploration
and betweenness ranking on-exploration. The essential idea behind
is to consider every vertex as a high dimensional vector derived
from its distance to a set of landmarks. Thus, we could guide the

graph exploration to reduce redundant vertex access and have the
vertex-centric computation run simultaneously to achieve the most
parallelism. As we only ask for the minimum set of vertices of
the highest accumulative betweenness as the bonding vertices, in-
stead of computing the exact betweenness value, we simply rank
the betweenness of vertices during graph exploration to save the
computation cost. To summarize, we highlight our contribution of
this work as follows:
• We propose and formalize a novel vertex set bonding query

which could be widely applied in real practices. We show
that VSB problem is NP-hard and develop approximation al-
gorithms for error bounded query evaluation (Section 2);
• We develop a vertex filtering scheme to effectively support

guided graph exploration, such that the cost on redundant
vertex accessing could be significantly saved (Section 3);
• We develop an effective betweenness ranking algorithm sim-

ply based on graph exploration, such that VSB query can be
evaluated as quickly as possible by saving the cost on exact
betweenness computation (Section 3);
• We develop a generic VSB evaluation framework and vali-

date our solution with extensive experiments in a real Cloud
environment (Section 4 and 5).

In addition, we discuss the most recent related works in Section
6 and make the conclusion in Section 7.

2. PROBLEM DEFINITION
In this section, we first introduce the preliminaries of between-

ness centrality and define the terminology adopted in this work. We
shall formally define the VSB query and discuss the computational
complexity of the VSB problem. Then we give an overview of our
solution and present the technical road map.

Being an important centrality metric, a vertex v’s betweenness
value is defined as the fraction of all pairwise shortest paths that
passes v. Let CB(v) denote the betweenness of v, σst(v) de-
note the number of shortest paths between two vertices s and t that
passes v, σst denote the total number of shortest paths between s
and t, then CB(v) is defined as follows:

CB(v) =
∑
s 6=t 6=v

σst(v)

σst
(1)

The best known sequential algorithm for computing between-
ness was proposed by Brandes [6], and it has been the basis for
many parallelization approaches [4][13][16][32]. Brandes’s algo-
rithm firstly defines the dependency of a source vertex s on a vertex
v as: δs(v)=

∑
t∈V

σst(v)
σst

. Thus, CB(v)=
∑
s 6=v∈V δs(v). The key

insight is that δs(v) satisfies the recurrence given in Eq.2, where
pred(s, w) is a list of immediate predecessors of w in the shortest
paths from s to w.

δs(v) =
∑

w:v∈pred(s,w)

σsv
σsw

(1 + δs(w)) (2)

Given the recurrence derived in Eq.2, Brandes’s algorithm is
able to compute every vertex’s betweenness with O(m+ n) space
complexity and O(mn) computational complexity for unweighted
graph, where m and n are the number of edges and vertices in G.

We define two types of dominance relation for comprehensive il-
lustration of the VSB query evaluation. Given an undirected graph
G=〈V,E〉, let pst denote the shortest path(s) between vertex s and
t, and |pst| be the length of pst. We define the vertex-to-path dom-
inance as follows:

DEFINITION 1 (V-P DOMINANCE). A vertex v dominates a path
pst, denoted as v`pst, iff |pst| increases by removing v from the
graph. {v`}P denotes the set of shortest paths dominated by v.
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Figure 2: Decomposed X → Y paths of Figure 1 for betweenness and shortest path connectivity analysis.

If there exists multiple shortest paths between s and t, then pst
may not be dominated by any single vertex. Instead, pst is domi-
nated by a vertex set U , denoted as U`pst, where |pst| increases if
U is removed from the graph. For example, in Figure 1, as there are
two parallel shortest paths between x1 and y1, px1y1 is not domi-
nated by a single vertex. On the other hand, px1y1 is dominated
by a set of vertices, e.g. {v1, v5}. Following the same assumption
context, we define the dominance of vertex to vertex as follows:

DEFINITION 2 (U-V DOMINANCE). A vertex u dominates an-
other vertex v, denoted as u`v, iff {v`}P ⊆ {u`}P . The set of
vertices dominated by vertex u is denoted as {u`}V .

Given two sets of vertices X and Y , let PXY ={pxy|x ∈ X, y ∈
Y } denote the set of all pairwise shortest paths between the ele-
ments of X and Y , we further define closed dominance and mini-
mum closed dominance as follows:

DEFINITION 3 (CLOSED DOMINANCE). A vertex setU is said
to be a closed dominance of PXY , iff PXY⊂

⋃
u∈U{u`}

P .
DEFINITION 4 (MINIMUM CLOSED DOMINANCE). A vertex set

U is a minimum closed dominance of PXY iff U is no longer a
closed dominance of PXY after removing any element in U .

To elaborate, consider the example given in Figure 1. We decom-
pose the pairwise shortest path connection between each xi ∈ X
and Y , as shown in Figure 2(a). Regarding each vi ∈ V , we show
its betweenness credit earned on every pairwise shortest path be-
tween X and Y in Figure 2(b), computed with Eq.3,

CB(vi|X,Y ) =
∑

x∈X,y∈Y

σxy(vi)

σxy
(3)

Obviously {v1, ..., v9} forms a closed dominance of PXY . But it
is not a minimum one. Both {v1, v4, v6, v7} and {v2, v3, v5, v6, v7}
form a minimum closed dominance of PXY . However, it is easy to
examine that v1 dominates v2. Because v1 is v2’s precedent on
every shortest path from X to Y that passes v2. Similarly, v4 dom-
inates v3 and v5. Therefore, we further define the optimal minimum
closed dominance as follows:

DEFINITION 5 (OPTIMAL MINIMUM CLOSED DOMINANCE).
A vertex set U is an optimal minimum closed dominance of PXY
iff U is a minimum closed dominance of PXY , @U ′ which is an-
other minimum closed dominance of PXY that ∃u′ ∈ U ′, ∃u ∈ U
having u′`u.

Based on the terminology introduced above, now we formally
define the vertex set bonding query, a.k.a the VSB query.

Problem Definition 2.1 (VSB Query). Given an undirected
graph G=〈V,E〉 and two input sets of vertices X and Y , a vertex
set bonding query Q=〈G,X, Y,R〉 asks for a set of vertices R ⊂
V -{X,Y }, such that 1) R forms an optimal minimum closed dom-
inance of PXY ; 2) AB(R)=

∑
v∈R CB(v|X,Y ) is maximized.

To elaborate, consider the example shown in Figure 2(a). We
can find two vertex sets which are optimal minimum closed domi-
nance of PXY , {v1, v4, v6, v7} and {v1, v4, v6, v8}. Apparently,

the later set contributes more in the betweenness centrality and
therefore should be returned as the answer. It is worth pointing out
that although here we focus on the VSB query defined on the short-
est path based dominance, any other dominance semantic could be
employed to meet different application scenarios. For example, in
heterogeneous information networks, the dominance could be de-
fined upon the cover of keywords or meta-path patterns. Although
exploring the evaluation strategy for different dominance functions
is beyond the scope of this work, we argue that the VSB query is
generic and could be employed for various real world applications.

From the problem definition, one can easily tell that the VSB
problem is a variation of the weighted set cover problem, which has
been proven to be NP-hard. However, one upfront problem is that
X and Y are given at ad hoc, no vertex-path dominance relation
is determined until the run time. In other words, for any vertex
v ∈ V , {v`}V is unpredictable until X and Y are determined and
G is extracted. More importantly, the essential difficulty of the VSB
problem is that there could be exponential number of vertex sets
for the minimum closed dominance verification, which makes none
of the existing solutions for weighted set cover problem applicable.
Therefore, we must develop novel techniques to reduce the possible
vertex-path dominance combination in order to answer the query
with precision guarantees as quickly as possible.
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Figure 3: Solution Framework of the VSB query evaluation

We show our solution framework in Figure 3. Let graph data be
stored on a shared nothing distributed environment. We label all
vertices according to their distances to selected landmarks. Then
the guided graph exploration building block would effectively filter
unnecessary vertices when a VSB query is submitted to the query
engine. Later, we shall perform the betweenness ranking com-
putation on exploring only the valid vertices. Note that the core
technique for guided graph exploration lies in a light weighted dis-
tributed lookup index. While the betweenness ranking function is
designed to take the advantage of parallel graph processing (ba-
sically the vertex centric model). In the following sections, we
shall first explain how we label all vertices and the methodology
of guided graph exploration. Then we show our distributed lookup
index design that effectively filters unnecessary vertices upon a
coming query, and a parallel vertex centric computation model for
betweenness ranking on exploration. After that, we elaborate our
generic VSB query processing strategy.
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3. EVALUATION BUILDING BLOCKS
In this section, we first introduce the underlying data model we

adopt for query evaluation, as well as the preprocessing steps to
prepare the data. Then we elaborate two essential building blocks
to our generic solution, guided graph exploration and betweenness
ranking on exploration.

3.1 Data Model & Preprocessing
Following the vertex centric computing model proposed by Google

[34], we model each vertex as an independent functioning unit.
Given an undirected graph G=〈V,E〉, we define each vertex v as
follows:

v =

 l(v) vertex label
H a set of independent hash func.
B(v) blocks of adjacent vertices

l(v) is derived from v’s distance to all the landmarks, which we
shall elaborate soon. Function set H is the same for all vertices,
which shall be employed for constructing a bloom filter to serve the
query evaluation. Note that all of v’s one-hop neighbors are hash
partitioned into a set of data blocks, denoted as B(v). The size of
a data block is of one cache line read. Instead of using adjacent
list, we adopt a variant of the CRS (Compressed Row Storage) for-
mat. It is a compromise of the improved cache read locality and the
ability to adapt dynamic graph update.

3.1.1 Landmark Selection
Selecting landmarks or reference points to facilitate the shortest

path distance computation has been adopted in many works [43]
[39][42]. Existing landmark selection criteria are quite biased ac-
cording to different graph structures and applications. In our so-
lution, we select landmarks not only based on the consideration
of graph partition and pairwise shortest distance estimation, but an
evenly coverage property is desired. To elaborate, we find that given
two vertices s and t, the landmark best serves |pst| computation is
the one closest to pst. Therefore, we define a set of landmarks of
evenly coverage as follows:

DEFINITION 6 (δ-EVENLY COVERAGE). Given a graph G
=〈V,E〉, a set of landmarks, O={o1, o2, ..., od}, is said to be an
evenly coverage of G, iff ∀v ∈ V , ∃oi ∈ O such that |pvoi | ≤ δ,
where δ is a customizable parameter.

According to the definition, an interesting question is how to de-
cide an evenly coverage O of a given graph G. Intuitively, if δ
is small, the cardinality of O, denoted with parameter d would be
large. As a matter of fact, it is easy to derive that in an extreme
case, d needs to be at least as large as n−1

2δ
. On the other hand, at

most 3 landmarks are sufficient if the diameter of G is smaller or
equal to 2δ. In practice, we would like to select the minimal num-
ber of landmarks that satisfy a δ-evenly coverage of G in order to
save index space and computation costs. Algorithm 1 gives a deter-
ministic solution of finding the minimal d, which also helps decide
the selection of landmark vertices.

In the first line of Algorithm 1,Gdiam denotes the diameter ofG.
We consider Gdiam as a given input as it can be easily computed
following the super step based message passing model. Apparently,
the above algorithm is to recursively partition G into a set of small
graphs with diameter smaller than 2δ, and report the center vertices
of these small graphs as landmarks. Let the level of recursions is
h, then the total number of landmarks is d = 2h. The computation
cost of Algorithm 1 is O(h|G|), because on each level of recursion
the entire graph is traversed. We can save the computation cost
using a random algorithm given in Algorithm 2. It worths pointing
out that Algorithm 2 does not need Gdiam to be pre-computed. On
the other hand, as shown on line 3 of the algorithm, we randomly

select a path (simply using graph exploration) of length 2δ at each
iteration, and filter out all vertices that could be evenly covered in
δ-hops from the middle vertex of this selected path, until all vertices
from G are covered.

LEMMA 1. Algorithm 2 runs at the complexity of O(|G|) and
returns an evenly coverage of G with at most 3× 2h−1 landmarks.

PROOF. Consider an uncovered subgraph g with a diameter falls
in (2δ, 4δ], it takes two landmarks to evenly cover g according to
Algorithm 1. However, according to Algorithm 2, a subgraph g′ ∈
g could be selected, leaving the remaining part to be sufficiently
covered by at most 2 landmarks. Therefore, it takes three land-
marks to cover any two adjacent small graphs after partition in Al-
gorithm 1. Therefore, Algorithm 2 reports at most 3

2
×2h=3×2h−1

landmarks.

Algorithm 1: δ-evenly coverage landmarks computation
Data: G=〈V,E〉,δ,Gdiam

Result: O={o1, o2, ..., od}
Procedure LandMark()

1 whileGdiam > 2δ do
2 LandMark(HalfSplit(G));LandMark(G-HalfSplit(G));

3 o← the middle vertex ofG’s diameter path;
4 return o;

Procedure HalfSplit()
5 e(s, t)← the middle edge ofG’s diameter path;
6 G=G-e(s, t) ;
7 s.color ← c1; t.color ← c2 ;
8 Mark all vertices active;
9 while ∃v ∈ V is active do

10 if v receives a color message ci then
11 v.color ← ci;

12 if v is active and has a color then
13 v broadcasts its color to all neighbors;
14 v ← inactive;

15 return the graph colored with c1;

Algorithm 2: Fast δ-evenly coverage landmarks computation
Data: G=〈V,E〉,δ
Result: O={o1, o2, ..., od}

1 O ← ∅;
2 whileG 6= ∅ do
3 p← randomly select a path of length 2δ fromG;
4 g ← the graph that can be reach from o within δ-hops;

/* o is the middle point of p */
5 G← G− g ;
6 O ← O

⋃
{o};

7 return O;

Note that for simplicity we do not show the case that there does
not exist a path of length 2δ inG any more. As it is straightforward
to introduce one landmark for each remaining connected compo-
nent inG. An interesting opening problem is the selection of δ. We
study how different δ affects the data preprocessing and query eval-
uation efficiency and report our findings in the experiment section.

3.1.2 Preprocessing
There are two major preprocessing tasks: one is to partition the

graph to a shared nothing distributed environment; the other one
is to assign each vertex a label for query evaluation. Note that
our solution does not depend on a particular graph partition for-
mat, therefore, any general graph partition technique can be ap-
plied. In our solution, we follow a typical graph partition strat-
egy that promises better data locality and workload balance. We
first randomly partition G to all computing nodes. After the selec-
tion of O (the set of landmarks), G is conceptually composed of
d small graphs {g1, ..., gd}, where gi is the small graph covered
by landmark oi. Thus, we can obtain an abstraction of G, namely
GA=〈O,W 〉, where each vertex is the landmark oi of weight |gi|,
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Figure 4: Computing an abstraction of G based on the landmarks

and an edge (oi, oj) of weight woioj denoting gi and gj are con-
nected with accumulatively woioj edges in G. A simple example
shown in Figure 4 shows how GA is constructed. By applying a
balanced minimum cut partition of GA with METIS [27] (a well
proven graph partition toolkit), we can obtain a partition of G such
that the number of vertices stored on each computing node is bal-
anced and the communication cost across physical machines could
be greatly saved. Moreover, with the set of landmarks O deter-
mined, we are able to decide each vertex’s label according to its
distance to all landmarks. Therefore, vertex v’s label l(v) is a d-
dimensional vector, where l(v)i denotes v’s distance to landmark
oi. Starting from the d landmarks, with one time graph exploration,
every l(v) can be determined. Thus, our data preprocessing cost is
at the computational and space complexity of O(|G|).

It is worth pointing out that associating each vertex with a d di-
mensional vector ideally trades off space cost to empower filtering
on graph exploration. However, in real world scenarios d could be
very large if δ is set to a small value, which could impose infeasible
space overhead for graph storage. As a matter of fact, given a ver-
tex u and a landmark o, their shortest path distance can be denoted
as |puo′ |+|po′o|-σ, where |puo′ | is the distance from u to its nearest
landmark o′. As dist(o,o′) can be pre-computed during preprocess-
ing, then only the adjusted value σ needs to be stored. Note that the
employed graph partition strategy potentially promises a locality-
based landmark clustering. It results in the value locality of σ in
u’s label, where a simple value based compression technique can
be applied to reduce the total space cost significantly.

3.2 Guided Graph Exploration
Graph exploration is an essential tool to path query evaluations.

Performance of the simple vertex centric model is highly dominated
by high degree vertices and the total number of super steps to run.
Intuitively, to explore the shortest path from s to t, at least |pst|
super steps are necessary. Starting from s, a naive graph exploration
method like BFS would access all vertices within a distance of |pst|
to s. Thus, we would like to investigate a guided graph exploration
approach to significantly reduce the redundant vertex access.

Our design is simple and straightforward. Let vk resides on the
shortest path between s and t. Assume |pst| is given, vk is a k-
hop vertex from s, then according to the cosine law, the distance
from vk to a landmark oi is solely determined on l(s)i, l(t)i and
k. And such a condition must be hold between every landmark and
vk, which could greatly help filtering out possible candidates for
future examination. Plus, as vk’s label has been computed during
the preprocessing phase, it is easy to verify if vk exists. If negative,
it only shows that the assumption on |pst| is wrong. Given vertex s
and t, we can simply bound the |pst| using the triangle inequality. It
is easy to verify that |pst| ∈ [Max(|l(s)i − l(t)i|),Min(|l(s)i +
l(t)i|)], where 1 ≤ i ≤ d. For comprehensive presentation, the
notation |pst| ∈ [LB(|pst|), UB(|pst|)] is employed for the rest
of this paper. An observation on the determination of |pst| is that,
an assumption of |pst| is correct iff ∀k ∈ [1, |pst|) ∃vk, such that
∀oi ∈ O, l(vk)i is valid according to the cosine law. Based on this
observation, given a range of possible |pst|, a brute-force solution is
to check all possible values of |pst| in an ascending order and report

the first valid result as the correct |pst|, as described in Algorithm 3.
Note that the loop given on line 3 indicates an iterative exploration
process. In each iteration, we identify a set of valid vertices to be
explored according Observation 1. The benefit of Algorithm 3 is
that we can get exact pst as a side product. However, the worst
case happens when some landmark resides on pst, meaning we get
correct |pst| only after checking all the possible values.

Algorithm 3: A brute-force validation of |pst|
Data: |pst| ∈ [rMIN , rMAX ]
Result: |pst|

1 for i ∈ [rMIN , rMAX ] do
2 |pst| = i;
3 for k ∈ [1, i] do
4 Let Sk be the set of vertices that are k-hop neighbors of s;
5 if @vk ∈ Sk is valid then
6 continue;

7 return |pst|;

Apparently, Algorithm 3 is efficient only for the scenarios where
|pst| is very close to its lower bound. In the worst case, it takes
O(|pst|2) iterations to find pst. Therefore, we would like to pro-
pose another algorithm which has strict performance guarantees on
all possible conditions. The intuition is that by starting from a set
of vertices possibly residing on pst, which must be a superset of
pst, we perform a guided exploration that iteratively prunes all can-
didates that do not belong to pst.

LEMMA 2. Given vertices s and t, a vertex v possibly resides
on pst if Max{|l(v)i − l(s)i| + |l(v)i − l(t)i|} ≤ UB(|pst|),
where 1 ≤ i ≤ d.

PROOF. Let vertices u and v be directly adjacent to each other.
Then Max{|l(v)i − l(u)i|} = 1, where 1 ≤ i ≤ d, because
jumping from u to v, the distances between u and all landmarks
alter by at most one. Therefore, given any two vertices u and
v, Max{|l(v)i − l(u)i|} indicates a lower bound of the pairwise
shortest path distance between them. Thus, if the sum of lower
bounds of a vertex v’s distance to s and t is greater than an upper
bound of |pst|, denoted as UB(|pst|), then v must not reside on
pst.

Although Lemma 2 indicates a filter on the possible vertices to
explore, the cost to examine the entire graph set remains unaccept-
able. We could rule out some candidate vertices based on their
distances to all landmarks, as guaranteed by the following:

LEMMA 3. Given s and t, a vertex v possibly resides on pst if
for pst ∈ [LB(pst), UB(pst)] and 1 ≤ i ≤ d, assuming l(s)i ≤
l(t)i, then

l(v)i ∈

{
[l(s)i, l(t)i] if arccos

l(s)2i+l(t)
2
i−|pst|

2

2l(s)il(t)i
≤ π

2

[h, l(t)i] else
where h= 2(α(α−l(s)i)(α−l(t)i)(α−pst))

1
2

pst
, α=l(s)i + l(t)i + pst.

Lemma 3 can be easily proved following the cosine law and the
Heron’s formula. By applying the filtering criteria suggested in
Lemmas 2 and 3, we could obtain a subgraph of G, denoted as gst,
which must be a superset of pst. Note that ∀v ∈ gst, v’s degree is at
least 2 and all of v’s neighbors belong to gst. This is easy to prove
by contradiction. Then, we start an iterative validation process on
gst to obtain pst by filtering out unnecessary vertices step by step,
as described in Algorithm 4.

Algorithm 4 employs a range label to check if a vertex resides on
the path pst. Each vertex that receives a lower(upper) bound of the
range label, it sets up the list to watch if any upper(lower) bound
would be sent from the same vertex, e.g. v.swatch and v.twatch in
lines 9 and 14 respectively. Initially, s and t are only half bounded,
and they pass on the range to its neighbors. Iteratively, if a vertex
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v finds that it receives both the lower and upper range bounds from
the same vertex, as examined in the two IF clauses on lines 7 and
11, v definitely does not reside on pst. Therefore, v can be marked
as inactive, and it will not participate in any further computation.
Finally, all vertices that remains active and closely bounded shall
be returned.

Algorithm 4: Graph exploration for pst
Data: gst
Result: pst

1 for v ∈ gst do
2 v.state← active; v.range← (−∞,+∞);

3 s.range← (s,+∞); t.range← (−∞, t);
4 s and t broadcast their range to all neighbors;
5 repeat
6 if v receives lower range update (s,+∞) then
7 if the message source vertex is not in v.twatch list then
8 v.range← (s, ?);
9 add the message source vertex to v.swatch list;

10 v forwards the lower range to neighbors that are not in v.swatch;

else
v.state←inactive;

11 if v receives upper range update (−∞, t) then
12 if the message source vertex is not in v.swatch list then
13 v.range← (?, t);
14 add the message source vertex to v.twatch list;
15 v forwards the upper range to neighbors that are not in v.twatch;

else
v.state←inactive;

until s and t are closely bounded;
16 pst ← all active vertices in gst that are closely bounded;
17 return gst;

Correctness. There are only two cases where v does not reside on
pst, as shown in Figure 5. One is that v reaches both s and t from
a same vertex u, as shown in Figure 5(a). In this case, according
to Algorithm 4, v would receive range updates from u only, thus it
will be pruned. The other case is that the sum of two shortest path
distances |puv|+|pu′v| is larger than |puu′ |, where u and u′ resides
on pst, as shown in Figure 5(b). Thus, the algorithm terminates
before all vertices on the path puv and pu′v get closely bounded,
and these paths would be removed eventually.

(a) (b)

Figure 5: Two cases where v does not reside on pst
Complexity. Obviously, Algorithm 4 takes the space complexity
of up to O(|gst|), and the total iteration step of Algorithm 4 is the
same as |pst|. And within each step, only vertices with range up-
dates would send out messages to selected neighbors. Therefore,
comparing to the naive exploration method, Algorithm 4 reduces
the communication cost at each superstep. While comparing with
Algorithm 3, Algorithm 4’s total number of iteration steps is fixed.
It makes Algorithm 4 more generic for all possible workloads.

Note that it is trivial to add a global counter in Algorithm 4 to
record each vertex’s shortest path distance to s and t. Then the
exact |pst| can be obtained after the program execution.

Both Algorithms 3 and 4 proposed in this section take the advan-
tage of the data model introduced in Section 3.1. The difference
is that Algorithm 3 aims at fast validation of |pst| with unneces-
sary vertex access eliminated as much as possible under the help of
vertex labeling. Algorithm 4 first uses vertex labeling to identify a
super set of pst to explore, then conduct the exploration in a way
that eliminate communication as much as possible.

Our guided graph exploration method could serve as a building
block to evaluate other distance aware queries. For example, in the
network field, there are common requests like routing a package
from s to t that must pass or must not pass some given node within
a transfer budget. Our vertex label method makes it straightforward
to estimate the cost to include or exclude a vertex on the shortest
path exploration. Therefore, cost aware solutions can be easily con-
structed to discover such a constraint routing path efficiently.

3.3 Betweenness Assessing On-exploration
Recall that our problem definition is to find an optimal minimum

closed dominance set of vertices of the highest accumulative be-
tweenness centrality upon two sets of input vertex sets X and Y
given at ad hoc. The guided graph exploration method introduced
above is to help reduce the unnecessary vertex access and commu-
nication. Although it is possible to run the existing betweenness
computation algorithm after G is obtained, which contains exactly
all pairwise shortest paths between X and Y , we find that an on-
exploration betweenness assessing or ranking method is worth in-
vestigating as no exact betweenness value is required.

Following the context of v-p dominance and u-v dominance given
in Section 2, we investigate how to extract such dominance correla-
tions during the graph exploration. As betweenness assessing and
ranking is orthogonal to the guided graph exploration part, we have
no assumption on the graph to be explored. Given a graph G and
input vertex sets X and Y , we employ the vertex centric model to
do the exploration for betweenness assessing. After the exploration
is terminated, we are able to answer the following query, given two
vertices u, v ∈ V , how is CB(u|X,Y ) comparing to CB(v|X,Y ).
Note that here u and v should at least satisfy v-p dominance, oth-
erwise they are not possible to be returned in the final answer.

Obviously, if u`v, then CB(u|X,Y ) ≥ CB(v|X,Y ). The chal-
lenge is that if u does not dominate v, how do we compare their
betweenness. Intuitively, CB(u|X,Y )=|{u`}P |+f , where f de-
notes u’s contribution to other pairwise shortest paths that it does
not dominate. We address the problem by transforming pairwise
shortest paths into a set of two level tree structures to record the
dominance correlation to help compute f efficiently. We elaborate
with a simple example as shown in Figure 6. The shortest paths
between s and t are shown in the left part of the figure. pst is bro-
ken into three two level trees, where each tree’s root is a vertex that
dominates multiple vertices along the exploration path from s to t.
The dash line pointing from v4 to v1 indicates that v4 connects to
all of v1’s children in pst. The dash line pointing from v6 as a child
to v6 as a root indicates that v6 does not dominate pst. Given such a
transformation, it is now easy to compare two vertices betweenness
without computing the exact value. For example, to compare the
betweenness of v5 and v9, we find that v6 is on the same level with
two vertices v5 and v7, yet it dominates two other vertices includ-
ing v9, thus v5 and v9 contribute equally to pst. Let Tst be the set
of trees generated from pst, then we could employ the following
Lemma for vertex betweenness assessing:

LEMMA 4. If u and v are recursively dominate by the same
vertex in Tst, then CB(u|s, t) ≥ CB(v|s, t) iff u recursively dom-
inates more vertices than v does in Tst; If u and v are not re-
cursively dominated by the same vertex in Tst, then CB(u|s, t) ≥
CB(v|s, t) iff rcc(u)

rcc(uroot)
≥ rcc(v)

rcc(vroot)
, where function rcc(·) de-

notes the count of recursively dominated children, uroot (vroot) de-
notes the vertex that recursively dominates u (v) and not be domi-
nated by any other vertex.

Lemma 4 can be proved by the definition of betweenness, as
given in Section 2. As a matter of fact, the generation of Tst dur-
ing graph exploration is straightforward. No extra space needs to
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be allocated for Tst. We simply keep the count of children that a
vertex dominates, and link the root vertices which connect to the
same children, like v1 and v4 shown in Figure 6.

Figure 6: Breaking pst into a set of two level trees

A great advantage of this on-exploration betweenness assessing
is that it perfectly fits a parallel execution mode under a distributed
setting. As all partial results can be directly assembled for between-
ness assessing. Then, given input vertex sets X and Y , we could
generate (or mark more precisely, as no extra space is consumed)
Txiyj , ∀xi ∈ X, yj ∈ Y . Then only the vertices which are not
dominated by others in Txiyj are saved for further computation.

So far, we have elaborate the two essential building blocks for
VSB query evaluation, which are guided graph exploration and be-
tweenness ranking on-exploration. However, to evaluate a VSB
query in the most time efficient way, a careful query evaluation
plan needs to be considered.

4. QUERY PROCESSING
To evaluate the VSB query Q in the most time efficient manner,

it is worth investigating an efficient query planning strategy that
promises bounded network communication and memory footprint.
Recall that the answer to a VSB query is a set of vertices that forms
an optimal minimum dominance of PXY and has the highest accu-
mulative betweenness. Given the two building blocks introduced in
Section 3, a naive query plan can be easily developed. We simply
apply the same computation procedure on each pxy , where x ∈ X ,
y ∈ Y , and assemble the final results based on a reduction of every
pxy’s dominance vertices, as described in Algorithm 5. Note that
a temporary data set Dxy is employed in the algorithm to store all
the dominant vertices of pxy (on Line 4). As Line 1-3 applies the
same computing procedure to all pairwise paths between X and Y ,
this part can be executed in parallel. The reduction process on Line
4 is to reduce the dominance vertices of each path to a single set D
and then compute centrally.

Algorithm 5: Naive VSB query evaluation
Data: ,Q = 〈G,X, Y,R〉
Result: R

1 for x ∈ X, y ∈ Y do
2 Dxy ← ∅; Explore for pxy ;
3 Dxy ← Dxy + {u}, ∀u ∈ pxy and u`pxy ;

4 ReductionD =
⋃
{Dxy};

5 forDxy ∈ D do
6 forDx′y′ ∈ D,x′ 6= x, y′ 6= y do
7 if ∃u ∈ Dxy ∩Dx′y′ then
8 Push(u, q); /* q is a priority queue based on

the size of {u`}P */

9 u← Pop(q);
10 R← R + {u};
11 D ← D −

⋃
{Dx′y′},where u`px′y′ ;

12 returnR;

THEOREM 1. Algorithm 5 takes upO(|X||Y ||pxy|) space, com-
municates at O(|X||Y ||pxy|) volume of data, and runs at the time
complexity of O(|X|2|Y |2), returns an optimal minimum domi-
nance of PXY R having AB(R) > 1

2
AB(R∗), where R∗ is the

optimal answer,.

PROOF. For each pairwise shortest path pxy , the temporary dom-
inance vertex set Dxy computed on Line 4 can be as large as |pxy|,
which explains the space and communication complexity. The nested

loop structure indicates a comparison between a path against every
other path, which is of complexity O(|X|2|Y |2).

We prove R is an optimal minimum dominant set of PXY by
contradictory. Assume there exists another vertex u ∈ pxy that
dominates v ∈ R. As v`pxy holds, therefore, both u and v are
pushed into the priority queue (Line 9). However, v is returned
only if it is the vertex of the largest dominance in the priority queue,
meaning {v`}P ⊇ {u`}P , which indicates the assumption must be
invalid. As we elaborated before, a vertex u’s betweenness CB(u)
equals to |{u`}P | + f , where f is u’s contribution to other short-
est paths that it resides on but does not dominate. Clearly f can-
not exceed 1, therefore, at each step a returned result’s between-
ness is at least 1

2
of the optimal choice. Accumulatively, the final

AB(R) ≥ AB(R∗).
Algorithm 5 is straightforward and easy to implement, and it

works for all query workload. However, its efficiency can suffer
from the all-to-one large volume of data copy in the reduction step
(Line 4). Meanwhile, the efficacy of Algorithm 5 can be further
improved if we take the f part of a vertex’s betweenness estimation
into consideration. Thus, we develop several optimization tech-
niques to improve the performance of VSB query processing.

4.1 Path Sharing
First of all, we optimize the query evaluation by taking the ad-

vantage of vertex distribution in X and Y . As introduced in the
motivation example, a VSB query can be very useful to find the
bonding between communities, where a community must be com-
posed of vertices that are close to each other. This is crucial for
the query optimization as it implies the potential of shortest path
sharing property. The example shown in Figure 1 represents such
kind of workload. In this case, there are two problems to solve: 1)
how to quickly decide the input vertex distribution, as X and Y are
given at ad hoc; 2) how to make the best of path sharing.

We solve the first problem with group prediction using vertex
labels. Note that all vertices are labeled by their distances to land-
marks. Graph G is partitioned into a number of small graphs that
have a diameter restriction. Thus, given two vertices u and v, if
both l(u)i and l(v)i is smaller or equal to δ (the graph partition pa-
rameter defined in Section 3.1), it is certain that u and v are in the
same partition graph. Intuitively, if u and v share similar distances
to multiple landmarks, they are close to each other. Given a VSB
query Q = 〈G,X, Y,R〉, we first partition vertices in X and Y
according to their labels. With so many distance based clustering
algorithms off-the-shelf, we choose the simplest one. We groups
vertices of the same small graph partition together to obtain long
shared paths, such that the exploration cost can be greatly saved.

The second problem essentially concerns how to identify the
shared paths when vertices are grouped. As a matter of fact, such
shared paths can only be determined during the runtime. Some-
times, vertices that are close to each other may not share an single
edge to destinations at all. Therefore,, we only need to identify the
region or the boundary of shared paths to save the exploration cost.
Given a set of grouped vertices, denoted as X ′, we simply add a
virtual node xv to the graph to represent X ′. The trick is how we
decide l(xv).

LEMMA 5. Given a set of vertices X ′, a virtual vertex xv of
label l(xv)i = dMax{l(x′)i}−Min{l(x′)i}

2
e, where x′ ∈ X ′, guar-

antees ∀x′ ∈ X ′: 1) if |px′y| < |pxvy|, px′y ⊂ pxvy; 2) if
|px′y| > |pxvy|, pxvy ⊂ px′y .

PROOF. Consider the case when |px′y| < |pxvy|. Clearly, two
adjacent vertex’s label difference on every dimension is at most one,
where the label is a d-dimensional vector. Thus, the label of l(xv)
defined in the Lemma indicates the center of X ′, which reaches
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every vertex x′ in X ′ with minimum hops. Therefore, the path
pxvy must passes x′, implying px′y ⊂ pxvy . Similarly, the case
when |px′y| > |pxvy| can be easily verified.

By employing the path sharing, we could greatly save the con-
current exploration cost of Algorithm 5, as well as the space and
communication cost on Dxy , since the total number of such domi-
nant vertex set are reduced.

4.2 Probe-based Communication
A main bottleneck of Algorithm 5 is its all-to-one communica-

tion at the reduction part, which brings about a burst of data copying
over network. Instead of such a brute-force solution, we develop a
probe-based lookup strategy which could greatly save the overall
communication cost. As introduced in Section 3.1, each graph ver-
tex is associated with a set of independent hash functions, denoted
by H . Thus, we could use H to build up a bloom filter for the
element-in-set test, which is essential to our probe-based commu-
nication. To elaborate, instead of directly copying Dxy over net-
work (Line 5 in Algorithm 5), we first compute the bloom filter
of each Dxy for pxy , denoted as Fxy , which is a mf bits vec-
tor. Then we pass mf to threads examining other pairwise shortest
paths. In this way, each thread can check if any dominant vertex it
finds could also be dominant vertex on other paths. Although the
bloom filter may introduce false positive, it greatly reduces the size
of data to transfer for verification. Another benefit of using probe-
based communication is that most computation is local, such that
the centralized computing workload (Lines 5-11 in Algorithm 5)
could be reduced. Following the same context of Algorithm 5, we
show how the probe-based communication is employed to evaluate
a VSB query in Algorithm 6.

Algorithm 6: VSB query evaluation with probe-based comm.
Data: ,Q = 〈G,X, Y,R〉
Result: R

1 for x ∈ X, y ∈ Y do
2 Dxy ← ∅; Explore for pxy ;
3 Dxy ← Dxy + {u}, ∀u ∈ pxy and u`pxy ;
4 Fxy ← BloomFilter(Dxy, H); Broadcast(Fxy);
5 for u ∈ Dxy do
6 Push(u, q); /* q is a priority queue based on the

number of filters u hits */

7 while q 6= ∅ do
8 u← Pop(q);
9 if u is valid then

10 if @r ∈ R, r`u&&{R`}P ⊇ {u`}P then
11 R← R + {u};Break;

12 returnR;

In Algorithm 6, we eliminated the centralized computation. Al-
though R is a shared variable, a distributed lock can be employed
for synchronous updates. As the algorithm shows, it is easy to be
executed in parallel, e.g., each computing thread computes for each
pairwise shortest path. Apparently, the communication cost is much
reduced comparing to Algorithm 5, since only the bloom filter vec-
tor is transferred in the first place. The verification later on (Line 9)
transfers one vertex’s label at a time. More importantly, each thread
aborts as soon as it contributes a dominance vertex to R, or finds
out that a residing path is already in R. This early stop property
leads to a fast convergence of the final answer. It is worth point-
ing out that Algorithm 6 achieves the same approximation ratio on
AB(R) as Algorithm 5, as long as R greedily chooses a vertex u
of the largest |{u`}P | at each synchronous update. Comparing to
the path sharing technique, which only benefits when input vertices
tend to be close to each other, this probe-based solution is generic
for all kinds of workloads.

4.3 Degree-based Approximation
The above two optimization techniques, path sharing and probe-

based communication improve query processing efficiency by re-
ducing redundant data access and data copy over network. But nei-
ther of them helps return more accurate results. To improve the
efficacy of Algorithm 5, we develop an a (1-ε) approximation algo-
rithm, where ε∈(0,1) is a user specified parameter.

Recall that the approximation ratio of Algorithm 5 being 1
2

is
because for each path pxy we select a dominant vertex u, another
vertex v which contributes to almost 100% of shortest paths con-
necting x and y and does not dominated by u may not be selected.
Thus, to achieve the (1-ε) approximation ratio, we need to search
for such kind of vertex like v whenever a vertex u is adding to R.

Our method is to add a vertex filtering process to the generation
of Dxy for each pxy in Algorithm 5, which can be easily modified
to fit Algorithm 6 as well. For path pxy , to add u as a dominant
vertex to Dxy , we search for a vertex v that belongs to pxy and
takes up at least ε

1−ε fraction of shortest paths between pxy , and
add all such v to Dxy . To check if a vertex v fits the filtering cri-
teria, we need to estimate its betweenness based on the two-level
tree structure we introduced in Section 3.3. Let T denote the two-
level tree structure generated on-exploration of pxy . Thus, each
vertex in T is associated with a time step. We iteratively select the
vertices of the same time stamp with accumulative highest degrees,
e.g., vi=0,...,l with degree dgri=0,...,l accordingly, we report vi that
has dgri∑

j=0,...,l dgrj
≥ ε

1−ε , as well as vi’s ancestors in T . In this
way, we do not need to compute the exact betweenness for each
vertex in pxy . Since we always start from the vertex of the mini-
mal betweenness in pxy , the betweenness recurrence given in Eq.2
guarantees that our method is false negative free. Note that the time
stamp based degree ranking in our method takes O(|pxy|log|pxy|)
time, which does not become the dominate cost for Algorithms 5
and 6. Although it may populate the size of Dxy to exact pxy , the
space complexity of these two algorithms remains unchanged.

So far, we have present our solution for VSB query processing
with efficiency and efficacy guarantees. Three optimization tech-
niques introduced above are in fact orthogonal to each other, as they
improve the query evaluation performance from different perspec-
tives. Later on in the experiment section, we shall study how these
optimization techniques would affect the query processing perfor-
mance on different types of workloads.

5. EXPERIMENTS
Our experiment study mainly includes three parts: 1) how the

proposed guided graph exploration and betweenness ranking on-
exploration help VSB query processing; 2) how different query pro-
cessing algorithms work under different query workloads.

5.1 Setup
We build up the test bed using the Google Cloud platform, us-

ing 6 servers of the n1-highmem-8 type. Each server has 8 virtual
CPUs, 52GB memory and 1TB persistent disk, running Debian 7 of
Linux kernel 3.2.0-4-amd64. We choose GraphLab [31] to build the
prototype system, as it supports both BSP based graph computation
model and the message passing model. Our program is written in
C++ and compiled with gcc 4.7.2(switch O3 is on).

Table 1: General statistics of employed graph data sets
ID # of Nodes (Million) # of Edges (Million) Gdiam Size (GB)
A ∼428 ∼454 78 3.6
B ∼1,825 ∼65,219 5,328 869.2
C ∼33 ∼1,108 7 25.6
D 10,000 23,946 2,927 42.2
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Figure 7: Betweenness ranking on different workloads

Experimental Data Sets We employ four data sets of different
scales and topologies in the experiments, as briefly summarized in
Table 1. Data set A describes the web graph of the TREC 2009
Category B data set, which is the set of the first 50 million En-
glish pages collected in January and February 2009 by the Lan-
guage Technologies Institute at CMU. Data set B comes from the
WebGraph 2012 project [35], which is extracted from the Web cro-
pus released by the Common Crawl Foundation in August 2012.
Data set C is a crawled social graph from twitter [30]. Note that
we only employ the largest connected component of graph data B
and C, and make the graphs undirected. Synthetic data sets D is a
random graph generated with the igraph[14] package.
Query Workloads For each VSB query, we randomly select 10∼100
vertices as input X and Y . We generate three types of queries,
which essentially represent different kinds of workloads: 1) ∀x∈
X , l(x)i≤δ, ∀y∈Y , l(y)j≤δ, where i, j∈[1, d] are randomly se-
lected, i.e., both vertices in X and Y are close to each other, de-
noted as XLYL; 2) ∀x∈ X , l(x)i≤δ, where i∈[1, d] is randomly
selected, ∀y∈Y is randomly selected, denoted as XLYR; 3) both
X and Y are randomly generated from G, denoted as XRYR. We
would like to show that our solution works well for all kinds of
workloads, and the optimization techniques we proposed would be
very useful for certain kind of workload. We generate 100 VSB
queries for each type of workload, and evaluate the batch one by
one. We run every job batch with 3 cold-start and report the aver-
age execution time.
Evaluation Plan We first show our experiments on the graph pre-
processing part and validate the effectiveness of the two essential
building blocks proposed in Section 3. We compare our method
with GraphLab’s shortest path utility implementation and show the
differences w.r.t. time efficiency. Then we evaluate the effective-
ness and efficiency of Algorithms 5 and 6.

5.2 Preprocessing & Two Building Blocks
As presented in Section 3.1, we can select d landmarks using ei-

ther a deterministic or a random algorithm. δ is the crucial param-
eter to choose. Intuitively, the larger δ is, the number of vertices
covered by a single landmark gets larger, which leads to a smaller
d. Experiments also validate this point. In Table 2, we report the
time efficiency of graph preprocessing and the value of d accord-
ingly, as well as the total disk space cost after preprocessing.

Regarding time efficiency, we have two observations from the
results. First, by increasing δ, d drops more significantly if a de-
terministic algorithm is employed comparing to using a random al-
gorithm. For example, when δ increases from 16 to 32 in graph
B, d drops from 1429 to 879, which almost drops a half using the
deterministic algorithm. On the contrary, by using the random algo-
rithm, it only drops from 2574 to 1782. Second, although a random
algorithm always generates more partitions, it is still a winner w.r.t.
time efficiency. Meanwhile, as shown in Table 2, the extra space
cost of vertex labeling turns to be manageable even δ is set to a
small value. Although each vertex is presented with a d bytes vector

during query processing, the label vectors are initially compressed
and recovered only upon data access. The reported data sizes in
Table 2 are the ones with vertex label compression applied, as elab-
orated in Section 3.1.2. A straight forward observation is that if G
is power-law graph with largeGdiam, like graph B and D, smaller δ
promises better compression ratio. For example, the sizes of graph
B with δ set to 8 and 16 are very close. This property is guaranteed
by the characteristic of value based compression. Moreover, if the
data graph is extremely dense with a small diameter, like graph C,
the extra space cost on vertex labeling drops significantly when δ
increases, as the number of landmarks would be very limited.

Table 2: Graph preprocessing using different algorithms

ID d T(sec) Size(GB)
δ dm. rd. dm. rd. dm. rd.

A
4 64 98 146 39 33.2 57.7
8 36 78 129 32 22.4 41.3
16 8 42 89 27 8.2 23.6

B
8 2,231 3,029 549 227 4,216 4,248
16 1,429 2,574 531 189 4,094 4,225
32 879 1782 492 141 2,709 2,799

C
1 126 145 329 124 1,139 1,178
2 10 26 69.2 36.4 95.6 105.4
4 3 59 2.3 78.5 78.9 131.7

D
8 1,576 2,109 421 179 1,465 1,509
16 1,206 2,005 392 164 1,437 1,486
32 457 1,324 354 139 1,128 1,305

To validate the guided graph exploration and betweenness assess-
ing on-exploration, we randomly pick 100 pairs of vertices from
each graph and ask for pxy , and rank the betweenness of two ran-
dom vertices from pxy . As a comparison, we employ the GraphLab’s
shortest path utility implementation and the parallel betweenness
computing algorithm introduced in [4]. Due to the space limit, we
highlight our findings on graph B. Figure 7(a) shows the |pst| dis-
tribution of 100 random queries. Figure 7(b) compares the time
cost to rank two random vertices’s betweenness using parallel be-
tweenness computation and our on-exploration method. Clearly,
on-exploration betweenness ranking achieves significant time sav-
ing as it does not need to consider the entire graph and compute the
exact betweenness value.

Figure 8 shows how our methods, greedy (Algorithm 3) and
guided exploration (Algorithm 4), compare to the GraphLab’s short-
est path utility in pst evaluation under the same workload shown in
Figure 7(a). Figure 8(a) and 8(b) show the time and space cost
respectively. Space cost is the total size of data access on the dis-
tributed storage. Note that the queries of x axis are sorted in an as-
cending order of |pst|, and y axis is presented in logarithm scale. As
shown in Figure 8(a), when |pst| is small, the greedy method’s ex-
ecution time is only about half of the GraphLab’s method. The rea-
son is that Algorithm 3 terminates quickly with less vertex access.
With the increasing of |pst|, the greedy algorithm’s efficiency drops
and sometimes even performs worse than the GraphLab’s method.
Because when |pst| grows, it takes the greedy algorithm more itera-
tions to guess the correct |pst|. On the contrary, guided exploration
performs stable and achieves more time saving when |pst| grows.

To investigate how δ affects our algorithm, we present time cost
of greedy and guided exploration with different δ setting on the
same workload in Figure 8(c) and 8(d). Note that we normalize all
the time cost using GraphLab’s result, as it does not rely on the set-
ting of δ. Apparently, our algorithm achieves more speedup when δ
is smaller, which is reasonable as it promises better pruning power.
Another observation from the result is that, comparing to the guided
exploration, the greedy algorithm is more resistent to different δ. It
is because greedy algorithm uses vertex label pruning in a passive
way, while the guided exploration employs the pruning actively be-
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Figure 8: The speed up of evaluating pst queries

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 1  10  100  1000  10000

|
p
x
y
|

|X|*|Y|

(a) XLYL query distribution

 0

 5

 10

 15

 20

 25

 30

 1  10  100  1000  10000

|
p
x
y
|

|X|*|Y|

(b) XLYR query distribution

 0

 10

 20

 30

 40

 50

 60

 1  10  100  1000  10000

|
p
x
y
|

|X|*|Y|

(c) XRYR query distribution

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 0  10 20 30 40 50 60 70 80 90 100

T
i
m
e
 
(
s
e
c
)

Queries

P+PS

P

N+PS

N

(d) XLYL query time cost

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 0  10 20 30 40 50 60 70 80 90 100

T
i
m
e
 
(
s
e
c
)

Queries

P+PS

P

N+PS

N

(e) XLYR query time cost

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 0  10 20 30 40 50 60 70 80 90 100

T
i
m
e
 
(
s
e
c
)

Queries

P+PS

P

N+PS

N

(f) XRYR query time cost

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

A B C DN
o
r
m
a
l
i
z
e
d
 
E
v
a
l
u
a
t
i
o
n
 
M
a
k
e
s
p
a
n

Graph Data Set

N

N+PS

P

P+PS

(g) Q of XLYL workload

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

A B C DN
o
r
m
a
l
i
z
e
d
 
E
v
a
l
u
a
t
i
o
n
 
M
a
k
e
s
p
a
n

Graph Data Set

N

N+PS

P

P+PS

(h) Q of XLYR workload

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

A B C DN
o
r
m
a
l
i
z
e
d
 
E
v
a
l
u
a
t
i
o
n
 
M
a
k
e
s
p
a
n

Graph Data Set

N

N+PS

P

P+PS

(i) Q of XRYR workload

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

8 16 32N
o
r
m
a
l
i
z
e
d
 
E
v
a
l
u
a
t
i
o
n
 
M
a
k
e
s
p
a
n

delta

N

N+PS

P

P+PS

(j) δ & efficiency (Graph B)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 4N
o
r
m
a
l
i
z
e
d
 
E
v
a
l
u
a
t
i
o
n
 
M
a
k
e
s
p
a
n

delta

N

N+PS

P

P+PS

(k) δ & efficiency (Graph C)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

A B C DN
o
r
m
a
l
i
z
e
d
 
E
v
a
l
u
a
t
i
o
n
 
M
a
k
e
s
p
a
n

delta

RP

METIS

METIS+AV

(l) Compression & efficiency (Graph C)

Figure 9: (a)-(i) Different query workloads test; (j)-(k) Evaluation speedup using different δ (Graph B & C); (l) Compression v.s. efficiency

fore making a decision on the next hop. Clearly, as shown in Figure
8(d), when |pst| is large, the guided exploration is more sensitive
to the setting of δ. Although smaller δ works the best for the path
query, there is the greater extra space overhead to trade off.

5.3 VSB Query Evaluation
We evaluate our proposed solution from both the efficiency and

efficacy perspectives. We first set δ for the four data sets as 8, 32,
2 and 32 respectively to compare the effectiveness of our proposed
query processing solution.
Query Efficiency In Section 4.1, we propose a naive VSB query
processing solution (Algorithm 5) and two optimization techniques
to improve the time efficiency. To validate the proposed solution,
we report how the combination of optimization techniques serve the
query evaluation, particularly, on different query workloads. Due
to the space limit, we highlight our results on graph B in Figure
9. Figures 9(a) to 9(c) show the distribution of random queries we
generated, where queries are sorted according to their input size
(|X| × |Y | as x axis). Figures 9(d) to 9(f) show the time costs
for different query evaluation methods over different workloads,
where N stands for the naive algorithm, P stands for the probe-
based communication solution (Algorithm 6), PS stands for path
sharing. Apparently, if input vertices are close to each other, path
sharing would achieve great time saving, as shown in Figure 9(d).
On the contrary, when query inputs are randomly selected, as shown

in Figure 9(f), probe-based method usually performs better.
We report the normalized query processing makespan of different

methods on all data sets in Figures 9(g) to 9(i). We have made two
observations from the efficiency experiments. First, given the same
query workload, the underlying graph structure would greatly af-
fect algorithm performance. Take graphs A for example, it is much
more sparse than graph C. As shown in Figure 9(g), over the same
query workload, the best evaluation strategy for graph A is path
sharing while for graph C it is a combination of path sharing and
probe-based communication. Clearly, reducing network communi-
cation as much as possible for a dense network brings more benefits
than packing shared paths. Second, path sharing clearly helps a lot
when the vertices in X or Y are close to each other. For example,
for the XLYL workload, comparing to the naive algorithm, we can
obtain almost 5x speed up on graph A by applying path sharing.
On the contrary, the probe-based communication method performs
more stable on different workloads. One thing to notice is that com-
bining path sharing with probe-based solution does not double the
speedup. The reason is that path sharing reduces the concurrent
computing threads itself, but makes the computing workload of
each thread unbalanced. Note that in Algorithm 6, R is updated
with synchronization, which could easily suffer from unbalanced
current computing workloads.

Another critical concern is that how δ affects the query evalua-
tion performance. As the algorithms we proposed are based on the
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guided graph exploration method, therefore, we observe the sim-
ilar trend of efficiency improvement when δ decreases as shown
in Figure 8(d). We highlight our findings using the results from
graph B and C. For graph B, as shown in Figure 9(j), the path shar-
ing optimization method is closely bounded with the total number
of vertices to explore. Therefore, the probe-based method is es-
sential to the performance improvement. For graph C, as shown
in Figure 9(k), due to the density property, path sharing is desir-
able when δ is set to a proper value, like δ=2. When delta equals
to 1, there is not much optimization space left after a probe-based
method is employed, as the pruning power on vertex exploration is
sufficiently strong. On the contrary, when δ equals to 4, almost the
entire graph needs to be considered to extract the shared path, which
would result in severe performance decay. The hints we learn from
the results are that if the query workload is unknown, smaller δ is
preferred for fast query processing as long as the extra space cost is
manageable; the crucial performance optimization lies in reducing
the total number of vertices to access and compute; path sharing
does not help with the speedup if δ is too small or too large.

Another observation is that compression always helps. In Figure
9(l), we show how compression affects the overall query process-
ing efficiency. As elaborated in Section 3.1, we employ METIS
to partition graph and only store the adjusted value σ, denoted as
METIS+AV. Compared to random partition (RP), or METIS par-
tition only, METIS+AV achieves the best compression ratio, nor-
mally around 0.026. RP gives the worst compression ratio (around
0.17) since it hurts the locality of a vertex label values. Only METIS
could achieve a compression ratio of about 0.09. Clearly, for large
graphs, like B and D, better compression ratio brings about signif-
icant time saving, since the I/O operation is inevitable and usually
becomes the dominance cost.
Query Efficacy Other than the efficiency optimization to the naive
algorithm, we also present a degree-based vertex filtering process
to help improve the approximation ratio of Algorithm 5 from 0.5 to
(1-ε), where ε ∈ (0, 1). We verify the effectiveness of this method
over different graph data with random query workloads. Due to the
space limit, table 3 summarize our findings when different ε over
graph B with 3 random VSB queries. In the table, the second col-
umn is the accumulative betweenness of returned result R using
the algorithm 5, and T in the third column indicates its computa-
tion time. For the rest columns, we check how different ε would
affect the returned results, denoted as AB(R′) and the time cost to
pay. Apparently, when ε gets smaller, we can obtain a better result.
And the extra time cost is not that expensive, which validate our
claim that the degree-based vertex filtering processing would not
dominate the computation complexity.

Table 3: Improving the efficacy of VSB query processing
Q AB(R) T(sec) AB(R′) and Time

ε=0.5 T(sec) ε=0.25 T(sec) ε=0.125 T(sec)
1 5.75 2.32 6.25 3.29 7.0 5.28 7.0 5.88
2 21.25 93.46 24.92 126.7 26.24 159.27 26.24 172.45
3 8.45 9.28 8.45 12.49 8.45 13.52 8.87 23.47

6. RELATED WORK
Distributed Graph Processing Models & Systems State-of-art
distributed systems for general purpose graph processing like Trin-
ity [45] or GraphX [22], all support Pregel [34], a vertex-centric
computing model of proven scalability and flexibility. Since our
work is based on the native vertex-centric model, our implementa-
tion can directly serve as a plugin on these systems. Improvement
works over Pregel, like Pregelix [9], Blogel [47], are orthogonal to
our solution and can be applied to yield better overall performance.
Distance Based Query over Distributed Graph Employing land-
marks to approximate the shortest path distance is a widely adopted

technique[29][40][37]. The basic idea is to pre-compute the short-
est distances between all the nodes and selected landmarks, and
then apply the triangle inequality to help estimate the shortest path
distance. Work [40] investigates finding the optimal set of land-
marks. In particular, they target on answering the pairwise shortest
path distance query. They introduce the LandMark-Cover problem,
which is to find a minimum number of points such that given any
pair of vertices u and v, there exists at least one landmark resid-
ing on the shortest path from u to v. This problem is proven to
be closely related with the 2-hop labeling scheme [12]. Landmark
based methods do not aim to provide the exact distance. Instead,
they use a small number of landmarks to do estimation. Tao et al.
[46] introduce the k-skip shortest path, which is a natural substan-
tial of returning the exact shortest path. Intuitively, it reports a set of
vertices V that consecutively reside on a shortest path from s to t,
having every vertex on this path is at most k-hop away from at least
one vertex in V . Following up works, like graph simplification[44],
shortest path discovery over road network[18][48], employ similar
concepts to perform a distance preserving graph partition. The δ-
evenly coverage landmark selection defined in this work, however,
is orthogonal to the k-skip concept. Because shortest path is not
the substantial concern in our problem. We select landmarks to
serve online graph exploration. There is no sequence semantic of
our landmarks. In other words, k-skip returns more vertices re-
siding on the shortest path of two query points when k decreases.
On the contrast, given a smaller δ, the δ-evenly coverage serves
better in reducing redundant vertex access on exploration step by
step. Vertex labeling is another line of research to answer distance
queries. Gavoille et al. show that general graphs support an ex-
act distance labeling scheme with labels of O(n) bits [19]. Sev-
eral special graph families, including trees or graphs with bounded
tree-width, have distance labeling schemes with O(log2n) bit la-
bels [2]. However, it is infeasible to directly apply these theory
results to a large graph of billion nodes, as the space overhead of
labeling would be unaccepted. Our solution, on the other hand,
simply targets on vertex pruning using distance labels. And due to
the δ-evenly coverage landmark selection scheme, the locality of
vertices’ label vectors is well preserved. Therefore, a simple value
based compression could greatly help to reduce the overall space
cost on vertex labeling.
Parallel Betweenness Computation Parallel betweenness compu-
tation has long been established as a research problem. Early works
like [10][26][49][4] achieve excellent performance, but the size of
the input graph is very small or a big distributed cluster is used [10].
Subsequent work by Madduri et al. [32] improves the algorithm by
using successors instead of predecessors in the computation of the
DAG D, which produces a more efficient, locality-friendly algo-
rithm. Edmonds et al. [16] present an approach that targets on
the fine-grained parallelism in a distributed memory environment.
It initially employs a label-correcting single-source shortest-path
algorithm to compute the shortest path distances and predecessor
lists. Then, nodes’ successors are computed using the predeces-
sor lists. These algorithms compute the exact value of betweenness
centrality. To reduce the computational cost, a number of approxi-
mation algorithms have been proposed [3][7] [20]. All these works
assume that the graph structure is given in advance. On the contrast,
our solution is based on a betweenness ranking semantic, which is
computed along ad hoc graph exploration.

There is also a rich literature on the betweenness based analy-
sis in social network research, particularly in the field of commu-
nity detection [21][15] and information diffusion [36][24]. Girvan -
Newman algorithm [21] iteratively removes the edge of the highest
betweenness to compute communities. It re-calculates betweenness
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of all affected edges in each iteration. Work [5] explores the spar-
sity nature of social networks and achieves considerable improve-
ment over Brande’s algorithm. Instead of exacting betweenness
computing, Maiya et al. [33] propose online sampling algorithm to
approximate individual betweenness in a social network. Following
the same intuition, k-path centrality [1], defined on a k-hop random
walk semantic, is proposed to categorize nodes’ centrality rather
than to rank all the nodes w.r.t. the exact betweenness centrality. To
our best knowledge, we are the first to study the vertex set bonding
query over distributed graphs. Comparing to the community corre-
lation and information diffusion studies, which are commonly built
on various assumptions on graph traversing (or diffuse) models, we
define vertex set bonding as a generic optimization problem and
propose a complete solution framework. By replacing the bonding
metric with other path based centrality measurements, our solution
can be applied in various application contexts. It is worth point-
ing out that the two novel techniques, guided graph exploration and
betweenness ranking on-exploration could be directly applied as
fundamental building blocks for graph analysis in general purpose.

7. CONCLUSION
In this work, we formally define a Vertex Set Bonding query,

which returns a minimum set of vertices with the maximum im-
portance w.r.t total betweenness and shortest path reachability in
connecting two sets of vertices. With the development of two novel
techniques, guided graph exploration and betweenness ranking on
exploration, as well as several optimization techniques, we evaluate
VSB queries with both efficiency and efficacy guarantees. Exper-
iments over both real and synthetic large graphs on the Google’s
Cloud platform validate the effectiveness of our method.
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