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ABSTRACT
Data analytics has recently grown to include increasingly sophisti-
cated techniques, such as machine learning and advanced statistics.
Users frequently express these complex analytics tasks as workflows
of user-defined functions (UDFs) that specify each algorithmic step.
However, given typical hardware configurations and dataset sizes,
the core challenge of complex analytics is no longer sheer data
volume but rather the computation itself, and the next generation
of analytics frameworks must focus on optimizing for this compu-
tation bottleneck. While query compilation has gained widespread
popularity as a way to tackle the computation bottleneck for tradi-
tional SQL workloads, relatively little work addresses UDF-centric
workflows in the domain of complex analytics.

In this paper, we describe a novel architecture for automatically
compiling workflows of UDFs. We also propose several optimiza-
tions that consider properties of the data, UDFs, and hardware
together in order to generate different code on a case-by-case ba-
sis. To evaluate our approach, we implemented these techniques in
TUPLEWARE, a new high-performance distributed analytics system,
and our benchmarks show performance improvements of up to three
orders of magnitude compared to alternative systems.

1. INTRODUCTION
Motivation: The growing prevalence of big data across all indus-

tries and sciences is causing a profound shift in the nature and scope
of analytics. Increasingly complex computations, such as machine
learning (ML) and advanced statistics, are quickly becoming the
norm. Generally, users express these types of tasks as workflows
of user-defined functions (UDFs), where each UDF represents a
distinct step in the algorithm.

Current analytics frameworks that target UDF-centric workflows
(e.g., Hadoop [1], Spark [44]) are designed to meet the needs of giant
Internet companies; that is, they are built to process petabytes of data
in cloud deployments consisting of thousands of cheap commodity
machines. Yet non-tech companies like banks and retailers—or
even the typical data scientist—seldom operate deployments of that
size, instead preferring smaller clusters with more reliable hardware.
In fact, recent industry surveys reported that the median Hadoop
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cluster was fewer than 10 nodes, and over 65% of users operate
clusters smaller than 50 nodes [23, 29, 34].

Furthermore, the vast majority of users typically analyze relatively
small datasets. For instance, the average Cloudera customer rarely
works with datasets larger than a few terabytes in size [19], and
commonly analyzed behavioral data peaks at around 1TB [16]. Even
companies as large as Facebook, Microsoft, and Yahoo! frequently
perform ML tasks on datasets smaller than 100GB [37]. Rather, as
users strive to extract more value from their data, the computation
itself becomes the true problem.

Targeting complex analytics workloads on smaller clusters funda-
mentally changes the way we should design analytics tools. Most
current systems focus on the major challenges associated with mas-
sive datasets and large cloud deployments, where I/O is the primary
bottleneck and failures are common [20]. However, the next gen-
eration of analytics frameworks should optimize instead for the
computation bottleneck.

In order to better utilize the CPU, other work [26, 30] has ex-
plored techniques for compiling traditional SQL queries, but these
approaches fall short when applied to UDF workflows. Since the
properties of individual UDFs can directly impact compile-time
optimization, we argue that UDFs must exist at the core of the
optimization process and should no longer be treated as black boxes.

Contributions: This paper describes a novel architecture for the
automatic compilation of UDF workflows in the context of compute-
intensive, in-memory analytics. We propose a method for compiling
UDF-centric workflows, as well as several code generation optimiza-
tion heuristics that jointly consider properties of the data, UDFs,
and underlying hardware. The key idea of this work is to integrate
high-level query optimization techniques with low-level compiler
techniques in order to unlock a new breed of optimizations that were
previously impossible.

Our architecture leverages the LLVM [28] compiler framework
in a novel way to: (1) provide a language-agnostic frontend that
lets users choose from a wide variety of programming languages
with minimal overhead; and (2) allow our compilation process to
introspect UDFs and gather statistics used for applying low-level
optimizations. While prior work has independently investigated
LLVM for SQL query compilation [30, 42] and UDF introspection
for high-level workflow optimizations [15, 41], we know of no other
approach that combines these two ideas in order to optimize UDF
workflows at the code generation level.

To implement the proposed architecture, we developed TUPLE-
WARE, a new high-performance distributed analytics system. Our
benchmarks demonstrate that our novel techniques achieve orders-
of-magnitude performance improvements over alternative systems.
In summary, we make the following contributions:
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• We present a novel architecture that leverages LLVM for compil-
ing UDF-centric workflows into distributed programs.
• We propose several code generation optimizations that consider

properties of the data, UDFs, and underlying hardware together.
• We describe a programming model with explicit shared state and

semantics that enable low-level code generation optimizations.
• We implemented our techniques in TUPLEWARE, and our bench-

marks show speedups of up to three orders of magnitude over
other systems for common analytics tasks.

Outline: The remainder of the paper is organized as follows.
Section 2 provides a high-level overview of our novel architecture.
In Section 3, we describe the important aspects of the user frontend.
Section 4 explains our process for compiling UDF-centric work-
flows. In Section 5, we propose several code generation optimization
heuristics. Section 6 mentions some of the primary distributed ex-
ecution challenges. We then present our evaluation in Section 7,
discuss related work in Section 8, and finally conclude in Section 9.

2. OVERVIEW
Architecture: As shown in Figure 1, our proposed architecture

consists of three parts. The Frontend (Section 3) allows users to
define workflows of UDFs directly inside any LLVM-supported host
language using operators like map and reduce. These workflows are
translated to optimized, self-contained distributed programs during
the Compilation process (Section 4). Compiled workflows are then
executed automatically on a cluster during the Execution phase
(Section 6).

This paper primarily focuses on our novel process for compil-
ing UDF workflows. Although other systems [41, 15] introspect
UDFs to infer high-level semantics (e.g., whether a UDF performs
a selection) for applying rewrite rules, our approach goes a step
further by determining low-level characteristics (e.g., the approxi-
mate number of CPU cycles) to generate better code. Additionally,
systems exploring code generation either generate only glue code
to connect precompiled operators [24] or focus only on traditional
SQL queries [25, 18, 42].

Example: Figure 2 depicts the full lifecycle of a workflow. First,
the user composes the workflow on the client-side using operators
from our API to transform an object called a T-Set, which is similar
to a Resilient Distributed Dataset (RDD) in Spark. The example
workflow shown in the figure corresponds to k-means, an iterative
algorithm that groups instances into one of k clusters, which we
use as a running example throughout the paper. This workflow
constructs a T-Set from the data.csv file and transforms it using
the specified UDFs (e.g., distance, minimum). UDFs can be
authored in the host language either as a named function (shown in
the figure) or inline as an anonymous function.

To compute the result, the client sends a directed graph repre-
senting the workflow and the LLVM intermediate representation
(IR) for each UDF to the server. These pieces are then converted
into a distributed program during the Compilation process, which
consists of the (1) UDF Analyzer, (2) Optimizer, and (3) Linker. The
UDF Analyzer introspects each UDF by examining the LLVM IR
to gather statistics for predicting execution behavior. The Optimizer
translates the workflow graph into a distributed program by gener-
ating execution code with embedded references to the associated
UDFs. As shown in Figure 2, this execution code includes all control
flow (e.g., the inner for loop over a data block), communication
(e.g., the getBlock() data request mechanism), and synchroniza-
tion (e.g., the sync() function) components necessary to form a
self-contained distributed program. During code generation, the
Optimizer uses the UDF statistics to apply low-level optimizations
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Figure 1: An overview of our proposed architecture. The Fron-
tend allows users to compose UDF workflows in any LLVM-
supported language (top boxes). These workflows are then
translated to self-contained distributed programs during the
three-stage Compilation process. Finally, the Execution phase
deploys the distributed programs on a cluster, shown as 10
nodes (labeled boxes) each with four cores (circles inside the
boxes) that have specialized execution roles (GM, LM, E).

that specifically target the underlying hardware. The Linker then
merges the LLVM IR for the UDFs with the generated execution
code, and the distributed program is then deployed for execution on
the cluster.

3. FRONTEND
In many regards, our Frontend is similar to other recent frame-

works (e.g., Spark, Stratosphere [41], DryadLINQ [43]), where
users compose workflows on a data-parallel abstraction directly in-
side a host language. However, despite the importance of shared
state for complex analytics tasks, few frameworks treat shared state
as a fundamental component of their programming models. We
therefore make shared state explicit by extending the traditional
data-parallel abstraction to include global variables that are logi-
cally shared across all nodes in the cluster. We call the resulting
abstraction a T-Set.

DEFINITION 1 (T-SET). A T-Set is a pair (R,C), where R is
a relation, which is a set of n-tuples, and C is a Context, which is a
dictionary (i.e., set of key-value pairs) of shared state variables.

Users can chain together operators like map and reduce to define
workflows that transform a T-Set. We formally define an operator as
a second-order function that takes zero or more T-Sets as input and
produces a new T-Set as output by invoking an associated first-order
UDF. For example, a map operator returns a new T-Set by applying
the supplied UDF to each element of the input T-Set’s relation R.
Table 1 shows some of the most common operators in our API.

Although we incorporate the best features from other frameworks,
our Frontend distinguishes itself through (1) low-level optimizability,
(2) explicit shared state, and (3) an LLVM foundation.

3.1 Low-Level Optimizability
Our API includes many of the same operators offered by other

frameworks, but we impose several additional requirements that play
a crucial role in our Compilation process. In contrast to traditional
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ServerClient

C = getContext();
while (converge(C)) {
  while (hasBlock()) {
    blk = getBlock();
    for (i = 0; i < blk.size(); i++) {
      t0 = blk[i];
      t1 = distance(t0, C);
      t2 = minimum(t1);
      reassign(t2, C);
    }
  }
  recompute(C);
  sync();
}

   define i32 @distance(...) {
      ...
   }

1010101110101010010
1010100110101010011
0110010101101010100
1010101110101010011
0101110101011010110
1010001000110101011
...
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map
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reduce

loop

update

TSet ts = TSet("data.csv")
            .map(distance)
            .map(minimum)            
            .reduce(reassign)
            .update(recompute)
            .loop(converge)

WORKFLOW

LLVM IR

GENERATED CODE

EXECUTABLE

UDFS
def distance(t, C):
  dist[CENT] = {0}
  for (i = 0; i < CENT; i++):
    cent = C["k"][i]
    for (j = 0; j < ATTR; j++):
      d = cent[j] - t[j]
      dist[i] += d * d
    dist[i] = sqrt(dist[i])
  return dist

UDF

WORKFLOW GRAPH

Figure 2: The full lifecycle of a workflow.

Category Operator UDF Signature Optimizations

Apply
map(T )(λ) (t, C?)→ t′

Section 5.1flatmap(T )(λ) (t, C?)→ {t′}
filter(T )(λ) (t, C?)→ b

Aggregate reduce(T )(λ, k?) (t1, t2)→ t′
Section 5.2

(t, C)→ ()

Relational
selection(T )(λ) t→ b

Section 5.3join(T1, T2)(λ) (t1, t2)→ b

Control
loop(T )(λ) C → b

-update(T )(λ) C → ()

Table 1: A subset of the operators in our API, showing their
categories and UDF signatures. Operators take zero or more
T-Sets T as input and apply a UDF λ to produce a new T-Set as
output. The UDF signatures specify the arguments and return
types of each operator, with optional arguments denoted by the
? symbol. For example, the expected signature of a map UDF
is: (t, C?) → t′ where t is an input tuple, C? is an optional
Context, and t′ is an output tuple.

frameworks that do not perform code generation for UDF workflows,
our Optimizer leverages the nuances of the operator semantics to
generate different code on a case-by-case basis. Each of these subtle
yet important differences corresponds to an optimization heuristic
described in Section 5. As shown in Table 1, we divide operators
into four categories.

Apply: Apply operators invoke a UDF on every tuple in a T-Set’s
relation. Traditional MapReduce has a single map operator that
can return an arbitrary number of output tuples for each input tuple
(i.e., 0-to-N mapping). More recent frameworks already distinguish
between a more restrictive map operator for a strict 1-to-1 mapping
(i.e., the UDF takes one input tuple t and must return exactly one
output tuple t′), a flatmap operator for 1-to-(0:N) mappings, and a
filter operator for 1-to-(0:1) mappings. Unlike other frameworks that
do not compile UDF workflows, we leverage these more detailed
semantics to generate more efficient control flow code (Heuristic 1a).

As shown in Table 1, apply UDFs have read-only access to
an optionally provided Context C?. For example, the k-means
distance UDF (Figure 2) reads the current centroid values from
C["k"]. Since these UDFs have read-only access to the Context,
apply operators can execute safely in parallel without conflicts.

Aggregate: Aggregate operators perform a group-by computa-
tion on a T-Set’s relation. Like Spark, our reduce operator expects
a commutative and associative UDF (e.g., sum, count) of the form:

(t1, t2)→ t′ where input tuples t1 and t2 are combined to yield an
output tuple t′. However, unlike Spark, which operates implicitly on
RDDs of key-value pairs, we allow users to specify an explicit key
function k that defines the group-by semantics (i.e., k takes a tuple t
and returns its group-by key). Explicitly specifying a group-by key
function allows us to generate code that better utilizes the hardware
based on the characteristics of k (Heuristic 1b).

Table 1 also includes an alternative UDF signature for a reduce:
(t, C)→ () where t is an input tuple and C is the Context. Instead
of returning an output tuple t′, this alternative reduce UDF can
aggregate values by updating Context variables. Context aggrega-
tion variables are similar to Spark’s accumulator objects, but they
additionally (1) permit multiple keys; (2) can be read from within
the workflow; and (3) have different distributed update patterns
(discussed further in Section 3.2). By performing an aggregation
using Context variables when the result cardinality (i.e., the number
of distinct keys) is known a priori, we can generate more efficient
code that replaces expensive dictionary lookups with static memory
addresses at compile time (Heuristic 2).

Relational: Like other frameworks, our Frontend benefits from
including traditional SQL transformations. For example, a selection
expects a predicate UDF of the form: t→ bwhere t is an input tuple
and b is a Boolean value specifying whether t satisfies the predicate;
that is, the user defines a (potentially compound) predicate from the
set of operations {=, 6=, >,≥, <,≤} that returns true if t should
be selected and false otherwise. These semantics allow us to
dynamically generate different selection code that considers both
UDF complexity and selectivity (Heuristic 3).

Relational operators interact only with a T-Set’s relation and can
neither read nor update Context variables. This restriction avoids
dependencies that would otherwise prevent standard query optimiza-
tion techniques (e.g., predicate pushdown, join reordering). Note,
however, that operators such as join merge the keys of two Contexts
without changing their values, performing SQL-style disambigua-
tion of conflicting keys at runtime.

Control: In order to support iterative workflows, our API also
includes a loop operator that models a tail-recursive execution of
the workflow; that is, the entire workflow is repeatedly reevaluated
while the supplied loop continuation condition holds. For instance,
the convergeUDF from Figure 2 returns true until the centroids
have converged. This UDF has read-write access to Context vari-
ables for maintaining values across iterations (e.g., loop counters,
convergence criteria). By explicitly handling iterations as part of
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the workflow, we can perform cross-iteration optimizations (e.g.,
caching loop invariant data, leveraging data locality) that would be
impossible with iterations managed by an external driver program.

Finally, our API provides an update operator that executes in
a single thread to permit direct modification of Context variables.
The k-means example uses the update operator (recompute) to
calculate the new centroid values by computing the average from
the sum and count Context variables.

3.2 Explicit Shared State
Shared state is an essential component of complex analytics tasks,

but prior attempts to add distributed shared state to existing frame-
works restrict how and when UDFs can interact with global variables.
For example, Iterative Map-Reduce-Update [13] offers primitives
designed for iterative refinement algorithms and cannot model non-
convex optimization problems (e.g., neural networks, maximum
likelihood Gaussian mixtures), as stated in their paper. Spark also
provides several globally distributed primitives (e.g., accumula-
tors, broadcast variables), but these objects are read-only within a
workflow and cannot be used to represent shared state that changes
frequently (e.g., ML models).

We overcome these limitations by providing three different update
patterns for reduce UDFs that use Context aggregation variables:
(1) parallel (conflicting updates must be commutative and associa-
tive); (2) synchronous (exclusive locks prevent conflicting updates);
and (3) asynchronous (the algorithm must ensure correctness). For
example, an implementation of stochastic gradient descent can use
synchronous updates so that all changes to the shared model are
immediately visible to all workers, while an implementation of Hog-
wild! [33] could use asynchronous updates to improve performance.
This paper focuses only on optimizations for parallel updates.

Our programming model uses monads, which can be thought of
simply as “programmable semicolons,” to define the order in which
operators that access the shared state must be evaluated. More
formally, monads impose a happened-before relation [27] between
operators; that is, an operator O that modifies Context variables
referenced by another operator O′ must be fully evaluated prior to
evaluating O′. While interesting, the precise monadic formalisms
are not essential for the techniques discussed in this paper.

3.3 LLVM Foundation
As previously mentioned, our architecture leverages the LLVM

compiler framework to make our Frontend language-agnostic, al-
lowing users to compose workflows of UDFs in a variety of pro-
gramming languages (e.g., C/C++, Python, Julia, R) with minimal
overhead. Adding a new LLVM-supported language is as simple as
writing the necessary wrappers to implement our API. This approach
is in contrast to other frameworks that pay a high boundary crossing
penalty to support new languages (e.g., Spark must serialize objects
between Java and Python).

LLVM also enables UDF introspection (irrespective of host lan-
guage) to provide certain correctness guarantees at compile time
(e.g., if a selection UDF returns a Boolean value), though some
requirements are impossible to check (e.g., if a reduce UDF is com-
mutative and associative). Like other frameworks, we rely on the
user to provide a correct UDF in these undecidable cases. Further-
more, our Optimizer can leverage UDF statistics from the LLVM IR
to generate better code, which we describe in the following section.

4. COMPILATION
The main goal of our approach is to improve the performance

of compute-intensive, complex analytics tasks by compiling UDF-
centric workflows. We jointly consider characteristics of the data,

UDF Type Vectorizable Compute Time Load TimePredicted Actual
distance map yes 30 28 3.75
minimum map yes 36 38 7.5
reassign reduce no 16 24 5.62
recompute update no 30 26 0

Table 2: UDF statistics for the k-means algorithm.

UDFs, and underlying hardware in order to apply low-level optimiza-
tions on a case-by-case basis. This section outlines our Compilation
process, which generates a distributed program from a workflow of
UDFs. As shown in Figure 1, this process consists of three parts:
(1) UDF Analyzer, (2) Optimizer, and (3) Linker.

4.1 UDF Analyzer
Systems that treat UDFs as black boxes have difficulty making

informed decisions about how best to execute a given workflow. By
leveraging the LLVM framework, we can look inside UDFs to gather
statistics that help the Optimizer generate better code. The UDF
Analyzer examines the LLVM IR of each UDF to determine several
features, including vectorizability, computation cycle estimates, and
memory access time predictions. As an example, Table 2 shows the
UDF statistics for the k-means example from Section 2.

Vectorizability: Vectorizable UDFs can use single instruction
multiple data (SIMD) registers to achieve data level parallelism. For
instance, a 256-bit SIMD register on an Intel E5 processor can hold
8×32-bit floating-point values, offering a potential 8× speedup. We
can leverage the operator semantics from Section 3.1 to detect two
types of vectorizable UDFs: (1) 1-to-1 maps and (2) single-key
reduces (i.e., scalar aggregations). In the k-means example, only the
distance and minimum UDFs are vectorizable.

Compute Time: CPI measurements [3] provide cycles per in-
struction estimates for the given hardware. Adding together these
estimates yields a rough projection for total UDF compute time, but
runtime factors (e.g., instruction pipelining, out-of-order execution)
can make these values difficult to predict accurately. Furthermore,
the compute time for UDFs containing data-dependent control flow
code is impossible to predict; in these cases, we make a conserva-
tive estimate that assumes the fewest number of cycles. For most
UDFs, though, we find that our predictions typically differ from the
measured compute times by only a few cycles.

Load Time: Load time refers to the number of cycles necessary
to fetch UDF operands from memory. If the memory controller can
fetch UDF operands faster than the CPU can process them, then the
UDF is compute-bound; otherwise, the CPU becomes starved, and
the UDF is memory-bound. Load time is given by:

Load T ime =
Clock Speed×Operand Size

Bandwidth per Core
(1)

For example, the load time for the distance UDF as shown in
Table 2 with 32-bit floating-point (x, y) pairs using an Intel E5 pro-
cessor with a 2.8GHz clock speed and 5.97GB/s memory bandwidth
per core is calculated as follows: 3.75 cycles =

2.8GHz×(2×4B)
5.97GB/s

.

4.2 Optimizer
The key idea of this work is to integrate high-level query opti-

mization techniques with low-level compiler techniques in order
to apply new optimizations that were previously impossible. As
other work has shown [26], SQL query compilation can harness the
full potential of the underlying hardware, and we extend these tech-
niques by applying them to UDF-centric workflows. The Optimizer
translates a workflow into a distributed program by generating all
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of the necessary control flow, synchronization, and communication
code with embedded references to the UDFs, as shown in Figure 2.
While generating this code, our Optimizer can apply a broad range
of optimizations that occur on both a logical and physical level,
which we divide into three categories.

High-Level: We utilize well-known query optimization tech-
niques, including predicate pushdown and join reordering. Addi-
tionally, our purely functional programming model allows for the
integration of other traditional optimizations from the programming
language community. All high-level optimizations rely on metadata
and algebra semantics, information that is unavailable to compilers,
but are not particularly unique to our approach.

Low-Level: Unlike other systems that use interpreted execu-
tion models, Volcano-style iterators, or remote procedure calls, our
code generation approach eliminates much associated overhead by
compiling in these mechanisms. We also gain many compiler op-
timizations (e.g., inline expansion, SIMD vectorization) “for free”
by compiling workflows, but these optimizations occur at a much
lower level than DBMSs typically consider.

Combined: Some systems incorporate DBMS and compiler opti-
mizations separately, first performing algebraic transformations and
then independently generating code based upon a fixed strategy. On
the other hand, our approach combines an optimizable high-level
algebra and statistics gathered by the UDF Analyzer with the ability
to dynamically generate code, enabling optimizations that would be
impossible for either a DBMS or compiler alone. In particular, our
Optimizer considers (1) high-level algebra semantics, (2) metadata,
and (3) low-level UDF statistics together in order to generate dif-
ferent code on a case-by-case basis. We describe several of these
optimizations in Section 5.

4.3 Linker
After translating the workflow to a distributed program, the gen-

erated code has several embedded references to the supplied UDFs.
This code then needs to be merged with the LLVM IR for each
referenced UDF. The Linker performs the merging process, using
an LLVM pass to combine them. It is often beneficial to perform
inline expansion, and the Linker replaces call sites directly with
the UDF body, providing further performance improvements over
frameworks that require external function calls.

5. OPTIMIZATIONS
The most interesting and unique opportunities for optimizing a

UDF workflow fall into the third category described in Section 4.2,
which combines high-level query optimization techniques with low-
level compiler techniques to produce a new class of optimizations
that were previously impossible. This section describes a novel
optimization process that considers the data, UDFs, and underlying
hardware together in order to generate different code on a case-
by-case basis. As a first step towards exploring this new class of
optimizations, we propose heuristics for the following three sce-
narios: (1) program structure, (2) aggregation, and (3) selection.
While these heuristics do not represent an exhaustive list of all
optimizations that we perform, they apply to many common use
cases and contribute to the overall speedup over other systems in
our benchmarks (Section 7).

5.1 Program Structure
The first optimization we examine considers the most funda-

mental aspect of any code generation strategy, the overall program
structure, which refers to the organization of the generated control
flow code. This section describes two existing approaches to pro-
gram structure and then presents our first heuristic, which allows

our Optimizer to dynamically construct a hybrid program structure
based on low-level UDF characteristics. Then, we propose an ex-
tension to this heuristic in Section 5.2.1 specifically for group-by
aggregations.

5.1.1 Existing Strategies
Existing systems that compile queries rely on a static code gen-

eration strategy. These approaches advocate for a single dominant
program structure and generate the same code in all situations.

Pipeline: The pipeline [30] strategy (HyPer [24]) maximizes data
locality by performing as many sequential operations as possible per
tuple. Operations called pipeline breakers force the materialization
of intermediate results. For example, a reduce forces materialization
of an aggregation result, while consecutive maps can be pipelined.
The following pseudocode shows the pipeline approach to the k-
means example from Section 2.

data[N];
while (converge()) {

for (i = 0; i < N; i++) {
dist = distance(data[i]);
min = minimum(dist);
reassign(min);

}
recompute();

}

distance

minimum

reassign

recompute

The pipeline strategy has the major advantage of requiring only
a single pass through the data. Additionally, a tuple is likely to
remain in the CPU registers for the duration of processing, resulting
in excellent data locality.

Operator-at-a-time: In contrast, the operator-at-a-time strategy
(MonetDB [46] 1) performs a single operation at a time for all tuples.
This bulk processing approach maximizes instruction locality and
opportunities for SIMD vectorization. The pseudocode below shows
the operator-at-a-time approach to k-means.

data[N]; dist[N]; min[N];
while (converge()) {

for (i = 0; i < N; i++)
dist[i] = distance(data[i]);

for (i = 0; i < N; i++)
min[i] = minimum(dist[i]);

for (i = 0; i < N; i++)
reassign(min[i]);

recompute();
}

distance

minimum

reassign

recompute

However, the operator-at-a-time strategy requires materialization
of intermediate results between each operator, resulting in poor data
locality. A tiled variant (Vectorwise [47]) performs each operation
on a cache-resident subset of the data, thus reducing materialization
costs and saving memory bandwidth, but does not achieve the same
level of data locality as the pipeline strategy.

5.1.2 Hybrid Strategy
When considering UDF-centric workflows, neither the pipeline

nor operator-at-a-time approach is a dominant strategy. Since our
Compilation process can introspect UDFs, we propose a hybrid
strategy that dynamically combines the pipeline and operator-at-a-
time approaches based on low-level UDF statistics.

Our strategy first groups all operators into a single pipeline P
in order to maximize data locality. Next, for each operator O in
P , we leverage the UDF statistics gathered by the UDF Analyzer
(Section 4.1) in order to partition P into a set of vectorizable and
nonvectorizable sub-pipelines P ′. Intermediate results are material-
ized between sub-pipelines in cache-resident blocks to reduce the
amount of data transferred from memory to the CPU. Note that if the
1MonetDB does not fully compile queries; rather, the system pro-
duces assembly-like language (MAL) for execution by a VM.
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workflow contains no vectorizable UDFs, then the original single-
pipeline structure is preserved. By the end of the algorithm, all
sub-pipelines should be composed uniformly of either vectorizable
or nonvectorizable UDFs.

The only exception to this rule arises when a group of one or more
vectorizable UDFs appears at the beginning of a pipeline because
of the memory bandwidth bottleneck discussed in Section 4.1. If
the scalar version is already memory-bound, then the vectorizable
sub-pipeline should be merged with the adjacent nonvectorizable
sub-pipeline in order to benefit from data locality, since no additional
performance increase can be achieved with SIMD vectorization.

Consider again the k-means algorithm. Given the statistics pro-
vided by the UDF Analyzer (Table 2), we notice that the distance
and minimum UDFs are vectorizable because they (1) contain
no data-dependent control flow code and (2) have the appropriate
apply operator semantics discussed in Section 3.1 (i.e., they pro-
duce a strict 1-to-1 mapping). Therefore, these two UDFs can be
split into a separate sub-pipeline, but, since this sub-pipeline re-
sides at the beginning of the workflow, we must also ensure that
the computation is not memory-bound. In this case, we see that
Compute T ime > Load T ime, so this sub-pipeline is compute-
bound and should therefore be partitioned to yield the following
program structure.

data[N]; min[N];
while (converge()) {
for (i = 0; i < N; i++) {

dist = distance(data[i]);
min[i] = minimum(dist);

}
for (i = 0; i < N; i++)

reassign(min[i]);
recompute();

}

distance

minimum

reassign

recompute

The pseudocode shown above has the major advantage of being
able to vectorize the expensive distance and minimum UDFs
while also minimizing the amount of data materialized between
operators. Hence, we propose the following heuristic to summarize
our hybrid program structure strategy.

HEURISTIC 1a. An operator pipeline should always be parti-
tioned into vectorizable and nonvectorizable sub-pipelines, unless
the first operator is memory-bound.

Contribution: The competing pipeline and operator-at-a-time
strategies each use a static program structure pattern for compil-
ing traditional SQL queries. However, for complex analytics tasks,
UDF characteristics can shift the bottlenecks to favor one of these
strategies over the other. For instance, a memory-bound work-
flow containing many simple UDFs would benefit most from the
pipeline approach, whereas the operator-at-a-time approach is better
suited for compute-bound workflows with complex UDFs. Often, a
combination of these two strategies is optimal, and our approach in-
trospects UDFs to dynamically generate a hybrid program structure
that best leverages the underlying hardware.

5.2 Aggregation
As described in Section 3.1, a reduce allows users to perform an

aggregation in a workflow. Our Optimizer can dynamically generate
different code based upon high-level aggregate operator semantics
and low-level UDF features. In this section, we present heuristics
specific to aggregations.

5.2.1 Group-by
In order to aggregate values grouped by key, reduces normally

require a hash table to store keys and associated aggregates. Since
hash table lookups contain unpredictable memory accesses, reduce

UDFs cannot be vectorized. However, a group-by aggregation is
actually comprised of three distinct steps: (1) apply an explicit user-
defined key function k (Section 3.1); (2) compute the key’s hash
value using a hash function h; and (3) retrieve/update the associated
aggregate value. Since the first two steps have no dependencies,
the key/hash functions can be performed in parallel using SIMD
vectorization, followed by serial execution of the aggregate value
update, as shown below for a sum grouped by key.

data[N]; hash[TILE]; sum[M] = {0};
for (i = 0; i < N / TILE; i++) {

offset = i * TILE;
for (j = 0; j < TILE; j++) {

key = k(data[offset + j]);
hash[j] = h(key);

}
for (j = 0; j < TILE; j++)

sum[hash[j]] += data[offset + j];
}

The above pseudocode iterates over the data in cache-sized tiles.
The first inner loop applies the key function k and then the hash
function h, storing the hash values in a temporary array. The second
inner loop performs the hash table lookup using the precomputed
hash values and adds the data values to the corresponding sum.

Separating a group-by aggregation into two loops introduces the
additional overhead of materializing the computed hash values. In
many cases, compute-bound key/hash functions benefit greatly from
SIMD vectorization, outweighing this extra cost. However, very
simple memory-bound functions will receive no added benefit from
SIMD vectorization and should instead be pipelined.

The astute reader may notice that, similar to the example from
Section 5.1.2, a reduce grouped by key logically consists of two 1-
to-1 maps (i.e., the key/hash functions) followed by the aggregation.
We can then apply the algorithm from Heuristic 1a in order to
determine whether to partition the pipeline. Therefore, we propose
the following extension to the original heuristic.

HEURISTIC 1b. All group-by reduce operations should be de-
composed into two 1-to-1 map operations (the key/hash functions)
followed by the aggregation and then optimized using Heuristic 1a.

Contribution: The idea of vectorizing hash computations for
group-by aggregations is not new [36, 31]. Other work [38] explores
the use of SIMD vectorization for interacting with specialized data
structures like Bloom filters. However, our approach can dynami-
cally decide whether SIMD vectorization is beneficial because we
allow the user to explicitly provide a key function that our Compila-
tion process can then introspect to determine whether the key/hash
functions are compute-bound.

5.2.2 Context Variables
Recall that reduce UDFs can also perform aggregations by updat-

ing shared state Context variables (Section 3.2). Since the data types
and output cardinality (i.e., number of distinct keys) are known a
priori, our Optimizer can generate code that uses a form of distinct
value encoding at compile time to translate Context variable dictio-
nary lookups into static memory addresses. For example, since the
number of centroids is fixed up front in the k-means workflow (Sec-
tion 2), all lookups in the reassign UDF can be automatically
replaced at compile time with an offset into a one-dimensional array.
The pseudocode for the original version is shown below on the left,
with the optimized version on the right.

//original
assign = t1[ATTR];
for (i = 0; i < ATTR; i++)

c["sum"][assign][i] += t1[i];
c["count"][assign]++;

//optimized
assign = t1[ATTR];
offset = assign * (ATTR + 1);
for (i = 0; i < ATTR; i++)

c[offset + i] += t1[i];
c[offset + ATTR]++;
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Notice that in the optimized code, the Context variable lookups
c["sum"] and c["count"] have been automatically replaced
with the static memory locations at the specified offsets. Not only
do we avoid expensive dictionary lookups every time this UDF is
invoked, but we also improve cache line performance by flattening
the dictionary to a one-dimensional array. We therefore propose the
following heuristic.

HEURISTIC 2. All references to Context variables inside UDFs
should be replaced with static memory locations at compile time by
mapping distinct keys to physical address offsets.

Contribution: Aggregations grouped by key typically require
resizable dictionary structures (e.g., hash tables, binary trees) to
handle an arbitrary number of keys. Spark uses a standard hash
table to perform reduce operations, but the user can achieve better
performance in some simple cases with the aggregate operator
by manually mapping keys to array indices. On the other hand, our
API allows users to specify the output cardinality in advance with
the Context, and we can leverage this information to generate code
that avoids expensive dictionary lookups and automatically handles
the array index mapping.

5.3 Selection
Optimizing selections is a well-studied problem, but our approach

goes a step further by pairing code generation techniques with data
statistics to get better performance than either a traditional query
optimizer or compiler alone. In this section, we present a heuristic
for optimizing selections on the code generation level. We separately
investigate (1) predicate evaluation and (2) result allocation, and
we then propose a cost model that considers several parameters
(e.g., number of predicates, estimated selectivities) to dynamically
determine the best combination of strategies.

5.3.1 Predicate Evaluation
The initial step in performing a selection is to evaluate whether a

particular tuple satisfies the predicate. We first demonstrate existing
evaluation strategies and then describe a novel prepass strategy. For
now, all pseudocode examples assume a sufficiently large result
buffer, and we explore efficient result allocation strategies separately
in the following section.

Branch: The branch strategy is the most straightforward ap-
proach. For each input tuple, a conditional statement checks to see
whether that tuple satisfies the predicate. If the predicate is satisfied,
then the tuple is added to a result buffer; otherwise, the loop skips
the tuple and proceeds to the next tuple. The branch strategy is
shown below.

data[N]; result[M]; pos = 0;
for (i = 0; i < N; i++)
if (pred(data[i]))
result[pos++] = data[i];

This strategy performs well for both very low and high selectiv-
ities, when the CPU can perform effective branch prediction. For
intermediate selectivities (i.e., closer to 50%), though, branch mis-
prediction penalties have a severe negative impact on performance.

No-branch: The no-branch strategy [35] eliminates branch mis-
predictions by replacing the control dependency with a data depen-
dency. This approach maintains a pointer to the current location
in the result buffer that is incremented every time an input tuple
satisfies the predicate. If a tuple does not satisfy the predicate, then
the pointer is not incremented and the previous value is overwritten.
The no-branch strategy is shown below.

data[N]; result[M]; pos = 0;
for (i = 0; i < N; i++) {
result[pos] = data[i];
pos += pred(data[i]);

}

This strategy includes no conditional statements, which yields
better performance than the branch strategy for intermediate selec-
tivities by avoiding CPU branch mispredictions.

Prepass: We additionally propose a novel two-phase strategy
for selections that improves CPU utilization by performing the
predicate test and copy steps independently. Like the group-by
aggregations described in Section 5.2.1, predicate evaluation also
logically consists of two distinct steps: (1) testing if a tuple passes
the selection criteria (i.e., the branch strategy’s if conditional and
the no-branch strategy’s pos increment statement); and (2) copying
the tuple to the result buffer. Therefore, we can again decompose
predicate evaluation into a vectorizable 1-to-1 map followed by a
nonvectorizable, data-dependent operation. As shown below, this
strategy performs these two steps on cache-sized tiles.

data[N]; result[M]; bitmap[TILE]; pos = 0;
for (i = 0; i < N / TILE; i++) {

offset = i * TILE;
for (j = 0; j < TILE; j++)

bitmap[j] = pred(data[offset + j]);
for (j = 0; j < TILE; j++) {

result[pos] = data[offset + j];
pos += bitmap[j];

}
}

The first inner loop performs the predicate test and stores the
result in a bitmap, while the second inner loop copies tuples to the
result buffer that have passed the selection criteria using either the
no-branch (shown above) or the branch strategy. With this technique,
predicate evaluation can be partially vectorized because there are
no data dependencies in the testing step. Additionally, the resulting
code contains tighter loops, thus improving instruction locality.

5.3.2 Result Allocation
Result allocation is particularly difficult for selections, since the

output size is not known a priori. We consider three existing strate-
gies and then describe a novel result allocation technique.

Tuple-at-a-time: The most conservative approach to result allo-
cation is to allocate space for only a single output tuple each time an
input tuple satisfies the predicate. Tuple-at-a-time allocation mini-
mizes the amount of wasted space, but the overhead associated with
allocating in such small increments quickly becomes prohibitive for
even relatively small data sizes.

Max: The other extreme would assume a worst-case scenario
and allocate all possible necessary space, thereby paying a larger
allocation penalty once at the beginning to completely avoid result
bounds checking. This approach may work well for very high
selectivities but wastes a lot of space for low selectivity cases.

Block: The block allocation strategy is a compromise between
the tuple-at-a-time and max strategies. This approach incrementally
allocates space for blocks of tuples (e.g., 1024 tuples at a time) in
order to balance the required number of allocations and the amount
of wasted space.

Exact: All of the previously described allocation strategies make
blind decisions regarding result buffer allocation; that is, the max
strategy always assumes a selectivity of 100%, while the tuple-at-a-
time and block strategies need to decide whether each tuple satisfy-
ing the predicate necessitates a new result buffer allocation. There-
fore, we can adapt the prepass strategy described in Section 5.3.1 to
also maintain a simple counter when computing the bitmap values,
allowing us to generate code that only performs bounds checking if
the result buffer could overflow.

5.3.3 Cost Model
We propose a cost model in Equation 2 for choosing the optimal

combination of evaluation and result strategies given (1) data selec-
tivity, (2) number of predicates, and (3) number of tuple attributes.
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(2)

Symbol Description
e Evaluation strategy e ∈ {branch, no-branch}
r Result strategy r ∈ {max, exact, batch}
b Block size 1 ≤ b ≤ d
s Selectivity 0 < s < 1
m Wasted memory fraction 0 < m < 1
d Number of data elements
p Number of predicates
a Number of attributes
n SIMD parallelism

Table 3: Cost model notation.

Each term models the important features of the various strategies,
with a summary of notations shown in Table 3.

Every component of the cost model has an associated weight
(c1, ..., c5), which are constants representing the approximate num-
ber of cycles for a particular operation (e.g., branch misprediction,
comparison, data copy). These constants are architecture-dependent
and can be estimated a priori.

In the evaluation strategy component, the term following the
c1 constant (i.e., 1

2|s−0.5|+ε ) considers the cost of CPU branch
misprediction using the absolute distance of the data selectivity
from 50%. Conversely, since the no-branch strategy cannot perform
short-circuit evaluation, the term following the c2 constant models
the cost of evaluating all p predicates, while the term following the
c3 constant considers the cost of extra attribute copying that the
no-branch strategy performs for tuples not satisfying the selection
criteria.

In the result strategy component, the term containing the c4 con-
stant expresses the cost of allocating the necessary number of blocks
of size b for all attributes a, where the cost of memory allocation
scales with b (i.e., allocating a single large piece of memory is less
expensive than allocating the same amount of memory in multiple
smaller blocks). Lastly, the term following the c5 constant models
the cost of result bounds checking performed by each strategy.

The output of our cost model is a plan (e, r, b) representing the
optimal predicate evaluation strategy e, result allocation strategy r,
and block size b within the user-specified wasted memory fraction
m. We use this cost model to derive our final heuristic.

HEURISTIC 3. For all selection operations, choose the combi-
nation of evaluation strategy, result strategy, and block size that
minimizes the cost for the given parameters (Equation 2).

Contribution: We proposed a cost model that our Optimizer
uses to generate different code for selections on a case-by-case ba-
sis. Unlike other work [35, 38] that only examines the tradeoffs
between the branch and no-branch predicate evaluation strategies,
our approach introduces a novel prepass strategy that achieves better
performance through SIMD vectorization and tighter loops, and
we can perform these optimizations only by combining UDF in-
trospection with traditional DBMS techniques. Moreover, our cost
model additionally considers the impact of various result allocation
strategies and related optimizations, whereas existing approaches
always assume a sufficiently large result buffer. Our cost model can
also be easily extended to consider additional operations (e.g., map,
reduce) that might follow a selection in a workflow.

6. EXECUTION
While the intricacies of distributed workflow execution are im-

portant, they are beyond the scope of this paper. This section briefly
describes our approach to some of the main challenges.

Load Balancing: Our data request model is multitiered and pull-
based, allowing for automatic load balancing with minimal overhead.
We dedicate a single thread on a single node in the cluster as the
Global Manager (GM), which is responsible for global decisions
such as the coarse-grained partitioning of data across nodes and su-
pervising the current stage of the execution. In addition, we dedicate
one thread per node as a Local Manager (LM). The LM is responsi-
ble for fine-grained management of the local shared memory, as well
as transferring data between nodes. The LM also spawns new Ex-
ecutor (E) threads for running compiled workflows. These threads
request data in small cache-sized blocks from the LM, and each LM
in turn requests larger blocks of data from the GM, possibly from
remote nodes. All remote data requests occur asynchronously, and
blocks are requested in advance to mask network transfer latency.

Memory Management: The LM is responsible for tracking all
active T-Sets and performing garbage collection when necessary.
UDFs that allocate their own memory, though, are not managed by
the LM’s garbage collector. TUPLEWARE also avoids unnecessary
object creations and data copying (e.g., performing updates in-place
if the data is not required in subsequent computations). Additionally,
the LM can reorganize and compact the data while idle, potentially
even performing on-the-fly compression.

Fault Tolerance: TUPLEWARE further improves performance by
forgoing traditional fault tolerance mechanisms for short-lived jobs,
where the probability of a failure is low and results are easy to fully
recompute. Extremely long-running jobs on the order of hours or
days, though, might benefit from intermediate result recoverability.
In these cases, TUPLEWARE can perform simple k-safe checkpoint
replication. By compiling workflows to distributed programs, TU-
PLEWARE can optionally generate these checkpointing mechanisms
in individual cases based on estimates of the expected runtime and
likelihood of a hardware failure.

7. EVALUATION
This section evaluates the techniques described in this paper.

First, we compare our TUPLEWARE prototype in a distributed set-
ting against Hadoop and Spark (Section 7.1) and on a single machine
against HyPer, MonetDB, and Spark (Section 7.2). We then provide
a detailed performance breakdown (Section 7.3) to measure the
impact of each optimization from Section 5 in realistic scenarios,
further isolating their effects in detailed microbenchmarks (Sec-
tion 7.4). We conducted all experiments on Amazon EC2 using
either: (1) c3.8xlarge instances with Intel E5-2680v2 proces-
sors (10 cores, 25MB cache), 60GB RAM, 2× 320GB SSDs, and
10 Gigabit*4 Ethernet; or (2) m3.xlarge instances with 4 vCPUs,
15GB RAM, and 2× 40GB SSDs.

7.1 Distributed Benchmarks
We compared TUPLEWARE against two prominent distributed

analytics frameworks (Hadoop 2.4.0 and Spark 1.1.0) on a (1) small
high-end cluster of 10×c3.8xlarge instances and (2) large com-
modity cluster of 100×m3.xlarge instances.
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Algorithm
10×c3.8xlarge 100×m3.xlarge

Hadoop Spark TUPLEWARE Hadoop Spark TUPLEWARE
1GB 10GB 100GB 1GB 10GB 100GB 1GB 10GB 100GB 1GB 10GB 100GB 1GB 10GB 100GB 1GB 10GB 100GB

kmeans 1621 5023 36818 4.41 31.3 614 0.451 3.11 29.6 1439 4879 40188 5.89 30.5 274 0.998 4.37 28.9
pagerank 1438 2666 7019 56.6 119 1076 17.1 35.2 102 1456 2623 7290 89.7 183 1719 20.3 31.9 94.2

logreg 1197 1865 6201 2.08 2.45 6.21 0.125 0.431 2.79 1180 1769 6107 3.19 3.71 8.08 0.632 1.34 2.48
bayes 5.18 5.27 6.03 0.532 0.628 0.815 0.047 0.149 0.485 5.29 5.41 5.77 0.603 0.759 1.19 0.184 0.317 0.575

Table 4: Distributed benchmark runtimes (seconds).

7.1.1 Workloads and Data
We implemented a version of four common ML tasks for each

system without using any specialized libraries (e.g., Mahout [4],
MLlib [6], BLAS [2]), as we wanted to evaluate the performance of
the core frameworks. We used synthetic datasets of 1GB, 10GB, and
100GB in order to test across a range of data characteristics (e.g.,
size, dimensionality, skew). Our results report the total runtime of
each algorithm after the input data has been loaded into memory and
parsed, with the caches warmed up 2. For all iterative algorithms,
we always perform exactly 20 iterations.

K-means: As described in Section 2, k-means is a clustering
algorithm that iteratively partitions a dataset into k clusters. Our test
datasets were generated from four randomly selected centroids.

PageRank: PageRank is an iterative link analysis algorithm that
assigns a weighted rank to each page in a web graph to measure its
relative significance. Our test dataset was generated with 1 million
pages and a normal distribution of links.

Logistic Regression: Logistic regression aims to find a hyper-
plane that best separates two classes. Our implementation uses batch
gradient descent to classify generated data with 1024 features.

Naive Bayes: A naive Bayes classifier is a conditional model that
uses feature independence assumptions to predict class labels. Our
generated dataset had 1024 features, each with 10 possible values.

7.1.2 Discussion
As shown in Table 4, TUPLEWARE outperforms Hadoop by up

to three orders of magnitude and Spark by up to two orders of
magnitude for the tested ML tasks. In general, we find that the
absolute runtimes are generally lower for the 100-node cluster due
to the larger number of cores (400 vCPUs vs. 320 vCPUs) and higher
aggregate memory bandwidth than the 10-node cluster, although the
distributed coordination costs for more machines impose a larger,
constant overhead most noticeable in the small 1GB experiments.

Hadoop incurs substantial I/O overhead from materializing in-
termediate results to disk between iterations. On the other hand,
TUPLEWARE caches intermediate results in memory and performs
hardware-level optimizations to improve CPU efficiency. For these
reasons, we measure the greatest speedups over Hadoop on the iter-
ative tasks (i.e., k-means, PageRank, logistic regression), whereas
the performance gap for naive Bayes is much smaller.

Spark also outperforms Hadoop for iterative tasks by keeping the
data memory-resident. Additionally, Spark offers a richer API that
allows the runtime to pipeline operators, improving data locality.
However, TUPLEWARE achieves additional speedups over Spark by
compiling workflows into distributed programs (Section 4) and em-
ploying low-level code generation optimizations (Section 5). These
optimizations are most beneficial in CPU-intensive tasks (e.g., k-
means) because they allow TUPLEWARE to more efficiently use the
available hardware resources. For instance, Spark shows particularly
poor performance in the 100GB k-means case because the default
internal data representation exceeds the aggregate 600GB memory.
Other tasks (e.g., logistic regression, naive Bayes) operate close to

2Hadoop is disk-based, so the cache cannot be warmed up.

Algorithm 1×c3.8xlarge
Spark HyPer MonetDB TUPLEWARE

kmeans 6.34 2440 8639 0.615
pagerank 212 1220 272 19.5

logreg 1.96 118 153 0.259
bayes 0.107 6.34 2.11 0.042
tpch1 3.29 0.127 1.71 0.341
tpch4 9.69 0.388 0.382 1.42
tpch6 0.971 0.048 0.128 0.105

Table 5: Single node benchmark runtimes (seconds).

the memory bandwidth limit, but TUPLEWARE’s code generation
techniques can still show improvements over Spark’s approach.

Finally, we noticed that the more network-bound tasks (e.g.,
PageRank) show absolute runtimes for both Spark and TUPLEWARE
that tend to increase sublinearly compared to data size. We observed
this effect because the PageRank workloads used an increasing
number of page links but a fixed number of total distinct pages
(1 million), and the ranks for those pages needed to be redistributed
to all workers in the cluster on every iteration. For algorithms like
PageRank, TUPLEWARE’s Context variables are highly efficient for
representing an ML model that needs to be iteratively redistributed.

7.2 Single Node Benchmarks
We also compared TUPLEWARE on a single c3.8xlarge in-

stance to a DBMS that uses query compilation (HyPer), a column-
store (MonetDB 5), and Spark. As mentioned in Section 5.1, HyPer
compiles SQL queries using the pipeline strategy, whereas MonetDB
implements the operator-at-a-time strategy.

7.2.1 Workloads and Data
In addition to the four previously described ML tasks, we also

included three TPC-H queries (Q1, Q4, Q6). Since the scale is
smaller, we wanted to evaluate the performance of the ML tasks
using real-world datasets. For the DBMSs, we implemented the ML
algorithms in SQL without UDFs, and all reported runtimes exclude
compilation time.

UK Crime: We ran k-means on a 240MB dataset [8] containing
GPS coordinates of crimes in the UK over the past five years.

Wikipedia Web Graph: We ran PageRank on a randomly sam-
pled 1GB subset of Wikipedia’s complete dump of articles, contain-
ing about 6 million pages and 130 million links [9].

Million Song Dataset: We used a randomly sampled 1GB subset
of the Million Song Dataset [12] containing 90 audio features and
the release year for each song. Logistic regression and naive Bayes
were used to predict each song’s release year.

TPC-H: TPC-H is a popular OLAP benchmark that contains BI
queries. Even though the focus of this paper is optimizing for UDF-
centric workflows (e.g., ML), we wanted to show that some of the
optimization techniques we developed also apply to more traditional
SQL analytics queries. We implemented three TPC-H queries (Q1,
Q4, Q6) in TUPLEWARE and compared the performance to HyPer,
MonetDB, and SparkSQL using a scale factor of 10. We selected
these three queries because they do not focus on join optimizations,
which we have not explored in this paper.
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Figure 3: A performance breakdown with percentage speedups
achieved by TUPLEWARE over Spark from Section 7.2.

7.2.2 Discussion
As shown in Table 5, TUPLEWARE outperforms Spark, HyPer,

and MonetDB for all ML tasks. In particular, HyPer and MonetDB
both perform poorly on the ML workloads because they are not
designed to express or optimize complex, iterative UDF workflows.
On the other hand, the DBMSs can execute the TPC-H queries very
efficiently by applying well-known OLAP optimization techniques,
including indexing, sorting, and columnar compression, all of which
TUPLEWARE does not currently implement. However, by tuning the
level of parallelism (i.e., number of threads) to optimally saturate
memory bandwidth, TUPLEWARE can achieve better performance
than both HyPer and MonetDB on Q6, which is a simple scalar ag-
gregation, but we chose instead to match Spark’s level of parallelism
in order to ensure a fair comparison for the performance breakdown
(Section 7.3).

Spark similarly outperforms the DBMSs for the ML tasks, but
SparkSQL is slower than all other systems for the TPC-H queries.
Although Spark can handle UDF workflows better than the DBMSs,
our previously described code generation techniques and optimiza-
tions enable TUPLEWARE to achieve about an order-of-magnitude
speedup over Spark for all workloads. We further explore the source
of these speedups in the following section.

7.3 Performance Breakdown
Since Spark is the closest in spirit to TUPLEWARE, we provide a

detailed breakdown that highlights the impact of different compo-
nents on overall workflow runtime. We conducted all breakdown
experiments on a single c3.8xlarge instance to exclude factors
that impact distributed performance (e.g., network object serializa-
tion). Figure 3 shows the isolated percentage contribution of each
component to the total speedup of TUPLEWARE over Spark for the
single node benchmarks from the previous section shown in Table 5.
To derive the absolute time saved by a particular optimization, one
can take the percentage from Figure 3 and multiply this value by
Spark’s runtime in Table 5 (e.g., Heuristic 1 saves approximately
15%× 6.34s = 0.951s).

Code Generation: In contrast to Spark’s JVM-based implemen-
tation that uses polymorphic iterators, TUPLEWARE directly gen-
erates LLVM code for workflow execution. Code generation pro-
vides substantial speedups for compute-intensive UDF workflows
by avoiding many sources of runtime overhead associated with high-
level abstractions, including dynamic dispatch of function calls,

object creation penalties, and unnecessary loop bounds checking.
As shown in Figure 3, the performance impact of code generation
is most noticeable in workflows containing tight loops or complex
instructions (e.g., sqrt in k-means). These speedups represent the
baseline performance improvements that can be achieved by apply-
ing our techniques to generate code that explicitly manages memory,
resolves polymorphic function calls at compile time, and performs
type specialization, among other advantages. We measured each
of these components by comparing against a baseline of generated
code to isolate the various inefficiencies introduced by high-level
abstractions like Java and iterators.

Compiler: By generating code, TUPLEWARE can also leverage a
wide variety of modern compiler optimizations “for free,” including
inline expansion and SIMD vectorization. Inline expansion particu-
larly benefits workflows comprised of many UDFs (e.g., k-means,
all TPC-H queries) by eliminating extra instructions associated with
external function calls and minimizing register spilling. On the other
hand, SIMD vectorization can improve the performance of UDFs
that use vectorizable loops internally. For example, the compiler
can automatically vectorize the for loop used to compute the dot
product for each data element in logistic regression, yielding a sub-
stantial performance improvement for this task. We evaluated the
impact of this component by comparing runtime performance of
the generated code to a baseline that used compiler flags to disable
individual optimizations.

Optimizations: All of the heuristics described in Section 5 com-
bine high-level semantic information about the workflow with low-
level UDF statistics gathered by introspecting LLVM IR in order to
further improve the performance of the generated code. As shown
in Figure 3, these optimizations offer additional speedups targeted
to characteristics of individual workloads. For example, Heuris-
tic 1 (H1) selects a hybrid program structure to alleviate the CPU
bottlenecks in several workflows, which substantially outperforms
Spark’s static pipeline strategy in these cases. Similarly, the Context
variable optimizations from Heuristic 2 (H2) help the most in work-
flows with aggregate values that are frequently updated in a random
order. Finally, for workflows containing selections (i.e., the TPC-H
queries), Heuristic 3 (H3) allows TUPLEWARE to generate more
efficient code by also considering data selectivities. We evaluated
each individual heuristic by comparing the optimized generated
code to a baseline version that does not apply that heuristic.

Other: The remaining speedups in each workload can be at-
tributed to various factors, including scheduling overhead in Spark,
garbage collection pauses, and intangible engineering differences.
In some workloads (e.g., PageRank, logistic regression), the ob-
served speedups are explained almost entirely by the application of
our workflow compilation techniques (Section 4). However, the per-
formance improvements in other workloads are much more difficult
to quantify. In particular, TUPLEWARE’s speedup over SparkSQL
in the TPC-H queries is less straightforward, since inefficient data
structure implementations or suboptimal plan selection for complex
SQL queries can have a significant performance impact.

7.4 Microbenchmarks
As previously described, our proposed heuristics (Section 5) use

information about the workflow, data, and UDFs in order to generate
better code. In this section, we use a series of microbenchmarks
to study the benefits of each heuristic. All microbenchmarks were
implemented in C++, compiled with Clang 3.4, and run on a single
c3.8xlarge instance.

Heuristic 1a: We compared our hybrid strategy to the pipeline
and operator-at-a-time strategies using the previously described k-
means task. We tested each strategy with varying data sizes and
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Figure 4: Heuristic microbenchmarks.

show the results in Figure 4a. The pipeline strategy provides excel-
lent data locality but prohibits any SIMD vectorization due to the
fact that the reassign UDF cannot be vectorized. Conversely, the
operator-at-a-time strategy benefits greatly from bulk processing but
fails to consider data locality. Using this approach, the distance
and minimum UDFs can be vectorized separately, but materializ-
ing intermediate results between each operator incurs significant
overhead. Our hybrid strategy outperforms both existing strategies
by taking advantage of SIMD vectorization when possible while
also pipelining consecutive vectorizable operations for better data
locality, achieving a 2-5× speedup.

Heuristic 1b: We compared standard scalar hashing to our vec-
torized hashing approach by performing a sum grouped by key on
512MB of data. We varied the number of distinct, uniformly dis-
tributed keys and used a simple hash function (mod10). Figure 4b
shows a 20% performance increase in this simple case for vector-
ized hashing. However, using a more complex hash function would
achieve greater speedups with SIMD vectorization.

Heuristic 2: We compared our Context variable implementation
to a standard hash table in order to compute a count grouped by 10
distinct keys with varying data sizes. Figure 4c shows that Context
variables can improve performance by as much as 16×.

Heuristic 3: In order to evaluate our cost model, we conducted
an extensive series of microbenchmarks that test all strategies across
a range of three parameters: (1) minimum predicate selectivity,
(2) total number of predicates, and (3) number of tuple attributes.
We show the results of these experiments in Figure 4d, which we
limit to only the most salient cases. Each row of graphs represents
different numbers of predicates and tuple attributes, and each col-
umn corresponds to a result allocation strategy (Section 5.3.2). For

each graph, we show all possible predicate evaluation strategies
(Section 5.3.1). We measure the total runtime on the y-axis for the
varying selectivities shown on the x-axis. In all tested cases, our
cost model (Section 5.3.3) correctly chose the strategy combination
with the lowest runtime.

8. RELATED WORK
Programming Model: Numerous extensions have been pro-

posed to support iteration and shared state within MapReduce [14,
21, 10], and some projects (e.g., SystemML [22]) go a step further
by providing a high-level language that is translated into MapRe-
duce tasks. Conversely, TUPLEWARE natively integrates iterations
and shared state to support this functionality without sacrificing
low-level optimization potential.

DryadLINQ [43] is similar in spirit to TUPLEWARE’s frontend
and allows users to perform relational transformations directly
in any .NET host language. Compared to TUPLEWARE, though,
DryadLINQ cannot easily express updates to shared state and re-
quires an external driver program for iterative queries, which pre-
cludes any cross-iteration optimizations.

Scope [17] provides a declarative scripting language that is trans-
lated into distributed programs for deployment in a cluster. How-
ever, Scope primarily focuses on SQL-like queries against massive
datasets rather than supporting complex analytics workflows.

TUPLEWARE also has commonalities with the programming mod-
els proposed by Spark [44] and Stratosphere [41]. These systems
have taken steps in the right direction by providing richer APIs
that can supply an optimizer with additional information about the
workflow, permitting high-level workflow optimization. In addition
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to these more traditional techniques, TUPLEWARE’s algebra is de-
signed specifically to enable low-level optimizations that target the
underlying hardware and efficiently support distributed shared state.

Code Generation: Code generation for query evaluation was
proposed as early as System R [11], but this technique has recently
gained popularity as a means to improve query performance for
in-memory DBMSs [32, 26]. Both HyPer [24] and Vectorwise [47]
propose different optimization strategies for query compilation, but
these systems focus on SQL and do not optimize for UDFs. LegoB-
ase [25] includes a query engine written in Scala that generates
specialized C code and allows for continuous optimization, but
LegoBase also concentrates on SQL and does not consider UDFs.

DryadLINQ compiles user-defined workflows using the .NET
framework but applies only traditional high-level optimizations.
Similarly, Tenzing [18] and Impala [42] are SQL compilation en-
gines that also focus on simple queries over large datasets.

OptiML [39] offers a Scala-embedded, domain-specific language
used to generate execution code that targets specialized hardware
(e.g., GPUs) on a single machine. On the other hand, TUPLEWARE
provides a general, language-agnostic frontend and compiles UDF
workflows into LLVM-based distributed programs for deployment
in a cluster.

Single Node Frameworks: Phoenix++ [40] and BID Data
Suite [16] are high performance frameworks that target complex
analytics, but they cannot scale to multiple nodes or beyond small
datasets. Many scientific computing languages (e.g., R [7], Mat-
lab [5]) have these same limitations. More specialized frameworks
(e.g., Hogwild! [33], DimmWitted [45]) provide optimized imple-
mentations of specific algorithms on a single node, whereas TUPLE-
WARE is intended for general workflows in a distributed setting.

9. CONCLUSION
Complex analytics tasks have become commonplace for a wide

variety of users. In this paper, we described a novel architecture for
compiling UDF-centric workflows, and we believe that this work
opens the door for an entire new breed of optimizations that consider
data statistics, UDF characteristics, and the underlying hardware
to better optimize generated code. Our experiments demonstrated
that our TUPLEWARE prototype can achieve orders-of-magnitude
speedups over alternative systems and show that the proposed heuris-
tics can further improve performance for complex analytics tasks.
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