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ABSTRACT

In-place radix sort is a popular distribution-based sorting
algorithm for short numeric or string keys due to its linear
run-time and constant memory complexity. However, effi-
cient parallelization of in-place radix sort is very challeng-
ing for two reasons. First, the initial phase of permuting
elements into buckets suffers read-write dependency inher-
ent in its in-place nature. Secondly, load balancing of the
recursive application of the algorithm to the resulting buck-
ets is difficult when the buckets are of very different sizes,
which happens for skewed distributions of the input data.
In this paper, we present a novel parallel in-place radix sort
algorithm, PARADIS, which addresses both problems: a)
“speculative permutation” solves the first problem by as-
signing multiple non-continuous array stripes to each pro-
cessor. The resulting shared-nothing scheme achieves full
parallelization. Since our speculative permutation is not
complete, it is followed by a “repair” phase, which can again
be done in parallel without any data sharing among the pro-
cessors. b) “distribution-adaptive load balancing” solves the
second problem. We dynamically allocate processors in the
context of radix sort, so as to minimize the overall comple-
tion time. Our experimental results show that PARADIS
offers excellent performance/scalability on a wide range of
input data sets.

1. INTRODUCTION
Due to aggressive CMOS technology scaling, computing

platforms have been evolving towards multi/many-core ar-
chitectures, where a number of cores are connected to in-
creasingly larger and faster hierarchical memory systems [34].
On the other hand, due to large amounts of information gen-
erated by mobile devices, wireless sensors, and others, the
world’s per-capita demand for information storage has been
doubling nearly every 40 months since the 1980s [12].
Such trends in data volume and computing systems moti-

vate large body of research on sorting, one of the most fun-
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damental algorithmic kernels in data management. Various
methods and approaches to speeding up sorting have been
proposed including external/internal sorting, data-specific,
or hardware-specific sorting [6,7,19,22,24,28]. Among them,
in-memory sorting, where performance-critical workloads re-
side in DRAM rather than disk, has been of great inter-
est. This is due to the poor latency and bandwidth of disk
and the emergence of low-cost and high-density memory de-
vices [9, 19,23,26].

Radix sort can be one of the best suited sorting kernels for
many in-memory data analytics due to its simplicity and effi-
ciency [1,3,5,16,25,29]. Especially in-place radix sort, which
performs sorting without extra memory overhead, is highly
desirable for in-memory operation [21] for two reasons: a)
the large memory footprint of in-memory databases calls for
memory-efficient sorting, b) in-place radix sort offers higher
performance with significantly fewer cache misses and page
faults than approaches requiring extra memory. Details on
conventional radix sort are further discussed in Section 4.

Parallelizing in-place radix sort, however, is particularly
challenging due to read-write dependency inherent in the
in-place nature [25]. While many studies have proposed so-
lutions, they either parallelize the non-critical preparation
step only (histogram and partitioning) like Fig. 1 (a), or re-
quire an additional temporary/auxiliary array thus increas-
ing the memory footprint like Fig. 1 (b). We are not aware
of any prior research on fully parallel in-place radix sort.

In this work, we present PARADIS, a fully parallelized
in-place radix sort engine with two novel ideas: speculative
permutation and distribution-adaptive load balancing. Our
theoretical analysis and experiment results show that PAR-
ADIS is highly scalable and efficient in comparison with sev-
eral other parallel sorting libraries on realistic benchmarks,
as well as on synthetic benchmarks with different sizes, data
types, alignment and skewness [17, 28, 33]. The major con-
tributions of this paper are:

• A speculative permutation followed by repair which
are both efficiently parallelized. By iterating these two
steps, PARADIS permutes all array elements into their
buckets, fully in parallel and in-place.

• A distribution-adaptive load balancing technique for
recursive invocations of the algorithm on the resulting
buckets. For a skewed distribution, PARADIS min-
imizes the elapsed run-time by adaptively allocating
more processors to larger buckets.

The rest of the paper is organized as follows. We re-
view related works in Section 2 and present preliminaries
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in Section 3. Section 4 presents our proposed PARADIS
algorithm, with complexity analysis in the Appendix. Ex-
perimental results are in Section 5. Section 6 concludes this
paper.

2. RELATED WORKS
Sorting algorithms have been a popular research area over

the past few decades. Recent advancements in parallel com-
puting platforms (e.g., multi-core CPU with SIMD, GPUs,
IBM’s Cell, etc) have drawn significant attention to paral-
lel sorting techniques. Two strategies for parallel sort have
been proposed for multi-core CPU: top-down and bottom-
up. In top-down techniques [18, 20, 35], the input is first
partitioned based on the key (e.g., radix-partition), and then
each partition is independently sorted. In bottom-up tech-
niques [3,17,31], the input is partitioned for load balancing,
and all individually sorted partitions are merged into the fi-
nal array. Further parallelization on CPU has been achieved
with SIMD for comb sort [17] and bitonic sort [3].
Parallelization has been also researched for different com-

puting platforms. Sorting algorithms based on bitonic sort
[7], radix sort [22, 27, 28], or merge sort [27] have been pro-
posed to utilize massive parallelism in GPUs. SIMD-based
bitonic sort has been proposed in [6] to utilize co-processors.
Unlike comparison-based sorting (e.g., quicksort, merge-

sort), radix sort is a distribution-based algorithm which re-
lies on a positional representation of each key (e.g., keys can
be digits or characters). By reading a key as a sequence of
numerical symbols from the most significant to the least sig-
nificant (MSD) or in the other way (LSD), radix sort groups
keys into buckets by the individual symbol sharing the same
significant position, e.g., postman sort [16].
Many optimizations including parallelization have been

done to speed up radix sort. Platform-based optimization
for radix sort is discussed in [33], which takes advantage of
virtual memory and makes use of write-combining in order
to reduce the system’s peak memory traffic. The early work
on parallel radix sort is presented in [35], which shows how
to build the histogram and perform data permutation in
parallel. It uses an auxiliary array, making memory com-
plexity O(N ), which is not desirable for in-memory data
analytics. More advanced techniques for parallel radix sort-
ing have been proposed in [18, 20, 25], but they are rela-
tively inefficient due to their additional memory overhead

Build Histogram
in Parallel

Partition Array
in Parallel

Permute Data
in Sequential w/o aux array

Recurse Sort
in Parallel

(a) radix-se

Build Histogram
in Parallel

Partition Array
in Parallel

Permute Data
in Parallel with aux array

Recurse Sort
in Parallel

(b) radix-ax

Build Histogram
in Parallel

Partition Array
in Parallel

Recurse Sort
PARADIS in Parallel

Permute Data
PARADIS_Permute

Repair Data
PARADIS_Repair

(c) PARADIS

Figure 1: Various parallel radix sort algorithms
where parallel and in-place steps are in white. (a)
Sequential in-place permutation, (b) Parallel per-
mutation with auxiliary array (2x memory foot-
print) [10, 28, 35], (c) Parallel and in-place permu-
tation in PARADIS

Table 1: Notations in this paper
N set of array indices {0, 1, ..., |N | − 1}
d[N ] the array of size |N | to be sorted
n, h, t array index ∈ N
P set of processor indices {0, 1, ..., |P| − 1}
p, q processor index ∈ P
p0, p1, ... shorthand for “processor 0”, “processor 1”, ...
B set of bucket indices {0, 1, ..., |B| − 1}
i, j, k bucket index ∈ B
L set of recursion levels {0, 1, ..., |L| − 1}
l recursion level ∈ L
b(v) index of the bucket where element v should belong
ghi head pointer of bucket i

gti tail pointer of bucket i

ph
p
i head pointer of the stripe for processor p in bucket i

pt
p
i tail pointer of the stripe for processor p in bucket i

Mi {n| ghi ≤ n < gti}, i.e., the indices of bucket i

Mp
i {n| php

i ≤ n < pt
p
i }, i.e., the indices of stripe p, i

Ci |Mi| = gti − ghi, i.e., size of bucket i

C
p
i |Mp

i | = pt
p
i − ph

p
i , i.e, size of stripe p, i

Ci(k) |{n ∈ Mi| b(d[n]) = k}|
i.e. the number elements in Mi belonging to Mk

C
p
i (k) |{n ∈ Mp

i | b(d[n]) = k}|
i.e. the number elements in Mp

i belonging to Mk

and/or all-to-all communication schemes [4]. Another work
on parallel radix sort is in [28], which enhances [35] based on
modern CPU architectural features such as TLB and cache
configurations using user-level buffering. Parallel radix sort
also is discussed in [10] with the overhead of an auxiliary
output array. Fig. 1 (b) sketches these algorithms where an
auxiliary array is required for parallel data permutation.

The load balancing problem in parallel radix sort is stud-
ied in [20,32]. Perfect load balancing idea is described in [32]
at the cost of heavy communication between processors. [20]
proposes an improved algorithm for load balancing where
the radix key length (in bits) is increased in a trial-and-error
way until good load balancing is obtained.

3. PRELIMINARIES
Table 1 lists our notations and concepts, which will be de-

fined/referenced throughout the paper. We assume a given
array of |N | elements to be sorted by the key of each el-
ement. An element consists of both key and payload, al-
though PARADIS is also applicable to the case where keys
and payloads are stored separately.

One can consider the example of sorting 8-byte integers.
Then L = {0, ..., 7}, and there are functions b0(), .., b7(). For
an element v, b0(v) = most significant byte of v, b1(v) =
second most significant byte of v, etc. B = {0, ..., 255} for
all recursion levels l. At the first recursion level, P would
consist of all available processors. On subsequent recursive
calls, P would be only a subset of all available processors,
namely those assigned to sort the sub-array d[N ] (See Sec-
tion 4.2.3).

In general, all the quantities in Table 1 are local to the
invocation of the algorithm on each recursion level. Only
the quantities L, {..., bl(), ...} are global and prepared be-
forehand based on the type of data.

4. PARADIS
In this section, we propose our parallel in-place radix sort

algorithm, PARADIS. We first discuss the challenges in par-
allelizing in-place radix sort, and then provide an overview of
PARADIS in Section 4.1, highlighting our novel techniques.
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Figure 2: Parallel histogram construction and preparation for PARADIS

Then we detail our parallelization techniques in Section 4.2
and 4.3 with comprehensive examples in Fig. 2 to Fig. 5.

4.1 Overview
In this section, we give an overview of PARADIS in Al-

gorithm 2 with Fig. 1 (c). In this paper, we mainly focus
on MSD radix sort [16, 21], but our ideas can be generally
applied to LSD radix sort as well.
The nature of non-comparativeness enables O(N ) compu-

tational complexity. Memory complexity, on the other hand,
can be O(1) (in-place) or O(N ) (with auxiliary array). Se-
quential in-place MSD radix sort [21] permutes the elements
in place, as sketched in Algorithm 1. In general, it consists
of four steps:

Step 1 (lines 4-7) The unsorted input array is scanned to
build a histogram of the radix key distribution.

Step 2 (lines 8-11) The input array is partitioned into |B|
buckets by computing ghi and gti (the beginning and
end of partition for each radix key i).

Step 3 (lines 12-20) This is the core of the algorithm.
Each element is checked on line 15 and permuted on
line 16 if it is not in the right bucket.

Step 4 (lines 21-25) Once element permutation is com-
pleted, each bucket becomes a sub-problem, which can
be solved independently and recursively.

The radix sort in Algorithm 1 depends on the following prop-
erty (which is ensured by building a histogram)

Ci =
∑

j
Cj(i) (1)

which states that the amount Ci reserved for bucket i (on
the left hand) must be exactly equal to the number of all
the elements that should belong to bucket i, although those
elements may be initially scattered through various buckets
j (on the right hand). Steps 1 and 2 are preprocessing phases
whose purpose is to guarantee Eq. (1) during step 3.

Algorithm 1 Radix Sort

1: procedure RadixSort(d[N ],l)
2: b = bl ⊲ Function giving bucket at level l
3: B = the range of b()
4: cnt[B] = 0 ⊲ Histogram of bucket sizes
5: for n ∈ N do
6: cnt[b(d[n])]++
7: end for
8: for i ∈ B do
9: ghi =

∑
j<i

cnt[j]

10: gti =
∑

j≤i
cnt[j]

11: end for
12: for i ∈ B do
13: while ghi < gti do ⊲ Till bucket i is empty
14: v = d[ghi]
15: while b(v)! = i do
16: swap(v, d[ghb(v)++])
17: end while
18: d[ghi++] = v
19: end while
20: end for
21: if l < L − 1 then ⊲ Recurse on each bucket
22: for i ∈ B do
23: RadixSort(d[Mi],l+1)
24: end for
25: end if
26: end procedure

PARADIS in Algorithm 2 is our parallelization of Algo-
rithm 1. Steps 1 and 2 of Algorithm 1 are easy to parallelize
based on the following partitioning as in [35]:

{...,Ap, ...} = PartitionForHistogram: Partition
N into disjoint subsets Ap ⊂ N , one for each processor
p ∈ P. The partitions should be as equal as possible, so each

processor has |N|
|P| elements.
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Algorithm 2 PARADIS

1: procedure PARADIS(d[N ],l,P)
2: b = bl ⊲ Function giving bucket at level l
3: B = the range of b()
4: {...,Ap, ...} = PartitionForHistogram
5: for p ∈ P in parallel do
6: Build local histogram for d[Ap]
7: end for
8: Synchronization
9: Build global histogram from the |P| local histograms
10: Compute ghi and gti, ∀i ⊲ As in Algorithm 1
11: Synchronization
12: {...,Bp, ...} = PartitionForRepair
13: while

∑
i
Ci > 0 do ⊲ Till all buckets are empty

14: {...,Mp
i , ...} = PartitionForPermutation

15: for p ∈ P in parallel do
16: PARADIS Permute(p)
17: end for
18: Synchronization
19: for p ∈ P in parallel do
20: for each i ∈ Bp do
21: PARADIS Repair(i)
22: end for
23: end for
24: Synchronization
25: end while
26: if l < L − 1 then ⊲ Recurse on each bucket
27: {...,Pi, ...} = PartitionForRecursion
28: for i ∈ B in parallel do ⊲ Sort each bucket
29: PARADIS(d[Mi], l+1,Pi)
30: end for
31: end if
32: end procedure

Specifically, for step 1, each processor p takes over a sec-
tion Ap of the input array and builds its local histogram,
see lines 4-8 of Algorithm 2. All the local histograms are
then merged into a global histogram (line 9). Step 2 can be
parallelized by using a parallel prefix sum technique. Step
4 can be naturally parallelized as each bucket can be sorted
independently.
As an example, Fig. 2 shows how to begin sorting 100

elements with 4 processors, where there are four kinds of
radix keys: white, gray, dark gray, and black (i.e., 2-bit
radix sort). The entire input array is evenly partitioned
and assigned to p{0,1,2,3} as in Fig. 2 (a). And then, each
processor in parallel builds a histogram for its own partition.
As a result, the processors generate the histograms in (b),
(c), (d), and (e) which are merged into the global histogram
in (f). Based on the global histogram, we can compute ghi

and gti, (0 ≤ i < 4) as shown in (g). Such preparation
steps for PARADIS are in lines 1-10 in Algorithm 2. Then
the challenges in parallelization of Algorithm 1 come in two
forms.

• Parallelizing step 3 is very challenging due to the read-
after-write dependency on the ghi.

• Unbalanced sub-problem sizes in step 4 can degrade
the end-to-end performance.

Our proposed PARADIS algorithm addresses the above chal-
lenges with two novel techniques in Sections 4.2 and 4.3.

To avoid the read-after-write dependencies we partition the
given array among given processors in a share-nothing fash-
ion. However, an arbitrary partitioning is unable to give
each processor data that satisfies Eq. (1), which makes Algo-
rithm 1 inapplicable. While partitionings satisfying Eq. (1)
do exist, they are expensive to compute and do not guar-
antee balanced load for the processors. To address this,
PARADIS speculates on a good partitioning (details in Sec-
tion 4.2.1). Since this partitioning, in general, will not sat-
isfy Eq. (1) (i.e., some buckets may be over-sized or under-
sized), the output may not be completely permuted, which
will be addressed by an additional repair stage. The two
stages, permutation and repair, are iterated until a complete
redistribution of all the array elements into their buckets is
achieved. The speculative permutation is such that both
stages can be executed in parallel, where all processors have
an approximately equal load, achieving good scalability. In
short, we have the extra cost of repairing elements due to
speculative permutation, but the gain in scalability from two
fully parallelized steps far outweighs such costs.

Once all elements are placed in their buckets, we have
|B| independent sorting sub-problems. They can be highly
different in size, causing poor load balancing. Thus, PAR-
ADIS performs load balancing through adaptive processor
reallocation. Further details on speculative permutation and
adaptive load balancing in PARADIS are discussed in Sec-
tions 4.2 and 4.3.

4.2 Speculative Permutation
In this section, we cover speculative permutation, a key

technique to maximizing parallelism in element permuta-
tion. Essentially, it is an iterative algorithm which reduces
the problem size significantly at each iteration. In detail,
we have four steps in speculative permutation which will be
explained in the following sub-sections.

4.2.1 Partitioning for Permutation

The first step is partitioning each bucket into stripes based
on the following partitioning as in line 12 of Algorithm 2.

{...,Mp

i , ...} = PartitionForPermutation: Parti-
tion each bucket Mi (of size Ci) into |P| disjoint stripes
Mp

i (of size Cp
i ) such that the stripes satisfy the following:

Ci =
∑

p

Cp
i ∀i (2)

The goal of the procedure PartitionForPermutation is
to let each processor own one stripe from each bucket. This
allows each processor to permute elements among its stripes
in parallel with other processors, but without any commu-
nication, see Section 4.2.2. As a heuristic to optimizing load
balancing, PartitionForPermutation tries to solve

min: max{
∑

i

Cp
i | ∀p} (3)

As a solution, PARADIS uses (see Table 1 for notations)

Cp
i =

Ci

|P|
∀i, ∀p (4)

to speculatively partition each bucket into equally-sized stripes.
For simplicity we do not allow stripes to be arbitrary sub-
sets of a bucket, but each stripe must be a single interval.
As such, the stripes are delineated by indices php

i and ptpi ,
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where ptpi − php
i = Cp

i . For example, Fig. 2 (g) illustrates

that M1 is evenly partitioned into stripes M{0,1,2,3}
1 .

Eq. (3) expresses that the assignment of array elements
to the processors should be balanced. There is another de-
sirable optimization criterion, namely

min: max{Cp
i −

∑

j

Cp
j (i) | ∀i, ∀p} (5)

which is a version of Eq. (1) restricted to those array ele-
ments assigned to processor p. Instead of requiring equality,
it merely tries to minimize the difference between the left
and right hand side of Eq. (1). Minimizing Eq. (5) will
minimize the number of iterations of the loop on line 13 in
Algorithm 2. However, that may conflict with balancing the
workload in Eq. (3). We prefer the load balancing objec-
tive, as it directly impacts scalability. Therefore, PARADIS
adopts Eq. (4), which is optimal for Eq. (3) (perfect work-
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Algorithm 3 PARADIS Permute

1: procedure PARADIS Permute(p)
2: for i ∈ B do
3: head = php

i

4: while head < ptpi do
5: v = d[head] ⊲ Keep moving v
6: k = b(v) ⊲ to its bucket k
7: while k! = i and php

k < ptpk do
8: swap(v, d[php

k++]) ⊲ v into its bucket k
9: k = b(v) ⊲ New v and k
10: end while
11: if k == i then ⊲ Found a correct element
12: d[head++] = d[php

i ]
13: d[php

i ++] = v
14: else
15: d[head++] = v
16: end if
17: end while
18: end for
19: end procedure

load balancing). In addition, Eq. (4) also minimizes Eq. (5)
in case of uniformly distributed radix keys (not to mention
that Eq. (4) is easier to compute).

4.2.2 Parallel Data Permutation

Once all the buckets are partitioned into stripes based on
Section 4.2.1, we can use Algorithm 3 in each processor p
to perform in-place permutation (invoked on lines 15-17 of
Algorithm 2). Compared with step 3 of Algorithm 1, there
are three fundamental modifications in Algorithm 3.

• Since the partitioning of each bucket is merely specu-
lative, we check if the target stripe is full (line 7), in
order not to overwrite existing elements.

• php
i increases (line 13) only if a correct element is found

(line 11), which keeps all correctly placed elements be-
fore php

i .

• At the end of Algorithm 3 all wrong elements in the
bucket i are kept between php

i and ptpi , which will be
further repaired in Algorithm 4.

Fig. 3 and 4 show the before-and-after comparison of the
stripes assigned to p0 and p1, respectively. In detail, let us
focus on Fig. 4. At the beginning of processing its stripe
in M0, we replace the first three elements with white ones.
However, when processing the 4-th element (marked with
first fail), we find out that the stripe for the black element
is already full (ph1

3 = pt13) and does not have enough capacity
to accept another one (marked with stripe full). Therefore
lines 7 and 15 of Algorithm 3 will put the black element
back to M0, which leads to the configuration in Fig.4 (b).
Even with this failure, p1 continues to process, and if a white
element is found later, we simply move the black element at
ph1

0 to head location, and put the white element to ph1
0 (lines

11-14). As a result, the black wrong element will continue
moving toward pt10 and will end up between ph1

0 and pt10 as
in Fig.4 (c). In contrast, if processing a bucket encounters
no failure, as in M2 and M3, then php

i = ptpi eventually.
Regarding the black elements in Fig. 3 and 4, we can ob-

serve that p0 (Fig. 3) has allocated capacity for 3 black el-
ements in M3, although M0

{0,1,2,3} have no black elements.

On the other hand, p1 (Fig. 4) has allocated capacity for
only 2 black elements, while there are 3 black elements in
M1

{0,1,2,3}. Such over/under-allocation is owing to our spec-
ulative partitioning in Section 4.2.1, which needs to be re-
paired in Section 4.2.3. Note that it may be possible to
improve speculation, if the information on the input array
is known in advance.

4.2.3 Repairing Permutation

The output from Algorithm 3 may not be perfect; there
are some elements left in the wrong buckets as in Fig. 3 and
4. Further, having such elements scattered in the bucket
makes it hard to move ghi to the best location, as all ele-
ments in the right bucket must be before ghi. Therefore, we
follow with Algorithm 4, which will have the following out-
come: a) in each bucket, all elements that belong there will
be placed to the left, and all elements that do not belong
there will be placed to the right. b) ghi will point at the
first wrong element in bucket i, if there is any. In case Al-
gorithm 3 succeeds in filling bucket i with correct elements
only, then ghi = gti. Note that repairing a bucket does not
involve visiting each element in order to identify a wrong
element, as we scan only the remaining stripes d[Mp

i ]. (See
Section 4.2.2). That arrangement will reduce the problem
size for Algorithm 3 during subsequent iteration.

Algorithm 4 is parallelized by processing each bucket sep-
arately in a single processor based on the following:

{...,Bp, ...} = PartitionForRepair: Partition the ex-
isting set of buckets B into disjoint subsets Bp ⊂ B, one for
each processor p ∈ P.

The objective is to balance the number of array elements
contained in Bp by minimizingmax{

∑
i∈Bp

Ci | ∀p}. There-

fore, PartitionForRepair assigns buckets to processors, so
that Algorithm 4 can be performed in parallel as in lines
19-23 of Algorithm 2 in a share-nothing fashion. We use a
greedy linear algorithm to solve PartitionForRepair; sim-
ply by computing the average number of elements per pro-
cessor in advance, we can keep assigning buckets to proces-
sors, until the number of elements for each processor is close
to the average.

Fig. 5 (a) shows the state of the input array after Algo-
rithm 3, where each php

i points at the first wrong element.
Also, PartitionForRepair partitions B into {B0,B1,B2,B3}.
After Algorithm 4 we will have a repaired input array as in
Fig. 5 (b), where all wrong elements are moved to the end
of each bucket and gh{0,1,2,3} are adjusted. The efficiency of
this repairing step depends on finding the wrong elements
quickly, and the arrangement of php

i in Algorithm 3 is de-
signed for this purpose.

4.2.4 Iterative Permutation

Once we complete an iteration (of the loop started on line
13 of Algorithm 2), we have a new permutation problem like
Fig. 5 (b). This problem is usually an order-of-magnitude
smaller than the initial problem, because we only need to
permute elements in the reduced Mi. In our example, the
new problem size shrinks from 100 to 14. We then repeat
Algorithms 3 and 4 with the updated ghi, see line 13 of
Algorithm 2, until all elements are placed in their correct
bucket. Then we recurse the in-place radix sort on each
bucket independently as in lines 27-34 of Algorithm 2, which
will be discussed in Section 4.3.
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Figure 5: Repairing and load balancing in PARADIS

Algorithm 4 PARADIS Repair

1: procedure PARADIS Repair(i)
2: tail = gti ⊲ Searches for w where b(w) = i
3: for p ∈ P do
4: head = php

i ⊲ Searches for v where b(v) 6= i
5: while head < ptpi and head < tail do
6: v = d[head++]
7: if b(v)! = i then ⊲ Element to fix
8: while head < tail do ⊲ Search from tail
9: w = d[--tail]
10: if b(w) == i then
11: d[head-1] = w
12: d[tail] = v ⊲ Swap v and w
13: break
14: end if
15: end while
16: end if
17: end while
18: end for
19: ghi = tail ⊲ ghi to the first wrong element in i
20: end procedure

4.3 Distributionadaptive Load Balancing
Parallelizing the above permutation step is one challenge,

but achieving load balancing for recursion is the other chal-
lenge in parallel radix sort. If there is a bucket that has
way more elements than other buckets, it is highly possible
that sorting this large bucket will become the performance
bottleneck. In PARADIS, we propose distribution-adaptive
load balancing. Unlike existing approaches, where load bal-
ancing is achieved upfront at the cost of repeated counting
and more radix bits [20], PARADIS dynamically reallocates
processor resources only after it finds imbalance.
In generic parallelization, dynamic resource allocation is

non-trivial, as the nature of workload may not be known and
cannot be characterized effectively. However, since we are
in a specific context of in-place MSD radix sort, we can effi-
ciently perform resource allocation. The key observation is
that the run-time complexity of radix sort is O(N ). There-
fore, the resource allocation can be cast as a partitioning
problem defined as follows:

{...,Pi, ...} = PartitionForRecursion: Assign each
bucket i to a non-empty subset Pi ⊂ P. To achieve a parti-
tioning of the processors, for any two buckets i and j, either
Pi = Pj , or Pi

⋂
Pj = ∅.

As a result, each partition of processors is assigned a
separate subset of all the buckets. The key difference be-
tween PartitionForRecursion and PartitionForRepair is
that PartitionForRepair does not allow multiple processors
to work on the same bucket, while PartitionForRecursion
does by recursively calling PARADIS. Fig. 5 (c) shows how
p{0,1,2,3} are assigned to buckets for load balancing.

The objective of PartitionForRecursion is to balance the
workload assigned to the processors. We formulate the prob-
lem as follows:

min: max{W (p) | ∀p} (6)

where: W (p) =
∑

i∈Bp

Ci · log|B|Ci

|Pi|
(7)

where W (p) is an estimate of the workload assigned to pro-
cessor p. Note that we denote by Bp the set of buckets
assigned to processor p as we did in PartitionForRepair.

The estimate in Eq. (7) is obtained as follows. The run-
time complexity of an in-place MSD radix sort is known as
O(L|N |), where L is the number of recursion levels. In the
worst case L = |L|. While L is known statically from the
size of the key, L is a dynamic quantity – the recursion will
stop as soon as we need to sort a sub-array of size 1. We
estimate L = log|B||N |. Regarding the denominator |Pi|,
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since our parallelization of radix sort yields linear speedup,
Eq. (7) can simply divide the complexity of sorting bucket
i by the number of processors assigned to bucket i.
In order to solve PartitionForRecursion in linear time,

we first estimate its size |Pi| as follows, instead of finding
each Pi directly:

|Pi| = |P|
Ci · log|B|Ci∑

j∈B Cj · log|B|Cj

(8)

where the numerator is the estimated time to sort bucket i
and the denominator is the estimated time to sort all the
buckets. Then, we can find a solution fast by assigning
processors to Pi based on rounded |Pi|. For example, if
|P0| = 1.1, |P1| = 0.1, and |P2| = 2.6, we find the follow-
ing solution starting from p0: P0 = {p0},P1 = {p0}, and
P2 = {p1, p2, p3}.
Our proposed load balancing begins in line 27 of Algo-

rithm 2 with PartitionForRecursion. Once a partitioning
for recursion is obtained, we recursively call PARADIS to
finish sorting all the buckets in parallel. Note that in case
|Pi| = 1 in line 29 of Algorithm 2, PARADIS seamlessly
degenerates into the conventional sequential radix sort in
Algorithm 1, by making speculation perfect (i.e., nothing to
speculate and nothing to repair) and synchronization trivial.
Consider the example in Fig. 5 (c) which shows the array

with each element placed in its correct bucket. If the recur-
sive invocation of PartitionForRecursion used the same
assignment of buckets to processors as in Fig. 5 (a), then
sorting gray elements would become the bottleneck. How-
ever, PartitionForRecursion is allowed to assign multiple
processors to a single bucket as shown in Fig. 5 (c); this is
in contrast to PartitionForRepair, whose result is in Fig. 5
(a). This makes overall workload more balanced and en-
hances PARADIS performance.

5. EXPERIMENTAL RESULTS
We implemented PARADIS as a C++ template sorting

function based on the pthread library. For cross-platform
portability we avoided any hardware-specific features such
as SIMD. We used GCC (ver. 4.4.4) to compile PARADIS.
All experiments were performed on a RedHat Linux server
(EL5 update 6) with Intel Xeon (E7- 8837) processor run-
ning at 2.67GHz (32 cores) and 512GB main memory. For
comparison with GPU-based sorting, we used Nvidia K20x.
We used radix key length of 1 byte. For arrays smaller than
64 elements, PARADIS calls std::sort. Our sorting exper-
iments were for in-memory sorting (the entire input is as-
sumed to be located in main memory), but PARADIS can
be used as a sorting kernel in external sorting as well. We
prepared a set of numeric benchmarks (8 byte key and 8 byte
payload) with various sizes and skewness (random and zip-
fian θ=0.25,0.5,0.75) [2,8,19]. We also prepared benchmarks
for sorting strings (10 byte key and 90 byte payload) includ-
ing random and skewed distributions using gensort [13]. Ad-
ditionally, we extracted sorting benchmarks (ranging from
100 to 300 million records) from queries on large retail sales
transactions. All numbers in this section are averages of 10
end-to-end elapsed times. We compared PARADIS with the
following parallel sorting implementations.

mptl (rel. 11-21-2006) parallel introsort using pthread
library from [15] (fails to sort numeric skewed inputs)

omptl (rel. 04-22-2012) parallel introsort using OpenMP
ver 3.0 library from [15]

mcstl (gcc ver. 4.4.4) parallel hybridsort (multi-way merge-
sort and balanced quicksort) in libstdc++ [11, 30,31]

tbb (ver. 4.1 update 3) parallel quicksort in Intel Thread
Building Block Library [14]

GPUsort GPU-based radix sort [22]

SIMDsort SIMD-based parallel merge sort [3]

Buffsort Buffer-based radix sort [28]

radix-ax radix sort implementation using an auxiliary ar-
ray for parallelization [18,20,35] as in Fig. 1 (b)

radix-se radix sort implementation parallelizing only re-
cursion, which corresponds to Fig. 1 (a)

radix-ip PARADIS without our load balancing (hence, per-
forms same as PARADIS on randomly distributed keys)

mcstl, SIMDsort, and radix-ax have O(N ) memory
complexity (2x larger memory footprint than the others).
With 96GB memory limitation, mcstl failed to complete
sorting 64GB numeric input with 16 threads in an hour while
other in-place algorithms completed in 120 seconds, which
proves the criticality of in-place sorting for big data. As
GPU has limited on-board memory, GPUsort first radix-
partitioned the problem on CPU, then sorted each partition
on GPU [22]. The runtime of GPUsort includes all commu-
nication overheads to capture the end-to-end performance.

Fig. 6 compares our load balancing with [20] which in-
creases radix size to find a more balanced partitioning. We
varied the radix bits (5-12 bits) for radix-ip and measured
elapsed run-times and unbalanceness (the ratio between the
max partition size and the min partition size) when sort-
ing the numeric skewed (zipf 0.75) 16GB on 16 threads.
As claimed in [20], increasing radix bits improves balance,
which in turn minimizes the elapsed run-times. However,
we found that increasing radix bits tends to increase cache-
misses due to many head/tail pointers to keep track of, even-
tually saturating the overall performance improvement, not
to mention the overhead in finding a good radix size. Mean-
while, PARADIS with 8-bit radix demonstrates over 2x
smaller elapsed run-time in spite of unbalanced bucket size,
which proves the effectiveness of our load balancing.

0

10

20

30

40

50

60

ra
d

ix
-i

p
/ 

 5
b

it
 

ra
d

ix
-i

p
/ 

 6
b

it
 

ra
d

ix
-i

p
/ 

 7
b

it
 

ra
d

ix
-i

p
/ 

 8
b

it
 

ra
d

ix
-i

p
/ 

 9
b

it
 

ra
d

ix
-i

p
/ 

1
0

b
it

 

ra
d

ix
-i

p
/ 

1
1

b
it

 

ra
d

ix
-i

p
/ 

1
2

b
it

 

P
A

R
A

D
IS

/ 
 8

b
it

 

Different radix bits

E
la

p
se

d
 t

im
e 

(s
)

0

5

10

15

20

25

30

35
m

a
x
/m

in
 p

a
rt

it
io

n
 r

a
ti

o
 o

o
o

Elapsed time

Unbalanceness

Figure 6: Load balancing in PARADIS

1525



0

30

60

90

120

150

180

4 8 16 32 64

Array size (GB)

E
la

p
se

d
 t

im
e 

(s
)

mptl

omptl

mcstl

tbb

GPUsort

radix-ax

radix-se

PARADIS

(a) Numeric random 16 threads

0

30

60

90

120

150

180

4 8 16 32 64

Array size (GB)

E
la

p
se

d
 t

im
e 

(s
)

omptl

mcstl

tbb

GPUsort

radix-ax

radix-se

radix-ip

PARADIS

(b) Numeric skewed (zipf 0.75) 16 threads

10

100

1000

1 2 4 8 16 32

Number of threads

E
la

p
se

d
 t

im
e 

(s
)

mptl

omptl

mcstl

tbb

radix-ax

radix-se

PARADIS

(c) Numeric random 64GB

10

100

1000

1 2 4 8 16 32

Number of threads

E
la

p
se

d
 t

im
e 

(s
)

omptl

mcstl

tbb

radix-ax

radix-se

radix-ip

PARADIS

(d) Numeric skewed (zipf 0.75) 64GB

1

10

100

1000

1 2 4 8 16 32

Number of threads

E
la

p
se

d
 t

im
e 

(s
)

mptl  

omptl  

mcstl

tbb  

radix-ax  

radix-se  

PARADIS  

(e) String random 100GB

10

100

1000

1 2 4 8 16 32

Number of threads

E
la

p
se

d
 t

im
e
 (

s)

mptl  

omptl  

mcstl

tbb  

radix-ax  

radix-se  

radix-ip

PARADIS  

(f) String skewed (gensort -s) 100GB

(g) Breakdowns for numeric skewed 64GB (h) Retail sales transaction (280M records)

Figure 7: Performance of various sorting algorithms on numeric/string random/skewed inputs

1526



Due to lack of space and because of consistent trends on
all benchmarks, we show only some representative results
in Fig. 7 where (a)/(b) show the results of numeric bench-
marks on 16 processors, (c)/(d) show the results from 64GB
numeric benchmarks, (e)/(f) show the results from 100GB
string benchmarks, (g) explains the high scalability inPAR-
ADIS, and (h) shows the results from a real-world case. We
can observe similar trends from experiments, leading to the
following observations.

• PARADIS shows the best performance as in Fig. 7
(a) and (b) due to O(N ) run-time and O(1) memory
complexity as well as effective load balancing.

• radix-se is consistently 10-40% faster than radix-ax
even though radix-se does not parallelize the first
level of recursion. Based on cache simulations using
Valgrind, we find that while radix-se has nearly zero
L2 cache write-miss (as it writes where it just read),
radix-ax has over 0.5 write-miss rate.

• Ranging from 1 to 32 processors, existing in-place al-
gorithms have a speed-up at most 6.5x for both nu-
meric random and skewed cases. But, PARADIS has
a speed-up 12.5x on random and 10.5x on skewed nu-
meric data. For string benchmarks, PARADIS shows
20.5x speed-up on random and 8.3x on skewed data.

• The bottleneck is the first level of recursion as observed
with radix-se in Fig. 7 (c) and (e). PARADIS en-
joys good scaling of the 0th byte permutation (on 32
processors it is 5-6x faster than radix-se) as in Fig. 7
(g), thanks to our speculative permutation.

• A skewed case incurs performance degradation to radix-
se and radix-ip due to poor load balancing as in Fig. 7
(g). With 2 or 4 threads, finding a balanced parti-
tioning is easy enough for all three algorithms; they
have similar runtime in sorting remaining bytes after
the input is bucketized based on the 0th byte. How-
ever, with 8 or more threads, radix-se and radix-ip
suffer when processing other bytes, as finding a bal-
anced partitioning for many threads is difficult, while
PARADIS continues to scale based on our processor-
reallocation technique.

• mcstl shows good scalability due to its mergesort front-
end at the cost of O(N ) memory requirement, but
PARADIS is significantly faster and shows compa-
rable scalability as in Fig. 6 (slightly better for ran-
domly distributed inputs and slightly worse for skewed
inputs). This is critical for performance when a system
has limited memory capacity.

• Fig. 7 (h) shows that PARADIS outperforms other
algorithms on a real-world data as well, where we sort
the product codes in sales transactions. By comparing
PARADIS with radix-ip, we can see the benchmark
is highly skewed (i.e., some products are sold much
more than others), yet PARADIS scales well thanks
to the distribution-adaptive load balancing.

For comparison with SIMDsort, we scale the results in [3]
based on their interpolation to large elements and system
differences. Real-world applications require at minimum 16
byte elements (e.g, 8 byte key and 8 byte payload); yet most
SIMD-based sort implementations, due to limited width of
SIMD registers, handle 32bit keys only [3, 17]. According

to our estimates, given 4GB of 16 byte elements on 4 cores,
while PARADIS takes 4.6 sec, SIMDsort would take 9.9
sec due to the following slowdown: 1.75x due to key- pay-
load tuple, 2x due to doubled key size, and 1.15x due to
system differences. Also, note that SIMDsort requires 2x
larger memory footprint.

We also compared PARADIS with Buffsort based on
Fig. 7 from [28] where it shows SIMDsort based on [3]
would be slightly (about 20%) faster than Buffsort for
16 byte elements. Accordingly, one can indirectly project
that PARADIS would be 2.4x faster than Buffsort on
the tested benchmarks.

6. CONCLUSION
In this paper, we presented PARADIS, a highly efficient

fully parallelized in-place radix sort algorithm. Its speed
and scalability are due to novel algorithmic improvements
alone, which implies potential further speed-up when com-
plemented with hardware-specific accelerations (e.g., SIMD).
Two novel ideas, speculative permutation and distribution-
adaptive load balancing, enable PARADIS to sort very ef-
ficiently large variety of benchmarks. With architectural
trends towards increasing number of cores and larger mem-
ory systems, PARADIS is well suited for in-memory sorting
kernels for many data management applications.
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APPENDIX

In this appendix, we will derive the complexity of PARADIS
with the goal of establishing to what extend it can approach

the theoretical optimum of O( |N|
|P| ).

The procedure PARADIS in Algorithm 2 is invoked L
times, where L is a constant dependent only on the size of
the keys, therefore we can ignore it for asymptotic complex-
ity. Lines 1 to 10 of Algorithm 2 can be clearly performed

in O( |N|
|P| ) steps, so we will analyze only the iteration of the

loop on line 13.
For analysis purpose, we define the following:

• ri =
Ci−Ci(i)

|N| : the ratio of wrong elements in a bucket

i over |N | after Algorithm 3.

• r =
∑

i
ri =

|N|−
∑

i Ci(i)

|N| : the ratio of all wrong ele-

ments over |N | after Algorithm 3.
• Ei = {p|Cp

i = 0}: the set of processors whose stripes
are empty in bucket i after Algorithm 3.

• ei =
|Ei|
|P| : the fraction of stripes that are empty.

• w = max{
∑

i∈Bp
ri|∀p} : the maximum fraction of ele-

ments to be repaired in PARADIS Repair over all pro-
cessors.

Lemma 1: ri ≤
Ci

|N| (1− ei), ∀i

Proof. eiCi ≤ Ci(i), because eiCi represents the num-
ber of elements permuted into bucket i by processors in Ei.
(The inequality may be strict because stripes p /∈ Ei may
also contribute to Ci(i)).

ri =
Ci − Ci(i)

|N |
≤

Ci

|N |
(1− ei) (9)

Lemma 2: ri ≤ ei(1−
Ci

|N| ), ∀i

Proof. Consider any j 6= i. In the bucket i, any stripe
p /∈ Ei still has capacity to receive elements, and therefore
any p /∈ Ei must have successfully permuted from bucket j
into bucket i any element d[n], where n ∈ Mp

j and b(d[n]) =
i. Therefore in bucket j, any element still left belonging to
bucket i must be in a stripe p ∈ Ei. Thus

Cj(i) =
∑

P

Cp
j (i) =

∑

Ei

Cp
j (i) (10)

≤
∑

Ei

Cj

|P|
=

|Ei|

|P|
Cj = eiCj (11)

Then, using Eq. (1) and Ci +
∑

j 6=i
Cj = |N |

ri =
Ci − Ci(i)

|N |
=

∑
j 6=i

Cj(i)

|N |
(12)

≤ ei

∑
j 6=i

Cj

|N |
= ei(1−

Ci

|N |
) (13)

Theorem 1: ri ≤
1
4

Proof. Based on Lemmas 1 and 2,

ri ≤ min(
Ci

|N |
(1− ei), ei(1−

Ci

|N |
)) (14)

= min(
Ci

|N |
, ei)− ei

Ci

|N |
≤

1

4
(15)

Eq. (15) follows because “min(x, y)−xy” achieves maximum
over the domain 0 ≤ x, y ≤ 1 when x = y = 1

2
.
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Figure 8: w values from numeric benchmarks

Corollary 1: r ≤ 1− 1
|B|

Proof.

r =
∑

i

ri ≤
∑

i

Ci

|N |
−

∑

i

(
Ci

|N |
)2 (16)

which will be maximal with Ci =
|N|
|B| , ∀i. Thus

r ≤ 1−
1

|B|
(17)

The complexity of each iteration in PARADIS depends on
two parts: PARADIS Permute and PARADIS Repair. While

the former has O( |N|
|P| ) complexity as N is evenly divided

to |P| processors by PartitionForPermutation, it is pos-
sible that PARADIS Repair suffers from unbalanced work
assigned to different processors. This can happen when one
partition is left with many more incorrect elements than the
others. The complexity of PARADIS Repair depends on
the maximum number of elements to be repaired by a single
processor (i.e., w).
If we let T (N ) be the complexity of PARADIS, then

Theorem 2: T (N ) ≤ O(|N |( 1
|P| + w))

Proof. Without loss of generality, we let r and w repre-
sent their maxima over all iterations. Then

T (N ) ≤ (
|N |

|P|
+ w|N |) + r(

|N |

|P|
+ w|N |) + r2(..) + ... (18)

=

∞∑

t=0

rt(
|N |

|P|
+ w|N |) = (

|N |

|P|
+ w|N |)

1

1− r
(19)

By Corollary 1, 1
1−r

≤ |B| which is constant. Hence

T (N ) ≤ O(|N |(
1

|P|
+ w)) (20)

The above proof does not rely on any bound on the num-
ber of iterations t. Nevertheless, since repairing stops when
|N | · rt < 1 (i.e., less than a single element left for repair
after t iterations), we can state the number of iterations is
bounded as follows:

t < − logr |N | (21)

Corollary 1 then provides a theoretical upper bound on r.
As w and r are the worst repair load for one processor and

the total repair load over all processors respectively, we can
use the quantity w and the relation r ≤ w|P| for practical
estimates of the number of iterations.

Since w does not scale with |P|, understanding the im-
pact of w on various problems is critical. Fig. 8 shows the
w values on the benchmarks in Section 5. As w represents
the maximum percentage of elements requiring repair over
all processors, w serves as an indicator of how good our
speculation is (when poor, w increases requiring higher re-
pairing efforts). For skewed benchmarks the w values get
larger after 16 processors, because the largest bucket can-
not be repaired by multiple processors and the buckets are
more fractured. Nonetheless, we can see that w values are
very small regardless of size/skewness, and get smaller with
larger N (as only a fraction of N needs repair). This is what
makes PARADIS highly scalable for big data and leads to
Corollary 2.

Corollary 2: T (N ) converges to O( |N|
|P| ), as w goes to 0.

Proof.

lim
w→0

O(|N |(
1

|P|
+ w)) = O(

|N |

|P|
) (22)
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Figure 9: A pathological case for PARADIS

Fig. 9 (a) is the pathological case for PARADIS, where
M0 and M1 are for white and gray elements, respectively.
As you see, PARADIS Permute cannot permute any ele-
ment, which creates the worst case for PARADIS Repair as
in (b), with w = 1

4
. Fig. 9 (c) shows that PARADIS Repair

efficiently shrinks down the problem for the second itera-
tion, in spite of the first iteration being the worst case for
PARADIS. As a result, the problem becomes smaller and
ideal for PARADIS Permute, with w = 0 (i.e., no more it-
erations).
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