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ABSTRACT
Crowdsourced workflows are used in research and industry
to solve a variety of tasks. The databases community has
used crowd workers in query operators/optimization and
for tasks such as entity resolution. Such research utilizes
microtasks where crowd workers are asked to answer simple
yes/no or multiple choice questions with little training.
Typically, microtasks are used with voting algorithms to
combine redundant responses from multiple crowd workers
to achieve result quality. Microtasks are powerful, but fail
in cases where larger context (e.g., domain knowledge) or
significant time investment is needed to solve a problem, for
example in large-document structured data extraction.

In this paper, we consider context-heavy data processing
tasks that may require many hours of work, and refer to
such tasks as macrotasks. Leveraging the infrastructure
and worker pools of existing crowdsourcing platforms, we
automate macrotask scheduling, evaluation, and pay scales.
A key challenge in macrotask-powered work, however, is
evaluating the quality of a worker’s output, since ground
truth is seldom available and redundancy-based quality
control schemes are impractical. We present Argonaut, a
framework that improves macrotask powered work quality
using a hierarchical review. Argonaut uses a predictive
model of worker quality to select trusted workers to perform
review, and a separate predictive model of task quality to
decide which tasks to review. Finally, Argonaut can identify
the ideal trade-off between a single phase of review and
multiple phases of review given a constrained review budget
in order to maximize overall output quality. We evaluate
an industrial use of Argonaut to power a structured data
extraction pipeline that has utilized over half a million hours
of crowd worker input to complete millions of macrotasks.
We show that Argonaut can capture up to 118% more
errors than random spot-check reviews in review budget-
constrained environments with up to two review layers.
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1. INTRODUCTION
Crowdsourcing has recently been used to improve the

state of the art in areas of data processing such as entity
resolution, structured data extraction, and data cleaning.
Human computation is commonly used for both processing
raw data and verifying the output of automated algorithms.
An important concern when assigning work to crowd
workers with varying levels of ability and experience is
maintaining high-quality work output. Thus, a prominent
focus of the crowdsourcing literature has been on quality
control: developing workflows and algorithms to reduce
errors introduced by workers either unintentionally (due
to innocent mistakes) or maliciously (due to collusion or
spamming).

Most research on quality control in crowdsourced work-
flows has focused on platforms that define work as
microtasks, where workers are asked simple questions that
require little context or training to answer. Microtasks
are an attractive unit of work, as their small size and low
cost make them amenable to quality control by assigning
a task to multiple workers and using worker agreement
or voting algorithms to surface the correct answer. For
example, a common microtask is image annotation, where
crowd workers help label an object in an image. As more
and more workers agree on an annotation, the confidence
of that annotation increases. Microtask research has
focused on different ways of controlling this voting process
while identifying the reliability of workers through their
participation.

Unfortunately, not all types of work can be effectively
decomposed into microtasks. Tasks that require global
context (e.g., creating papers or presentations) are chal-
lenging to programmatically sub-divide into small units.
Additionally, voting strategies as a method of quality control
break down when applied to tasks with complex outputs,
because it is unclear how to perform semantic comparisons
between larger and more free-form results. An alternative
to seeking out good workers on microtask platforms and
decomposing their assignments into microtasks is to recruit
crowd workers to perform larger and more broadly defined
tasks over a longer time horizon. Such a model allows
for in-depth training, arbitrarily long-running tasks, and
flexible compensation schemes. There has been little work
investigating quality control in this setting, as the length,
difficulty, and type of work can be highly variable, and
defining metrics for quality can be challenging.

In this paper, we use the term macrotask to refer
to such complex work. Macrotasks represent a trade-
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off between microtasks and freelance knowledge work, in
that they provide the automation and scale of microtasks,
while enabling much of the complexity of traditional
knowledge work. We discuss both the limitations and
the opportunities provided by macrotask processing, and
then present Argonaut, a framework that extends existing
data processing systems with the ability to use high-quality
crowdsourced macrotasks. Argonaut presents the output
of automated data processing techniques as the input to
macrotasks and instructs crowd workers to eliminate errors.
As a result, it easily extends existing automated systems
with human workers without requiring the design of custom-
decomposed microtasks.

Argonaut leverages several cost-aware techniques for
improving the quality of worker output. These techniques
are domain-independent, in that they can be used for
any data processing task and crowd work platform that
collects and maintains basic data on individual workers and
their work history. First, Argonaut organizes the crowd
hierarchically to enable trusted workers to review, correct,
and improve the output of less experienced workers. Second,
Argonaut provides a predictive model of task error, called
the TaskGrader, to effectively allocate trusted reviewers to
the tasks that need the most correction. Third, Argonaut
tracks worker quality over time in order to promote the
most qualified workers to the top of the hierarchy. Finally,
given a fixed review budget, Argonaut decides whether to
allocate reviewer attention to an initial review phase of a
task or to a secondary review of previously reviewed tasks
in order to maximize overall output quality. We provide an
evaluation of these techniques on a production structured
data extraction system used in industry at scale. For
review budget-constrained workflows, we show up to 118%
improvement over random spot checks when combining
TaskGrader with a two-layer review hierarchy, with greater
benefits at more constrained budgets.

In summary, this paper makes the following contributions:
1. Argonaut, a framework for managing macrotask-based

workflows and improving their output quality given a
fixed budget and fixed throughput requirement.

2. A hierarchical review structure that allows expert
workers to catch errors and provide feedback to entry-
level workers on complex tasks. Argonaut models
workers and promotes the ones that efficiently produce
the highest-quality work to reviewer status. We show
that 71.8% of tasks with changes from reviewers are
improved.

3. A predictive model of task quality that selects tasks
likely to have more error for review. Experiments
show that generalizable features are more predictive
of errors than domain specific ones, suggesting that
Argonaut’s models can be implemented in other
settings with little task type specific instrumentation.

4. Empirical results that show that under a constrained
budget where not every task can be reviewed multiple
times, there exists an optimal trade-off between one-
level and two-level review that catches up to 118%
more errors than random spot checks.

2. RELATED WORK
There is a rich body of research around improving

work quality for microtasks. Prior research has described
techniques for weighing worker responses based on quality

inferred from previous answers to categorical microtasks
(e.g., yes/no questions) [13, 15]. Bernstein et. al. present
the Find-Fix-Verify design pattern [6], in which workers
vote on the responses of other workers to identify good
results. Similar to our approach, Rzeszotarski et al. [27]
train a model with worker behavioral information (e.g.,
scrolling, mouse movements, completion time) to classify
suspect responses with 80% accuracy. This technique is
complementary to our use of worker history and behavioral
information, and we extend these approaches to the
macrotask context.

Certain types of work, such as entity resolution, has been
explored in depth. Work on entity matching has developed
good blocking rules for reducing the number of pairs to
be matched [9] and found efficient matching algorithms
to decide whether a pair of entities are equivalent [3,
5]. Crowdsourcing is frequently used to verify predicted
matches [31, 10, 12] and provide training data for matching
algorithms [22, 32, 12]. Data Tamer [29] uses a crowd of
domain experts to resolve uncertain examples in schema
integration, data cleaning and entity resolution. The
crowdsourcing approaches in this line of work are all
highly domain-specific: we provide a general framework for
using the crowd with any data processing task, and focus
on improving crowd worker output quality with domain-
independent techniques for macrotasks.

The crowdsourcing literature includes several frameworks
and systems aimed at making it easier to build crowd-
powered workflows. TurKit [20] is a library that abstracts
away and caches microtask-based decisions in imperative
programming flows. Frameworks like CrowdForge [16] and
Dog [1] provide higher-level programming abstractions for
describing crowd-powered workflows. Finally, systems like
Legion [19] make it easier for developers to build applications
that integrate crowd worker feedback with low latency.

As the crowdsourced work becomes more complex,
researchers have proposed more sophisticated task workflows
and worker organization schemes. The literature thus far on
complex work has focused more on building novel workflows
than on evaluating their quality. This research proposes
multi-stage workflows to break work into manageable
subtasks [18], maintain global constraints across multiple
tasks [33], iteratively refine previous workers’ efforts [20], or
assemble teams of expert workers to collaborate on difficult
or creative tasks [26]. Worker hierarchies have been used
to organize crowdsourced managers and employees in the
context of microtasks [23] and more complex work [17]. We
leverage predictive modeling to increase the cost-efficiency of
such hierarchies, exploring the tradeoff between increasing
hierarchy depth and staying within budget constraints.

Crowds have been used to solve a variety of problems
that can be addressed by macrotasks, such as structured
data extraction. There are several techniques for extracting
relational data from unstructured web pages [2, 4, 8]
and learning automated transformations to structure and
clean data [28, 14]. Additionally, crowdsourced data
collection [25] and enumeration [30] can source data from
the crowd.

Finally, crowdsourcing has been used in domain-independent
database systems to provide structured data in response to
declarative queries [11, 21, 24]. We take a similar approach
to declarative crowd task and interface specification, but our
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Figure 1: Tradeoffs in human-powered task
completion models.

focus is on complex data processing tasks, not processing or
fetching data in response to queries.

3. COMPLEX TASKS AT SCALE
Worker organization models for task completion have

significant implications for the complexity and scale of the
work that can be accomplished with those models. To
demonstrate the need for macrotasks, we compare three
organizational models: microtask-based decomposition,
macrotasks, and traditional freelancer-based knowledge
work. We then provide several examples of problems we
solve at scale with macrotasks.

3.1 Tradeoffs with Humans in the Loop
Systems that coordinate human workers to process data

make an important trade-off between complexity and scale.
As work becomes increasingly complex, it requires more
training and coordination of workers. As the amount of work
(and therefore the number of workers) scales, the overheads
associated with that coordination increase.

Figure 1 compares three forms of worker organization by
their ability to handle scale and complexity. Microtasks,
such as image labeling tasks sent to Amazon Mechanical
Turk, are easy to scale and automate, but require effort
to decompose the original high-level task into smaller
microtask specifications, and are thus limited in the
complexity of work they support. Traditional freelancer-
based knowledge work supports arbitrarily complex tasks,
because employers can interact with workers in person to
convey intricate requirements and evaluate worker output.
This type of work usually involves an employer personally
hiring individual contractors to do a fairly large task, such
as designing a website or creating a marketing campaign.
The work is constrained by hiring throughput and is not
amenable to automated quality control techniques, limiting
its ability to scale.

Macrotasks, a middle ground between microtasks and
freelance work, allow complex work to be processed at scale.
Unlike microtasks, macrotasks don’t require complex work
to be broken down into simpler subtasks: one can assign
work to workers essentially as-is, and focus on providing
them with user interfaces that make them more effective.
Unlike traditional knowledge work, macrotasks retain
enough common structure to be specified automatically,

processed uniformly in parallel, and improved in quality
using automated evaluation of tasks and workers.

Much of the complex, large-scale data processing that
incorporates human input is amenable to macrotask pro-
cessing. Here are three high-level data-heavy use-cases we
have addressed with crowd-powered macrotask workflows at
a scale of millions of tasks:

1. Structured Price List Extraction. From Yoga
studio service lists to restaurant menus, we extract
structured data from PDFs, HTML, Word documents,
Flash animations, and images on millions of small
business websites. When possible, we automatically
extract this content, but if automated extraction fails,
workers must learn a complex schema and spend
upwards of an hour processing the price list data for a
business.

2. Business Listings Extraction. We extract ∼30
facts about businesses (e.g., name, phone number,
wheelchair accessibility) in one macrotask per busi-
ness. This task could be accomplished using either
microtasks or macrotasks, and we use it to help
demonstrate the versatility of Argonaut.

3. Web Design Choices. We ask crowd workers
to identify design elements such as color palettes,
business logos, and other visual aspects of a website
in order to enable brand-preserving transformations
of website templates. These tasks are subjective and
don’t always have a correct answer: several color
palettes might be appropriate for an organization’s
branding. This makes it especially challenging to judge
the quality of a processed task.

The tasks above, with their complex domain-specific
semantics, can be difficult to represent as microtasks, but are
well-defined enough to benefit from significant automation
at scale. Of course, macrotasks come with their own
set of challenges, and are less thoroughly explored in the
literature when compared to microtasks. There exist fewer
tools for completing unstructured work, and crowd work
platforms seldom offer best practices for improving the
quality or efficiency of complex work. Tasks can be highly
heterogeneous in their structure and output format, which
makes the combination of multiple worker responses difficult
and automated voting schemes for quality control nearly
impossible. Macrotasks also complicate the design of worker
pay structures, because payments must vary with task
complexity.

3.2 A Case Study in Task Complexity
The previous discussion gave a flavor of the work we

accomplish using macrotask crowdsourcing. We now
describe our structured price list extraction use case in
depth to demonstrate how macrotasks flow between crowd
workers, and how the crowd fits in with automated data
processing components. We will use this structured data
extraction task as a running example throughout the paper.
For simplicity, this example will focus on extraction of
restaurant menus, but the same workflow applies for all price
lists.

Figure 2 shows the data extraction process. Argonaut
crawls small business websites or accepts price list uploads
from business owners as source content from which to
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Figure 2: A crowd- and machine learning-powered
workflow for extracting structured price list data.

extract price lists. Price lists come in a variety of
formats, including PDFs, images, flash animations, and
HTML. Automated extractors (e.g., optical character
recognition, flash decompilation), and machine learned
classifiers identify potential menu sections, menu item
names, prices, descriptions, and item choices and additions.
The output of these classifications is displayed to crowd
workers in a text-based wiki markup-like format that
allows fast editing of menu structure and content. Entry
level crowd workers in our system, which we refer to as
Data Entry Specialists (DES), correct the output of the
extractors, and their work is reviewed up to two times. If
automated extraction works perfectly, the crowd worker’s
task is simple: mark the task as being in good condition. If
automated extraction fails, a crowd worker might spend up
to hours manually typing all of the contents of a hard-to-
extract menu. The resulting crowd-structured data is used
to periodically retrain classifiers to improve their accuracy.

Our macrotask model provides for lower latency and more
flexibility in throughput when compared to a freelancer
model. One requirement for our use of these price list
extraction tasks is the ability to handle bursts and lulls
in demand. Additionally, for some tasks we require very
short processing times. These constraints make a freelancer
model, with slower on-boarding practices, less well suited to
our problem than macrotasks.

Microtasks are also a bad fit for this price list extraction
task. The tasks are complex, as workers must learn the
markup format and hierarchical data schema to complete
tasks, often taking 1-2 weeks to reach proficiency. Using
a microtask model to complete the work would require
decomposing it into pieces at a finer granularity than an
individual menu. Unfortunately, the task is not easily
decomposed into microtasks because of the hierarchical
data schema: for example, menus contain sections which
contain subsections and/or items, and prices are frequently
specified not only for items, but for entire subsections
or sections. There would be a high worker coordination
cost if such nested information were divided across several
microtasks. In addition, because raw menu text appears in
a number of unstructured formats, deciding how to segment
the text into items or sections for microtask decomposition
would be a challenging problem in its own right, requiring
machine learning or additional crowdsourcing steps. Even if
microtask decomposition were successful, traditional voting-

Figure 3: The Argonaut framework crowd worker
user interface on a price list extraction task. The
interface font is artificially enlarged for readability.

based quality control schemes would present challenges,
as the free-form text in the output format can vary (e.g.
punctuation, capitalization, missing/additional articles) and
the schema requirements are loose. Most importantly, while
it might be possible in some situations to generate hundreds
of microtasks for each of the hundreds of menu items in
a menu, empirical estimates based on our business process
data suggest that the fair cost of a single worker on the
complex version of these tasks is significantly lower than
the redundant version of the many microtasks it would take
to process most menus.

We have presented several examples of crowd work
suitable for macrotask processing, and taken an in-depth
look at one structured data extraction task that is not
amenable to either microtask or freelance knowledge work-
style processing. In the following sections, we describe the
system we have designed for implementing the price lists
task and other macrotask workflows, focusing specifically on
the challenges of improving work quality in complex tasks.

4. THE ARGONAUT FRAMEWORK
This section provides an overview of Argonaut, a

framework that combines automated models with complex
crowd tasks. Argonaut is a scheme for quality control in
macrotasks that can generalize across many applications
in the presence of heterogeneities task outputs. We have
used Argonaut for performing several data processing tasks,
but will use structured data extraction as our running
example. To reduce error introduced by crowd workers while
remaining domain-independent, the framework uses three
complementary techniques that we describe next: a review
hierarchy, predictive task modeling, and worker modeling.
These techniques are effective when dealing with tasks that
are complex and highly context-sensitive, but still have
structured output.

Figure 3 shows Argonaut as experienced by a crowd
worker on a price list extraction task. The Menu section
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is designed by the Argonaut user/developer. The rest of
the interface is uniform across all task types, including a
Conversation box for discussion between crowd workers.

4.1 Framework API
To define a new macrotask type, a developer using

Argonaut provides the following information:

Task data. Users must implement a method that provides
task-specific data encoded as JSON for each task. Such data
might be serialized in various ways. For example, business
listings tasks produce a key-value mapping of business
attributes (e.g., phone numbers, addresses). For price lists,
a markup language allows workers to edit blocks of text and
label them (e.g., sections, menu items).

Worker interface renderer. Given task data, users
must implement a method that generates an HTML <div>

element with a worker user interface. Here is an example
rendering of menu data:

def get_render_html():

return """

<div>

<p>Edit the text according to the

<a href="guidelines.html">guidelines.</a>

Please structure

<a href="{{menu_url}}">this menu.</a></p>

<form><textarea name="structured_menu"

value="{{data.menu_text}}"></form>

</div>"""

Other interface features (e.g., a commenting interface
for workers to converse, buttons to accept/reject a task)
are common across different task types and provided by
Argonaut.

Error metric. Given two versions of task data (e.g., an
initial and a reviewed version), an error metric helps the
TaskGrader (Section 4.4) determine how much that task has
changed. For textual data, this metric might be based on the
number of lines changed, whereas more complex metrics are
required for media such as images or video. Users can pick
from Argonaut’s pre-implemented error metrics or provide
one of their own.

Users adding a new macrotask type to Argonaut need not
write any backend code to manage tasks or workers. They
simply build the user interface for the task workflow and
wire it up to Argonaut’s API.

4.2 Framework Architecture
We now describe Argonaut’s main components by

following the path of a task through the framework as
depicted in Figure 4. First, a requester submits tasks to the
system. The requester specifies tasks and the workers’ user
interface using the framework API described in Section 4.1.
Newly submitted tasks go to the Task Manager, which can
send tasks to the crowd for processing. The Task Manager
receives tasks that have been completed by crowd workers,
and decides if those tasks should go back to the crowd
for subsequent review, or be returned to the requester as
a finalized task. The Task Manager uses the TaskGrader
model, which predicts the amount of error remaining in

Figure 4: The Argonaut framework architecture for
macrotask data processing.

Figure 5: The hierarchy of task review. Trusted
workers review entry-level workers’ output and
provide low-level feedback on tasks, managers
provide high-level feedback to every worker, and a
model of worker speed and accuracy chooses workers
to promote and demote throughout the hierarchy.

a task (Section 4.4), to make this decision. If the model
predicts that a high amount of error remains in the task,
the task will require an additional review from the crowd.
When a task is sent to the crowd, the Task Manager specifies
which expertise level in the review hierarchy should process
the task. Tasks that are newly submitted by a requester are
assigned to the lowest level in the hierarchy, to be processed
by workers known as Data Entry Specialists. From the Task
Manager, tasks go to the Worker Manager. The Worker
Manager manages the crowd workers and determines which
worker within the assigned hierarchy level to route a task
to. Figure 5 shows a more detailed view of the hierarchy
(Section 4.3).

4.3 Review Hierarchy
To achieve high task quality, Argonaut identifies a crowd

of trusted workers and organizes them in a hierarchy
with the most trusted workers at the top. Workers that
perform well review the output of less trusted workers.
High quality is achieved through review, corrections, and
recommendations of educational content to entry-level
workers.

The review hierarchy is depicted in Figure 5. Workers at
the bottom level are referred to as Data Entry Specialists
(DES). DES workers generally have less experience, training,
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and speed than the Reviewer-level workers. They are the
first to see a task and do the bulk of the work. In the
case of structured data extraction, a DES sees the output of
automated extractors, and might either approve of a high-
quality extraction or spend up to a few hours manually
inputting or correcting the results of a failed automated
extraction. Reviewers review the work of the DES, and
the best Reviewers review the work of other Reviewers. As
a worker’s output quality improves, less of their work is
reviewed.

Developing a trusted crowd requires significant investment
in on-boarding and training. In our experience, on-boarding
a DES requires that they spend several days studying a
text- and example-heavy guide on our price list syntax.
The worker must pass a qualification quiz before she or
he can complete tasks. A newly hired worker has a trial
period of 4 weeks, during which every task they complete
is reviewed. Because the training examples can not cover
all real-life possibilities, feedback and additional on-the-
job training from more experienced workers is essential to
developing the DES. Reviewers examine the DES’s work and
provide detailed feedback in the form of comments and edits.
They can reject the task and send it back to the DES, who
must make corrections and resubmit. This workflow allows
more experienced workers to pass on their knowledge and
experience. By the end of the trial period, enough data has
been collected to evaluate the worker’s work quality and
speed.

Because per-task feedback only provides one facet of
worker training and development, Argonaut relies on a
crowd Manager to develop workers more qualitatively. This
Manager is manually selected from the highest quality
Reviewers, and handles administrative tasks while fielding
questions from other crowd workers. The Manager also
looks for systemic misunderstandings that a worker has,
and sends personalized emails suggesting improvements
and further reading. Workers receive such a feedback
email at least once per month. In reviewing workers, the
Manager also recommends workers for promotion/demotion,
and this feedback contributes to hierarchy changes. If the
Manager spots an issue that is common to several workers,
the Manager might generate a new training document
to supplement workers’ education. Although the crowd
hierarchy is in this way self-managing, the process of on-
boarding users and ending contracts is not left to the
Manager: it requires manual intervention by the framework
user.

Workers are incentivized to complete work quickly and
at a high level of quality. A worker’s speed and quality
rankings are described in more detail in Section 4.5, but
in short, workers are ranked by how poorly they performed
in their middling-to-worst tasks, and by how quickly they
completed tasks relative to other workers. Given this
ranking, workers are promoted or demoted appropriately on
a regular basis. Reviewers are paid an hourly wage, while
DES are paid a fixed rate based on the difficulty of their task,
which can be determined after a reviewer ensures that they
have done their work correctly. This payment mechanism
incentivizes Reviewers to take the time they need to give
workers meaningful feedback, while DES are incentivized to
complete their tasks at high quality as quickly as possible.
Based on typical work speed of a DES, Reviewers receive a
higher hourly wage. The Manager role is also paid hourly,

and earns the highest amount of all of the crowd workers.
As a further incentive to do good work quickly, workers are
rate-limited per week based on their quality and speed over
the past 28 days. For example, the top 10% of workers are
allowed to work 45 hours per week, the next 25% are allowed
35 hours, and so on, with the worst workers limited to 10
hours.

4.4 TaskGrader
A predictive model, called TaskGrader, decides which

tasks to review. TaskGrader leverages available worker
context, work history, and past reviews to train a regression
model that predicts an error score used to decide which tasks
are reviewed. The goal of the TaskGrader is to maximize
quality, which we measure as the number of errors caught
in a review. The space of possible implementations of
TaskGrader spans three objectives:

• Throughput is the total number of tasks processed.
For the design of TaskGrader, we hold throughput
constant and view the initial processing of each task
as a fixed cost.

• Cost is the amount of human effort spent by the system
measured in tasks counts. We hold this constant
at an average of 1.56 workers per task (a parameter
which should be set based on available budget and
throughput requirements). The TaskGrader can
allocate either 1, 2, or 3 workers per task, subject to
the constraint that the average is 1.56.

• Quality is the inverse of the number of errors per task.
Quality is difficult to measure in absolute terms, but
can be viewed as the steady state one would reach
by applying infinite number of workers per task. We
approximate quality by the number of changes (which
we assume to be errors fixed) made by each reviewer.
The goal of the TaskGrader is to maximize the amount
of errors fixed across all reviewed tasks.

In order to generate ground truth training data for our
supervised regression model, we take advantage of past data
from the hierarchical review model. We use the fraction of
output lines of a task that are incorrect as an error metric.
We approximate this value by measuring the lines changed
by a subsequent reviewer of a task. We compute training
labels by measuring the difference between the output of a
task before and after review. Thus, tasks that have been
reviewed in the hierarchy are usable as labeled examples for
training the model.

The TaskGrader uses a variety of data collected on
workers as features for model training. Table 1 describes
and categorizes the features we use. We find it useful to
categorize features into two groupings:

• How task-specific (e.g., how long did a task take to
complete) or how worker-specific (e.g., how has the
worker done on the past few tasks) is a feature?
A common approach to ensuring work quality in
microtask frameworks is to identify the best workers
and provide them with the most work. We use
this categorization to measure how predictive of work
quality the worker-specific features were.

• Is a feature generalizable across task types (e.g., the
time of day a worker is working) or is it domain-specific

1647



Feature Name or Group Description Categorization

percent of input changed
how much of the task a worker changed from the input

they saw
task-specific domain-specific

grammar and spelling errors
errors such as misspellings, capitalization mistakes, and

missing commas
task-specific domain-specific

domain-specific automatic
validation

errors detected by automatic checkers such as very high
prices, duplicate price lists, missing prices

task-specific domain-specific

price list statistics
statistics on task output like # of price lists, # of

sections, # items per section, price list length
task-specific domain-specific

task times of day
time of day when different stages of the workflow are

completed
task-specific generalizable

processing time time it took for a worker to complete the task task-specific generalizable

task urgency
high priority tasks must be completed within a certain

time and can not be rejected
task-specific generalizable

tasks per week # of tasks completed per week over past few weeks worker-specific generalizable
distribution of past task error

scores
deciles, mean, std dev, kurtosis of past error scores worker-specific generalizable

distribution of speed on past tasks deciles, mean, std dev, kurtosis of past processing times worker-specific generalizable
worker timezone timezone where worker works worker-specific generalizable

Table 1: Descriptions of TaskGrader Features. Each row represents one or more features. The Categorization
column places features into broad groups that will be used to evaluate feature importance.

(e.g., processing a pizza menu vs. a sushi menu)?
We are interested specifically in how predictive the
generalizable feature set is, because generalizable
features are those that could be used in any crowd
system, and would thus be of larger interest to an
organization wishing to employ a TaskGrader-like
model.

We use an online algorithm for selecting tasks to review,
because new tasks continuously arrive on our system. This
online algorithm frames the problem as a regression: the
TaskGrader predicts the amount of error in a task, having
dynamically set a review threshold at runtime in order to
review tasks with the highest error without overrunning the
available budget. If we assumed a static pool of tasks, the
problem might better be expressed as a ranking task [7].

To ensure a consistent review budget (e.g., 40% of tasks
should be reviewed), we must pick a threshold for the
TaskGrader regression so that we spend the desired budget
on review. Depending on periodic differences in worker
performance and task difficulty, this threshold can change.
Every few hours, we load the TaskGrader score distribution
for the past several thousand tasks and empirically set the
TaskGrader review threshold to ensure that the threshold
would have identified the desired number of tasks for review.
In practice, this procedure results in accurate TaskGrader-
initiated task review rates.

We must be careful with the tasks we pick for future
TaskGrader training. Because tasks selected for review by
the TaskGrader are biased toward high error scores, we
can not use them to unbiasedly train future TaskGrader
models. We reserve a fraction of our overall review budget
to randomly select tasks for review, and train future
TaskGrader models on only this data. For example, if we
review 30% of tasks, we aim to have the TaskGrader select
the worst 25% of tasks, and select another 5% of tasks for
review randomly, only using that last 5% of tasks to train
future models.

Occasionally users of the system may need to apply
domain-specific tweaks to the error score. We initially
presented the task error score as the fraction of the output

lines that was found incorrect in review. In its pure form,
the score should lend itself reasonably well to various text-
based complex work. However, one must be careful that
the error score is truly representative of high or low quality.
In our scenario, workers can apply comments throughout
a price list’s text to explain themselves without modifying
the displayed price list content (e.g., “# I couldn’t find
a menu on this website, leaving task empty”). Reviewers
sometimes changed the comments for readability, causing
the comments to appear as line differences, thus affecting
the error score. These comments are not relevant to the
output, so we were penalizing workers for differences that
we did not care about. For near-empty price lists, this had
an especially strong effect on the error score and skewed our
results. When we modified the system to remove comments
prior to computing the error score, we found anecdotally
that the accuracy rose by nearly 5%.

4.5 Modeling the Crowd
A key aspect of Argonaut is the ability to identify

skilled workers to promote to reviewer status. In order to
identify which crowd workers to promote near the top of the
hierarchy, we have developed a metric by which we rank all
workers, composed of two components:

• Work quality. Given all of the tasks a worker has
completed recently, we take the error score of their
75th percentile worst score. In Section 5, we show
that worker error percentiles around 80% are the most
important worker-specific feature for determining the
quality of a task. We sort all workers by their 75th

percentile error score, and assign each worker a score
from 0 (worst) to 1 (best) based on this ranking.

• Work speed. We measure how long each worker takes
to complete tasks on average. We rank all workers by
how quickly they complete tasks, assigning workers a
score from 0 (worst) to 1 (best) based on this ranking.

We then take a weighted average of these two metrics
as our worker quality measure. With this overall score for
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each worker, we can promote, demote, provide bonuses to,
or end contracts with workers depending on overall task
availability. In practice, because we rate-limit the lowest-
performing workers if we are going to overrun our weekly
budget, we rarely have to explicitly end a contract.

Our system does not currently utilize statistical spam
detection techniques. However, promotion/demotion incen-
tives, Manager feedback, and long-term relationships with
crowd workers are effective at keeping malicious workers out
of the hierarchy.

4.6 Crowd Output as Training Data
We describe a structured data extraction workflow in

Section 3.2. Since macrotasks power its crowd component,
and because the automated extraction and classifiers do not
hit good enough precision/recall levels to blindly trust the
output, at least one crowd worker looks at the output of each
automated extraction. In this scenario, there is still benefit
to a crowd-machine hybrid: because crowd output takes the
same form as the output of the automated extraction, our
extraction techniques can learn from crowd relabeling. As
they improve, the system requires less crowd work for high-
quality results. This active learning loop applies to any data
processing task with iteratively improvable output: one can
train a learning algorithm on the output of a reviewed task,
and use the model to classify future tasks before humans
process them in order to reduce manual worker effort.

4.7 Crowd on-boarding and Maintenance
Though Argonaut handles the systems challenges of

processing and reviewing macrotasks, building a crowd
hierarchy based on workers recruited from platforms like
oDesk1 still requires manual intervention. Bootstrapping
the hierarchy takes significant investment. To start
developing our system, we initially brought on about 20
contractors from oDesk as DES workers, and an in-house
employee reviewed their work. Over time, we promoted fast
and accurate crowd workers to Reviewer status, and our full
time employee only reviewed the Reviewers. Eventually, we
selected our top Reviewer to be a Manager, and now full-
time employees only communicate with the crowd when a
bug is discovered.

Once the initial hierarchy has been trained and assembled,
however, growing the hierarchy or adapting it to new
macrotask types is efficient. Managers streamline the
development of training materials, and although new
workers require time to absorb documentation and work
through examples, this training time is significantly lower
than the costs associated with the traditional freelance
knowledge worker hiring process.

5. EXPERIMENTS
In this section, we evaluate the impact of the techniques

proposed in Section 4 on reducing error in macrotasks and
investigate whether these techniques can generalize to other
applications. We base our evaluations on a crowd workflow
that has run in industry for almost 3 years, has processed
over 1.3 million tasks, and has handled over half a million
hours of human contributions, primarily for the purpose of
doing large-scale structured web data extraction. We show
that reviewers improve most tasks they touch, and that

1http://www.odesk.com

workers higher in the hierarchy spend less time on each task.
We find that the TaskGrader focuses reviews on tasks with
considerably more errors than random spot-checking. We
then train the TaskGrader on varying subsets of its features
and show that domain-independent (and thus generalizable)
features are sufficient to significantly improve the workflow’s
data quality, supporting the hypothesis that such a model
can add value to any macrotask crowd workflow with basic
logging of worker activity. We additionally show that at
constrained review budgets, combining the TaskGrader and
a multilayer review hierarchy uncovers more errors than
simply reviewing more tasks in single-level review. Finally,
we show that a second phase of review often catches errors
in a different set of tasks than the first phase.

5.1 System Operation
In a little under three years, we have developed a

trained crowd of ˜300 workers, which has spiked to
almost 1000 workers at various times to handle increased
throughput demands. Currently, the crowd’s composition
is approximately 78% DES, 12% Reviewers, and 10% top-
tier Reviewers. Top-tier Reviewers can review anyone’s
output, but typically review the work of other Reviewers to
ensure full accountability. More than 50% of workers have
contributed to our system for at least 2.5 years, and 80% of
workers have contributed for more than 1.5 years.

The Manager sends 5-10 emails a day to workers with
specific issues in their work, such as spelling/syntax errors
or incorrect content. He also responds to 10-20 emails a day
from workers with various questions and comments.

The throughput of the system varies drastically in
response to business objectives. The 90th percentile week
saw 19k tasks completed, and the 99th percentile week saw
33k tasks completed, not all of which were structured data
extraction tasks. Tasks are generally completed within a few
hours, and 75% of all tasks are completed within 24 hours.

5.2 Dataset
We evaluate our techniques on an industry deployment

of Argonaut, in the context of the complex price list
structuring task described in Section 3.2. The crowd forming
the hierarchy is described in Section 4.3. The training
data consisted of a subset of approximately 60k price list-
structuring tasks that had been spot-checked by Reviewers
over a period of one year. Most tasks corresponded to a
business, and the worker is expected to extract all of the
price lists for that business. The task error score distribution
is heavily skewed toward 0: 62% of tasks have an error score
less than 0.025. If the TaskGrader could predict these scores,
we could decrease review budgets without affecting output
quality. 27% of the tasks contain no price lists and result in
empty output. This happens if, for example, the task links
to a website that does not exist, or doesn’t contain any price
lists. For these tasks, the error score is usually either 0 or
1, meaning the worker correctly identified that the task is
empty, or they did not.

5.3 Time Spent in the Hierarchy
Figure 6 shows the amount of time workers spend at

various stages of task completion. The initial phase of work
might require significant data entry if automated extraction
fails, and varies depending on the length of the website being
extracted. This phase generally takes less than an hour, but
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Figure 6: The distribution of processing times for
price list tasks, broken down by the initial task, the
first review, and the second review. Times are at 30-
second granularity. Red line represents the median.
Box represents the 25 to 75th percentiles. Whiskers
represent 5 and 95th percentiles.

Metric Name Count Percentage

Total tasks 75 -
Discarded tasks 4 -

Valid tasks 71 100%
Decreased quality 7 9.9%

No discernible change 13 18.3%
Improved quality 51 71.8%

Table 2: Of the 71 valid tasks two authors coded,
9.9% decreased in quality after review, 18.3% had no
discernible change, and 71.8% improved in quality.

can take up to three hours in the worst case. Subsequent
review phases take less time, with both phases generally
taking less than an hour each. Review 1 tasks generally
take longer than Review 2 tasks, likely because: 1) we
promote workers that produce high quality work quickly,
and so Review 2 workers tend to be faster, and 2) if Review
1 catches errors, Review 2 might require less work.

5.4 Effectiveness of Review
We evaluate the effectiveness of review in several ways,

starting with expert coding. Two authors looked at a
random sample of 50 tasks each that had changed by more
than 5% in their first review. The authors were presented
with the pre-review and post-review output in a randomized
order so that they could not tell which was which. For each
task, the authors identified which version of the task, if any,
was of higher quality. The two sets of 50 tasks overlapped by
25 each, so that we could measure agreement rates between
authors, and resulted in 75 unique tasks for evaluation.

For the 25 tasks on which authors overlapped, two were
discarded because the website was no longer accessible. Of
the remaining 23 tasks, authors agreed on 21 of them, with
one author marking the remaining 2 as indistinguishable in

Figure 7: Cumulative percentage of each task
changed divided by total number of tasks for
TaskGrader models trained on various subsets
of features, with random review provided as
a baseline. This figure contains Review 1
findings only, with Review 2 performance excluded.
Descriptions of which features fall into the Task
Specific, Worker Specific, Domain Specific, and
Generalizable categories can be found in Table 1.

quality. Given that authors agreed on all of the tasks on
which they were certain, we find that expert task quality
coding can be a high-agreement activity.

Table 2 summarizes the results of this expert coding
experiment. Of 75 tasks, 4 were discarded for technical
reasons (e.g., website down). Of the remaining 71, the
authors found 13 to not be discernibly different in either
version. On 51 of the tasks, the authors agreed that the
reviewed version was higher-quality (though they were blind
to which task had been reviewed when making their choice).
This suggests that, on our data thresholded by ≥ 5% of lines
changed, we found that review decreases quality 9.9% of the
time, does not discernibly change quality 18.3% of the time,
and improves quality 71.8% of the time.

These findings point toward the key benefit of the
hierarchy: when a single review phase causes a measurable
change in a task, it improves output with high probability.

5.5 TaskGrader Performance
Since task quality varies, it is important for the

TaskGrader to identify the lowest-quality tasks for review.
We trained the TaskGrader, a gradient boosting regression
model, on 90% of the data as a training set, holding out 10%
as a test set. We compared gradient boosting regression to
several models, including support vector machines, linear
regression, and random forests, and used cross-validation
on the training set to identify the best model type. We
also used the training set to perform a grid search to set
hyperparameters for our models.

We evaluate the TaskGrader by the aggregate errors it
helps us catch at different review budgets. To capture this
notion, we compute the errors caught (represented by the
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Review Budget 20% 40% 60% 80% 100%

Optimal % reviewed twice 14.3 14.3 14.3 14.3 29.0
% improvement over random 118 53.6 35.3 21.4 16.2

Table 3: Improvement over random spot-checks
with optimal Review 1 and Review 2 splits at
different budgets.

percentage of lines changed in review) by reviewing the tasks
identified by the TaskGrader. We compare these to the
errors caught by reviewing a random sample of N percent
of tasks. Figure 7 shows the errors caught as a function
of fraction of tasks reviewed for the TaskGrader model
trained on various feature subsets, as well as a baseline
random review strategy. We find that at all review budgets
less than the trivial 100% case (wherein the TaskGrader
is identical to random review), the TaskGrader is able to
identify significantly more error than the random spot check
strategy.

5.6 TaskGrader Generalizability
We now simultaneously explore which features are most

predictive of task error and whether the model might
generalize to other problem areas. In Section 4.4, we
broke the features used to train the TaskGrader into two
groupings: task-specific vs worker-specific, and generalizable
vs. domain-specific. We now study how these groupings
affect model performance.

Figure 7 shows the performance of the TaskGrader
model trained only on features from particular feature
groupings. Each feature grouping performs better than
random sampling, suggesting they provide some signal.

Generalizable features perform comparably to domain-
specific ones. Because features unrelated to structured data
extraction are still predictive of task error, it is likely that
the TaskGrader model can be implemented easily in other
macrotask scenarios without losing significant predictive
power.

For our application, it is also interesting to note that
task-specific features, such as work time and percent of
input changed, outperform worker-specific features, such
as mean error on past tasks. This finding is counter
to the conventional wisdom on microtasks, where the
primary approaches to quality control rely on identifying
and compensating for poorly-performing workers. There
could be several reasons for this difference: 1) over
time, our incentive systems have biased poorly performing
workers away from the platform, dampening the signal of
of individual worker performance, and 2) there is high
variability in macrotask difficulty, so worker-specific features
do not capture these effects as well as task-specific ones.

5.7 TaskGrader in a Hierarchy
The TaskGrader is applied at each level of the hierarchy

to determine if the task should be sent to the next
level. Figure 8 shows the error caught by using the
TaskGrader to send tasks for a first and second review. The
maximum percent changed (at 1.0 on the x-axis) is smaller
in Review 2 than in Review 1, which suggests that tasks are
higher quality on average by their second review, therefore
requiring fewer improvements.

We also examined how the amount of error caught would
change if we split our budget between Review 1 and Review

Figure 8: Cumulative percentage of each task
changed divided by total number of tasks for
TaskGrader in both phase one and phase two of
review.

2, using the TaskGrader to help us judge if we should review
a new task (Review 1), or review a previously reviewed
task (Review 2). This approach might catch more errors by
reviewing the worst tasks multiple times and not reviewing
the best tasks at all. Figure 9 shows the total error caught
for a fixed total budget as we vary the split between Review
1 and Review 2. The budget values shown in the legend
are the number of tasks that get reviews as a percentage
of the total number of tasks in the system. The x-axis
ranges from 0% Review 2 (100% Review 1) to 100% Review
2. Since a task can not see Review 2 without first seeing
Review 1, 100% Review 2 means the budget is split evenly
between Review 1 and Review 2. For example, if the budget
is an average of 0.4 reviews per task, at the 100% Review 2
data point, 20% of tasks are selected for both Review 1 and
Review 2.

Examining the figure, we see that for a given budget,
there is an optimal trade-off between level 1 and level 2
review. Table 3 shows the optimal percent of tasks to review
twice along with the improvement over random review at
each budget. As the review budget decreases, the benefit
of TaskGrader-suggested reviews become more pronounced,
yielding a full 118% improvement over random at a 20%
budget. It is also worth noting that with a random selection
strategy, there is no benefit to second-level review: on
average, randomly selecting tasks for a second review will
catch fewer errors than simply reviewing a new task for the
first time (as suggested by Figure 8).

5.8 Effectiveness of Subsequent Reviews
Next we examine in more detail what is being changed

by the two phases of review. We measure if reviewers
are editing the same tasks and also how correlated the
magnitude of the Review 1 and Review 2 changes are.

In order to measure the overlap between the most changed
tasks in the two phases of review, we start with a set of
39,180 tasks that were reviewed twice. If we look at the
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Figure 9: Cumulative percentage of each task
changed divided by total number of tasks for
different budgets of total reviews. The left
side represents spending 100% of the budget on
phase one, the right side represents splitting the
budget 50/50 and reviewing half as many tasks two
times each.

20% (approx. 7840) most changed tasks in Review 1 and the
20% most changed tasks in Review 2, the two sets of tasks
overlap by around 25% (approx. 1960). We leave out the full
results due to space restrictions, but this trend continues in
that the most changed tasks in each phase of review do not
meaningfully overlap until we look at the 75% most changed
tasks in each phase. This suggests that Review 2 errors are
mostly caught in tasks that were not heavily corrected in
Review 1.

As another measure of the relationship between Review
1 and Review 2, we measure the correlation between the
percentage of changes to a task in each review phase. The
Pearson’s correlation, which ranges from -1 (completely
inverted correlation) to 1 (completely positive correlation),
with 0 representing no correlation, was 0.096. To avoid
making distribution assumptions about our data, we also
measured the nonparametric Spearman’s rank correlation
and found it to be 0.176. Both effects were significant with
a two-tailed p-value of p < .0001. In both cases, we find
a very weak positive correlation between the two phases of
review, which suggests that while Review 1 and Review 2
might correct some of the same errors, they largely catch
errors on different tasks.

These findings support the hierarchical review model in
an unintuitive way. Because we know review generally
improves tasks, it is interesting to see two serial review
phases catching errors on different tasks. This suggests some
natural and exciting follow-on work. First, because Review
2 reviewers are generally higher-ranked, are they simply
more adept at catching more challenging errors? Second,
are the classes of errors that are caught in the two phases
of review fundamentally different in some way? Finally, can
the overlap be explained by a phenomenon such as “falling
asleep at the wheel,” where reviewer attention decreases over

the course of a sitting, and subsequent review phases simply
provide more eyes and attention? Studying deeper review
hierarchies and classifying error types will be interesting
future work to help answer these questions.

6. CONCLUSIONS
Our results show that in crowd workflows built around

macrotasks, a worker hierarchy, predictive modeling to
allocate reviewing resources, and a model of worker
performance can effectively reduce error in task output. As
the budget available to spend on task review decreases,
these techniques are both more important and more
effective, combining to provide up to 118% improvement
in errors caught over random spotchecking. While our
features included a mix of domain-specific and generalizable
features, using only the generalizable features resulted in a
model that still had significant predictive power, suggesting
that the Argonaut hierarchy and TaskGrader model can
easily be trained in other macrotask settings without
much task-specific featurization. The approaches that we
present in this paper are used at scale in industry, where
our production implementation significantly improves data
quality in a crowd work system that has handled millions
of tasks and utilized over half a million hours of worker
participation.
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