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ABSTRACT
Business rule management is the task of storing and maintaining
company-specific decision rules and business logic that is queried
frequently by application users. These rules can impede efficient
query processing when they require the business rule engine to
resolve semantic hierarchies. To address this problem, this work
discusses hierarchical indexes that are performance and storage-
conscious. In the first part of this work, we develop a tree-based
hierarchical structure that represents client-defined semantic hierar-
chies as well as two variants of this structure that improve perfor-
mance and main memory allocation. The second part of our work
focuses on selecting the top rules out of those retrieved from the
index. We formally define a priority score-based decision scheme
that allows for a conflict-free rule system and efficient rule ranking.
Additionally, we introduce a weight-based lazy merging technique
for rule selection. All of these techniques are evaluated with real
world and synthetic data sets.

1. INTRODUCTION
Business Rule Management Systems (BRMS) handle the retrieval

of business logic for internal and external service applications ei-
ther as dedicated components within a company or as stand-alone
commercial systems [10, 18]. This work is motivated by companies
like Amadeus that use BRMS for storing and accessing rules with
semantic hierarchies such as production line descriptors (i.e., a Mer-
cedes is a type of cars and cars are a type of a transportation device)
or geographical knowledge (i.e., Berlin is in Germany which is in
Europe and that is part of the world). Given semantic hierarchies,
a query to the BRMS needs to retrieve not only rules matching
the query values but it additionally needs to consider the semantic
predecessors. To illustrate the challenges of semantic hierarchies,
take as an example the domain of airline information systems as
encountered within the Amadeus BRMS and visualized in Figure 1.
Here, the BRMS stores rules (r1 − r5) that describe which food
should be served when flying from one geographic region to another.
The hierarchical dependencies of each respective region are shown
in Figure 2.
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criteria C consequence
ri c1 c2 c3 d

Rule Origin Destination Class Food
r1 TXL Switzerland E Chocolate
r2 Europe ZRH * Sandwich
r3 Berlin1 Germany * Sausages
r4 Berlin2 World E Croissant
r5 SXF BSL E Sandwich

Figure 1: Example rule set.
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Figure 2: Visualization of the example market hierarchy.

EXAMPLE 1 (HIERARCHICAL RULE RETRIEVAL). The cate-
rer of an airline needs to know which food is served on each flight.
For a flight from Tegel (TXL) to Zurich (ZRH), the request is pro-
cessed as follows. Value ‘TXL’ maps to the hierarchical markets
{TXL, Berlin1, Berlin2, Germany, Europe, World} while ‘ZRH’
matches {ZRH, Zurich, Switzerland, World}. To retrieve all can-
didate rules, the system determines all 24 market combinations
({TXL,ZRH},. . . ,{World,World}) and extracts the matching rules
from the rule set. Rules r1, r2, and r4 all contain either ‘TXL’ or
one of its predecessors in criterion ‘Origin’ and either ‘ZRH’ or one
of its predecessors in criterion ‘Destination’. Out of these, a rule
is considered a better match if it references an airport instead of a
region because it is a more specific (smaller) geographical point,
i.e., r1 is chosen over r2 and r4 as top match to the user’s query.

This approach to hierarchical business rule matching is the start-
ing point for our work. It is implemented in the Amadeus BRMS
which has the following additional performance specifications: First,
the BRMS needs to support read-heavy workloads composed of hun-
dred thousands of point queries such as ‘Give me the food served on
a flight from TXL to ZRH’. For each of these queries, the system
guarantees a processing time of 2ms in a service level agreement
(SLA). Furthermore, the BRMS is run on commodity servers where
the rule sets of multiple clients are co-located on the same server.
This effectively limits the amount of available main memory storage
and processing power per rule set and serviced client.
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In our work, we enhance the existing Amadeus business rule en-
gine by addressing its two key components rule retrieval and rule
selection. We first introduce a hierarchical index which presents a
solution to the problem of rule retrieval, i.e., to finding the candidate
rules that match a given query. Remember that this is done in the
baseline approach through a) finding all combinations of markets
that are a hierarchical match to the query and b) to query a hash
index to retrieve the matching rules. A drawback of the existing
approach is clearly that the number of index accesses increases dras-
tically with the number of hierarchical criteria: For example, in a
rule set explored in the experimental evaluation, one query value
maps to up to most 84 markets. With two hierarchical criteria, this
can lead to 7056 index accesses in the worst case. We therefore
introduce a hierarchical index that minimizes the amount of index
accesses to one per hierarchical criterion and furthermore reduces
the storage cost by eliminating the need for an explicit value-market
mapping such as ‘TXL’ maps to markets {TXL, Berlin1, Berlin2,
Germany, Europe, World}. In our experimental evaluation, we show
that a hierarchical index effectively reduces main memory allocation
to up to most 23% of the original storage cost for single-criterion
indexing. In addition, we show that indexing techniques provide
faster response times than any comparable hash-based approach.

The second component addressed in this work is rule selection,
i.e., the task of finding the top-k rules that match the user’s query.
Semantic hierarchies increase the complexity of rule selection when
retrieving candidate rules for a single query value: If rules with
different hierarchical values match a query, there needs to be a
mechanism that decides which rule is the best match from all avail-
able candidates. We therefore develop the notion of specificity,
i.e., a rule is more applicable if its values are more specific than
other alternative candidate rules. Furthermore, we show how it can
be enforced with strict or fuzzy top-k matching of business rules.

To the best of our knowledge, hierarchical business logic has not
been discussed in prior work as it has two key features that make
it different from other hierarchical indexing problems: Hierarchies
here denote semantic knowledge that is applicable for a value and its
hierarchical predecessors. Any query to the system therefore needs
to retrieve information about the query value and all its predecessors
instead of information about the query value only. It additionally re-
quires novel rule selection mechanisms as the query processor needs
to evaluate multiple rule sets that match the query, i.e., one matching
set per hierarchical value. We make the following contributions:

• Rule Retrieval. We introduce a hierarchical index that is
based on the idea of a range index. In this index, rules are not
only stored in the leaf but also in internal nodes. To address
efficiency, we further present two implementation variations
to optimize for main memory storage resp. performance.

• Rule Selection. Given a set of candidate rules that match the
indexed criteria, the best matching rule(s) that fit the query
have to be selected. We present a framework that enables a
consistent BRMS and discuss how selection can be efficiently
realized after the rule retrieval phase.

• Experimental Evaluation. All approaches are evaluated
with three real-world datasets obtained from airline services
with the same hierarchy structure as our running example. Ad-
ditionally, we evaluate our techniques with synthetic datasets.

The paper is structured as follows: First, we discuss prior research
in the related areas of query and XML processing as well as object-
oriented databases in Section 2. We then formally define the problem
of hierarchical business rule indexing and its two components, rule
retrieval and rule selection in Section 3. Section 4 describes a general

framework that shows the interaction between these components. In
Section 5 and Section 6, we clarify how they can be addressed in the
hierarchical business rule processing context. All of the presented
techniques are then evaluated with real-world and synthetic datasets
that show the strengths and weaknesses of the proposed mechanisms
in Section 7. Section 8 concludes this paper.

2. RELATED WORK
BRMS have been part of commercial information systems for a

long time [8, 10, 18]. Hierarchies are supported by these applications
as also described in Section 4 but to the best of our knowledge, there
has not been any work on using these hierarchical structures to
improve query performance. Indexing hierarchical business logic
touches on related work in the following areas:

Keyword Search. Work exploring semantic hierarchies has fo-
cused on XML processing [14] where queries are keyword requests,
exploring (part of) the hierarchy for exact matches to this (set of)
keywords [11]. To enhance performance, inverted indexes have been
proposed for fast, value-specific accesses within the (XML) hierar-
chy [7, 21] which corresponds to our baseline solution. Extending
this research, keyword search has been recently augmented to not
only address keyword-specific requests but to expand it automati-
cally to fit multiple keys [4]. In contrast to our work, this expansion
is not hierarchy-driven but aims to match the keyword to the under-
lying XML structure. Furthermore, the objective of the business
rule matching problem presented in this work is to find all rules that
match either the defined value or any of its logical predecessors. A
challenge that is unique to our problem is client-specific content
that may contain overlaps in the parent-child definitions such that
a child node may have multiple logical parents (for example city
‘Berlin’ is associated with two markets because the caterer may not
deliver to ‘SXF’ in the running example). Overlap in hierarchies has
been discussed in the literature [16] but not in the context of query
processing where these relationship constraints are highly correlated
to the performance of any processing technique.

Query Processing for Ordered Structures. Query processing has
been extensively studied for XML documents for which their hi-
erarchical structure is used to enhance information retrieval [15].
Similar to research on semantic hierarchies, these approaches focus
on retrieving information from a specified node of the hierarchical
tree, ignoring the content on the way through the hierarchy to that de-
sired node. Indexes are thus used to optimize path accesses without
the notion of semantic consistency along a path [6]. Query lan-
guages have been designed in that context to improve (multi-)object
accesses of the hierarchical structure [20] but without support for
retrieving hierarchy-specific content.

XML Ranking. Finding and sorting the top-k values retrieved from
an XML structure is part of this research area and is related to
the rule selection problem in our work. The idea of an internal
cost function that identifies the top-k elements has been explored in
previous work [7] but has not been looked at in the context of parallel
queue processing as items are commonly retrieved first and ranked
in a second step. Alternative work [2] has focused on achieving a
consistent ranking through Bayesian networks and using the queries
themselves as indicator for the ranking which is not applicable for
our use case. Outside of the XML context, ranking functions such
as [5] have looked at processing multiple data sets (here: rule sets)
in parallel. In contrast to our work, these assume that the items of
these data sets are dependent and influence each other.
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Object-Oriented Databases. Hierarchy is a key feature of object-
oriented design and has been well-studied for indexing in object-
oriented DBMS (OOMS). Here, classes have super and subclass
relationships which correspond to the semantic hierarchies studied
in this work. To address hierarchical indexing, two types of indexes
are commonly applied in OOMS: Key grouping indexes such as the
CH-tree [13] and set grouping approaches such as the H-tree and
the CG-tree [12, 17]. While the hierarchical criteria in this work
have similar child/parent relationships as set grouping approaches,
they are more straightforward as their hierarchical relationship is
not bound to an encompassing class but to the attribute directly.
Key grouping approaches are thus more applicable for our use case
but do not take into consideration that one value might be repre-
sented differently in each hierarchical level but assumes values to be
persistent throughout the hierarchy. Alternatively, hierarchical de-
pendencies can be modelled through adjacency lists in SQL directly,
[3]. Note that this line of work, although similarily constructing hier-
archies, does not address the problems of optimized rule access and
space-efficient rule processing that we solve with our approaches.
Furthermore, all of these techniques focus on the retrieval of values
only and do not address preference selection in the result set.

Indexing Techniques. Obviously, an important area of related
work are indexing techniques which form a large part of our con-
tribution. Indexing for rule bases has been explored explicitly for
(non-hierarchical) predicates, [9, 19]. However, indexing hierar-
chical rules requires better suited indexing techniques as we have
shown in our experimental evaluation because especially in use cases
with a large number of hierarchical criteria, the search space for
point-based queries explodes. As a result, traditional rule indexing
techniques are not applicable here.

3. PROBLEM STATEMENT
In this section, we describe briefly how queries are processed in a

BRMS and introduce the notation used throughout this paper.

3.1 Overview
In a business rule engine, we define a rule setR, with |R| = n, as

the set of rules that are accessed for a specific purpose, for example
retrieving flight information. Every rule ri ∈ R consists of a set of
criteria C and exactly one consequence d as shown in Figure 1. We
limit the number of consequences at this point to one because their
existence is required for retrieving business logic but increasing
their number will not influence the results presented in this work.
For each rule ri, a criterion value cik may take one of the following
forms for any criterion ck ∈ C:

• It is a constant value.

• It is a constant value that is part of a hierarchy.

• It is a wildcard (marked through an asterisk).

In this context, we define a hierarchy as a set of constant values that
obey a semantic ordering. The relationship of any two hierarchical
values hi and hj within the same criterion can be classified in either
of three categories: A successor, predecessor, or independence
relationship. We denote the successor relationship as hi ≺ hj .
Alternatively, value hi can be a predecessor of hj , marked as hi �
hj . In practice, successor and predecessor relationships may span
multiple levels of a hierarchy, i.e., if hk is a predecessor of hi, then
it is also a predecessor of hj . For example in Figure 2, we see that
World is a predecessor of Zurich, making Zurich analogously the
successor of World. Last, hierarchical values can be independent of
each other denoted as hi ‖ hj . Note that hierarchical relationships

may overlap such that hi ‖ hj and hk � hj and hk � hi holds. The
third type of criterion values, wildcards, can occur in hierarchical
and non-hierarchical criteria. It implies indifference to a match of
the respective attribute value.

EXAMPLE 2 (CRITERION VALUES). Figure 1 shows an exam-
ple rule set R with five rules r1 to r5 that define which food should
be served during flights. Every rule adheres to a set of criteria
C that consists of three values c1, c2, and c3, and has exactly
one consequence (Food). Criteria c1 (Origin) and c2 (Destination)
contain constant values that are part of a hierarchy, for example
hTXL ≺ hEU applies here. Criterion c3 (Class) contains constant
values and wildcards which are not part of a hierarchy.

In this example, the goal of querying the BRMS is to determine the
food served on a specific flight described by a query qj . A query
consists of a set of attributes A where |A| = |C|, i.e., the number of
attributes in the query matches the number of criteria in the rule set.
For each query, the task of the BRMS is to determine those top-k
rules in R that match qj best. That is, a rule ri matches a query qj
if for each attribute ajk the rule contains either matching criterion
values (for criteria that contain constant values) or criterion values
that are a hierarchical match to ajk.

3.2 Rule Retrieval
If the BRMS stores a rule setR and needs to determine those rules

ri ∈ R that match a query qj , it intuitively needs to search R for the
rules that match every attribute value ajk with their corresponding
criterion value cik. As verifying all criteria is expensive, systems
commonly apply filtering mechanisms to select a subset Rk of R
that contains all rules that eventually match qj but potentially more
rules that have the same attribute value. If ck is such a criterion,
then rule retrieval is the task of finding those rules ri that match the
k-th attribute of qj .

DEFINITION 1 (RULE RETRIEVAL). Given a query qj and cri-
terion ck, rule retrieval is the process of finding all rules ri ∈ Rk,
where Rk ⊆ R holds, such that the rule criterion values cik fulfill
the following condition:

∀ri ∈ Rk : {ajk = cik ∨ cik = ‘ ∗ ’}
A rule retrieval definition like this holds if the criteria do not contain
hierarchical values, i.e., where criterion values are simple constants
or wildcards. If the k-th criterion is hierarchical, ajk needs to be
translated into its corresponding hierarchical values first. For ex-
ample if the k-th criterion is ‘Origin’ in our running example and
ajk is ‘TXL’, a function h determines that the matching six criterion
values are {TXL,. . . ,World}. Queries against rule sets with hierar-
chical criteria potentially match not only a single value but possibly
multiple criterion values. For each of these, the subset Rci

k
⊆ R

denotes the rules that match value cik in the k-th criterion.

DEFINITION 2 (HIERARCHICAL RULE RETRIEVAL). Hierar-
chical rule retrieval requires a function h which determines all hier-
archical criterion values for ajk such that h(ajk) = {cik1

,. . . ,cik|h|
}

with |h| = |h(ajk)|. Given a query qj , hierarchical rule retrieval
is then the process of selecting all rules ri that form any subset
Rci

kl

⊆ R, i.e., that match any of the hierarchical criteria of ajk
such that:

|h|⋃
l=1

ri ∈ Rci
kl

: {cikl
∈ h(ajk)}

In this work, we focus exclusively on hierarchical rule retrieval.
State-of-the-art mechanisms and their associated drawbacks are
shown in Section 4 while we discuss our proposed solutions to rule
retrieval in Section 5.
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Figure 3: Naive query evaluation framework.

3.3 Rule Selection
Rule selection is the process of finding the top-k rules that match

query qj . For that purpose, it takes as input the rules found in the rule
retrieval phaseR∗ and then determines the top-k rules by examining
the weight ω(ri) of all rules ri ∈ R∗ to determine which ri best
matches the issued query. As shown in Definition 2, hierarchical
rule retrieval outputs multiple rule subsets per query depending on
the indexed hierarchical criterion. For simplicity, we refer to all
input rule subsets of rule selection as R∗ = R1 . . . Rm. For ri in
any of these subsets to be considered as top-k match, its attributes
need to match all rule criteria, even if some of the criteria are not
used during rule retrieval.

DEFINITION 3 (RULE SELECTION). Given multiple rule sets
R∗ = R1 . . . Rm with

∑
1...m |Rm| < n, rule selection determines

the top-k rules that are the best matches to query qj . To be selected
as top match, any rule ri ∈ R∗ needs to fulfill two criteria:

1. All attribute values must fulfill the condition in either Defini-
tion 1 or Definition 2 for all criteria, independent of whether
they are indexed or not.

2. The rule weight ω(ri) of ri is at least as high as the weight of
|R′| − k rules where R′ ⊆ R∗ are those rules that conform
to condition 1 and k is the number of top rules to be selected.

Details on rule selection in the Amadeus BRMS are shown in Sec-
tion 4. These mechanisms are improved with formalized weighting
schemes for ω(ri) and new techniques for rule ranking in Section 6.

4. AMADEUS BRMS
To put the two components of business rule processing, rule

retrieval and rule selection, into context, this section first gives an
overview of query processing in the Amadeus BRMS which is a
system that amongst others stores airline data of the same type we
present in our running example. We will then describe how our
work addresses the issues that arise in the existing system and how
it modifies the system to handle hierarchical rule content efficiently.

4.1 System Description
The existing Amadeus business rule engine manages queries with

hierarchies in a two-step process. First, it resolves the query qj into
a set of subqueries q1j , . . . , q

l
j as visualized in Figure 3, reconstruct-

ing the hierarchies it contains with a hierarchy map. An excerpt of
the hierarchy map for the running example is shown in Table 1. It
represents part of the hierarchy shown in Figure 2. Going back to
hierarchical rule retrieval as defined in Section 3.2, each of these
subqueries corresponds to one hierarchical value cik1

. . . cik|h|
or all

combinations thereof if there exist multiple hierarchical criteria. For
example on a flight from Berlin-Tegel to Zurich, the hierarchical

Table 1: Example value-market map.

Value Markets
‘TXL’ TXL, Berlin1, Berlin2, Germany, EU, World
‘SXF’ SXF, Berlin2, Germany, EU, World
‘CDG’ CDG, Paris, France, EU, World

. . . . . .

qi Parser Index

Rule Retrieval

W

r4

CH

r1

. . .

EU

r3

D

. . .

. . .

F . . .

Hierarchy Index

. . .

Figure 4: Rule retrieval component with hierarchy index.

criteria ‘Origin’ and ‘Destination’ would require the query to be
split into subqueries {TXL,ZRH} . . .{World,World}. After all sub-
queries have been constructed, the system uses (multi-dimensional)
indexes to retrieve all candidate rules that may match qj . The system
employs a (merged) hash index that maps the hash of all hierarchical
value combinations (across criteria) to their actual rules. A hash
index is an efficient solution to the access problem but it has to be
probed for all subqueries which is the trade-off that current BRMS
vendors are willing to make. In practice, one hierarchical value
can map to a large amount of objects (in the running example an
object is a market) based on the amount of semantic knowledge the
user wants to convey. As a result, storing a hashmap directly incurs
additional storage cost, see Section 7 for details.

As shown in Figure 3, the rule selection component of the Amadeus
BRMS takes as input those rule subsets R∗ = R1, . . . , Rm that
are obtained in the rule retrieval phase. It then selects the subset of
rules R∗j that are the top-k responses to query qj , R∗j ⊆ R∗. The
challenge for rule selection is to process R∗ efficiently as response
time is crucial for user satisfaction and computational effort has to
be minimized in distributed setups where multiple clients share the
same server resources. The Amadeus BRMS resolves this problem
by keeping R1, . . . , Rm sorted throughout the rule retrieval and
selection steps according to client-specific weights. The combined
set R∗ is then computed by merging all subsets. Afterwards, the top
matching rules R∗j can be extracted by scanning R∗, matching each
observed rule ri with qj , and stopping once the top matches have
been found. This solution has several obvious problems: First, it
requires the client to assign a weight to each rule manually which
means that the client needs domain-specific knowledge for each
rule and how it compares to any other rule in the rule set. Second,
merging sorted rule sets can be done in O(n log n) but is inefficient
in practice because not all merged rules are actually part of R∗j .
Thus, sorting them causes unnecessary performance overhead.

4.2 Solution Space
In this subsection, we briefly discuss the two design concerns that

we address by modifying the rule retrieval and selection components:
Performance of the system and its index storage cost.

Performance Requirements. We observe from our experimental
evaluation with real-world rule sets that rule retrieval is the bot-
tleneck of Amadeus’ current rule processing engine: Given a two-
dimensional hash index as would be employed on the hierarchical
criteria ‘Origin’ and ‘Destination’ in our running example, rule re-
trieval takes up at least 90% of the rule matching process. To address
this problem, we replace the rule retrieval component of the baseline
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Table 2: Object references by hierarchy level in the example and
two real-world datasets (GCA and MCO).

Hierarchy
Level

Running
Example

MCO GCA

Mean Dev. Mean Dev.
1 15 19,763.2 11.1 19,965.7 2692.2
2 11 5,012 2968.3 2616.8 1629.7
3 5 489.4 1426 220.7 609.1
4 2 28.4 22.5 5.3 4.6
5 1 48.1 789.7 1.3 4.9

approach with a mechanism that does not resolve the hierarchies up
front. Instead, the parser simply forwards this task to the indexing
structure as shown in Figure 4. Querying the index multiple times
is thus replaced by only one query to the corresponding indexing
structure per hierarchical criterion through which all candidate rules
are retrieved. We show that with this mechanism, the amount of
relative time spent on rule retrieval drastically improves by at least
35% for the same rule sets (Section 7). Implementation details of
our hierarchical indexing techniques are discussed in Section 5.

To improve the existing system, our work proposes in-place mod-
ifications to the rule selection component of the BRMS. It first
introduces a formal weighting scheme which is based on the notion
that the properties of the rule criteria such as the hierarchy level or
client-specific preferences for one criterion over another can be used
to automatically assign weights to rules. Clients can then decide
whether the system allows collisions in rule weights, i.e., multiple
rules are retrieved through the same query because they have the
same weight, or not. To address the inefficiency in filtering the
top-k rules from R∗ expressed previously, we propose a lazy merge
technique that maintains the retrieved rule sets and only merges
them on demand. All of these techniques are described in detail in
Section 6.2.

Storage Requirements. During the rule retrieval phase, the Amadeus
BRMS manages hierarchies with two maps: A hierarchy map that
maps a hierarchical value to (a set of) object(s) that represent the
hierarchy. In the running example this corresponds to the example
value-market map shown in Table 1. The second map it stores is the
actual index as an object-rule map. To illustrate the memory storage
cost of this approach, we examine two real-world datasets (MCO
and GCA). They consist of rules that contain logic for flights where
the hierarchies are of geographical nature and have been defined
by two different clients. Rule set MCO contains 21,487 different
values (airports, cities, etc.) that map to 912 client-specific markets.
On average, each of these values references 27.72 markets and each
value maps to at least 2 and at most 84 markets. For dataset GCA,
we observe 21,520 distinct values that map to 796 different markets.
Here, each value is associated with at least 3 different markets and
at most with 17 markets. The average number of markets per value
is 5. All markets defined by the clients are associated internally
with a hierarchy structure similar to the one shown in Figure 2 as
geographical knowledge can be easily mapped to different hierarchy
levels. These levels differ in their geographic scale, i.e., hierarchy
level 5 corresponds to airports while hierarchy level 2 responds to
world regions. Table 2 then reports the average number of market
enumerations of a certain hierarchy level per possible value as well
as their standard deviation. Using the running example, markets
associated with the third hierarchy level (countries) are mentioned 6
(Germany), 4 (France), and 5 (Switzerland) times for different value
mappings in the hierarchy map. Similar to the running example, we
observe as a general trend in the real-world datasets that a smaller

World (15)

EU (14)

Germany (11) France (12) Switzerland (13)

Berlin1 (6) Berlin2 (7) Paris (8) Basel (9) Zurich (10)

TXL (1) SXF (2) CDG (3) BSL (4) ZRH (5)

Hierarchy
Level

1

2

3

4

5

Figure 5: Visualization of compressed example market hierarchy.

hierarchy level often implies a higher number of associations in the
hierarchy map. For example, the hierarchy maps in these rule sets
store a first-level market reference in up to 92% (92.8%) hierarchical
values on average while the higher level markets are stored for a
substantially smaller number of hierarchical values (on average in
48.1 (GCA) and 1.3 (MCO) hierarchical mappings).

As all hierarchies need to be completely resolved from the query
values to guarantee completeness, all of the possible<value, object>
pairs in the hierarchy map have to be stored in the original approach
of the Amadeus BRMS. Obviously, storing the same market ref-
erence multiple times is unnecessary and incurs high storage cost.
This observation motivates memory-consciousness next to efficiency
as a requirement for a suitable indexing technique and shows how it
is violated by the current baseline approach. The hierarchical index-
ing techniques presented next explicitly address both dimensions
of effective rule processing and shows how the hierarchy map can
be transformed into a hierarchy index that incurs lower memory
storage but provides good retrieval performance.

5. HIERARCHICAL INDEXING
In this section we establish the notion of a hierarchical index.

We first describe how hierarchy graphs can be generated from user-
defined hierarchy maps and how they improve the storage cost and
efficiency of the rule retrieval component. In this context, we discuss
(dis-)advantages of different graph representations for hierarchies.
Last, we present two variations of a tree-based hierarchy index which
either enhance memory allocation or improve access performance.

5.1 Hierarchy Index
To address the problem of efficient rule retrieval, we propose to

replace the hierarchy map as well as the corresponding hash index
with a directed acyclic graph G = (V,E). Nodes in this graph
correspond to a (combination of) objects (in the running example
markets) on different hierarchy levels. Edges then represent the
hierarchical relationship between these objects. This graph cannot
be disconnected, i.e., it is imperative that there exists exactly one
(artificially generated) root node which serves as starting point when
accessing the hierarchy index (HI). Rules are annotated on all those
nodes that reference the market that they correspond to after the
HI has been built. For example rule r1 of the running example
would be associated with TXL (Origin) or Switzerland (Destination),
depending on the indexed criterion.

The HI can be constructed from a client-specific hierarchy map
as follows: As every value is defined by a set of objects, these object
dependencies can be used to establish hierarchical relationships in
the graph. More specifically, the sub- and superset relationships
of these objects explicitly define the hierarchical dependencies of
nodes in the HI.

PROPERTY 1 (SUBSET RELATIONSHIP). A hierarchical node
vi is the predecessor of vj (vi � vj) if and only if the objectsM(vi)
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that vi maps to are a strict subset of the objects M(vj) that vj is
referencing. We denote a subset relationship as M(vi) ⊂M(vj).

EXAMPLE 3 (SUBSET RELATIONSHIP). Country Germany maps
to markets {Germany, EU, World}. Values Berlin1 and Berlin2 map
to the same markets but also one additional market: Their unique
Berlin1 resp. Berlin2 markets. Thus, the markets that these values
map to are a superset of the markets associated with Germany
which is a predecessor market to them.

Conditioning the structure of the graph on set relationships instead
of the underlying client-specific hierarchy has another advantage:
Some objects created by clients are generated for a specific purpose
but are actually not required because values do not map to them.
Take country France in the running example: Though it makes sense
to introduce a hierarchical object France on a logical level, it is
not used in rules r1 - r5 which means that this market definition
is superfluous. These markets can be removed from the hierarchy
without violating rule retrieval. The unnecessary markets for the
running example are marked in Figure 5. Prunable values are often
a result of evolving rule (and object) sets as well as content available
to the client that he or she does not use.

Unfortunately, representing the map as a DAG albeit intuitive is
suboptimal in terms of index access time. Remember the definition
of hierarchical indexing to understand why: Per index access, all
rules that either match the query value or its predecessors are re-
trieved. If a value has many predecessors, it will thus incur a higher
retrieval cost than a value with few predecessors.

EXAMPLE 4 (DAG RULE RETRIEVAL). Imagine a query that
asks for the flights between airports ‘TXL’ and ‘BSL’. First, values

‘TXL’ and ‘BSL’ are resolved to a set of markets. For each of these,
we then start at the root, traversing the HI using constrained DFS,
i.e., exploring only those subtrees that contain a match to any of the
markets in the mapping. For example ‘TXL’ maps to Germany but
not France, thus the HI is not explored during traversal. The two
accesses to the index (one for each Origin/Destination) thus need to
process six resp. five nodes to find all possibly matching rules.

More formally, we can show that the number of processed nodes is
in the worst case dependent on the number of vertices in G.

THEOREM 1 (ACCESS COMPLEXITY OF HI). The number of
vertex accesses of HI per rule retrieval attempt is bounded by 2m if
m is the number of distinct objects in the hierarchy.

PROOF. In the worst case, all possible market combinations are
generated as nodes in the graph in the following manner: The
uppermost (empty) node is the root node which connects to all
mapping sets M(vi) such that |M(vi)| = 1. If each of these nodes
vi is connected to all nodes vj such that |M(vj)| = 2 and any
2-combinations of object values are represented in the vj nodes
and so on until |M(vl)| = m, then the whole graph is completely
connected. If queried for the objects matching vl, it thus has to
process a number of nodes that is equivalent to the number of
unordered combinations generated for the m objects, 2m.

Obviously, this bound is undesirable as it guarantees no feasible
access time and though it has minimal index storage cost, it is
not optimal in terms total storage cost either: To obtain all rules
from the HI, the first step is to use the hierarchy map to find the
objects the query value maps to. As a result, the hierarchy map
needs to be stored as before which adds again unwanted storage
cost. To address these issues, the next section discusses a tree-
based hierarchy index that resolves the storage limitations as well
as performance guarantee problems of the HI.

{World} [0,6]

{EU} [0,4] {Switzerland} [5,6]

{Germany} [0,3] {ZRH} [5,5] {BSL, Germany} [6,6]

{Berlin1} [0,1] {Berlin2} [2,3]

{TXL, Berlin2} [0,0] {SXF} [2,2]
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r2
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Rules by Origin
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Figure 6: Tree-based hierarchy index for running example.

5.2 Tree-based Hierarchy Index
The tree-based hierarchy index (THI) is a variation of the hierar-

chy index representing a graphGT = (VT , ET ) where a child has at
most one parent but a parent may have multiple children. Thus, the
parent-child relationship is not a many-to-many but a many-to-one
relationship. Given this modification to the HI, we can guarantee
predictable access time for the THI as the maximum number of
traversed nodes equals the hierarchy depth. Intuitively, the only dif-
ference between the HI and THI is a shift in the node descriptions
for a child node that has multiple parents, as the remaining nodes
adhere to the tree structure already. That is, for every child node
with multiple parents the THI construction algorithm removes the
link to all parents except for one and adds the object references of
the parents directly to the child node when inserting it into the THI.

EXAMPLE 5 (TRANSFORMATION INTO THI). In our running
example, airport market ‘TXL’ has two markets as parents, ‘Berlin1’
and ‘Berlin2’. The THI algorithm then randomly chooses ‘Berlin1’
as parent to ‘TXL’ but extends ‘TXL’ to node {‘TXL’,‘Berlin2’}. A
visualization of this modification is shown in Figure 6.

This structure is obviously not as space-optimized as a HI but has
predictable performance because single path traversal is enforced.
For a THI that adheres to this property, its tree depth is guaranteed.

PROPOSITION 1 (INDEX DEPTH OF THI). The depth of a THI
is at most the depth of its corresponding HI.

This proposition holds because if there exists no node in HI that
has multiple incoming edges, then the HI and THI are the same.
Otherwise, vertex insertion will guarantee that a child node is on
the same hierarchy level as it was in the HI. Constructing the THI
guarantees a lower number of node accesses for THI than HI:

THEOREM 2 (ACCESS COMPLEXITY OF THI). The number
of vertex accesses for THI per rule retrieval attempt is bounded by
the hierarchy depth δ.

PROOF. The THI confirms to the tree relationship property, there
exists exactly one path from root to a leaf with a maximum depth of
δ. In the worst case, δ = n but commonly δ � n holds.

As disadvantage of this technique, notice that constructing the THI
causes an increased number of references to rules because they are
duplicated for the parent as well as for the child. Duplication is
necessary as otherwise it cannot be guaranteed that the best matching
rule is found. For example, if Berlin2 is omitted from the new
{‘TXL’,‘Berlin2’} node, rule r4 is not retrieved when querying for
value TXL. Similar to the construction of the complete HI, rules
are assigned to the vertices in GT after its construction. Rules are
associated directly with objects, i.e., markets in our running example.
Since these are present multiple times in the GT , rule assignment
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ALGORITHM 1. Hierarchical index creation (Function INSERTVALUES).

11 Input: Node v, Set Mi, Tree GT

2 Node vnew ← new Node(Mi)
// only pursue if candidate objects are novel

3 if M(v) 6=Mi ∧ ∀vj ∈ v.children: M(vj) 6=Mi then
// candidate objects are a superset of a child node

4 if ∃vj ∈ v.children: M(vj) ⊂Mi then
5 Node vj ← pickChildSup(v.children, Mi)
6 INSERTVALUES(vj , Mi)

// candidate objects are a subset of a child node
7 else if ∃vj ∈ v.children: M(vj) ⊃Mi then
8 Node vj ← pickChildSup(v.children, Mi)
9 v.replace(vj , vnew)

10 vnew.addChild(vj)

// candidate objects have overlap with a child node
11 else if ∃vj ∈ v.children: M(vj) ∩Mi 6= ∅ then
12 Node vj ← pickChildOv(v.children, Mi)
13 Mo←M(vj) ∩M(v)
14 Node vo← new Node(Mo)
15 v.replace(vj , vo)
16 vo.addChild(vj)
17 vo.addChild(vnew)

// candidate objects are independent of children
18 else v.addChild(vnew)

is straightforward. For the running example, we show a complete
example THI in Figure 6. Note that this only is one example THI as
the choice of parent for both markets ‘TXL’ and ‘BSL’ is random.

Furthermore, we observe that criteria with the same underlying
hierarchy can share one index: If each criterion uses 50% or more
of the combined structure, storing them in the same structured
tree is more efficient than keeping a separate index per criterion.
Accessing either criterion is realized by adding a flag that determines
the current criterion whenever the index is accessed.

Index Construction. Given the hierarchy map of a rule set, a
tree-based hierarchy index can be constructed as described in Algo-
rithm 1. Function INSERTVALUES is called for every set of objects
Mi that need to be inserted into the THI where the root node is
the starting point for insertion and the initial assignment of node v.
Before INSERTVALUES is called, the calling function needs to make
certain that (i) there exists a root node, (ii) Mi has some overlap
withM(v) without which they are independent andMi forms a new
sibling to v under an artificial root node, and (iii) Mi is not a subset
of M(v), i.e., the new objects are not higher in the hierarchy than
the root node. We then observe that with respect to Mi, an insertion
is only necessary if the objects do not match any existing set of
objects (Line 3). If Mi is different, one of the following properties
determines the point of insertion for Mi:

1. Mi is a superset of any of v’s children.

2. Mi is a subset of any of v’s children.

3. Mi shares some objects with any of v’s children.

4. Mi is independent of v’s children.

If Mi is a superset of any vj that is a child of v, Mi can be pushed
down further into the hierarchy. To resolve the insertion point, the
algorithm determines a vj that can be used for further propagating
Mi through method pickChildSup (Line 5). If there exist multiple
candidates, this function picks the node that has the highest number
of matching objects with Mi to minimize storage cost. In case there

still exist multiple candidates, it decides upon any vj at random.
The function then calls itself with vj as new starting node. If Mi

is a subset of any of v’s children, it needs to be inserted between
that child and v. Again, the insertion point is picked at random after
the best possible matches are determined through pickChildSub
(Line 8). Node vnew then simply replaces vj as v’s child after
which vj is attached to vnew as child. The generation of an in-
between node for overlap with any of the children of v is analogous
(Lines 11-17). Last, if none of the above properties is fulfilled, Mi

is independent and is therefore inserted as a sibling node.

Query processing with THI’s. The tree structure explicitly used
by the THI has one big advantage in comparison to the DAG used
for the HI in terms of query processing: It does not require a hier-
archy map for computation but can be encoded as a range index,
[1], which decreases the required storage space for the index. In-
stead of allocating a variable number of objects depending on the
market position in GT , each node is assigned two integer values,
one upper and one lower bound, see Figure 6 for an example range
encoding. To maintain update functionality, we propose to store the
original hierarchy map nevertheless on disk to be fetched into main
memory on demand, for example for index adjustments. The range
generation for the THI is straightforward, it can be implemented
with a depth first search algorithm to traverse the THI and annotate
the children of the node before assigning a weight to the parent. A
parent is assigned the lower bound weight of its lowest (in terms
of the range value) and the upper bound weight of its highest child.
If the lower bound and upper bound have the same value, a parent
has exactly one child. To differentiate between parent and child, the
range of the parent is expanded by one range value in those cases.
An example for the range annotation of a THI is shown in Figure 6.

Updating the THI. Though business logic is not fast-changing,
updates have to be supported by any hierarchical index in case part of
the logic changes. For this problem, changes can affect either rules
or objects (and thus the vertices of GT ). Assuming that rules can
only be defined on existing objects, we differentiate between three
update types: Objects may be removed, inserted, or modified. Object
removal causes GT to possibly contain empty nodes, i.e., nodes that
do not correspond to at least one object. In that case, this node can
be collapsed with its predecessor. Object insertion can be realized
with only a few changes to the creation mechanism of the THI.
Instead of creating tight ranges based on a node’s children and
single-value ranges for leaf nodes, the ranges can be artifically
expanded whenever they are generated. For example if the tight
node range of flight market Switzerland is [5,6], a looser range, for
example [5,10], would provide space for more children nodes in
the hierarchy. In practice, a range increase does not require any
additional storage space but allows objects to be inserted with no
additional effort as a new node is simply assigned to the overhead
range. The third update type, object modification, can be handled
by either modifying the node in place or removing and reinserting
it into the index. The only costly update operation occurs when a
buffer, i.e., a node range, overflows which then requires the index
to be restructured. Given slow-changing rule sets such as the flight
information datasets that were the inspiration of this work, allocating
enough range space is sufficient for most use cases for which the
THI is applied.

5.3 THI Variants
Next, we introduce two optimization techniques for the THI: The

first one focuses on decreasing the memory allocated for storing the
THI while the second one minimizes execution time further at the
cost of storage.
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ALGORITHM 2. Creation of BTHI from an existing THI

1 Input: Hierarchical tree structure THI
2 Output: Binary hierarchical tree structure BTHI

3 FUNCTION: TRANSFORMBINARY(v, b)

4 v.bits← b
5 c← dlog2(|v.children|)e
6 bit array bi ← new bit array (size c)
7 forall vi ∈ v.children do
8 EXPLOREBINARY(vi, b⊕ bi)
9 bi.increase

Memory-optimized THI. To optimize the THI, we can apply bi-
nary instead of integer range encoding. This variant of the THI
is inspired by multibit tries that have been used to perform prefix-
match look-up for IP address, [22]. The storage requirements are
then dependent on the fan-out of the THI instead of the constant
cost for two integers to represent the ranges. More specifically, the
maximum number of bits needed to represent a key depends on the
maximal path from root to leaf. A maximal path is a path where the
sum of children per parent is maximal. The transformation of a THI
into a binary tree-based hierarchy index BTHI is shown in Algo-
rithm 2. Function TRANSFORMBINARY starts with the root node of
the THI and dynamically computes the bit arrays representing each
key as follows: First, it checks how many children the current node
has. It then stores the upper bound of the required bits to assign a
unique key to each one of them in variable c (Line 5). Aftwards, it
generates a bit array of that size which is increased per recursive call
for each child. Any child node is thus called with its corresponding
binary value, a concatenation of its parent and its own unique new
bit part. The advantage of a BTHI compared to THI is clearly that
instead of reserving a fixed amount of memory, its representation is
small if the fan-out per internal node is small. On the other hand, if
the dataset is skewed, the number of bits required to represent the
nodes is skewed as well.

Performance-optimized THI. The array tree-based hierarchical in-
dex ATHI is the complementary approach to the BTHI, optimizing
the tree structure not for storage space but performance. The basic
idea here is that instead of storing a tree, the hierarchical structure
is flattened into an array. Per THI definition, every criterion value
references at most δ values which allows for an exact prediction of
storage space, i.e., the THI is flattened into a (different) hierarchy
map where each value is mapped to exactly δ objects, one for each
level of the index. Obviously, this structure requires more memory
than either the THI or BTHI as memory is allocated even if no
objects are referenced on that hierarchy level. Take as example
market World that maps to exactly one market in the running exam-
ple. As δ = 5, five slots are allocated where only the first one is
filled with a reference to the rules matching the world-wide flight
market. At the same time it is intuitive that accessing an array is
less time-consuming than accessing and traversing a tree.

5.4 Multi-Level Hierarchical Indexing
So far we discussed using an index on one criterion and poten-

tially sharing an index between multiple criteria, annotating the rules
per criterion with a different flag to enable correct rule retrieval. An
alternative to this one-dimensional index is a multi-level hierarchi-
cal index (MHI), i.e., an index is first created on one hierarchical
criterion and every node does not contain rules but another index
specific based on the criterion value of this node. The trade-offs for

this approach are obvious: Its advantage is that it is tailored to the
criterion structures which means that there exist no nodes that are
not associated with a rule corresponding to the indexed hierarchical
criterion. Going back to Figure 6, a multi-level index on criteria
‘Origin’ and ‘Destination’ would only have ‘Origin’ rules in the first
level of the index; once the matching nodes are identified, multiple
subtrees, one per matching hierarchical node, are explored to find
matching nodes for the ‘Destination’ criterion. Due to the layering
of hierarchical indexes, the index structure needs to be accessed only
once and all returned rules match all indexed criteria. The draw-
back of this approach is the overhead caused by storing subtrees for
each node in each level of the multi-level tree except for the last
one. In Section 7, we specifically examine the trade-off between
storage space and performance for different rule sets to evaluate the
effectiveness of layering hierarchical indexing structures.

6. RULE SELECTION
Rule retrieval as introduced in the previous section directly influ-

ences the performance of the rule selection component as it allows
multiple rule subsets as output. Thus, it requires that the rule selec-
tion component incorporates a ranking mechanism that determines
the top-k rules matching the query. In this section, we discuss how
hierarchical values and user preferences may help to define the
specificity of a rule formally which defines the rank of a rule. Fur-
thermore, we describe how rule selection can be realized efficiently.

6.1 Rule Specificity
The importance of a rule with respect to others is influenced by

two types of specificity:

1. The hierarchy position of value cik (hierarchical specificity)

2. and user preferences concerning ck (user-defined selectivity).

We will define these types of specificity in the following explicitly
and show how they can be interleaved to construct the rule weight.

Hierarchical Selectivity. Hierarchical objects incorporate the idea
of specificity implicitly as elements that are further up in the hier-
archical structure are considered more general while objects with
a deeper hierarchy level are more specific. In the running example,
take rules r1 and r2. Both answer our initial example query for
flight information from Berlin-Tegel to Zurich but as the destination
of r1 (TXL) is more specific than the ‘Origin’ criterion value of r2
(Europe) while the markets in criterion ‘Destination’ have an equal
hierarchy level, it is more applicable for this query.

DEFINITION 4 (HIERARCHICAL SELECTIVITY). A rule crite-
rion value cik is more specific than value cjk if a successor rela-
tionship holds between the objects they reference in the underlying
hierarchy, i.e., the corresponding nodes vi and vj in the hierarchy
graph maintain a successor relationship such that vj � vi.

Given the hierarchical index presented previously, HI, the relation-
ship of these two objects can be extracted using set semantics again.
Note that vi and vj need to be in a hierarchical relationship with
each other because otherwise they will not both match the query.
Using this relationship, rules associated with values that are deeper
in the hierarchy obtain a higher value weight w(cik) for hierarchical
value cik of rule ri. Wildcards for optional rule values as described
in Section 3 can be seen as a specific case of a hierarchical value,
they are the all-encompassing root nodes of a hierarchy tree.

User-Defined Selectivity. It is intuitive that some criteria are more
important to the client than others because of the client’s preferences
and the intended semantic meaning of those criteria. In the running

1663



example, a flight is more distinctly defined through its ‘Origin’ and
‘Destination’ criteria than the ‘Class’ criterion as the geographical
regions of a flight determine the length of the flight which usually has
higher impact on the served food than the service class. As a result,
score computation should allow users to specify the importance of a
criterion through an attribute weight αk for every criterion ck.

DEFINITION 5 (USER-DEFINED SELECTIVITY). The weight
of criterion ck in rule ri is defined as the weight of its original value
w(cik) and factor αk such that w∗(cik) = w(cik)× αk.

Alternative to criterion-based rule weights, users may also decide to
define a rule weight for the whole rule, thus artificially promoting
this rule. Supporting this type of user-defined selectivity is intuitive.
To compute the weight of a rule ri, these types of selectivity can
be combined in a simple cost model that assigns each rule a certain
weight according to its specificity: The higher the weight, the more
specific the rule. The weight ω of a rule ri can be calculated as the
sum of all criteria weights such that

ω(ri) =
∑
ci
k
∈C

w∗(cik)

.

EXAMPLE 6 (RULE SPECIFICITY). Given c1 (Origin), c2 (Des-
tination), and c3 (Class), we define a higher weight for c1 and c2
than c3, i.e., α1 = α2 = 2 and α3 = 1 in the running example.
Using the subset relationships from the HI, the hierarchical score
of value ci1 (ci2) is the hierarchy level of the node vi it maps to.
Furthermore, the optional score of c3 is either 0 or 1 depending on
whether ci3 is a wildcard or not. If a user requests information for a
flight from Berlin-Tegel to Basel, the matching rules are r1, r3, and
r4 where ω(r1) = α1×w∗(c11) +α2×w∗(c2) +α3×w∗(c13) =
2× 5 + 2× 2 + 1× 1 = 15. The weights for rules r3 and r4 can
be computed analogously such that ω(r3) = 14 and ω(r4) = 11
which means that the engine would return r1 to the user.

Complex rule computation functions will not modify the gain achieved
through structured rule weight calculations: The important obser-
vation here is that the applicability of a rule is reduced to a weight
that the system uses to evaluate competing rules. Furthermore, we
observe that the computation of rule weights can be done in a static
manner which allows the system to be highly efficient during rule
retrieval as we will explain in detail in Section 6.2. If every rule ri
is assigned a weight ω(ri), the BRMS is immediately able to

1. identify which rule is more specific than alternative rules.

2. identify during an rule set update whether a rule can be added
to the system conflict-free.

The second property is important in case strict rule weights are
enforced by the system: If a query is issued that retrieves two rules
with the same weight, top-k order with a strict number of k rules
cannot be guaranteed. On the other hand, if the weight of a rule
is directly computed when inserting the rule, the system can raise
an alert in case of a weight collision. We therefore differentiate
between strict and fuzzy top-k rule selection which differ only in the
conflict consistency for rule weights. In the following, we assume a
strict selection strategy for simplicity but all of the presented top-k
selection strategies are valid for fuzzy selection as well.

6.2 Top-K Rule Filtering
If every rule is assigned a weight, top-k filtering is the task of

selecting the k rules that have the highest weight and match the
query. Remember that indexing does not guarantee retrieved rules

R1: R2: R3:

r1 : 5

r2 : 4

r3 : 6

r4 : 3

r5 : 2

r6 : 7

r7 : 1

L : 6: (R2, 0) 5: (R1, 0) 1: (R3, 1)

Lf : r6

Figure 7: Example for lazy merge rule selection algorithm.

to match the query: It only guarantees that the indexed values are
matched. Furthermore, the algorithm has to take multiple rule
subsets R1, . . . , Rm as input because the query value ajk can match
multiple cik if an ancestry relationship holds. We next describe the
baseline algorithm for rule filtering in the Amadeus BRMS and then
introduce a lazy merge technique for top-k filtering.

Sort-Merge Selection (SMS). To unify different rule subsets, the
straightforward solution is to employ a sort-merge algorithm. If
rules are kept in the indexing structure in a sorted order already, it
proceeds by merging all rule sets into one consolidated list. The
top-k rules are then determined by parsing the merged list of rules
from top to bottom, terminating if k matches have been found.

Lazy Merge Selection (LMS). Lazy merge selection takes as input
sorted rule subsets R1, . . . , Rm and uses a pointer-based technique
to determine the top-k rules. Instead of merging the rule subsets, it
integrates top-k filtering into the merging process. Specifically, it
processes the rule sets in parallel, picking the next rule according to
the weight of the rules in descending order from a list that contains
the top element of each rule subset. For merging the rule subsets,
it first establishes an internal sorted list that contains at most one
element of each rule subset, i.e., the current top rule of that specific
rule subset. It then loops over this list, removing the first element
and adding it to the final list Lf if it matches qj . Otherwise, it is
discarded. At the same time, the algorithm augments the empty
space in L by adding the rule’s successor to the list.

EXAMPLE 7 (LAZY MERGE). Figure 7 shows an example
where the LMS algorithm evaluates three rule subsets. Initially,
its internal list L contains pointers to rules r6, r3, and r1. If r6
matches the current query, it is removed from L and its successor
r7 is added to L. As weight 1 is smaller than any other weight, it is
pushed to the end of the queue, making r3 the next rule to process.

Strategy Discussion. Both of these strategies have their advantages
and disadvantages. Obviously, SMS is inefficient a) if there exist
a lot of rule subsets to merge and b) the top rules are found easily
as they have a high weight and match the query term. On the other
hand, LMS needs additional storage space and random accesses
within the data structure as multiple rule sets need to be observed
simultaneously. If the top rules are found late in the selection phase,
our experiments show that a straightforward merging algorithm
provides better performance (Section 7). Furthermore, SMS can be
used in its current form for fuzzy rule selection. To allow multiple
matches with the same weight, LMS is augmented to iterate over
the current items of a rule set until all rules with the same weight
have been processed.

7. EXPERIMENTS
In this section, we evaluate the different retrieval and selection

techniques with three real-world and synthetic datasets. The evalua-
tion is split into two parts, highlighting the advantages and disad-
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Figure 8: Comparison of (multi-dimensional) indexing structures for varying datasets.

vantages of the two components in business rule processing. First,
the hierarchical indexing mechanisms are contrasted with existing
hash-based techniques that are currently used by BRMS vendors.
Afterwards, the proposed rule selection techniques are compared for
different datasets to evaluate their robustness.

Datasets. Four different datasets are used in this evaluation, one
synthetic dataset as well as three datasets obtained from the baseline
BRMS. They contain a geographical hierarchy as described in this
paper with a maximal hierarchy depth of δ = 5 but they contain
varying criteria and rule distribution characteristics (Table 3):

MCO This rule set contains 18,117 rules with two hierarchical
criteria ‘Origin’ (O) and ‘Destination’ (D) and additional
non-hierarchical criteria (flight numbers, dates, etc.). The
hierarchy map for this rule set is described in Table 2
and contains 21,487 entries. Rules are distributed evenly
across the nodes in the HI for both hierarchical criteria
where approximately 6.5% of the rules can be found in
the top and 60% in the lowest hierarchy level.

YLD This rule set has the same hierarchy map and rule set
as MCO but has only two criteria, ‘Origin’ and ‘Des-
tination’. While all rule references for ‘Origin’ are on
the third hierarchy level, they are found equally on the
second or third hierachy level for ‘Destination’.

GCA This rule set contains 2,594 rules that have three hierarchi-
cal criteria, adding a connection hub (C) as hierarchical
criteria, as well as five non-hierarchical criteria. The
hierarchy map used for this rule set is described in Ta-
ble 2 and contains 21,520 markets. The majority of rule
references are on the fourth hierarchy level for criteria
‘Origin’ and ‘Destination’. For criterion ‘Connection’,
about 62% of the rules are located on the first and the
remaining 38% on the second hierarchy level (δ=2).

The rule weights of MCO and GCA vary according to the hierarchi-
cal level that the respective rule is associated with. In contrast, all
rules in YLD have the same weight in our experimental evaluation.

Query Generation. To test the different approaches, the query
workload per rule set is generated as the cross product of all distinct
values of all hierarchical criteria. Only those queries are issued
against the framework that have (multiple) matching rules. For
the real-world datasets, we thus issue 502,681 (MCO), 578,483
(YLD), and 24,500 (GCA) queries to examine the performance
of the tested indexes. Every query is run multiple times to ensure
result robustness. The results documented in the following show the
average, maximum, and minimum execution time of any query.

Table 3: Percentage of referenced rules for real-world datasets MCO,
YLD, and GCA in their corresponding HI’s.

Hierarchy
Level

MCO YLD GCA

O D O D O C D
1 6.5 6.5 0 0 0 62.1 0
2 0.1 0.1 0 53.6 0.01 37.9 0.1
3 18.5 18.3 100 46.1 16.2 0 17.8
4 13.7 14.1 0 0.03 70.8 0 68.9
5 60.3 60.2 0 0 11.9 0 12.5

Indexing Techniques. For the evaluation of the hierarchical index-
ing techniques discussed in Section 5, three hierarchical indexes
have been implemented:

THI Range implementation of a tree-based hierarchy index.
BTHI Variant of the THI using binary encoding.
ATHI Array-based implementation of the THI.

Next to these single-dimension indexes, we test multi-level indexing
as an alternative indexing technique marked by M in front of the
index. The ordering of the levels of these indexes is indicated in the
naming convention as follows: If the index type is M-THI (OD), it
is a multi-level THI where the first level criterion is ‘Origin’ and the
second level criterion is ‘Destination’. The baseline implementation
is a combination of the hierarchy map and a hash index as described
in Section 4. It is annotated with H and 1D for a single dimension
or 2D and 3D for indexes spanning multiple criteria.

Selection Techniques. For rule selection, both SMS and LMS
have been implemented as described in Section 6.2. If not otherwise
defined, LMS is selected by the processing engine as default rule
selection mechanism.

All of these techniques have been implemented in Java. Furthermore,
all experiments are executed on the same hardware, a Linux machine
with two Intel Xeon L5520 processors and 24GB RAM.

7.1 Hierarchical Index Evaluation
In this section, the different hierarchical indexing approaches

are compared to the hash indexing techniques that are currently
implemented in our reference BRMS. First, the different approaches
are evaluated for single-criterion indexes. Second, the indexes are
layered thus making them multi-dimensional as described above.

Single-criterion indexing. For the YLD dataset, Figure 8 shows
the performance and Figure 8d the memory allocation results of
one-dimensional hash indexes compared to hierarchy indexes that
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Figure 9: Multi-dimensional indexing for GCA dataset.

are composed of the hierarchical values in all available hierarchical
criteria. Because the hierarchical index structure (a) can be used
for two criteria and (b) the extensive baseline hierarchy map is
replaced by a range map, memory requirements are reduced by at
least 89.07%. Especially avoiding the use of a hierarchy map causes
a large difference in memory cost: The large number of duplicate
references can be efficiently pruned with the hierarchy indexing
techniques while the whole map has to be stored to ensure correct
processing for hash indexes. Furthermore, the performance of all
hierarchy indexes is stable, varying within 0.005ms of the average
execution time at most, while larger performance differences can
be observed for 1D-H depending on the indexed criterion. Here,
the performance varies as a hash index on ‘Origin’ profits more
from the data skew in the rule distribution of YLD than a hash
index on ‘Destination’: As the rules are deeper in the hierarchy for
criterion ‘Origin’, they are more selective which increases overall
performance comparatively.

If rules are more evenly distributed like in rule set MCO, the
performance of one-dimensional hash indexes evens out as shown in
Figure 8b. Furthermore, deep queries, i.e., queries that traverse the
whole tree in depth, are comparatively more expensive for the THI-
based approaches although they outperform any 1D-H index by at
least 58.7%. The memory storage cost improvement per approach
is similar in MCO as in YLD: Any hierarchy index requires at least
78.5% less memory than any of the hash indexes.

Multi-criterion indexing. Compared to single-criterion indexing,
multi-criterion indexing directly incorporates multiple criteria into
one index. They are realized for hash indexes by merging values to
form a merged hash index. For multi-level indexing with hierarchi-
cal indexes, we follow the same approach as described in Section 5.4.
For rule set MCO, we observe that multi-criterion indexing using
any tree-based technique improves performance from an average of
at least 0.0033 ms to 0.0022 ms as shown in Figure 8c. Similarily to
the results shown in single-criterion indexing, ATHI outperforms
THI slightly. In this specific setup, the performance improvement is
at least 13.2%. Even the worst setup of THI is nevertheless 50 times
faster than 2D-H. We furthermore observe that the access time of
the merged hash index, 2D-H, is the average of its single-criterion
counterparts which is reasonable as it does not fully benefit from the
selectivity of ‘Origin’ but still maintains a better rule selectivity than
‘Destination’. Note that it is possible but not efficient to implement
BTHI for multi-level indexing which is why we omit its results
from this evaluation because binary encoding is dependent on the
(sub-) tree structure and cannot be pruned in the same way as a
range encoding.
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Figure 10: Memory allocation and performance comparison with
varying hierarchy and query depth.

When comparing memory storage in this setup (Figure 8f), we
observe that ATHI requires more storage space than THI. The
reason is the fixed amount of memory that ATHI requires even in
those criteria that form the later dimensions. For rule set GCA,
the memory allocation cost as shown in Figure 9b is worse than
in MCO for all approaches. The increased number of hierarchical
criteria and their ordering especially influences the needed storage
space of ATHI. For ATHI, we observe that it is best to have levels
with shallow hierarchies like ‘Connection’ first to reduce the amount
of duplicated (and empty but storage costly) internal array fields.
Even in the best case scenario, ATHI needs 21.1 MB of memory
while THI requires 16.2 MB in its worst case setup. Compared to
the three-dimensional hash index, we observe that THI is always
more memory-efficient than 3D-H. Furthermore, both hierarchical
indexing techniques are at least 36% faster on average Figure 9a
than 3D-H.

Synthetic datasets. To experiment with the trade-offs between
ATHI and BTHI, we generated binary trees with varying hierarchy
depths. In this set of experiments, we explore how increasing the
hierarchy depth of the tree affects the storage cost of each of these
approaches. Figure 10 shows the memory storage cost for this
experiment where the applied metric is the memory allocation ratio
of ATHI to BTHI. If the ratio is above 1, the memory allocated
for ATHI is higher than the memory requirements for BTHI. As
expected, this experiment shows that with an increase in hierarchy
depth, the compression scheme of BTHI is more effective than the
fixed space allocation scheme of ATHI which makes it the preferred
solution for memory-conscious use cases.

Second, we evaluate the performance of ATHI compared to
BTHI by varying the query depth. For example querying for value
‘TXL’ in our running example has a query depth of 5, while the
query depth of ‘World’ is only 1. The results for this experiment
are shown in Figure 10b where we observe the performance ratio of
ATHI and BTHI. If the ratio is above 1, then BTHI is slower than
ATHI. This graph shows the opposite development as observed for
storage cost: The higher the query depth, the better the performance
of ATHI compared to the performance of BTHI. For example for
query level 26, we measured an average retrieval time of 0.001ms
for ATHI and .0014ms for BTHI. As BTHI is implemented as a
tree index, it takes additional processing time for traversing its inter-
nal structure. Thus, the longer the path that needs to be traversed,
the more ATHI gains a comparative advantage.

7.2 Selection Evaluation
To evaluate the two selection processes introduced in Section 6.2,

we describe results obtained when comparing SMS and LMS on
rule sets YLD and MCO next. Note that the reported observations
hold for all other rule sets that we used for this experimental evalua-
tion as well. In this set of experiments, we compare the performance
of the two rule selection strategies SMS and LMS. To evaluate
their performance with new and old retrieval strategies, we chose
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Figure 11: Rule selection trade-offs for varying datasets and in comparison to rule retrieval.

1D-H (O) (the better performing one-dimensional hash index) and
THI as rule retrieval mechanisms. For YLD, we observe that using
LMS has a stabilizing effect on the execution times but the observed
average execution time is approximately the same for both selection
techniques (Figure 11a). The reason for this behavior is that in this
set of experiment, all rules in YLD are assigned the same weight
to test the fuzzy matching capabilities of the selection strategy. As
a result, the sorting is evenly expensive for SMS and LMS. In
contrast, we observe an improvement when using LMS instead of
SMS for the MCO dataset. Here, using LMS decreases the execu-
tion time of the rule selection process by 24.15% (1D-H (O)) resp.
69.34% (THI). The difference in the performance improvement
can be attributed to the fact that THI stores multiple criteria in the
hierarchical index if they use the same underlying hierarchy. Thus,
it benefits from the performance improvement of LMS twice in this
specific experiment.

To evaluate the importance of rule selection and rule retrieval
in the larger context of query processing, Figure 11c shows the
performance trade-off for varying indexing techniques and LMS
as selection step. Comparing the baseline techniques, we observe
that as indicated previously in Section 7.1, a one-dimensional hash
index may outperform a multi-level hash index drastically. The
second observation that we make is that rule selection in general
dominates the time spent on rule retrieval for any THI variation.
For these approaches, rule selection becomes the bottleneck as
information retrieval is executed with one index access per stored
criterion. Third, rule selection is more expensive in YLD than
MCO, i.e., different dataset structures cause the trade-off between
selection and retrieval to shift. In this specific case, YLD contains
false positive matches that are discarded when filtering rules that
match the whole query and not only the indexed values which makes
this step more expensive in YLD.

8. CONLUSION
In this work, we introduced and addressed the problem of index-

ing hierarchical business logic. It might be a comparatively small
part of a company’s decision logic but it is difficult to handle with
general indexing and data processing techniques as information ac-
cesses are hierarchy-oriented. As a result, retrieving hierarchical
information can unnecessarily slow down query processing and thus
decrease system performance. We therefore presented techniques
to store client-specific hierarchies and adapted their intuitive graph
structure to an efficient tree structure. Furthermore, we discussed
and implemented two variations of the THI that either guarantee
constant access time or improve memory consumption. Our work
next showed how hierarchical knowledge can be used to define the
specificity of a rule and how rule weights can be enforced during
the update process which enables efficient rule selection. To handle
multiple rule sets, we discussed different top-k selection mecha-
nisms that suit hierarchical rule retrieval. All of our techniques have
been evaluated extensively with real-world and synthetic datasets
and their (dis-)advantages were explained in detail in an extensive
experimental evaluation.
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