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ABSTRACT
Differential privacy (DP) has been widely explored in academia
recently but less so in industry possibly due to its strong privacy
guarantee. This paper makes the first attempt to implement three
basic DP architectures in the deployed telecommunication (telco)
big data platform for data mining applications. We find that all DP
architectures have less than 5% loss of prediction accuracy when
the weak privacy guarantee is adopted (e.g., privacy budget parame-
ter ε ≥ 3). However, when the strong privacy guarantee is assumed
(e.g., privacy budget parameter ε ≤ 0.1), all DP architectures lead
to 15% ∼ 30% accuracy loss, which implies that real-word indus-
trial data mining systems cannot work well under such a strong pri-
vacy guarantee recommended by previous research works. Among
the three basic DP architectures, the Hybridized DM (Data Min-
ing) and DB (Database) architecture performs the best because of
its complicated privacy protection design for the specific data min-
ing algorithm. Through extensive experiments on big data, we also
observe that the accuracy loss increases by increasing the variety of
features, but decreases by increasing the volume of training data.
Therefore, to make DP practically usable in large-scale industrial
systems, our observations suggest that we may explore three possi-
ble research directions in future: (1) Relaxing the privacy guaran-
tee (e.g., increasing privacy budget ε) and studying its effectiveness
on specific industrial applications; (2) Designing specific privacy
scheme for specific data mining algorithms; and (3) Using large
volume of data but with low variety for training the classification
models.

1. INTRODUCTION
Telecommunication (telco) big data record billions of customers’

communication behaviors for years in the world. Mining big data
to increase customers’ experience for higher profits becomes one
of important tasks for telco operators (e.g., telco churn prediction
with big data [12]). To this end, telco operators aim to build big
data platforms to analyze patterns of customers’ life-cycle behav-
iors for the next-generation business intelligence. For customers,
most telco data are privacy-sensitive such as call detailed records
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(CDRs), billing records, purchase history, payment records, mobile
search queries, social networks, and trajectory information [14].
Therefore, individual customer’s privacy protection module is a
necessary component in telco big data platform. Differential pri-
vacy (DP) [6] is the state-of-the-art privacy protection technique in
academia, because it provides mathematically a very strong privacy
protection guarantee, which ensures the outcome of any authenti-
cated query/calculation to be insensitive to any individual record
in the database (DB). However, very few successful DP cases have
been reported in real-world large-scale industrial data mining (DM)
projects possibly because DP’s strong privacy guarantee often causes
worse DM performance.

In this paper, we make the first attempt to implement three basic
DP architectures in the deployed telco big data platform for churn
prediction [12]. Customer churn is perhaps the biggest challenge
in telco industry. A churner quits the service provided by operators
and yields no profit thereafter. The churn prediction system pro-
vides a list of customers (ranking by the churn likelihood) who will
most likely churn in the next month, which requires feature engi-
neering and classifier learning on customers’ historical communi-
cation records. In industry, data-driven churn prediction generally
includes constructing useful features (aka predictor variables) and
building good classifiers (aka predictors) or classifier ensembles
with these features [9, 36]. We would like to use churn predic-
tion over telco data as an example to study DP mechanisms. This
would help to answer how DP will perform with real industry big
data mining if they outsource mining tasks to third parties. For
privacy protection, we analyze and evaluate three DP implementa-
tions for decision trees (DTs) in the churn prediction system with
big data. The reason we choose DTs is that they have been widely
used in industrial data mining systems with good prediction perfor-
mance [10, 30, 9, 36, 28]. For example, DTs have been used for
churn analysis [32], domain knowledge integration [19], voltage
reduction [1], and so on. Another widely used classifier ensemble
method, random forest (RF) [2], is composed of a group of DTs
with the similar privacy protection strategies. Although RF often
achieves a better prediction performance [16, 26, 12], it is still nec-
essary to analyze the effectiveness of DP techniques for DTs.

To summarize, we make the following contributions on DP from
industrial perspectives:

• Implementation in telco big data platform: We broadly cate-
gorize the recent DP implementations for DTs into three ba-
sic architectures: 1) Data Publication Architecture [25, 39];
2) Separated Architecture [7]; and 3) Hybridized Architec-
ture [7, 13]. We will describe detailed implementations of
the three basic DP architectures in Section 4.
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Table 1: Notations & Meanings.
Notation Meaning Notation Meaning

DB Database DT Decision Tree
DM Data Mining RF Random Forest
DP Data Privacy AUC Area under ROC Curve

• Extensive experimental results on big data: 1) We study the
influence of privacy budget parameter on different DP imple-
mentations with industrial big data. The accuracy trade-off
testing with different privacy budgets is similar to the pre-
vious works [7]; 2) We compare the performance of three
basic DP architectures in churn prediction; 3) We examine
how volume and variety of big data affect the performance
of DP, where volume and variety are two basic characteris-
tics of big data; and 4) We compare the DP implementation
performance between the simple DT and the relatively com-
plicated RF in churn prediction. More details can be found
in Section 5.

• Important observations in churn prediction: 1) All DP archi-
tectures have a relative accuracy loss less than 5% with week
privacy guarantee (e.g., privacy budget parameter ε ≥ 3).
However, when the privacy guarantee becomes stronger (e.g.,
ε ≤ 0.1), the relative accuracy loss is as large as 15% ∼
30%; 2) Among all three basic DP architectures, the Hy-
bridized Architecture performs the best because of its spe-
cific privacy design for a specific data mining algorithm such
as DTs; and 3) The prediction error caused by the DP protec-
tion increases with the growth of the number of used features,
but decreases with the growth of the training data volume (the
number of instances used to train the model).

• Practical suggestions on deployment of DP in large-scale in-
dustrial data mining systems: 1) Relaxing privacy guarantee
(e.g., increasing privacy budget parameter ε) and study its ef-
fectiveness on specific industrial applications; (2) Designing
specific privacy scheme for a certain data mining algorithm;
and (3) Using large volume of data but with low variety for
model training.

Table 1 summarizes the notations used in this paper. The rest
paper is organized as follows. Section 2 reviews the related work
on privacy protection techniques. Section 3 introduces the real-
world telco big data platform and the customer churn prediction
component. Section 4 describes industrial DP implementations for
decision tree (DT) based data mining algorithms. Section 5 re-
ports extensive experimental results on different DP techniques us-
ing different parameter settings. Section 6 draws conclusions and
discusses possible research directions in future.

2. RELATED WORK
Anonymization [3, 4] is the first-generation privacy protection

technique, which removes or replaces the explicitly sensitive identi-
fiers (ID) of customers, such as the identification number or mobile
phone number, by random mapping or encryption mechanisms in
DB, and provides the sanitized dataset without any ID information
to DM services. However, anonymization still discloses individual
customer’s privacy. For example, Sweeny [29] demonstrated that
an individual’s name in a public voter list can be linked with his/her
record in a published anonymized medical record through the com-
bination of some attributes including zip code, birthday and sex.
The attributes that can be used to identify a user or a small group of

users is called the quasi-identifier. Sweeney [29] found that 87% of
the U.S. population has disclosed information that may be uniquely
distinguished by their quasi-identifiers.

To avoid the attack using quasi-identifiers, K-Anonymity [29,
5, 15] is invented to provide stronger privacy protection, which
ensures that any quasi-identifier in the published dataset appears
at least K times. K-Anonymity guarantees whenever an attacker
uses the quasi-identifier to attack a user, he/she will always obtain
at least K similar candidates. To make any quasi-identifiers appear
at least K times, K-Anonymity generates, permutes or changes
the quasi-identifier values. However, K-Anonymity still has some
weaknesses. For example, if the sensitive information is the disease
and the group of customers with the same quasi-identifiers have the
same disease HIV, the privacy information is still disclosed. So,
the L-diversity models [21, 22] are proposed, which require the
sensitive information in an anonymous group (aka a group of cus-
tomers with the same quasi-identifiers) must have enough “diver-
sity”. Similarly, stronger privacy protection models, such as T -
closeness [17], are proposed (the distribution of sensitive informa-
tion distribution in any anonymous group must be close enough to
the distribution of the whole dataset). Researchers also develop
different privacy protection models for other scenarios, such as
the graph dataset [20, 37] (the linkage and node label information
can be treated as both sensitive and quasi-identifier) and contin-
uously published data [33]. These solutions can be regarded as
the second-generation privacy protection techniques, which pub-
lish a sanitized dataset with certain anonymity or diversity require-
ments. The biggest weakness of the second-generation protection
techniques is that they must predefine the background knowledge
(quasi-identifier) of the attacker (the knowledge that an attacker
will use to attack an individual customer’s privacy). If the back-
ground of attackers is unknown, the protection may totally fail and
the data provider cannot control anything after the sanitized dataset
has been published. In real-world applications, it is difficult to de-
fine the quasi-identifiers and sensitive information.

Unlike previous solutions, DP [6] is currently the strongest pri-
vacy protection technique, which does not need any background
information assumption of attackers. The attacker can be assumed
to know the maximum knowledge, e.g., he/she knows all the other
instances in the DB except the targeting one. DP ensures the out-
comes of the authenticated queries/calculations to be insensitive to
any individual record in the DB. Insensitivity means when the at-
tacker observes the output of DB, the probability he/she learns an
individual customer is in the DB and the probability he/she learns
this individual user is not in the DB should be indistinguishable. In
this situation, each customer is provided the strongest privacy pro-
tection. For this reason, DP can be viewed as the third-generation
privacy protection technique. The research community prefers DP
due to its strong mathematical boundary of the leaked privacy [6,
23, 35, 27, 11, 18, 38, 34]. Recently, DP has been studied in differ-
ent scenarios including histogram query [35], statistical geospatial
data query [27, 11], frequent item set mining [18, 38] and crowd-
sourcing [11]. How to adapt DP on decision trees are studied by
[7, 13]. Xiao [34] designed a new graph data publication model,
in which each graph is described as a tree structure. DP is used
to protect the tree structure as well as the probability value at each
tree node. Erlingsson [31] studied how to use DP for crowdsourc-
ing statistics from end-user client software. Machanavajjhala [23]
investigated the relationship between privacy and accuracy of per-
sonalized social recommendations, where DP is considered as the
privacy measurement. Interestingly, for majority of nodes in the
network, recommendations must either be inaccurate or violate DP
assumptions.
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Figure 1: The overview of telco big data platform.

To the best of our knowledge, there are few DP techniques imple-
mented in deployed industrial DM services. Since DP has shown its
benefits by providing the strongest privacy protection without pre-
defining the attackers’ background knowledge, it is worthwhile in-
vestigating its performance in real-world industrial systems. Telco
big data platform analyzes large-scale customers’ communication
behaviors with privacy-sensitive information (e.g., billing, social
networks and trajectories), which motivates DP implementations
with a strong privacy guarantee for important applications such as
churn prediction in this paper. In the future, we may explore and
compare first-, second- and third-generation of privacy protection
techniques in the telco big data platform.

3. TELCO BIG DATA PLATFORM
We implement three basic DP architectures in telco big data plat-

form for churn prediction. Figure 1 illustrates the platform de-
ployed in one of biggest telco operators in China [12]. The structure
of platform is composed of three layers: Data Collection Layer,
Data Management & Mining Layer and Application Layer. The
Data collection layer is used for gathering all types of telco data.
Data Management & Mining Layer is used for data management
including information integration, feature extraction and classifiers
to support various business needs in the application layer. For ex-
ample, the retention campaign component in the application layer is
supported by churn predictor in data management & mining layer.
Other business needs include price marketing and communication
network optimization.

In general, telco big data come from three types of resources,
i.e., business supporting system (BSS), operation supporting sys-
tem (OSS), and measurement report (MR). BSS has four basic
functions: product management, order management, revenue man-
agement and customer management. BSS data include billing, short
message service record, call records, complaint records recharge

Figure 2: Classifier training and prediction.

Figure 3: The sliding window setting for churn prediction.

history, and customers’ demographic data. OSS manages com-
munication network functions including network inventory, service
provisioning, network configuration and fault management. OSS
data include two categories, circuit switch (CS) and packet switch
(PS). CS is related to the voice service supporting system. CS data
reflect the voice service quality. PS is related to the mobile internet
data service supporting system. PS data is also called mobile broad-
band (MBB) data, which are gathered by probes with deep packet
inspection (DPI) technique. PS data describe customers’ data usage
behaviors such as mobile search queries, app usages, and stream-
ing records. They also reflect the data service quality such as web
speed and connection success rate. MR data contain the records
of signal strengths and angles from a mobile device to its nearby
six cell towers (The phone device will decide to choose which cell
tower to connect based on the measurement). They are collected
from radio network controller (RNC) and can be used to estimate
customers’ approximate positions of the phone for trajectories [14].
The data volume gathered per day in the platform is also shown in
Figure 1, where BSS data are around 24 GB, and OSS/MR data are
around 2.2TB per day. Both OSS and MR data occupy over 90%
data volume of the entire telco big data. After integrating the data
by extraction-transformation-loading (ETL) tools, we store the raw
data in Hadoop distributed file system (HDFS). We see that BSS,
OSS and MR data are privacy-sensitive to each customer, so that
privacy protection techniques are required in telco big data plat-
form for different applications. Moreover, privacy protection be-
comes one of the major concerns for telco operators to monetize
their data assets, which has not been fully discussed and consid-
ered in telco big data platform in previous work [12].

In Figure 1, we focus on DP implementations for churn predic-
tion component, which is a classifier to predict customer’s churn
probabilities in the next month. The retention campaign is auto-
matically issued on the targeted customers with high probabilities
every month. Figure 2 shows the flow chart of classifier training
and prediction phases. First, we extract relevant feature vectors of
customers from BSS, OSS and MR data. Second, we assign class
labels l = {0, 1} (l = 1 for churners) to all customers according to
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some business rules. For example, we assume prepaid customers
as churners if they do not recharge within 15 days after their bal-
ance is below zero. Finally, we train a DT classifier or RF classifier
based on labeled features. In the prediction phase, we input the
customers’ feature vectors (not for training) to the classifier and
output the churn probabilities. Figure 3 shows how the deployed
churn predictor works in the sliding window settings. First, we
use month N to label features (churner or non-churner) in month
N−1. Second, we use the labeled features in monthN−1 to train
a classifier. Finally, we extract the features in month N and input
them into the classifier to predict the label (potential churners) in
month N + 1. The churn prediction system works well on original
customers’ data without privacy protection. For example, the pre-
cision reaches 0.96 for the top 50K potential churners with highest
probabilities. More details can be found in [12]. However, as we
discussed before, it is necessary to consider privacy protection in
DM because all customers’ data are privacy-sensitive. It should
be emphasized that under our DP schemes, the privacy of people
in the training data is protected, but the privacy of people in the
prediction data (that is, the data which you will apply the trained
model to) is not. In a DM task, data engineers are involved in the
feature and model design (model training). A user’s data, which
are used to train a model, do not bring any benefit to the user at
this stage. Thus the privacy of people in the training data must be
protected. In the prediction stage, the service is issued based on
each individual user. The features of each individual should be ex-
tracted and exported into the model. The DP does not fit with this
scenario. However, the privacy protection requirement is not as im-
portant in prediction as in model training. One reason is that each
user could get some benefits from the prediction/recommendation
in many scenarios. Thus a service contract can be made to each user
to get a service by providing personal data. The other reason is that
after the model is trained, the data mining engineers do not need
to be involved in the prediction stage. The model can be deployed
on a security guaranteed platform and automatically runs. In this
case, privacy protection is not necessary. In view of above men-
tioned reasons, we think for prediction/recommendation systems,
DP protection should only be considered in training stage.

4. INDUSTRIAL DP IMPLEMENTATIONS
DP [6] is a privacy definition which ensures the outcome of any

authenticated query/calculation to be insensitive to any individual
record in the DB. DP is preferred due to its strong mathematical
boundary of the leaked privacy and has been widely studied in the
research community [6, 23, 35, 27, 11, 18, 38, 34]. The implemen-
tations of DP can be broadly categorized into three basic architec-
tures: (1) the Data Publication Architecture; (2) the Separated (DM
and DB) Architecture; and (3) the Hybridized (DM and DB) Archi-
tecture. We illustrate the concepts of these three basic architectures
in Figure 4.1 We see that the major difference of three basic archi-
tectures lies in the position of DP interface between DM and DB
on the right panel of Figure 4.

In the Data Publication Architecture, the DB service uses a spe-
cific schema to publish a synthetic dataset with the DP guaran-
tee from the real original dataset. In this way, the DP interface
is implemented within the DB service between original and syn-
thetic datasets in Figure 4(a). Since the synthetic dataset is privacy-
insensitive, any DM service can be directly applied on the top of
the published and protected synthetic dataset. The benefit of this

1In Figure 4, we illustrate the concepts of three DP architectures.
We will show some detailed implementations of DP for decision
trees in Section 4.3.

(a) Architecture 1: Data Publication Architecture

(b) Architecture 2: Separated (DM and DB) Architecture

(c) Architecture 3: Hybridized (DM and DB) Architecture

Figure 4: Three basic DP architectures.

architecture is that all DM algorithms can be used without privacy
concerns. However, the shortcoming is also quite clear: the DM
service runs on the synthetic dataset instead of the real/original one,
so that the mining quality is seriously restricted by the schema of
generating synthetic dataset under the DP guarantee.

The Separated Architecture is an implementation that separates
the DB service from the DM service through a DP interface in Fig-
ure 4(b). The DB provides the query interface, which supports
the traditional aggregation queries (more accurately, the counting
queries) with the DP guarantee. The DB service has no idea about
how DM service will use the results of these queries. The benefit
of this system is that the traditional DB structure does not need any
change to support specific DM services. Since the DM services
are specifically designed to use these query results, the system ac-
curacy is expected to be higher than the Data Publication Archi-
tecture. However, since the DM services are on the top of aggre-
gation queries, they cannot be implemented and optimized beyond
the scope of traditional queries. This may cause some design limi-
tations of the DM services and lead to some accuracy loss.

The Hybridized architecture adapts only the DP interface into
DM services. In this situation, the DB service is designed to sup-
port some specific queries (such as the best splitting point selection
query in DTs) for specific DM services in Figure 4(c). The bene-
fit of this architecture is the DP implementation is optimized for a
specific DM method. So, the accuracy of the DM is expected to be
the highest among the three basic architectures. The shortcoming
is that the logics of both DM and DB services depend closely. The
DB developers must handle extra types of queries for specific DM
services, which are different from the traditional ones supported by
DB services.
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4.1 Differential Privacy
Here we provide a brief introduction to DP’s basic concept, char-

acteristic and the two applying mechanisms, which will guide our
implementations of DP in the churn prediction system. DP is math-
ematically defined as follows. When the attacker observes the out-
put of DB, the probability he/she learns an individual customer is
in the DB and the probability he/she learns this individual customer
is not in the DB should be indistinguishable, which is formally de-
fined as

DEFINITION 1. A randomized function/query/calculation f pro-
vides ε−differential privacy if for any neighboring data bases D1

(D14D2 = 1) andD2, for any outputO ∈ Range(f), Pr[f(D1)
∈ O ≤ eε × Pr[f(D2) ∈ O]].

Neighboring DBs D1 and D2 are two DBs, where there are only
one individual record difference between them (D1 4 D2 = 1).
The parameter ε is the privacy budget, which can be used to con-
trol the level of privacy protection. The smaller the value of ε is,
the stronger privacy protection it provides. DP guarantees that the
query result is insensitive to any individual record. The probabil-
ity that an attacker guess an individual record is in or not in the
database in at most eε from the outputs of queries/calculations. The
DP satisfies a composability property [24] defined as follows,

THEOREM 1. Composability Property: Let fi each provide εi−
differential privacy privacy. The sequence of fi(D) provides (

∑
i εi)-

differential privacy.

Therefore, the ε parameter can be considered as an accumulative
privacy cost as more queries are executed [8]. These costs keep
accumulating until they reach an allotted privacy budget [8].

There are two mechanisms to realize DP, the Laplace mecha-
nism [6] and the Exponential mechanism [24]. Both of them need
to calculate the global sensitivity of a function f . The global sen-
sitivity of a real-valued function is used to represent the maximum
possible change of its output value when adding or removing a sin-
gle individual record.

DEFINITION 2. The global sensitivity of a function f : D →
<d is4f = maxD1,D2withD14D2=1 ‖ f(D1)− f(D2) ‖1.

The Laplace mechanism is used to realize DP by adding noise to
the outcome of the queries which return real values. The noise is
drawn from a Laplace distribution with the probability pr(x|λ) =
1
2λ
e−

|x|
λ , where λ = 4f

ε
.

THEOREM 2. Laplace Mechanism: Given a function f : D →
<d, the computation M , M(D) = f(D) + (Laplace(4f

λ
))d pro-

vides ε−differential privacy.

For example, a function (or a query) is defined as counting the
number of records in database D. Obviously the global sensitiv-
ity of this function is 1. A disturbed result, |D| + Laplace( 1

ε
), is

returned. This result guarantees the ε−differential privacy of this
counting function.

Besides real-valued functions, there are functions exporting non-
real values. In this scenario, Exponential mechanism is used to
provide ε−differential privacy. Exponential mechanism samples
an o from the output space O according to a quality function q that
scores outcomes of a functions, where higher scores are better. The
quality function gives a probability distribution over the output do-
main, it samples the outcome according to this distribution to close
to the optimum output while ensuring the ε−differential privacy.

THEOREM 3. Exponential Mechanism: Given a quality func-
tion q : (D×O)→ <, which assigns a score to each outcome o ∈

Table 2: An example of training instances.
Gender ARPU 3G Churn

F low yes yes
M low no yes
M high no yes
M high no yes
F high yes no
F high yes no
F high yes no
M high yes no

O, let 4q = maxo,D14D2=1 ‖ q(D1, o) − q(D2, o) ‖, the com-
putation M , M(D,q)={return o with probability ∝ exp( εq(D,o)

24q )}
provides ε−differential privacy.

4.2 Decision Trees
Since we focus on DT based models, in this section, we give

a brief introduction to them to identify the key calculation related
with DP in the DT construction algorithm. In the next section, we’ll
introduce how to implement DT models with the three different
architectures.

Decision trees (DTs) are a category of widely used classifiers [10,
30, 9, 36, 28]. The basic idea is to use one or a group of DTs
to map observations about an instance (features of an instance,
aka the attributes to describe an instance) to predict about the in-
stance’s target label (e.g., whether a customer will be a churner).
A DT is a mechanism to organize the observed instances (training
instances to build a DT) in a tree structure space. Each instance
Ii = (li, Fi = [fi,1, fi,2, ..., fi,m]) is composed of a label and a
group of features (attributes). For example, in Table 2, each row de-
notes an instance for one record of a customer. The first instance is
(Churn=yes,[Gender=F, ARPU=low, 3G=yes]), where Churn de-
notes the class label, ARPU is the average revenue per unit (cus-
tomer) and 3G means the 3G service. The feature space of the
dataset can be organized as a decision tree structure as shown in
Figure 5, When a new instance (customer) appears, such as a cus-
tomer with features [Gender=M, ARPU=low, 3G=yes], the DT can
be used to predict the class label of this customer by searching the
tree. There may exist exponential (according to the number of fea-
tures) number of trees by selecting different attributes in branches.
It is intuitive that the purer a leaf node is (aka most of instances in
this leaf node have the same class label), the more confidential of
the prediction can be made. Hence, a good DT always tends to cut
the feature space as pure as possible in the leaf nodes. When gener-
ating a DT, we always prefer to select a feature, which can generate
the purest subspace by splitting the feature space (aka creating new
branches in a tree node).

Figure 5: An example of a DT.

The algorithm skeleton of a DT generation is shown in Algo-
rithm 1 [30], which works recursively by selecting the best feature
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Algorithm 1: The DT generation algorithm skeleton.
Input: A dataset with each item Ii = (li, Fi = [fi,1, fi,2, ..., fi,m])
Output: A decision tree T , which can be used to predict the label lj of a new

instance Ij given a new instence Fi = [fj,1, fj,2, ..., fj,m].
if stopping cond(D) = true then1

leaf = createNode();2
leaf.label = Classify(D);3
return leaf;4

else5
root = createNode();6
root.test cond = find best split(D);7
let V ={v|v is a possible outcome of root.test cond};8
for each v ∈ V do9

Dv={e|root.test cond(e)=v and e ∈ D};10
child=TreeGrowth(Dv);11
add child as decendent of root and label the edge (root → child) as v;12

to split the training records until the stopping condition of gener-
ating a leaf node is achieved [30]. In the algorithm [30], creat-
eNode() is used to extend the DT by creating new nodes/branches.
How to create new branches are controlled by find best split(). It
determines which feature should be selected for splitting the train-
ing record. The choice depends on the impurity measurement used
to determine the goodness of a split. Some widely used measures
include entropy and the Gini index etc. The Classify() function is
used to determine the label assigned to a leaf node. For each leaf
node t, let p(l|t) denote the fraction of training instances from label
i associated with the node t, the label l with the maximum p(l|t)
can be assigned to node t or p(l|t) is directly assigned as the prob-
ability that node t is likely to have label l. The stopping cond()
function is designed to terminate the tree construction by testing
whether all the instances have the same label or the number of in-
stances has fallen below some minimum threshold.

There are a variety of implementations of the DT generation al-
gorithm according to different impurity measurements. Generally,
there are three widely used impurity measurements:

• Information Gain: the ID3 algorithm [10] uses the change
of entropy before and after the data is split on feature A.
The entropy H(D) is a measurement of the uncertainty in
the dataset D, i.e., H(D) = −

∑
l∈L p(l) log2 p(l), where

l denotes the class label, and p(l) is the proportion of the
number of instances that have label l in D. The information
gain after splitting the datasetD by featureA is IG(D,A) =
H(D)−

∑
a∈A p(Da)H(Da). In this formula, a is a value

of feature A, which will form a new branch and Da is the
new dataset that follows this branch. p(Da) is the proportion
of the number of instances in Da to the number of instances
in D ( |Da||D| ).

• Information Gain Ratio: One problem of the ID3 algo-
rithm is that it tends to split the data by the feature which
has a lot of values (e.g. the ID number). To avoid this,
the C4.5 algorithm [10] uses the information gain ratio to
measure the impurity. Information gain ratio is calculated as
GainRatio(D,A) = IG(D,A)

SplitInfo(S,A)
. SplitInfo is defined

as SplitInfo(D,A) = −
∑
a∈A

|Da|
|D| log2

|Da|
|D| . The C4.5

algorithm handles both continuous and discrete attributes.

• Gini Index: The CART algorithm [10] uses the Gini In-
dex. Given a dataset D, the Gini index of D is defined as
Gini(D) = 1 −

∑
l∈L p(l)

2. We can use Gini(D,A) =

Figure 6: Data Publication Architecture for DTs.

∑
a∈A

|Da|
|D| Gini(Da) to represent the Gini index of divid-

ing the dataset by featureA. The change of Gini index is cal-
culated as 4Gini(D,A) = Gini(D) − Gini(D,A). The
decision will select the feature with the largest 4Gini to
create new branches.

The key calculation (the step that needs to interact with the DB) in
DT generation is to find the best branch creation feature according
to impurity measurements. In the next section, we introduce how
different DP techniques implement this calculation. The compli-
cated classifier ensembles such as RF [2] are composed of a group
of DTs. RF generates a DT on bootstrap samples of the original
dataset D on a sampled subset of features and aggregates the pre-
diction result of all DTs. Bootstrap means random sampling with
replacement. Each time, we randomly select a record i in D with
probability 1

|D| , put i into the new dataset D′ and then throw i

back into D until |D′| = |D|. The probabilities that each record
in D appears in D′ are the same. So, from DP point of view, each
DT in RF should be treated as being generated from the original
data. So, we should provide DP protection on each DT in RF. In
real-world industrial DM services, RF has shown its advantages
on scalability, stability and good accuracy, which make RF widely
used.2 This motivates us to analyze and evaluate the DP techniques
for DT based models.

4.3 DP for Decision Trees
We describe industrial DP implementations for DTs within three

basic architectures.

4.3.1 Data Publication Architecture for DTs
The Data Publication Architecture publishes a synthetic dataset

with DP guarantee. Any DM algorithm including DT can directly
run on the published data. The design concept of this architecture
is shown in Figure 6. First, a schema which represents the original
dataset D’s structure is constructed under DP. Exponential mecha-
nism is used to avoid the privacy leakage from the schema’s struc-
ture. Laplace mechanism is used to generate the parameters within
the schema. Second, a new synthetic dataset D′ is generated from
this schema and is published to the DM service. The detailed im-
plementation description of this architecture can be found in [25].

4.3.2 Separated Architecture for DTs
In Algorithm 1, the key step of a DT construction is to find the

proper feature to create new branches. Although different algo-
rithms use different impurity estimation measurements, they share
one common characteristic, which is the utilization of the counting

2In large scale industrial systems, Logistic Regression (LR) with
deep feature engineering is widely used for high dimensional sparse
data and RF is widely used for relatively Low dimensional dense
data.
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Figure 7: Separated Architecture for DTs.

Figure 8: Implementation of the Separated Architecture.

query results to implement the calculation. For example, to com-
pute the entropy of a dataset D, the algorithm checks D to obtain
instances with labels l ∈ L. So, if D provides a DP interface to
support counting quires, a DT can be constructed from the noisy
counting results.

The design concept of the Separated Architecture implementa-
tion for DTs is shown in Figure 7, where the DB service does not
have knowledge about the DM service. It only provides a DP inter-
face for counting queries. The DM service uses the noise counting
query results to compute the “impurity” measurements and then
selects the proper feature to create new branches. Figure 8 demon-
strates a detailed implementation of this solution. The privacy bud-
get ε is equally divided for each layer of nodes. A node would
equally divide its privacy budget to the counting queries issued by
itself. Since there is no overlap on the datasets queried by the nodes
in different branches, the DP solution only needs to control the sum
of privacy budget consumed by each “path” (aka a path from root
node to leaf node) is at most ε. Each node gets a privacy budget
ε/(d + 1), where d is the pre-defined maximum depth of the DT.
When the generation of DT reaches the maximum depth, the com-
putation must stop to satisfy the DP requirement. Here we only
demonstrate the basic design idea. There are many details about
how to assign the privacy budget to quires as well as tree prunes.
In this architecture, the DB service only needs to use the Laplace
Mechanism to support counting queries under DP. Compared to the
Data Publication Architecture, the DT’s construction directly uses
the counting queries. So, the accuracy of the constructed DT is
expected to be better. However, the DM service is limited by the
query types provided by DB, while the Data Publication Architec-
ture can support any DM services.

Figure 9: Hybridized Architecture for DTs.

4.3.3 Hybridized Architecture for DTs
We follow the design of paper [7] to implement this architecture.

When building a DT, the results of counting queries are used to
represent the impurity of splitting node, which are used to guide
the selection of feature to create new branches. So, the impurity
computation is an intermediate step. The database can directly an-
swer a query, through which we could select the best feature to
split the training records (for continuous value features, also in-
clude the splitting node, such as creating two branches with ranges
(0, 3] and (3, 100)). In this case, the current node and the impurity
measurement are the input of the query, and the output is a feature
(including the splitting node for continuous value features). The
above solution matches exactly the using scenario of the Exponen-
tial Mechanism in DP, where the quality function of the query is
the impurity measurement. The exponential mechanism samples a
branching solution according to the probability distribution based
on the impurity quality function. The design concept of the Hy-
bridized Architecture is shown in Figure 9.

A detailed demonstration is illustrated in Figure 10. Similar to
the Separated Architecture, the privacy budget ε is equally divided
for each layer of nodes. An inner node will use this privacy budget
to directly ask DB to provide the best splitting selection. Interested
readers can find the detailed information in paper [7]. Compared
with the Separated Architecture, the influences of the noises are
expected to be smaller in the Hybridized Architecture. The Sepa-
rated Architecture uses the noise counting query results to compute
the impurity measures to find the splitting node. while the impu-
rity measure calculation of the Hybridized Architecture is accu-
rate. After the impurity measures are computed, the noise is added
through the exponential mechanism. So, the noise influences are
expected to be smaller. The shortcoming of this solution is that the
DB provider must also handle some DM calculations, such as the
impurity measurement (entropy or Gini index) calculation. There-
fore, we need to develop customized DB to support different DM
services. This reduces the versatility of DB and brings DM com-
plexity to DB.

4.4 Computational Complexity
Privacy protection techniques bring extra burden to both DB and

DM services. For the Data Publication Architecture, the DM will
be operated on the synthetic dataset, so there is no extra running
costs except the one time cost to generate the synthetic data. For
the Separated Architecture, the DB service needs to add Laplace
noise for every counting query, so it at most doubles the computa-
tional complexity of the original DT construction. The Hybridized
Architecture computes the quality of each possible splitting node
and uses the exponential mechanism to select one. The only extra
computational cost is the exponential mechanism selection process
when compared with the Separated Architecture. So, it at most
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Figure 10: Implementation of the Hybridized Architecture.

Figure 11: The evaluation procedure of different DP architec-
tures.

triples the computational complexity. However, it should be em-
phasized that the DM services such as churn prediction do not have
real-time requirement. Monthly classifier updating is enough to
support the business value [12]. As a result, the computational
complexity of DP is not an important issue.

5. EXPERIMENTAL RESULTS
Figure 11 shows how to evaluate different DP techniques in the

deployed churn prediction system. First, the DB service publishes
data schema and data logic introductions to the DM service, which
in turn designs and sends the feature extraction scripts to the DB.
Second, the DB service generates a unified customer-feature wide
table, which consists of a customer ID, a group of feature vectors
[f1, f2, · · · , fm], and a class label l = {0, 1} (l = 1 for churner).
Different DP solutions are applied to protect each individual cus-
tomer’s privacy in this table. All DM algorithms run on the pro-
tected customer-feature wide table for both training and testing.
After a prediction model is learned from training data, there is a
testing set to evaluate its prediction performance under a certain
privacy guarantee. We use the prediction performance without pri-
vacy protection as the baseline to evaluate different DP solutions.

Table 3: Statistics of churners (9 months from 2013-12).
Month 1 Month 2 Month 3 Month 4 Month 5

Churner 185779 173576 196984 184728 216010
No-Churner 1927748 1935496 1907548 1909698 1893469

Total 2113527 2109072 2104532 2094426 2109479

Month 6 Month 7 Month 8 Month 9

Churner 201374 200492 199456 202873
No-Churner 1909472 1918349 1983917 1949832

Total 2110846 2118841 2183373 2152705

For simplicity, we do not perform recursive feature engineering and
build prediction model once on the protected customer-feature table
in experiments. However, in real-world industrial systems, there
are several rounds of feature engineering and the model will be
refined several times to reach the best one. In this situation, the
privacy budget should be divided to each round. Another point we
should emphasize about the evaluation system is that our reporting
is based on one month prediction system. If the process is repeated
for every month and the time windows for training are overlapped,
a customer will probably be present in multiple months, thus each
month’s task in not independent. Therefore, the privacy budget
should be divided among the months.

Table 3 shows the basic statistics of experimental dataset, which
is collected from one of biggest telco operators in China, having
9 consecutive months of more than 2 million prepaid customer’s
behavior records from 2013 to 2014. In each month, the number
of churners takes around 9.2% of the total number of customers
in the dataset. As shown in Figure 3, such an experiment can re-
peat in the sliding window and the average prediction results are
reported. For each prediction task, we also repeat our experiment 5
times and report the average performance to avoid the influence of
randomness.

To evaluate the prediction performance, we use the area under
the ROC curve (AUC) [9, 12] on the testing dataset, which is the
standard performance metric in most prediction systems. The AUC
is calculated as follows,

AUC =

∑
n∈true churners Rankn −

P×(P+1)
2

P ×N , (1)

where P is the number true churners andN the number of true non-
churners. Sorting the churner likelihood in descending order, we
assign the highest likelihood customer with the rank n, the second
highest likelihood customer with the rank n − 1, and so on. The
higher AUC indicates the better prediction performance.

We aim to evaluate three basic DP architectures on the DT algo-
rithms [7, 25] in terms of the overall predictive performance. The
more complex data mining algorithm, such as RF [2], is composed
of a group of DTs. So, it is essential to test how a single DT per-
forms under three basic DP architectures. More specifically, we
examine the following aspects of DP:

• To evaluate how the DP solutions perform with different pri-
vacy guarantees, we change the privacy budget parameter ε
from 0.01 to 9.0 on 1 million training instances to examine
the AUC’s change of a DT.

• To study the DP solutions’ performance on the variety of fea-
tures in training data, we test a series of DTs trained from top
5 features to top 70 features.

• To examine the sensitivity of DP solutions to the training data
volume, we train DTs with the data volume (number of train-
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Figure 12: Comparisons for different privacy budget ε with 1 million training instances (AUC).
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Figure 13: Comparisons for different privacy budget ε with 1 million training instances (relative AUC loss).

ing instances) from 0.01M to 2M with different privacy bud-
get parameters.

• After analyzing results of the single DT, we report experi-
mental results on the DP with RF as well.

5.1 Privacy Budget
Figure 12 shows the AUCs when using 8, 16 and 30 top im-

portant features to construct DTs, respectively. The top features
are ranked by accumulating impurity values of all nodes in DTs for
each feature. In this experiment, we use 1 million instances to train
the DT. We change the privacy budget ε from 0.01 to 9. Obviously
with the increasing of privacy budget, the prediction accuracy loss
(decrease ofAUC) becomes smaller. The Hybridized Architecture
outperforms the Separated Architecture, and the Separated Archi-
tecture outperforms the Data Publication Architecture. The relative
percentage of AUC drop compared to that of no privacy protec-
tion is shown in Figure 13. From the results, we see that with the
increase of privacy budget parameter, AUC loss quickly reduces
because less privacy will be protected. We also find that with the
growth of feature variety (the number of top features used to gen-
erate the DT), the AUC loss becomes larger.

As shown in Figure 13, we see that for our DM service with 1
million training instances, the performance of the privacy preserv-
ing algorithms can be very close (less than 5% AUC loss) to the
original system without privacy protection when the privacy bud-
get is above 3. However, when selecting ε ≥ 3, it only guarantees
Pr[A(D1)∈O]
Pr[A(D2)∈O]

≤ eε ≥ 20. In this way, DP may not work well
because the two probabilities may have significant difference (dis-
tinguishable), and the adding/removing of an individual record may
be very likely to be detected. If we set the small privacy budget pa-
rameter 0.1 or 0.01 as recommended by [7], the relative AUC loss

is as large as 15% ∼ 30%. This is usually an unacceptable accu-
racy loss in real-world industrial DM services. Note that the DM
service in our experimental settings is still an ideal case, in which
only one round DM is performed on the customer-feature table. In
most of the complex practical applications, the customer-feature
wide table cannot be generated in one round and the recursive fea-
ture engineering is often needed. As a result, several rounds of DM
services are required, which causes much smaller privacy budget
parameter for each round when compared with one round evalua-
tion in this paper. This implies that we still need lots of explorations
to realize the practical deployment of DP techniques.

5.2 Big Data: Volume and Variety
We also test the DP algorithms using different volume of training

data. The results are shown in Figure 14. We change the number of
training instances from 0.01 million to 2 million. We observe that
with the increasing volume of training data, all the architectures
perform continuously better and the Hybridized Architecture per-
forms the best. With the increase of privacy budget parameters, the
performances of different architectures are becoming closer. From
these results, we find that the AUC loss of privacy protection de-
creases with the increase of data volume. We explain this phe-
nomenon from the DP’s design concept. Since the amount of noise
to be added is determined by the query/function characteristics (the
global sensitivity of the specific query/function), the noises added
for different volume of training data are in the same range. How-
ever, the absolute value of a query/function’s output becomes larger
in a large volume of data than the small volume of data. The small
volume of data are more sensitive to the same amount of noise than
the large volume of data. So, with the growth of training data vol-
ume, the AUC loss decreases. Since the noise to guarantee DP
is created according to a distribution, the very small privacy bud-
get parameter means the noise selection range becomes quite large,
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(b) ε = 0.1
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(c) ε = 0.5
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(d) ε = 1.0

 40

 50

 60

 70

 80

 90

 100

 110

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

A
U

C

Volume (No. of training instances (K))

org
separated
hybridized

publish

(e) ε = 3.0
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(f) ε = 5.0
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(g) ε = 7.0
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(h) ε = 9.0

Figure 14: Comparisons for different data volume (no. of training instances).

which also leads to small amount of random variations. We see that
there indeed exist some random variations when the privacy budget
parameter is too small (e.g., ε = 0.01).

Figure 15 shows the experimental results with different privacy
budget parameters and the number of top features. We can observe
that with the increase of features, the performance of DP architec-
tures decreases. This is because the model complexity increases
with the variety growth of features. When there are more features,
more queries are required to construct the model. Thus, the privacy
budget assigned for each query becomes smaller, which causes the
performance of the DM service drops due to more introduced noise.
If we increase variety of features by using from the top 5 to top
70, the prediction performance without privacy protection increases
slightly without much variation. The reason of this phenomenon is
that a small number of top features determine the DT structures so
as to dominate the overall prediction performance.

5.3 Random Forest v.s. Decision Trees
We present some evaluation results between RF and DT. Fig-

ure 16 shows the results of RFs with 10 DTs in three DP architec-
tures. We see that if no privacy protection is required, the RF per-
forms much better than a single DT. However, after adding privacy
protection, the performance of RF becomes worse than a single DT.
This is because we need to divide the privacy budget to each DT in
the RF, and each DT can only use a very small privacy budget.
In our experiment, each DT in RF only uses 1/10 privacy budget,
which makes the RF with privacy protection perform worse. This
result inspires us to design more specific DP implementations for
RF, which will be discussed in the next section.

6. DISCUSSIONS AND CONCLUSIONS
In this work, we implement and evaluate DP with three different

architectures in a real deployed large-scale telco industrial system.
We demonstrate some important observations from the extensive
experimental results and give some suggestions for future work.
We hope this work can help the possible practical deployment of
the privacy protection solutions in the future.

From the previous experiments, we can find that, with one excep-
tion when ε = 0.01, the Hybridized Architecture performs better
than the Separated Architecture, while the Separated Architecture
performs better than the Data Publication Architecture. This result
is consistent with the analysis of different architecture design con-
cepts. We can conclude that for the effect of data mining, the Hy-
bridized Architecture performs better than the Separated Architec-
ture and the Separated Architecture performs better than the Data
Publication Architecture, while, from the system flexibility point
of view, the Data Publication Architecture is better than the Sepa-
rated Architecture and the Separated Architecture is better than the
Hybridized Architecture.

From the analysis and evaluation, we can summarize three pos-
sible future directions to make DP practically usable in large-scale
industrial systems.

• Relaxing the privacy guarantee (e.g., increasing privacy bud-
get parameter ε) and studying its effectiveness on specific in-
dustrial applications. It is interesting to check what privacy
leakage is tolerable in real industrial systems.

• Designing a specific privacy scheme for a certain data mining
algorithm.

– The Hybridized Architecture can possibly be improved
by adapting the DP on the entire DM, which may be
implemented in the following algorithm with two steps:
� Using the Exponential Mechanism to select a tree

structure. Each tree has a quality function to evalu-
ate how impurity it divides the space. The challenge
here is that there exists a large number of possible
trees. Generating all of them is not computational
possible. One possible solution is making use of the
Markov Decision Process [34] to find a proper tree
by only sampling part of the tree space.
� Making use of the Laplace Mechanism to assign proper

probability values in the final published tree (On the
leaf nodes).

We note that the privacy budget can be divided into two
parts to serve these two steps respectively.
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(b) ε = 0.1
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(c) ε = 0.5
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(d) ε = 1.0
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(e) ε = 3.0
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(f) ε = 5.0
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(g) ε = 7.0
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(h) ε = 9.0

Figure 15: Comparisons for different number of features.

 65

 70

 75

 80

 85

 90

 95

 100

 105

 110

 1  2  3  4  5  6  7  8  9

A
U

C

Privacy Budget

org with 1 DT
separated with 1 DT

hybridized with 1 DT
publish with 1 DT

org with 10 DTs
separated with 10 DTs
hybridized with 10 DTs

publish with 10 DTs

Figure 16: Experiments on random forest.

– Adaptively dividing the privacy budget. The current
implementations equally divide the privacy budget to
each layer of the DT. However, if a node is near to the
root node, there may exist much more instances than a
node near to leaves. Thus a node which is nearer to the
leaves is more sensitive to the noise. Comparing to the
current solution, an algorithm which assigns smaller
privacy budget to the nodes near to the root node than
the nodes near to the leaves, would perform better. So,
a possible improvement direction of DP algorithms is to
design adjustable privacy budget assignment strategies.

– Designing the tradeoff DP Mechanism for RF model.
If we divide the dataset and build DTs on subsets of the
original dataset to implement the RF, the performance
of the model may be decreased. However, by separat-
ing the dataset into on-overlapping parts, we can assign
ε to each part to build RF. Thus each DT will get a
larger privacy budget. A tradeoff DP Mechanism can
be designed for RF.

• Using large volume of data but with low variety for model
training. It is an interesting problem to check how large is
enough to take the benefit of reducing accuracy loss by in-
creasing data volume.
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