
Gobblin: Unifying Data Ingestion for Hadoop

Lin Qiao, Yinan Li, Sahil Takiar, Ziyang Liu, Narasimha Veeramreddy, Min Tu,
Ying Dai, Issac Buenrostro, Kapil Surlaker, Shirshanka Das, Chavdar Botev

LinkedIn Inc.
Mountain View, CA, USA

{lqiao,ynli,stakiar,ziliu,nveeramreddy,mitu,ydai,ibuenros,ksurlaker,sdas,cbotev}@linkedin.com

ABSTRACT
Data ingestion is an essential part of companies and organi-
zations that collect and analyze large volumes of data. This
paper describes Gobblin, a generic data ingestion frame-
work for Hadoop and one of LinkedIn’s latest open source
products. At LinkedIn we need to ingest data from various
sources such as relational stores, NoSQL stores, streaming
systems, REST endpoints, filesystems, etc. into our Hadoop
clusters. Maintaining independent pipelines for each source
can lead to various operational problems. Gobblin aims to
solve this issue by providing a centralized data ingestion
framework that makes it easy to support ingesting data from
a variety of sources.

Gobblin distinguishes itself from similar frameworks by
focusing on three core principles: generality, extensibility,
and operability. Gobblin supports a mixture of data sources
out-of-the-box and can be easily extended for more. This
enables an organization to use a single framework to handle
different data ingestion needs, making it easy and inexpen-
sive to operate. Moreover, with an end-to-end metrics col-
lection and reporting module, Gobblin makes it simple and
efficient to identify issues in production.

1. INTRODUCTION
A big data system is often referred to for the sheer volume

of datasets it handles as well as the large processing power
and new processing paradigms it is associated with. These
big data challenges have fostered significant innovations on
large scale computation platforms [2, 4, 5, 8, 14, 15, 19, 22,
24]. However, another important aspect of the complexity of
a big data system comes from the coexistence of heteroge-
nous data sources and sinks. In reality, data integration
starts to cause big pain points a lot of times before devel-
opers or data engineers are able to solve traditional ETL or
data processing at scale. It becomes more and more critical
for a big data system to address the challenges of large data
ingestion and integration with high velocity and quality.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain
permission prior to any use beyond those covered by the license. Con-
tact copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150-8097/15/08.

With first hand experience on big data ingestion and inte-
gration pain points, we built Gobblin, a unified data inges-
tion framework. The development of Gobblin was mainly
driven by the fact that LinkedIn’s data sources have become
increasingly heterogeneous. Data is constantly obtained and
written into online data storage systems or streaming sys-
tems, including Espresso [23], Kafka [6], Voldemort [25],
Oracle, MySQL, RocksDB [17], as well as external sites,
including S3, Salesforce, Google Analytics, etc. Such data
include member profiles, connections, posts and many other
external and internal activities. These data sources crop
daily terabytes worth of data, most of which needs to be
loaded into our Hadoop clusters to feed business- or consumer-
oriented analysis. We used to develop a separate data inges-
tion pipeline for each data source, and at one point we were
running over a dozen different pipelines.

Having this many different data ingestion pipelines is like
re-implementing the HashMap every time we need to use
HashMap with a different type argument. Moreover, these
pipelines were developed by several different teams. It is not
hard to imagine the non-scalability of this approach, and the
issues it brought in terms of maintenance, operability and
data quality. Similar pains have been shared with us from
engineers at other companies. Gobblin aims to eventually
replace most or all of these ingestion pipelines with a generic
data ingestion framework, which is easily configurable to
ingest data from several different types of sources (covering
a large number of real use cases), and easily extensible for
new data sources and use cases.

The challenges Gobblin addresses are five-fold:

– Source integration: The framework provides out-
of-the-box adaptors for all of our commonly accessed
data sources such as MySQL, Kafka, Google Analytics,
Salesforce and S3, etc.

– Processing paradigm: Gobblin supports both stan-
dalone and scalable platforms, including Hadoop and
Yarn. Integration with Yarn provides the ability to run
continuous ingestion in addition to scheduled batches.

– Extensibility: Data pipeline developers can integrate
their own adaptors with the framework, and make it
leverageable for other developers in the community.

– Self-service: Data pipeline developers can compose
a data ingestion and transformation flow in a self-
serviced manner, test locally using standalone mode
and deploy the flow in production using scale-out mode
without code change.

1764

workunits (tasks)

publisher quality
checker writer

converter source extractor

single
node

runtime

task
executor

task state
tracker

job
launcher

job
scheduler

hadoop
mr yarn

deployment

m
e
t
a
s
t
o
r
e

m
o
n
i
t
o
r
i
n
g

compaction

constructs

Figure 1: Gobblin Architecture

– Data quality assurance: The framework exposes
data metrics collectors and data quality checkers as
first class citizens which can be used to power contin-
uous data validation.

Since we started the project in 2014, Gobblin has been
launched in production and gradually replacing a number of
ad-hoc data ingestion pipelines at LinkedIn. Gobblin was
open sourced on Github as of February 2015. We aim to
provide the community with a solid framework that meets
the needs of many real world use cases, with desirable fea-
tures that make the ingestion process as pleasant as eating
a tasty data buffet.

2. ARCHITECTURE AND OVERVIEW

2.1 System Architecture and Components
The architecture of Gobblin is presented in Figure 1. A

Gobblin job ingests data from a data source (e.g., Espresso)
into a sink (e.g., HDFS). A job may consist of multiple
workunits, or tasks, each of which represents a unit of work
to be done, e.g., extracting data from an Espresso table par-
tition or a Kafka topic partition.

2.1.1 Job Constructs
A job is formulated around a set of constructs (ellipses).

Gobblin provides an interface for each of the constructs, thus
a job can be customized by implementing these interfaces,
or extending Gobblin’s out-of-the-box implementations.

– A Source is responsible for partitioning the data inges-
tion work into a set of workunits and also specifying

an Extractor per workunit. This resembles Hadoop’s
InputFormat, which partitions the input into Splits
and specifies a RecordReader for each split. The algo-
rithm for generating workunits should generally divide
the work as evenly as possible to the workunits. In
our implementations we mainly use hash based or bin
packing based approaches.

– An Extractor does the work specified in a workunit,
i.e., extracting certain data records. The workunit
should have the information of where to pull data from
(e.g., which Kafka partition, which DB table, etc.) as
well as what portion of the data should be pulled.
Gobblin uses a watermark object to tell an extrac-
tor what the start record (low watermark) and end
record (high watermark) are. For example, for Kafka
jobs the watermarks can be offsets of a partition, and
for DB jobs the watermarks can be values of a col-
umn. A watermark can be of any type, not necessarily
numeric, as long as there is a way for the Extractor to
know where to start and where to finish.

– A Converter does data transformation on the fly while
data is being pulled. There are often use cases that
require such conversions, e.g., some fields in the schema
need to be projected out for privacy reasons; or data
pulled from the source are byte arrays or JSON objects
and need to be converted to the desired output for-
mats. A converter can convert one input record into
zero or more records. Converters are pluggable and
chainable, and it is straightforward to implement one,
where all it takes is to implement two methods for
converting schema and data records, respectively.

– A Quality Checker determines whether the extracted
records are in good shape and can be published. There
are two types of quality checking policies in terms
of scope: record-level policies and task-level policies,
which check the integrity of a single record and the
entire output of a task, respectively. There are also
two types of quality checking policies in terms of neces-
sity: mandatory policies and optional policies. Viola-
tion of a mandatory policy will result in the record or
task output being discarded or written to an outlier
folder, while violation of an optional policy will result
in warnings.

– A Writer writes records extracted by a task to the
appropriate sinks. It first writes records that pass
mandatory record-level policies to a staging directory.
After the task successfully completes and all records
of the task have been written to the staging direc-
tory, the writer moves them to a writer output direc-
tory, which are pending audit against task-level quality
checking policies and are to be published by the pub-
lisher. Gobblin’s data writer can be extended to pub-
lish data to different sinks such as HDFS, Kafka, S3,
etc., or publish data in different formats such as Avro,
Parquet, CSV, etc., or even publish data in different
folder structures with different partitioning semantics.
For example, at LinkedIn we publish many datasets
in “hourly” and “daily” folders, which contain records
with timestamps in that hour or day.

1765

extractor
extract schema

converter
convert schema

extractor
extract record

converter &
quality checker

convert record &
check quality

fork

converter &
quality checker

convert record &
check quality

writer
write record

quality checker
check task

data quality

publisher
publish task data

converter &
quality checker

convert record &
check quality

writer
write record

quality checker
check task

data quality

publisher
publish task data

…

source
create workunits

workunit workunit workunit …

task

Figure 2: Flow of Gobblin Job Constructs in a Typ-
ical Job

– A Publisher publishes the data written by the Writers
atomically to the final job output directory. Gobblin
provides two commit policies: commit-on-full-success
only commits data if all tasks succeeded, and commit-
on-partial-success commits data for all succeeded tasks,
while for each failed task, partial data will be commit-
ted if the task moved them from the staging directory
to the output directory.

In addition to these constructs, Gobblin supports branch-
ing in a task flow through fork operators that allow an extracted
record to be processed by different branches. Each fork may
have its own converters, quality checkers, writers and pub-
lishers, and thus different forks may publish a record to dif-
ferent sinks, or to the same sink but in different formats.
These constructs are annotated with a fork sign in Figure 1.

The flow of job constructs in a typical job is shown in
Figure 2.

2.1.2 State Store
Gobblin employs a metastore, also known as state store,

for managing job and task states across job runs. Upon
completion of each run of a job, the high watermark along
with other runtime metadata (e.g., latest data schema) of
each task will be persisted into the state store. The next
run of the same job will pick up the runtime metadata of
the previous run from the state store and make the metadata
available to the Source/Extractor so it can start from where
the previous run left off.

Gobblin by default uses an implementation of the state
store that serializes job and task states into Hadoop Sequence-
Files, one per job run. Each job has a separate directory
where the state store SequenceFiles of its runs are stored.
Upon start, each run of a job reads the SequenceFile of the
previous run in the corresponding directory to get its run-
time metadata. To prevent the state store from growing
indefinitely in size, Gobblin provides a utility for cleaning
up the state store based on a configurable retention setting.
Gobblin also allows users to plug-in their own state store
implementations that conform to the StateStore interface
through a configuration property.

2.1.3 Job Execution
Once a job is created, the Gobblin job execution runtime

(diamonds) is responsible for running the job on the plat-
form of a given deployment mode. Common tasks such as
job/task scheduling, job/task state management, error han-
dling and retries, monitoring and reporting, etc., are han-
dled by the runtime.

For error handling, Gobblin employs multiple levels of
defenses against job and task failures. For job failures, Gob-
blin keeps track of the number of times a job fails consecu-
tively and optionally sends out an alert email if the number
exceeds a defined threshold, so that the owner of the job
can jump in and investigate the failures. For task failures,
Gobblin retries failed tasks in a job run up to a configurable
maximum number of times. In addition, Gobblin also pro-
vides an option to enable retries of workunits corresponding
to failed tasks across job runs, so that if a task fails after all
retries fail, the workunit based on which the task gets cre-
ated will be automatically included in the next run of the
job if this type of retries is enabled. This is useful in han-
dling intermittent failures such as those due to temporary
data source outage.

For job scheduling, Gobblin can be integrated with job
schedulers such as Oozie [7], Azkaban [10], or Chronos [12].
Gobblin also ships with a built-in job scheduler backed by a
Quartz [16] scheduler, which is the default job scheduler in
standalone deployment. Gobblin decouples the job sched-
uler and the jobs, so that different jobs may run in different
deployment settings.

2.1.4 Metrics and Monitoring
Gobblin features an end-to-end system for metric collec-

tion and reporting using a generic metric library for monitor-
ing purpose. The library supports various types of metrics
including counters, gauges, histograms, meters, etc., and is
able to report metrics to multiple backend systems, e.g.,
Kafka, Graphite, JMX, and logs. It also performs auto-
matic metric aggregations though a unique hierarchical met-
ric collection structure in which a metric at a higher level is

1766

automatically updated upon any updates to lower level met-
rics with the same name. This helps reduce the amount of
processing needed in the metric backend without incurring
much additional overhead.

2.1.5 Compaction
There is a compaction module in Gobblin for data com-

paction. It provides two out-of-the-box compactors, one
using Hive and the other using MapReduce, both performing
deduplications. For example, at LinkedIn we pull event data
into hourly folders, and compact them once a day into daily
folders with duplicates removed. Compactors using differ-
ent logics (e.g., a compactor that simply merges hourly data
without deduplication, or a compactor that always picks
records with the latest timestamp in deduplication) can be
directly plugged in.

2.1.6 Deployment
Gobblin is capable of running in several modes of deploy-

ment (hexagons) on different platforms for different scala-
bility and resource usage requirements. Currently Gobblin
can run in standalone mode on a single machine using a
dedicated thread pool to run tasks, as well as in MapRe-
duce mode on Hadoop (both Hadoop 1 and Hadoop 2 are
supported) using mappers as containers to run tasks. This
enables one to test a flow in standalone mode and deploy it
in production using MapReduce mode without code change.
A third deployment option currently under development is
to run Gobblin on Yarn [18] for more flexible and efficient
resource management and the ability to run as a long-running
service. This comes in handy for data ingestion from stream-
ing data sources like Kafka. Gobblin on Yarn is designed and
built upon Apache Helix [20] and Apache ZooKeeper [21].

More specifically, it uses Helix to manage workunits run-
ning in a cluster of Yarn containers with helps from ZooKeeper
on coordination and messaging between the Yarn Applica-
tionMaster and the containers. ZooKeeper is also used as a
central repository for metadata of running workunits. Helix,
as a framework for managing distributed resources in a clus-
ter, guarantees that workunits are evenly distributed among
the available containers and is also responsible for rebalanc-
ing in case of container failures or shutdown. One important
feature of Gobblin on Yarn that helps achieve more efficient
resource management is the ability to adapt to changing
workloads and resize the cluster of Yarn containers dynam-
ically at runtime.

2.2 Gobblin in Production
Gobblin has been deployed in production at LinkedIn for

over six months, and is currently responsible for ingesting
over 300 datasets from 12 unique sources such as Salesforce
and Google Analytics. These sources are of several differ-
ent types including MySQL, SQL Server, SFTP Servers, S3,
and REST endpoints. More and more datasets are being
added. Adding a new dataset to be ingested is an easy task:
our engineers just need to provide a simple configuration
file in order to get their data ingested into HDFS. Our ETL
and Solutions engineers no longer need to worry about data
ingestion and freshness problems, and can instead solely
focus on data usage.

In addition, Gobblin is also utilized for purging PII data
from HDFS in order to meet data compliance requirements
(e.g. delete a member’s data within a certain number of

days of account closure). This can be considered an HDFS to
HDFS ingestion job with appropriate converters for filtering.

As Gobblin continues to mature, LinkedIn plans to run
many more data ingestion jobs using Gobblin.

3. CASE STUDY
In this section we share some details on how Gobblin

is used to extract data from Kafka and JDBC sources at
LinkedIn, through which we hope to explain by examples
how to extend Gobblin for different use cases.

3.1 Kafka to HDFS Ingestion
At LinkedIn we ingest more than 3000 topics with tens

of thousands of partitions constantly from Kafka to Hadoop
clusters. These topics include member activities (such as
page views and sending InMails), metrics, as well as a variety
of internal events that need to be tracked. Kafka ingestion
is currently handled by Camus [11], an open source pipeline
specifically designed for Kafka-HDFS ingestion. Gobblin’s
Kafka adapter is replacing Camus at LinkedIn for better
performance, stableness, operability and data integrity.

Gobblin currently ingests Kafka records in small, continu-
ous batches. Once the integration with Yarn is complete, we
will be able to run Kafka ingestion in long-running, stream-
ing mode. Next we explain some details about how each
construct in the Kafka adapter is designed and implemented.

Source. Recall that Source is responsible for generating
workunits. To ingest from Kafka, one needs to implement a
Source that generates Kafka workunits. A Kafka workunit
should contain for each partition the start and end offsets
(i.e., low watermark and high watermark) to be pulled.

For each topic partition that should be ingested, we first
retrieve the last offset pulled by the previous run, which
should be the start offset of the current run. We also retrieve
the earliest and latest offsets currently available from the
Kafka cluster and verifies that the start offset is between
the earliest and the latest offsets. The latest available off-
set is the end offset to be pulled by the current worku-
nit. Since new records are constantly published to Kafka
and old records are deleted based on retention settings, the
earliest and latest offsets of a partition changes constantly.
This adds pressure to the data ingestion pipeline, since its
speed must be faster than the speed records are published
to Kafka.

For each partition, after the start and end offsets are
determined, an initial workunit is created. After obtaining
all initial workunits, one for each partition, two steps are
performed using bin-packing based algorithms: (1) Merge
some workunits corresponding to partitions of the same topic
into bigger workunits, so that these partitions can write to
the same output file, which reduces the number of small
files published on HDFS and thus reduces pressure on the
NameNode; (2) Assign workunits to containers and balance
the workload of the containers.

Extractor. As explained above, a Kafka workunit has
one or more partitions of the same topic. An Extractor is
created for each workunit which pulls partitions one by one,
and if a partition cannot be pulled, it skips the partition
(and reports the failure in the metrics) but does not fail
the task, so that different partitions are isolated and do not
affect each other.

After all partitions are pulled, the Extractor reports the
last offset pulled for each partition to a state object which

1767

will be persisted to the state store by Gobblin runtime.
Converter. LinkedIn’s Kafka clusters mainly store records

in Avro format. Gobblin currently has a few Avro convert-
ers that can be used for ingestion from Kafka and any other
source with Avro data, including a converter for filtering
Avro records based on field values, a converter for removing
fields from Avro records, a converter for converting Avro
records to Json objects, etc. The most often used one at
LinkedIn is the one for removing fields, since certain sensi-
tive fields need to be removed from Avro records before they
can be published.

Quality Checker. Since we ingest Kafka data into time
partitioned (i.e., hourly and daily) folders, we use a manda-
tory record-level quality policy which checks whether each
record has a timestamp field. If so, it can be written to
the appropriate folder; otherwise it has to be discarded or
written to an outlier folder. We also use another policy to
verify whether the primary key field of a record exists and
is non-null.

Writer and Publisher. For Kafka ingestion we imple-
ment a time partitioned writer and a time partitioned pub-
lisher, which write and publish each record to the appropri-
ate time partitioned folder based on its timestamp.

3.2 JDBC to HDFS Ingestion
The JDBC protocol offers a clean abstraction for using

Java code to query and manipulate a variety of relational
data stores. Today, LinkedIn pulls about 250 tables from
both MySQL and SQL Server.

An important difference between JDBC ingestion and Kafka
ingestion is that database tuples are mutable while Kafka
records are not. Therefore, JDBC ingestion not only needs
to pull new tuples but also needs a way to handle updated
tuples. We will explain how this is done after discussing the
constructs for JDBC ingestion in this subsection.

Source. Gobblin provides two Sources for JDBC: a MySQL
Source and a SQL Server Source. They use the same algo-
rithm for generating workunits, and the only difference is
that the MySQL Source uses the MySQL Extractor and the
SQL Server Source uses the SQL Server Extractor.

To generate workunits, similar as the Kafka Source, for
each table that should be pulled, we retrieve the latest times-
tamp of a tuple pulled by the previous run and use it as the
low watermark; the current time is used as the high water-
mark. We then divide the interval from low watermark to
high watermark into a configurable number of partitions of
equal length. A workunit is created for each partition.

Extractor. The MySQL and SQL Server Extractors get
the tuples with the specified timestamp values from the
databases using SQL queries, and return them as JSON ele-
ments. Similar as the Kafka Extractor, they report the latest
timestamp pulled, which will be persisted to the state store
and available for the next run.

Converter and Quality Checker. We store ingested
data in HDFS in Avro format. Therefore, we use a converter
to convert JSON elements into Avro records. We also use a
task-level quality checking policy to ensure that the number
of records written is the same as the number of rows returned
by a count query.

Writer and Publisher. Unlike Kafka ingestion, we do
not write database tuples into time partitioned folders for
JDBC ingestion, since users of the data often need to access
an entire table rather than tuples in a specific hour or day.

We use a simple writer and publisher which publish the
records of each table in a single folder.

Handling Tuple Updates. As mentioned above, in
JDBC ingestion we need a way to handle tuple updates. A
trivial method is to pull each table in its entirety in each run,
which is hardly feasible for large tables and inefficient for
tables with only a small portion of updated tuples between
two runs.

We use an improved approach for such tables which involves
multiple job types for JDBC ingestion. A snapshot job,
which pulls an entire table, is scheduled at a relatively low
frequency. An append job only pulls the tuples whose modifi-
cation timestamps are later than the latest timestamp pulled
by the previous run (which may be either a snapshot job
or an append job). Append jobs are scheduled at higher
frequencies. Note that this requires the table has a modifi-
cation timestamp column. Also note that different versions
of a tuple may exist in the extracted snapshot and append
data files.

Users may directly consume the extracted snapshot and
append files if their applications can live with the existence
of multiple versions of a tuple, or if they have a way to
pick the latest version of a tuple if multiple versions exist.
Otherwise, Gobblin has a compaction module introduced in
Section 2.1.5 which can be used to compact snapshot and
append files. Alternatively, users can run a snapshot-append
job which runs an append job followed by compaction.

Apache Sqoop [9] is another data ingestion framework
whose focus is SQL to Hadoop data ingestion. Compared
to Sqoop, in Gobblin we aim to provide the right granu-
larity of operators, which can be easily composed into an
ingestion flow while creating the maximum leverage of the
building blocks, as well as easily extended for different use
cases. Converter, quality checker and fork operator are a few
examples of such operators, which are not currently avail-
able in Sqoop. Besides, as explained, Gobblin supports mul-
tiple types of ingestions as well as compaction. While Sqoop
supports incremental ingestion, it does not have something
comparable to snapshot-append jobs, nor does it support
compaction.

4. RELATED WORK
The most comparable system to Gobblin is Apache Sqoop [9],

which is originally designed to be a SQL-Hadoop ingestion
tool and has since become a generic framework for multi-
ple types of sources and destinations. Next we summarize
the main differences between Gobblin and Sqoop in a few
categories.

– In terms of goals, one of the goals of Gobblin from the
beginning was the unification of continuous streaming
ingestion with scheduled batch ingestion. We believe
that the two modes of ingestion do not need completely
different, specialized engines and instead they can be
handled by a single framework with an appropriate
level of abstraction on how data ingestion workunits
are defined. This is one of the big differentiators with
Sqoop which is architected to be a batch oriented inges-
tion solution. The streaming capability of Gobblin
based on Yarn is being developed and will be avail-
able in the coming months.

– In terms of modularity and componentization, Sqoop
does not provide some of the modules in Gobblin as

1768

building blocks for data ingestion jobs, such as Con-
verter, quality checker and fork operator, as explained
in Section 3.2.

– In terms of data semantics, Gobblin supports multiple
types of ingestions as well as compaction, as mentioned
in Section 3.2. These are not supported in Sqoop.

– In terms of job/task state management and failure
handling, a state store is maintained internally in Gob-
blin for managing job states as explained in Section 2.1.2.
Gobblin uses watermarks for managing incremental
pulls, which can be both simple and complex types.
By contrast, Sqoop provides a less powerful feature for
incremental import, which is based on a single numeric
value on a single attribute. To the best of our knowl-
edge Sqoop also doesn’t provide an easy way to main-
tain such checkpoints and other job states.

– In terms of operability, Gobblin has a complete end-to-
end metrics collection and reporting system explained
in Section 2.1.4. This is to our knowledge not available
in other data ingestion frameworks including Sqoop.

There are also a few specialized open-source tools for data
ingestion, such as Apache Flume [3] for ingesting log data,
Aegisthus [1] for extracting data from Cassandra, and Mor-
phlines [13] which is a data transformation tool similar as
Gobblin’s converter, and which can be plugged into data
ingestion frameworks such as Sqoop and Flume. In compar-
ison, Gobblin is designed to be far more general and extensi-
ble which enables an organization to use a single framework
for different types of data ingestions.

5. FUTURE WORK
Gobblin is under active development. We are extending

Gobblin in the future along the following directions:

– To achieve the goal of unifying processing paradigm
between batch and streaming ingestion flows, we are
building a new execution framework based on Yarn
natively. The new execution framework will deliver
much better SLA, load-balancing and elasticity.

– Gobblin currently uses record-level abstraction in its
execution flow, i.e., the unit to be pulled is a record.
We will extend Gobblin beyond record-level abstrac-
tion, and add file-level abstraction to Gobblin, which
will enable Gobblin to be used as a high-performance
file transfer service across various file systems, includ-
ing NFS, HDFS, S3, etc. as well as across data centers
or regions.

– We are planning to expand the integration points with
workflow schedulers for Gobblin jobs beyond native
Quartz scheduler and Azkaban. For example, Oozie
and Chronos are on top of our list.

6. CONCLUSION
We presented Gobblin, a data ingestion framework for

Hadoop. Gobblin is designed to be generic and extensi-
ble so that it can be used for a variety of data ingestion
use cases, as well as easily operable and monitorable. It
is currently used to ingest from a number of data sources
at LinkedIn into Hadoop, and is slated to take over sev-
eral specific-purpose data ingestion pipelines currently being
used as it further matures.

7. ACKNOWLEDGEMENT
We’d like to extend our appreciation to our partner teams

for their strong support and valuable help during the devel-
opment and deployment of Gobblin at LinkedIn. They are
Data Services Operation team (Neil Pinto, Sandhya Ramu,
Tu Tran, Teja Thotapalli, Vamshi Hardageri and Dhawal
Chohan), Hadoop Operation team (Bob Liu, Anil Alluri,
Adam Faris and Chen Qiang), BI and Solution team (Daisy
Lu, Qun Li, Ranjith Prabu and Subbu Sankar). We also
thank our alumni, Henry Cai and Ken Goodhope, for their
significant contribution to Gobblin.

8. REFERENCES
[1] Aegisthus. https://github.com/Netflix/aegisthus.

[2] Apache Flink. https://flink.apache.org/.
[3] Apache Flume. https://flume.apache.org/.

[4] Apache Giraph. http://giraph.apache.org/.

[5] Apache Hadoop. https://hadoop.apache.org/.
[6] Apache Kafka. http://kafka.apache.org/.

[7] Apache Oozie. http://oozie.apache.org/.

[8] Apache Spark. https://spark.apache.org/.
[9] Apache Sqoop. http://sqoop.apache.org/.

[10] Azkaban: Open-source Workflow Manager.
http://azkaban.github.io/.

[11] Camus. https://github.com/linkedin/camus.

[12] Chronos. http://nerds.airbnb.com/introducing-chronos/.
[13] Morphlines.

http://cloudera.github.io/cdk/docs/current/cdk-
morphlines/index.html.

[14] Pinot. https://github.com/linkedin/pinot.
[15] Presto. https://prestodb.io/.

[16] Quartz Scheduler. http://quartz-scheduler.org/.

[17] RocksDB. http://rocksdb.org/.
[18] YARN. http://hadoop.apache.org/docs/current/hadoop-

yarn/hadoop-yarn-site/YARN.html.
[19] S. Chen. Cheetah: A High Performance, Custom Data

Warehouse on Top of MapReduce. PVLDB,
3(2):1459–1468, 2010.

[20] K. Gopalakrishna, S. Lu, Z. Zhang, A. Silberstein,
K. Surlaker, R. Subramonian, and B. Schulman. Untangling
Cluster Management with Helix. In SoCC, 2012.

[21] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
ZooKeeper: Wait-free Coordination for Internet-scale
Systems. In USENIX, 2010.

[22] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky,
C. Ching, A. Choi, J. Erickson, M. Grund, D. Hecht,
M. Jacobs, I. Joshi, L. Kuff, D. Kumar, A. Leblang, N. Li,
I. Pandis, H. Robinson, D. Rorke, S. Rus, J. Russell,
D. Tsirogiannis, S. Wanderman-Milne, and M. Yoder.
Impala: A Modern, Open-Source SQL Engine for Hadoop.
In CIDR, 2015.

[23] L. Qiao, K. Surlaker, S. Das, T. Quiggle, B. Schulman,
B. Ghosh, A. Curtis, O. Seeliger, Z. Zhang, A. Auradkar,
C. Beaver, G. Brandt, M. Gandhi, K. Gopalakrishna,
W. Ip, S. Jagadish, S. Lu, A. Pachev, A. Ramesh,
A. Sebastian, R. Shanbhag, S. Subramaniam, Y. Sun,
S. Topiwala, C. Tran, J. Westerman, and D. Zhang. On
Brewing Fresh Espresso: LinkedIn’s Distributed Data
Serving Platform. In SIGMOD Conference, pages
1135–1146, 2013.

[24] V. Raman, G. Swart, L. Qiao, F. Reiss, V. Dialani,
D. Kossmann, I. Narang, and R. Sidle. Constant-Time
Query Processing. In ICDE, pages 60–69, 2008.

[25] R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman, and
S. Shah. Serving Large-scale Batch Computed Data with
Project Voldemort. In FAST, 2012.

1769

