
ConfSeer: Leveraging Customer Support Knowledge
Bases for Automated Misconfiguration Detection

Rahul Potharaju†, Joseph Chan†, Luhui Hu†, Cristina Nita-Rotaru∗,
Mingshi Wang†, Liyuan Zhang†, Navendu Jain‡

†Microsoft ∗Purdue University ‡Microsoft Research

ABSTRACT
We introduce ConfSeer, an automated system that detects po-
tential configuration issues or deviations from identified best
practices by leveraging a knowledge base (KB) of technical
solutions. The intuition is that these KB articles describe the
configuration problems and their fixes so if the system can ac-
curately understand them, it can automatically pinpoint both
the errors and their resolution. Unfortunately, finding an accu-
rate match is difficult because (a) the KB articles are written
in natural language text, and (b) configuration files typically
contain a large number of parameters with a high value range.
Thus, expert-driven manual troubleshooting is not scalable.

While there are several state-of-the-art techniques proposed
for individual tasks such as keyword matching, concept deter-
mination and entity resolution, none offer a practical end-to-
end solution to detect problems in machine configurations. In
this paper, we describe our experiences building ConfSeer us-
ing a novel combinations of ideas from natural language pro-
cessing, information retrieval and interactive learning. Con-
fSeer powers the recommendation engine behind Microsoft
Operations Management Suite that proposes fixes for software
configuration errors. The system has been running in pro-
duction for about a year to proactively find misconfigurations
on tens of thousands of servers. Our evaluation of ConfSeer
against an expert-defined rule-based commercial system, an
expert survey and web search engines shows that it achieves
80%-97.5% accuracy and incurs low runtime overheads.

1. INTRODUCTION
Configuration errors have a significant impact on system

performance and availability. For instance, a misconfigura-
tion in the user-authentication system caused login problems
for several Google services including Gmail and Drive [47].
A software misconfiguration in Windows Azure caused a 2.5

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivs 3.0 Unported License. To view a copy of
this license, visit http://creativecommons.org/licenses/byncnd/3.0/.
Obtain permission prior to any use beyond those covered by the li
cense. Contact copyright holder by emailing info@vldb.org. Articles
from this volume were invited to present their results at the 41st Interna
tional Conference on Very Large Data Bases, August 31st September
4th 2015, Kohala Coast, Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 21508097/15/08.

hour outage in 2012 [65]. Many configuration errors are due to
faulty patches (e.g., changed file paths causing incompatibility
with other applications, empty fields in Registry), failed unin-
stallations (e.g., dangling file references), and manual fixes by
users, risking compromise or loss of data e.g., reducing the
number of backup copies.

Unfortunately, troubleshooting misconfigurations is time-
consuming, hard and expensive. First, today’s software con-
figurations are becoming increasingly complex and large com-
prising hundreds of parameters and their settings [76]. Thus,
given a large install base of diverse applications with numer-
ous third party packages, it becomes difficult to specify the
‘perfect configuration state’ or ask developers to manually spec-
ify the correct value of each parameter. Second, many of these
errors manifest as silent failures leaving users clueless: they
either search online or contact customer service and support
(CSS) which can cause loss of productivity, time and effort due
to manual triage. Further, the CSS contracts incur a high cost
of ownership of up to tens of millions of dollars annually [60].
Prior studies have reported that technical support contributes
17% of the total cost of ownership of desktop PCs [34].

To address these challenges, several research efforts have
proposed techniques to identify [31, 67], diagnose [76, 16, 61,
50, 64, 74, 77, 75], and fix configuration problems [13, 62].
Some commercial tools are also available to manage system
configurations or to automate certain configuration tasks [21,
28, 22]. However, many of these approaches either assume
the presence of a large set of configurations to apply statistical
testing (e.g., PeerPressure [61]); periodically checkpoint disk
state (e.g., Chronus [64]) risking high overheads; use data flow
analysis (e.g., ConfAid [16]) for error-tracing; use a specula-
tive OS kernel to try out fixes (e.g., AutoBash [57]); or in-
ject specific types of configuration errors (e.g., ConfErr [35])
which may not be feasible in production settings, risk incom-
pleteness in covering diverse misconfigurations, or make it the
users’ responsibility to identify the misconfigured machine.

1.1 Our Contributions
This paper presents the design, implementation and evalu-

ation of ConfSeer, a system that aims to proactively find mis-
configurations on user machines using a knowledge base (KB)
of technical solutions. Specifically, ConfSeer focuses on ad-
dressing parameter-related misconfigurations, as they account
for a majority of user configuration errors [73]. Our key idea

1828

Type of
Error (A) Capability (B) <parameter name, value>

[Software](C)
KB Id

(D) Matched Text from KB articles (in bold) (E)

Value
constraint Event ID-based exact

matching

Message 823
[SQL Server 2005] 2015755 How to troubleshoot a Msg 823 error in SQL Server

Range
constraint Proximity-based

matching

NumOfLogicalProcessors 8
[SQL Server 2008] 2154845 . . . as a general rule, if the number of logical processors is less than

or equal to 8, use the same number of data files as logical processors.

Range
constraint Constraint evaluation

on well-formed text
containing numerics

TcpMaxDataRetransmissions 10
[Windows Server 2008] 170359 . . . segment is retransmitted, up to the TcpMaxDataRetransmissions

value. The default value for this parameter is 5.

Range
constraint Proximity-based

matching

SynAttackProtect 0
[Windows Server 2003] 324270

Value name: SynAttackProtect . . . 0 (default value): No SYN attack
protection. 1: Set SynAttackProtect to 1 for better protection
against SYN attacks.

Value
constraint Proximity-based

matching

FileGrowth 4 GB
[SQL Server 2008] 2633151

The file growth that is configured for the SQL Server database
transaction log file is 4 gigabytes (GB) or multiples thereof (for
example, 8 GB, 12 GB, and so on).

Value
constraint Abbreviation detection

with proximity-based
approximate matching

ProxyFQDNEnabled true
[Lync Server 2013] 2743783 Lync Server hosting provider ProxyFqdn value causes push

notifications to fail

Value
constraint Abbreviation detection

with proximity-based
approximate matching

LSACrashOnAuditFailFlag true
[IIS 6.0] 832981

2 Start Registry Editor
3 Locate the following key, and then set the value of this key to 1

HKEY LOCAL.../Control/Lsa/CrashOnAuditFail...

Range
constraint Constraint evaluation

containing numerics

NumOfLogicalProcessors 100
[Windows Server 2008] 2510206 Performance issues when more than 64 logical processors are used in

Windows Server 2008 R2

Value
constraint Constraint evaluation

on free-form text

NumberOfDatabaseCopies 2
[Exchange Server 2010] 2617815 The database has not been backed up within the recommended

timeframe, and there are less than three database copies.

Range
constraint Constraint evaluation

with proximity
matching

CurrentIORate 1000 MB per
second

[SQL Server 2012]
920093 . . . High I/O rates, for example, more than 10,000 physical I/O per

second or more than 500 megabytes (MB) per second

Range
constraint Constraint evaluation

containing numerics

NumMailboxThreads 10
[Exchange Server 2010] 2603736

There are several types of events for which the Exchange store tags a
mailbox as a potential threat:

• If there are more than five threads in that mailbox that haven’t
made progress for a long time

Table 1: Real-world examples of misconfigurations (column C) in commercial software, the matched KB article ID (column D) along-with its matching natural language
text (column E) output by ConfSeer.

behind ConfSeer is to enable configuration-diagnosis-as-a-service
by automatically matching configuration problems to their so-
lutions described in free-form text (e.g., KB articles) and pin-
pointing them to users for proactive resolution.

The main idea is as follows: First, ConfSeer takes the snap-
shots of configuration files from a user machine as input. These
are typically uploaded by agents running on these machines.
Second, it extracts the configuration parameter names and value
settings from the snapshots and matches them against a large
set of KB articles, which are published and actively maintained
by many vendors. Third, after a match is found, ConfSeer au-
tomatically pinpoints the configuration error with its matching
KB article so users can apply the suggested fix.

ConfSeer builds on three key ideas: (1) semantic match-
ing, (2) separating the matching mechanism from policy-based
ranking, and (3) interactive learning to improve accuracy. First,
since KB articles are written in free-form text, it processes
them into a canonical representation, builds features for match-
ing, and then constructs an inverted index to perform fast lookups
of feature values across KB articles; the index can be updated
periodically or on-demand as new articles are added. Then
given a list of <parameter name, value> pairs from an in-
put configuration snapshot, ConfSeer performs feature match-
ing in parallel based on (a) exact keywords, (b) proximity, (c)
synonym/abbreviation of parameter names, and (d) constraints
on parameter settings e.g., data type, format, and value range.

We also propose a new technique that does constraint eval-
uation on text using Abstract-Syntax-Trees that has not been
proposed earlier to our knowledge. Second, it aggregates the
accuracy scores of KB articles matched based on individual
<parameter name, value> pairs and then computes their fi-
nal ranking for the entire snapshot based on specified policies.
This separation allows applications the flexibility to use any
desired technique to rank matching articles e.g., using KB arti-
cle popularity, expert guidelines or customer feedback. To im-
prove result accuracy, ConfSeer relies on incremental machine
learning. Table 1 shows real-world examples of the matching
KB articles output by ConfSeer for different types of miscon-
figurations in a commercial software system.

We evaluate ConfSeer against the previous release of Mi-
crosoft Operations Management Suite (OMS) [7] which used
about 200 manual rules to match misconfigurations to KB ar-
ticles. ConfSeer is able to automatically infer 97.5% of the
configuration errors covered by these manual rules. Further,
its learning component exhibits a high F-score of 0.84. An
expert evaluation and a user survey on diagnosing misconfigu-
rations against an expanded KB article set show that ConfSeer
achieves 85%-97.5% accuracy in baseline comparison to pop-
ular search engines (69.5% for Bing and 65.5% for Google)
that are based on state-of-the-art IR, NLP and ML techniques,
and that it incurs low runtime overheads. The OMS system
has been running ConfSeer for over a year to automatically

1829

analyze misconfigurations on tens of thousands of machines.
ConfSeer is the first approach that combines traditional IR

and NLP techniques (e.g., indexing, synonyms) with new do-
main specific techniques (e.g., constraint evaluation, synonym
expansion with named-entity resolution) to build an end-to-
end practical system to detect misconfigurations. It is part of a
larger system-building effort, SysSieve [11], to automatically
detect software errors and misconfigurations by leveraging a
broad range of data sources such as knowledge bases, techni-
cal help articles [44], and question and answer forums [10],
which contain valuable yet unstructured information to per-
form diagnosis.

2. CUSTOMER SERVICE AND SUPPORT
Given a configuration problem, users typically first query

a search engine (e.g., using the error message as keywords)
for resolution. These engines aim to search the relevant doc-
uments in their index built from crawled web documents, dis-
cussion forums/e-mail threads, software manuals, or other pub-
lic documentation of the software. If that fails, they contact
a CSS center (e.g., via email, IM, phone call) where a sup-
port engineer tries to search the reported error or problem de-
scription in their KB database or browse through a classifi-
cation scheme e.g., based on software or error types. These
KB databases provide access to expert-written facts and rules
to solve problems which can be directly provided to the cus-
tomer. Further, since these articles are written by experts, any
errors are likely to be corrected quickly. Many software ven-
dors maintain KBs for customer support e.g., desk.com [2],
VMWare [12], Oracle [9], IBM [6], EMC [3], Google [4], Ap-
ple [1], and Microsoft [8] having more than 250k+ articles [5].

If the support engineers observe a recurring problem across
multiple complaints or error reports (e.g., [45]), they would
document a solution in form of a KB article so that it can be
directed as a response to customers. These technical solutions
also get notified to subject matter experts (SMEs) on differ-
ent software applications. These SMEs in turn may author (1)
code logic (e.g., XML files, shell scripts) to evaluate config-
uration settings on a user machine, and (2) a rule to link the
outcome of the script with the matching KB article.
Drawbacks. While the human-guided triage in CSS provides
personal attention to customers, it has several drawbacks. First,
it incurs a significant cost which increases linearly with the
number of customer calls and call duration. Second, it risks
long wait times particularly during periods of high call vol-
ume e.g., new releases or problems due to faulty bug patches.
Third, it is reactive in nature – the fix is applied after the
problem has occurred e.g., network disconnection. Finally,
this troubleshooting process is dependent on the SME-defined
rules which risk incompleteness for large KB databases or risk
becoming outdated as the software evolves.

3. ConfSeer OVERVIEW
Figure 1 shows an overview of ConfSeer. ConfSeer operates

in three phases described below (see Figure 2).
Offline Index Building Phase: The goal of this phase is to
parse (§4.1) each KB document to build an intermediate canon-
ical representation that is analyzed through a pipeline of filters

ConfSeer

Customer Site

Knowledge

Base Articles

Auto-upload

configuration snapshots

<param, value>

<param, value>

...

<param, value>

<param, value>

Configuration

snapshots

ConfSeer

Analysis

Engine

1

Misconfiguration

Misconfiguration

Misconfiguration

Visual

Dashboard

3

Suggest expert-written articles

as problem fixes

QUERIES

2

Figure 1: Overview of ConfSeer: (1) The configuration snapshots from cus-
tomer machines are given as input. (2) A semantic matching of the configuration
parameter names and value settings from the snapshots against the inverted index
of KB articles is performed. (3) Matched articles along with the corresponding
machine information are displayed to the user.

(§4.2) to extract features for indexing and querying. Finally,
an inverted index is built on top to enable fast matching.
Online Query Processing Phase: The goal of this phase is to
leverage the inverted index previously built to automatically
retrieve KBs describing solutions to configuration errors in a
given configuration snapshot. This is achieved in three steps.
First, the configuration snapshot is parsed into a set of multi-
ple independent key-value type queries. Second, each query
is converted into an abstract form through a Query Processor
(§5.1) and distributed to multiple matchers (§5.2). Finally, the
results from each matcher are sent to a ranking engine (§5.3)
which ranks the KB articles in order of relevance.
Interactive Learning Phase: This phase leverages human guid-
ance to improve accuracy and ranking of results. In ConfSeer,
learning happens in two stages. First, a classifier is built based
on a training set of expert-labeled KB articles and then it is
used to filter the relevant results. Second, an interactive inter-
face is provided to get user feedback for incremental learning.

4. OFFLINE INDEX BUILDING PHASE
Building an index that serves a multitude of queries (e.g.,

free-form, fuzzy matching) requires addressing three key ques-
tions. First, what type of features to extract from the raw KBs
to enable search? Second, how do we extract this information
in a scalable manner from a large input corpus? Third, how to
perform constraint evaluation on free-form text?

4.1 Document Parsing
The first step is to pre-process the KB documents into a

form suitable for indexing. ConfSeer implements a variety
of parsers for several popular document formats like XML,
HTML, CSV, and plain text. Each input document is parsed
into an intermediate representation which the indexer can pro-
cess further or store directly. However, a key challenge is
that simply stripping the meta-data tags from a document will
likely lose the semantic context of the neighboring text e.g.,
flattening an HTML table will not associate the header column
information with each of the row values. To address this chal-
lenge, ConfSeer flattens an input file as follows. Regular text

1830

Document Parsing
KNOWLEDGE

BASE ARTICLES

QUERIES

INDEXING

ENGINE

Inverted

Index

QUERY

DISTRIBUTION

Exact Match

Proximity Match

Other match logics

... RANKING

ENGINE

MATCHING ENGINE

USER

INTERFACE

OFFLINE INDEX BUILDING PHASE

ONLINE QUERY PROCESSING PHASE

INTERACTIVE LEARNING PHASE

Top-k results

User

Feedback

Document Analysis

DOCUMENT PROCESSING

Query Parsing

Query Analysis

QUERY PROCESSING

Query Fuzzing

Named-entities, Synonyms, Blacklists

MACHINE

LEARNING

CLASSIFIER

Model / Result

Classification

Model

Re-Calibration

Filter

informational-only

results

NumLogicalProcessors

ProxyFQDNEnabled

TCPTimeout

...

Param Value

7

true

30

CONFIGURATION

SNAPSHOT

Figure 2: ConfSeer operates in three phases: (1) Offline Index Building, (2) Online Query Processing, and (3) Interactive Learning.

i.e., text inside paragraph tags (e.g., <p>,) is con-
verted as is. To preserve the semantic information in tables,
ConfSeer replicates the information contained in the header
for each row by transforming the hierarchical document struc-
ture into its corresponding JSON format [24].

4.2 Document Analysis
After parsing the KB articles, our next goal is to extract

their content for indexing. One pre-requisite for building an
index is that the free-form text inside KBs be converted into
a fine-grained representation called terms which can be in-
dexed. For instance, the sentence “Check if server has mal-
functioning network card” can be indexed as a sequence of
terms: ‘Check’, ‘server’, and so on. However, this poses the
fundamental question of selecting what terms to index, which
we describe next in form of four specific challenges:
C1. Contextual Information: Intuitively, words that would
be most useful to build an index should capture information
related to the parameter names and values in configuration
snapshots i.e., domain-specific information and any contex-
tual information to facilitate accurate matching. For instance,
in the sentence “set the TcpTimedWaitDelay setting to 30”, it
is important to capture “TcpTimedWaitDelay” along with its
corresponding parameter value “30”.
C2. Technical Words: In KB articles, it is common to see
camel case words e.g., GetMethod, IsSecurityLogOverwrite.
Thus, a query to find “security log” using these unmodified
keywords may not yield the expected result.
C3. Constraint Evaluation: Given a query such as “Nu-
mOfLogicalProcessors 6”, it is non-trivial to retrieve match-
ing text such as “the number of logical processors should be
less than or equal to 8” which logically applies to the query.
One strawman is to enumerate numerical values e.g., replace
“less than or equal to 8” with the set [1,8] so that a search for
“6” will retrieve this text. However, this simple heuristic will
be expensive for large value ranges or be inaccurate to handle
different value types e.g., fractions, enumerations.
C4. Synonym Search: Given a query such as “sql” or “sql
server”, it may be necessary to fetch all technical articles con-
taining the phrase “sql server database” or “sql engine”. There
are two techniques to achieve this: (1) expand the query to in-
clude the synonyms called Query-time Synonym Expansion, or
(2) expand the text during indexing to include all the synonyms
of a token(s) called Index-time Synonym Expansion. How-
ever, two challenges arise in using them for synonym search:
• Query-time vs. index-time expansion: Deciding between
the two techniques requires managing a typical space-time trade-

Tokenize into words

1. CANONICALIZATION

CamelCase

Filter

Value Type

Filter

Lowercase

Filter

2. TRUNCATION

Stop word

Filter

3. EXPANSION

Named-Entity

Filter

Synonym

Filter

WordNet

Filter

4. NORMALIZATION

Stemming

Filter

Knowledge Base

Articles
Queries

Final Token Stream

Knowledge Base

Articles
Queries

Index Phase

Query Phase

LEGEND

Figure 3: A pipeline of processing filters to extract tokens from KB articles for
building an inverted index.

off. In particular, the former consumes less space for the in-
dex but it will increase query latency as multiple queries (one
query per synonym) need to be executed, while the latter de-
creases query latency at the cost of higher space overheads of
indexing as the tokens and their synonyms need to be stored.
• When to perform synonym expansion? For instance, per-
forming a naı̈ve synonym expansion of the token “SQL” in the
sentence “Install SQL Server” will yield “Install [SQL,SQL
Server] Server” which is incorrect. Our key idea to solve
this problem is to first detect that “SQL Server” is a named-
entity and ensure that the synonym expansion happens on the
right candidate i.e., on “SQL Server” instead of “SQL”.

To address C1, ConfSeer adopts the vector-space model to
represent documents as bag-of-words and stores them in an
inverted index [54] comprising the individual terms and the
documents they appear in as well as the position offset to en-
able proximity-search queries (e.g., term x near term y). We
next describe how ConfSeer addresses the C[2-4] challenges
(see Figure 3 for an overview).

1831

4.2.1 Constraintbased Search
ConfSeer supports queries on technical words (C2) and con-

straint evaluation (e.g., NumProcessors ≤ 8) on free-form text
(C3), through Canonicalization via three sequential filters:
F1. CamelCase Filter: To enable free-form search of camel-
case words, ConfSeer performs camelcase expansion i.e., ex-
panding them into their constituent words. We consider the
following five common cases obtained through an empirical
analysis of the KB articles: (1) the standard case ‘CamelCase’
is often used for type names and references in source code
or configuration entities e.g., GetMethodName; (2) the inte-
rior case ‘camelCase’ is often used for identifier names e.g.,
methodName; (3) capital letters as suffix of the word ‘Camel-
CASE’ e.g., GetBIT, (4) all capital letters ‘CAMELCASE’ are
often used in abbreviations or boolean bits e.g., ENABLED;
and (5) a mixture of camel case and capital letters are often
used to include abbreviations inside the word e.g., WeakR-
SAKeys. Given an input camel case word, this filter outputs
the original token along with its constituent words. For in-
stance, ‘IsSecurityLogOverwrite’ will be converted into [Is-
SecurityLogOverwrite, Is, Security, Log, Overwrite].
F2. Value Type Filter: To achieve constraint evaluation on
free-form text, we propose a simple yet novel index-time opti-
mization: add hints regarding the value type to the index (e.g.,
NUMERIC for 8, BOOLEAN for true) with the same token
position as the value. Therefore, during tokenization, this filter
will detect the type of the token (e.g., numerics such as 1,2,3,
booleans such as true/false, version numbers such as 1.0.0.1)
and output a replacement token with the same position as the
input token (see Box 1). Note that the position for both 8/NU-
MERIC and true/BOOLEAN remains same in the index i.e.,
15 and 21, respectively. §5.2 describes how we leverage these
index-time value hints during query processing.

Original: In SQL, if the number of logical processors is less than
or equal to 8, set the InMemory bit to true · · · .
Index-time hints: In SQL, if the number of logical processors is
less than or equal to 8 NUMERIC, set the InMemory bit to true
BOOLEAN · · · .

Box 1: Example showing modification by the Value Type Filter.

F3. Lowercase Filter: This filter outputs a lowercased version
of the input token. Note that the Lowercase filter should only
be used after applying the CamelCase filter otherwise the prop-
erty of camelcased words would not be preserved and hence
expansion becomes infeasible.

4.2.2 Synonym Search
We perform synonym search (C4) in three stages. First,

commonly used words or phrases are filtered out through a
process called Truncation to reduce the number of candidates
for synonym expansion. Second, we perform Expansion in
which we first recognize named-entities and subsequently per-
form synonym expansion through two dictionaries — one that
we built from the KB articles in our dataset and another using
WordNet [46]. Finally, we perform Normalization to reduce
words into their root forms — this ensures that all word forms

are equivalent (e.g., upgraded, upgrading, upgrade are all re-
duced to their root form ‘upgrad’).
F4. Stop word Filter: To filter noise words, we utilize a stop
list of the most frequently occurring words in English, or a
negative dictionary. This dictionary includes words such as
‘a’, ‘the’, ‘and’, ‘my’, and ‘I’.
F5. Named-Entity (NE) Filter: The aim of this filter is to
identify NEs as a precursor for the next step of expanding syn-
onyms. For instance, in the sentence “Install SQL Server in
your machine”, it is necessary to recognize that “SQL Server”
is an NE and thus a candidate for synonym expansion. Once
the filter recognizes the set of tokens to be grouped as an NE, it
adjusts the positional information of all tokens in that group to
the position of the first token in the NE. This adjustment will
allow us to identify NEs in subsequent stages.

ConfSeer takes a three step approach to recognize NEs:
• Obtaining the list of NEs: To automatically obtain the list of
NEs from the input corpus, we find the most frequently occur-
ring phrases and then use RIDF [23] to identify the important
ones — phrases with high RIDF are domain-specific and have
distributions that cannot be attributed to a chance occurrence.
• Data structures for NE Lookup: Given the list of named-
entities, the NE filter builds a graph as a pre-processing step
to enable fast lookups. In this graph, nodes denote words and
edges connect words if they occur together in a phrase in the
NE list. For instance, given the words [sql, sql server, sql
server database, sql server 2005], the final graph will contain
four nodes (sql, server, database, 2005), an edge from sql →
server, server → database, and server → 2005. Next, we lever-
age this graph to perform index-time NE recognition.
• Index-time NE Recognition: We perform NE recognition
during indexing. For each input token we check if the graph
consists of a node having the token string as its value. If it
does, a check is made to see if the next token exists as a neigh-
bor of the token string in the graph and concatenated with the
previous token and pushed onto a stack. This process is con-
tinued as long as the next token exists as a neighbor of the
previous token. Once the condition is violated, the stack is
popped and the concatenated string will be given the same po-
sition as the first entry in the stack.
F6 and F7. Synonym/WordNet Filter: ConfSeer enables
synonym retrieval by performing synonym expansion during
index-time to reduce query latency. Further, since the syn-
onyms for technical words change rarely (e.g., till a new prod-
uct is released), storing them in an index is reasonable. The
Synonym Filter works similarly to the NE Filter with one ex-
ception – upon finding a token with synonyms, it injects all
synonyms as new tokens into the stream and sets their posi-
tional value to be the same as that of the original token.
F8. Stemming Filter: In many cases, the semantic of the
word matters more than the word itself. For instance, a techni-
cal article describing “upgrading your software” and “upgra-
dation of a software” most likely are about the same concept
upgrade. Therefore, it is useful to convert words into their root
form. For this, we leverage the standard Porter stemming al-
gorithm [48] which is a process for removing the commoner
morphological and inflexional endings from words (e.g., con-
nection, connected, connecting → connect) in English.

1832

Obtain matching documents

Fetch position information for

the match for each document

Token Extractor

Constraint Evaluator

DocID: 3

DocID: 67

DocID: 124

DocID: 3 ⇒ ensure that the number of logical processors is less than or equal to 8 NUMERIC

DocID: 67 ⇒ If logical processors is set to a value more than 64 NUMERIC there is a problem

DocID: 124 ⇒ check the configuration and verify that logical processors is set to 32 NUMERIC

Value: 7
ensure that the number of logical processors

is less than or equal to 8 NUMERIC

7 8

7 8

Abstract Syntax

Tree Constructor

If logical processors is set to a value

more than 64 NUMERIC there is a problem

> 64

check the configuration and verify that the

logical processors is set to 32 NUMERIC

= 32

7

>

64 7

=

32

7 8?

⇒ true

7 > 64?

⇒ false

7 > 32?

⇒ false

{ Query: num logical processor NUMERIC, Value: 7 }

Document Identifiers

Document text, Value in query

Tokens, Value in query

AST

1

2

3

4

5

<NumLogicalProcessors, 7>

<ProxyFQDNEnabled, true> <TCPTimeout, 30>

<num logical processors, 7>

<logical processors, 7>

NumLogicalProcessors

ProxyFQDNEnabled

TCPTimeout

...

Param Value

7

true

30

{ DocID: [1, 4, 5] }

{ DocID: 3 }

To RANKER

PROXIMITY MATCHER INTERNALS (Constraint Evaluation)

EXACT

MATCHER

PROXIMITY

MATCHER
...EXACT

MATCHER

EXACT

MATCHER

RANKER

(Result Aggregation)

EXACT

MATCHER

MACHINE LEARNING CLASSIFIER

(Relevance Prediction)

EXACT

MATCHER
Filter informational-only results

Relevant articles for problem fixing for each misconfiguration

top-k

(by score)
top-k

(by score)

top-k

(by score)

top-k

(by relevance score)

top-k

(by relevance score)

{ DocID: 3 }

{ DocID: [3, 1, 4, 5] }

{ DocID: [3, 4, 5] }

{ DocID: [3] }

FUZZED QUERY (q)

<param, value>

QUERY (Q)

<param, value>

CONFIGURATION

SNAPSHOT

QUERY (Q)

<param, value>

QUERY (Q)

<param, value>

FUZZED QUERY (q)

<param, value>

FUZZED QUERY (q)

<param, value>

<num processors, 7>

Figure 4: End-to-end query processing pipeline in ConfSeer: Given a configuration snapshot, each (param, value) pair is transformed to a set of queries which are
distributed to a variety of feature matchers running in parallel. The scores of the matched documents are aggregated, ranked and sent to classifier to filter the relevant
documents out of which the top-k results are output. In this example, NumLogicalProcessors 7 (see KB article 2154845) is a detected misconfiguration.

5. ONLINE QUERY PROCESSING PHASE
The goal of this phase is to leverage the inverted index to

enable automated retrieval of relevant KB articles for a given
snapshot. In ConfSeer, retrieval happens in three steps. First,
the query is converted into an abstract form in the Query Pro-
cessing stage and distributed to multiple matchers implemented
in the Matching Engine by the Query Distribution module.
Second, the Matching Engine executes multiple search log-
ics and returns a list of articles with their scores. Finally, the
Ranking Engine aggregates the results.

5.1 Query Processing
Three key requirements drive matching an input query of a

configuration snapshot against the inverted index:
[R1] Processing Homogeneity: We need to ensure that the re-
trieval is performed after the query is processed in a manner
similar to the offline analysis (§4.2) of KB articles. For in-
stance, recall that using F3, we converted the input to lower
case to enable case-insensitive matching. Therefore, we pass
each input query through a Query Analysis module. The Query
Analysis module performs two tasks: (a) prepare an abstract
representation of the query by rewriting any value-types it finds
(e.g., numbers like 7 or seven, boolean words like true or false)
with generics (e.g., NUMERIC, BOOLEAN) and storing the
value separately for constraint evaluation by the Matching En-
gine (§5.2), and (b) mimic the processing performed on the
input corpus during the index building phase. Figure 3 shows
the various filters that process the input query. Notice that the
input query does not pass through the Expansion phase as we
already injected synonyms during the index building stage.
[R2] Fuzzing: For many queries, using exact keywords may
not return a result. For instance, a naive search for an in-
put query “LSA Crash On Audit Fail Flag” would return only
documents containing all the terms from the input query but
it will not return documents where, for instance, the word
“audit flag” is missing. Hence, it is important to construct
approximate queries from the original one. We implement
Query Fuzzing to address this issue. Specifically, given an
input query, we construct a powerset of the terms in the input
query to facilitate approximate searches that match documents

containing a subset of terms from the input query.
[R3] Matching Logic: For an input query such as “ErrorID
823”, an exact search or even an approximate search may not
return documents containing the text “the errorId was logged
to be 823” due to the presence of additional words between the
terms from the input query. In such scenarios, it may be neces-
sary to do relaxed queries that allow for other terms to appear
in between the input query terms. We solve this problem by
modularizing the matching logic – a Query Distributor does a
parallel invocation of different matchers (e.g., exact matching,
proximity matching) and finally aggregates the results (§5.3).

5.2 Matching Engine
To perform automated retrieval, a key question is how to

establish a relationship between individual configuration pa-
rameters inside a snapshot and the KB articles. In particular,
given a key-value pair with a constraint, we want to retrieve all
KB articles that satisfy its truth condition. For instance, given
“NumOfLogicalProcessors=7”, we want to retrieve all KB ar-
ticles where the user sets the number of logical processors to
7. However, there are numerous challenges associated with
such a retrieval. First, KB articles are written in free-form text
so an accurate mapping should be made from NumOfLogical-
Processors to candidate free-form text such as “ensure that the
logical processors are set to seven”. Second, the value being
searched for may not even be present in the KB article e.g.,
“the number of logical processors is less than 8” has no 7 but
still satisfies the constraint.

In ConfSeer, we implement two types of matchers: (1) Ex-
act Match is a simple search mechanism that looks for doc-
uments that contain the key-value pairs in their exact form,
and (2) Proximity Match incorporates proximity based approx-
imate matching along with a constraint evaluation module as a
mechanism to find two tokens within a given proximity of each
other that satisfy a constraint (if any). Recall from §4.2 that
tokens emitted during the analysis include a position from the
previous token which allows us to support proximity matches
using the inverted index.

Proximity matching happens in the following two stages:
Retrieval Phase: For an input query, the Proximity Matcher

1833

retrieves the relevant documents as well as tracks positions of
every term occurrence that matches in the inverted index. An
additional pruning stage removes all matches which are be-
yond a specified distance. For instance, given a constraint such
as “logical, processors, Distance=1”, only documents contain-
ing “logical” and “processors” next to each other are retrieved.
Subsequently, all words between the matched positional off-
sets are obtained from the inverted index. Note that setting
the value of Distance too high may yield a false positive (e.g.,
‘logical’ and ‘processor’ can appear in different sentences),
while setting it too low may result in false negatives (e.g., us-
ing Distance = 1 for the sentence “the processor is a logical
one” will not output “logical processor”). Using collocation
analysis [56], we found that setting Distance = 15 in practice
offers a good trade-off.
Constraint Evaluation Phase: Once the relevant documents
are retrieved along with the set of words between the matched
positions of the input query terms, ConfSeer performs an on-
the-fly truth condition evaluation as follows: First, each match
is passed through a Token Extractor module (see Figure 4).
Based on linguistic analysis, we incorporate two pieces of in-
formation into the Token Extractor module: (a) frequently-
used comparative expressions in free-form text (e.g,. ‘less than
or equal to’, ‘set to’, ‘greater than’) and (b) a simple type sys-
tem to infer values (e.g., numerical, boolean, floating point,
and version numbers). Using this information, comparative
expressions along with any surrounding values are extracted.
Second, an Abstract Syntax Tree (AST) is constructed for in-
dividual expressions to be evaluated. Recall from the Query
Analysis phase that any values found in the input query are
abstracted by the Value-Type Filter (filter F2 from §4.2) and
substituted with a generic type. Therefore, the AST will be
constructed with the operator as the root node and the operands
(value extracted from the query and the retrieved document) as
the leaf nodes. Third, the ASTs are compiled in-memory and
evaluated to obtain the truth condition. Only matches satisfy-
ing the truth condition are returned for subsequent ranking.
Example. Figure 4 illustrates these steps for the example
query “NumOfLogicalProcessors 8”. In Step 1, the Query Pro-
cessor performs query analysis using all filters except Expan-
sion and Normalization (see Figure 3) to obtain “num logical
processor 7”; we omit processing by other filters for simplic-
ity. Next, the value-type in this query is extracted into a sepa-
rate field and substituted with a generic token (NUMERIC in
this case). In Step 2, a simple proximity search is made using
the generic query “num logical processor NUMERIC” and the
relevant document identifiers [3,67,124] are retrieved. In Step
3, the positional information along with the text between these
positional offsets is obtained for each match from the inverted
index. In Step 4, the Token Extractor module parses the free-
form text and constructs the appropriate token representations
(e.g., “less than or equal to” →≤, “eight” → 8, “greater than”
→ >). In Step 5, an AST is constructed with the leaves rep-
resenting the values (i.e., [7,8], [7,64], [7,32]) to be compared
and the root node representing the type of operator (i.e., ≤, >,
>) to be executed on the leaves. Finally, in Step 6, the Truth
Condition Evaluator compiles the AST using a compiler and
checks if it satisfies the condition and the matching documents
(DocID: 3) are returned for subsequent ranking.

5.3 Ranking
Our goal in this phase is to score and rank candidate KB ar-

ticles. Because there can be multiple matchers (see Figure 4),
ranking happens at multiple stages:
Scoring results from an exact match: We use a slightly mod-
ified variant of the standard tf-idf [54] (term frequency-inverse
document frequency) metric to score the retrieved results from
both exact and fuzzy matching. In tf-idf, each of the terms in
a document is associated with the number of times it occurs
in that document. Terms are then weighted according to how
common they are across the corpus, the intuition being that
rare terms are more central to the meaning of a document than
the terms that occur frequently. The score S(q,d) of a docu-
ment d for a query q is calculated as:

Sexact(q,d) = c(q,d) ·F(q) ·∑
t∈q

(
t f (d) · id f (t)2)

(1)

where c(q,d) is the normalized ratio of the number of query
terms from q found in the document d and the total number
of terms in the query q. Thus, presence of all query terms in
a given document will increase this ratio and vice versa. Re-
call the Query Fuzzing module from §5.2 that fuzzes a given
query. Intuitively, hits from “fuzzed” queries should receive a
lower score compared to those from the original query. There-
fore, we define a fuzz factor F(q) to take this into consider-
ation. F(q) is defined as the inverse of the distance between
the fuzzed query q and the original query (say, Q) where dis-
tance is defined as the number of terms that need to be added
to q to get Q. Notice that for q = Q, F(q) = ∞ giving us an
invalid score. To handle this case i.e., prevent zeros in the
denominator, we apply Laplace correction by adding 1 to the
denominator which yields F(q) = 1 when q = Q. t f (d) is
the frequency of the term t in document d. Therefore, doc-
uments having more occurrences of a given term receive a
higher score. Finally, id f (t) or inverse document frequency
measures how common or rare a term is across documents and
is computed by taking the ratio of the total number of docu-
ments D and the number of documents containing the term t:

id f (t) = 1+ log
(

|D|
|d ∈ D : t ∈ d|

)
(2)

Scoring results from a proximity match: To score a result
from a proximity match, we have to take into account the
maximum allowable positional distance between terms. Intu-
itively, the score should be inversely proportional to the posi-
tional distance between terms i.e., larger the distance between
the matched terms, smaller the assigned score. We compute
this score based on tf-idf [54]:

Sprox(q,d) = c(q,d) ·F(q) · 1√
∑t∈q id f (t)2

∑
t∈q

id f (t)
Lavg(d)

L(d) (3)

where c(q,d) is same as before, Lavg is the average length of
a document and L(d) is the length of document d. F(q) is the
fuzz factor as before computed as 1

D1+D2
where (1) D1 is the

distance of the query q from the original query (say, Q), and
(2) D2 is the number of positional moves of the terms in the
matched document required to approximate Q. For example,
consider the case when q = Q =“Crash On Audit”. As q = Q,
there is no fuzzing and hence D1 = 0. But if we consider the

1834

matched text “Audit flag had the crash bit” then D2 = 5 be-
cause it takes 4 positional moves to move “crash” to the loca-
tion of “Audit” and then 1 positional move to move “Audit” to
the next location giving us the final fuzz factor of 1

5 .
Aggregation of results from multiple matchers. Recall that
ConfSeer incorporates multiple matchers and does not make
any assumptions on the aggregation function, but here we give
one for illustration. We build the final result set by aggregating
the results from individual matchers. We found in practice that
a linear aggregation with weighted ranking works well:

S(q,d) = ∑
x∈n

wx ·Mx (4)

where wx is the weight assigned to the matcher Mx and n is
the total number of matchers implemented (n = 2 for Conf-
Seer). Through sensitivity analysis, we set wexact = 1.0 and
wproximity = 0.25.

ConfSeer outputs the top-k articles sorted by score for all
detected misconfigurations (see Figure 4) which are then fil-
tered based on relevance (§6). In practice, we found that the
number of actionable errors per configuration snapshot per
machine was small (2-4 on average).

6. INTERACTIVE LEARNING PHASE
ConfSeer performs interactive learning to incrementally im-

prove the accuracy and ranking of results. The key challenge
is to differentiate matched articles solving a problem from the
ones that may only be informational or recommendations e.g.,
tutorials, How-To articles.

To address this challenge, ConfSeer performs interactive
machine learning. The goal of the learning component is to
leverage the human feedback to accurately identify the rele-
vant KB articles that pinpoint configuration problems. Conf-
Seer performs learning in two stages. First, to bootstrap, an
expert is asked to tag a small set of KB articles with one of
two labels: ‘Problem-solving (P)’ or ‘Informational (I)’. Since
we want to separate articles that do not fix errors, it suffices to
do labeling at the document level as opposed to the query level
i.e., whether an article is useful for a specific query; the latter
approach also risks the state space explosion problem. Then, a
classification model is trained based on this labeled data. Sec-
ond, the set of ranked documents output by the Online Query
Processing Phase are input to the classifier (see Figure 4) to
filter informational-only KBs and show the relevant ones.
Building a classification model. Our initial training dataset
consisted of 650 KB articles labeled by experts. Each docu-
ment was represented by a set of 5,634 features corresponding
to the text in the titles of the KB articles; adding more features
like the text from the “Problem” section in the KBs reduced
the accuracy due to increased noise. Capitalization was ig-
nored and stop words (e.g., ‘how’, ‘I’, ‘why’) were removed.
We use the stochastic gradient descent algorithm from Vowpal
Wabbit (VW) [39] for interactive learning as it gave the high-
est accuracy. Interactive learning has the advantage that in a
dynamic setting, every addition of a new data point only re-
calibrates the model as opposed to re-building it from scratch.
This combined with the hashing trick [63] makes our system
scalable. Finally, we use a Golden Section Search [36] to ob-
tain the optimal model parameters. In our case, we found using

0.782 0.794 0.800 0.807 0.821 0.822 0.849

0.00

0.25

0.50

0.75

Per
ce

pt
ro

n

K−N
eig

hb
or

s

Nea
re

st
Cen

tro
id

Ran
do

m
 F

or
es

t

Lin
ea

r S
VM

 +
 L

1

Lin
ea

r S
VM

Vo
wpa

l W
ab

bit

F
−S

co
re

Figure 5: Accuracy comparison of different learning algorithms based on train-
ing data of 650 KB articles.

elastic net regularization i.e., enabling both L1 (=5e-08) and
L2 (=0.00001) regularizations yielded the best performance.
Evaluation. We use the standard F-score [71] computed as

2T P
2T P+FP+FN , where TP, TN, FP, FN are true positives, true
negatives, false positives and false negatives, respectively. F-
score considers both precision (T P

T P+FP) and recall (T P
T P+FN),

and its value of 1 indicates a perfect classifier. Finally, to
minimize the bias associated with the random sampling of
the training and validation data, we use stratified k-fold cross-
validation to compute the predictive capability of our classifier.
In k-fold cross-validation, the complete dataset D is randomly
split into k mutually exclusive subsets (the folds: D1, D2, ...,
Dk) of approximately equal size. The classification model is
then trained and tested k times. Each iteration, it is trained
on all (k − 1) but one fold. The cross-validation estimate of
the overall F-score is calculated as the average of the k indi-
vidual F-scores. In stratified k-fold, the only difference is that
the folds are made by preserving the percentage of samples
for each class. For our experiments, we set k = 10 as used in
practice [37].
Classification Results. Our classification model was initially
trained on 50 KB articles which gave us a poor F-score of
0.582. However, when the training set size was increased to
320 KB articles, the F-score significantly increased to 0.814.
Adding more KB articles yielded diminishing returns. In the
end, our classification model achieved an F-score of 0.849
when trained on a set of 650 KB articles. Figure 5 shows the
accuracy comparison of the classifier implemented using VW
with other standard learning algorithms.

7. SYSTEM EVALUATION
To evaluate ConfSeer, we want to answer the following ques-

tions: (1) How does ConfSeer compare against the perfect ac-
curacy of human-written rules? (2) Does ConfSeer return se-
mantically meaningful results and how does it compare against
web search engines? (3) What is the contribution of each indi-
vidual technique to overall accuracy? and (4) What is the end-
to-end latency in querying ConfSeer? For all experiments, we
use a Xeon 2.67 GHz eight-core node with 48 GB RAM.

7.1 Evaluating Accuracy
Comparison with Ground Truth Rules: Recall from §2 the
notion of expert-written rules to map configuration problems
to KB articles. These rules are typically a combination of
XML and shell script files, and are executed by a rule engine

1835

0.01

1.00

100.00

Rewrite Fuzz Retrieval

T
im

e
(m

ill
is

ec
o

n
d

s)

(a)

0

25

50

75

100

Cluster 1 Cluster 2 Cluster 3 Cluster 4
Cluster

A
cc

ur
ac

y
(%

)

(b)

10

100

1,000

10,000

100,000

Oct 2013 Jan 2014 Apr 2014 Jul 2014
Month

To
ta

l r
ec

om
m

en
da

tio
ns

 a
cr

os
s

al
l c

us
to

m
er

s’
 m

ac
hi

ne
s

(lo
g

sc
al

e)

(c)
Figure 6: (a) Latencies incurred at different stages in the query pipeline, (b) ConfSeer accuracy on real configuration errors from four large enterprise clusters containing
thousands of machines, and (c) Total number of recommendations output by ConfSeer deployed in production.

on configuration snapshots from customer servers. To evalu-
ate the accuracy of ConfSeer in comparison to human-written
rules, we randomly selected 120 rules from the rule repository
of the previous release of the OMS system. Our goal is to ver-
ify if ConfSeer is able to output the same KB article as the
match suggested by the expert-defined rule.

We evaluate accuracy of ConfSeer as follows. First, for each
rule, we get an associated configuration snapshot on which an
alert was trigged (i.e., the rule engine detected one or more
configuration errors). Second, we treat each line in the config-
uration snapshot as a single query to ConfSeer. We return the
top-3, top-2 and top-1 scoring results for each query. Third, we
check if ConfSeer returned the ground truth KB article asso-
ciated with the rule in its result set. Note that this step checks
for both the “presence” of the ground truth as well as takes
ranking into consideration. This is because a given configura-
tion snapshot could have multiple misconfigurations in place
not covered by a single rule.

Table 2 row 1 shows the results. For the top-3 result set,
we observed the accuracy of ConfSeer to be 97.5% i.e., its
suggestions matched 117/120 human-written rules which cur-
rently cover tens of thousands of configuration snapshots from
user servers. The remaining three cases were attributed to am-
biguity in semantically matching the free-form text in the cor-
responding KB articles. For the top-2 and top-1 results, Con-
fSeer still achieves a reasonable accuracy of about 95% and
91%, respectively.
Survey from Domain-Experts: We conducted a user study
involving four domain-experts to evaluate the accuracy of Con-
fSeer for knowledge-based matching. Each domain-expert was
shown 30 randomly selected snapshots for a total of 120 along
with the KB identifiers of the top-3 results (by score) that Con-
fSeer returned corresponding to the errors detected from those
configuration snapshots. In practice, we found that the number
of actionable errors per snapshot per machine was small. Sub-
sequently, the domain-expert was asked to validate if the KB
articles were “semantically” relevant to the snapshot. In each
case, we attributed success only when ConfSeer suggested the
relevant article in the first position. Note that this evaluation is
more strict compared to the previous comparison. Further, it
allows us to evaluate both the matching accuracy and ranking
of results output by ConfSeer.

Table 2 rows 2-5 show the results. As expected, ConfSeer
achieves 100% accuracy for exact queries. Proximity queries,
on the other hand, are among the most complicated to handle

— results retrieved contain the words from the query but they
may not be semantically relevant according to the domain-
expert. As ConfSeer leverages several natural language pro-
cessing techniques, it is also subject to their well-known lim-
itations caused by anaphoras e.g., the text “run the CsKer-
berosAssignment command, enable its topology bit” will be
fetched for the query “IsKerberosEnabled” as it is non-trivial
to associate “enable” only with “topology” but not with “ker-
beros”; we plan to address this problem in future work. Over-
all, ConfSeer achieves an accuracy of 85%-97.5%.
Comparison with Search Engines: For completeness, we
compare ConfSeer with popular search engines. Because a
direct comparison is not possible (e.g., search engines will fail
to understand an entire configuration snapshot expressed as a
query), we leverage the help of a domain-expert to achieve
this task. The domain-expert randomly selected another set of
200 queries from the existing human-written rules such that in
each case, it was possible to specify only one relevant knowl-
edge base article without ambiguity. Next, the domain ex-
pert queried Google, Bing, and ConfSeer using the <param,
value> entries (e.g., <NumLogicalProcessors, 8>) mimick-
ing how real users copy-paste error messages or parameter
names from logs as keyword queries for search engines, and
recorded the position at which the KB article appeared. All re-
sults beyond the first page on the search engines were ignored.
We added the search parameter “site:support.microsoft.com”
to ensure fairness and provide sufficient hints to the search en-
gine to cover only the articles from that site. We observed the
following accuracy results: 69.5% (Bing), 65.5% (Google),
and 95.5% (ConfSeer). However, this only takes into account
whether the ground truth appeared anywhere in the first result
page. If we consider the more strict criteria that the ground
truth article should appear in the first place, then web search
engines exhibit a much lower accuracy: 60.5% for Bing and
55.5% for Google whereas ConfSeer still has a reasonable ac-
curacy of 91%. ConfSeer’s main advantage over web search
engines is its capability to perform constraint evaluation on
configuration parameters and free-form text, its ability to do
fuzzy matching with synonyms, and its functionality of adding
semantic context to documents.

Figure 7 shows the contribution of each individual tech-
nique in ConfSeer to the overall accuracy by omitting each
filter (in Figures 3) and fuzzed queries, exact and proximity
matcher (in §4) one at a time and measuring the end-to-end
accuracy. Overall, the canonicalization filter dominates, but

1836

0.0

0.2

0.4

0.6

Canonicalization Expansion Normalization Truncation
Stage

C
on

tr
ib

ut
io

n
to

 o
ve

ra
ll

ac
cu

ra
cy

Phase Indexing Query − Exact Query − Proximity Query Fuzzing

Figure 7: Contribution of each individual technique to ConfSeer’s accuracy.

the additive effect of the other filters also contributes signifi-
cantly towards the end-to-end accuracy.
Accuracy in real deployments: ConfSeer started being de-
ployed within Microsoft cautiously with a private preview for
a few selected customers in January 2014. As its deploy-
ments matured, the install base grew rapidly and currently its
public release analyzes configurations on tens of thousands of
machines spanning thousands of customers; absolute counts
omitted due to confidentiality reasons. Figure 6(b) shows that
ConfSeer achieves 80% - 100% accuracy across four large real
customer deployments. Figure 6(c) shows the total number of
recommendations across all deployments of ConfSeer which
is 50x larger than the previous rule based system (till Decem-
ber 2013) due to ConfSeer’s automated indexing/matching of
about 100k+ KB articles.

7.2 Evaluating Performance
To evaluate the distribution of the time taken during each

stage of the query pipeline, we issue 100K random queries
taken from configuration snapshots against ConfSeer. Fig-
ure 6(a) shows the results. Observe that the median time to
fuzz an input query is 1 µs. The reason for this is because
95% of the queries contain no more than six individual terms
(e.g., “NumOfLogicalProcessors 8” contains four individual
terms after camel case expansion). Further, we observe that
the median retrieval latency is 1.3 ms. The reason for a higher
95th percentile and standard deviation is due to the presence
of different types of complex queries as we show next.

Table 3 shows the latency split by query type. As expected,
constraint evaluation takes the longest (median of 20 ms) be-
cause expressions are dynamically constructed and compiled.
The COV values indicate that the constraint evaluation queries
take the longest in general whereas exact and proximity queries
exhibit high variability e.g., some exact queries take > 26 ms
to execute. Upon inspecting the queries that took the longest
from the query log, we observed this was due to cases where
a subset of the query terms had a high frequency e.g., sql. Al-
though we pick the top-3 documents for each query, determin-
ing the global top-3 requires evaluating the score for each indi-
vidual document and it becomes expensive when the retrieved
result set is huge. Overall, ConfSeer experiences a reason-
able 50 ms worst case latency per query without optimizations
such as query parallelization; we plan to explore them in future
work.

8. RELATED WORK
The work related to ConfSeer falls into three categories.

First, there are research proposals for detecting [31, 67, 75]
and troubleshooting [13, 15, 16] misconfigurations. In addi-
tion, the concept of using statistical techniques [61, 62, 51]

Type Mean Median Q95 StdDev COV
Individual Latencies Inside a Query (ms)

Rewrite 0.018 0.018 0.044 0.013 0.751
Fuzz 0.001 0.001 0.002 3.8e-04 0.338

Retrieval 10.912 1.336 51.438 19.422 1.781
End-to-End Latencies (ms)

Exact 4.320 1.175 26.363 7.677 1.778
Proximity 12.395 7.947 40.314 12.606 1.017
Constraint 19.550 20.271 50.363 15.560 0.795

Table 3: Latencies (in ms) at different stages in the query pipeline and total end-
to-end latency for different query types; COV denotes coefficient of variation.

for problem identification has emerged as a powerful tool aid-
ing black-box detection. Strider [62] filters suspicious entries
by using manually labeled set of configuration settings. Re-
cently, there have been proposals [70, 42, 69, 76] on detect-
ing anomalous patterns based on console logs or ground truth
configuration snapshots. ConfSeer, on the other hand, builds
its ground-truth from already available expert-written knowl-
edge base articles. In contrast to these systems, ConfSeer also
pinpoints the error and its solution.

Zhang et al. [76] detect misconfigurations by learning the
interaction between the configuration settings and the execut-
ing environment, and correlations between configuration en-
tries. Our system is complementary to theirs – instead of learn-
ing from a set of sample configurations, ConfSeer uses exist-
ing KB articles as ground truth.

Tools for analyzing and testing configurations [68, 35, 19]
can be used to generate test cases to detect misconfigurations.
Our work is complementary to ConfErr [35] and fuzz testing
[18, 25] (for generating random data as configuration settings)
in that ConfSeer can be leveraged by these tools to generate
high-quality test cases. For instance, the values and value
ranges extracted by ConfSeer from the KB articles can be used
to narrow down the number of test cases to be generated.

Second, there is a large body of work on keyword associa-
tion mining [72], automated concept determination [26], rela-
tionship extraction [33] and entity resolution [14] and support-
ing efficient keyword searches [27, 52]. None of these sys-
tems provide an end-to-end solution for our problem domain.
In addition, these systems cannot be leveraged for supporting
value-type queries or fuzzy matches as ConfSeer, which is
fundamental for constraint evaluation. We also plan to lever-
age these complementary efforts in ConfSeer in future work.

Third, there are some recent efforts [38, 41, 53, 58] on
automatic construction of knowledge bases that can help in
solving this problem — through extraction of structured infor-
mation from natural language text. These techniques can be
based on rules (e.g., dictionaries [49], ontologies [66]), pat-
terns [30], or statistics (e.g., CRFs [43], SVMs [32]). Simoes
et al. [55] propose an optimization for the information extrac-
tion process. NetSieve [49] focused on inferring root causes
of network failures from trouble tickets. The idea is to build
a domain-specific dictionary of frequent, technical keywords
used in tickets and then use this dictionary to output a sum-
mary of problems in a given ticket. ConfSeer’s techniques are
complementary to these efforts and in some cases we benefit
from them. For instance, we leverage the WLZW and RIDF
techniques from NetSieve to build the list of Named-Entities
(§4.2.2).

1837

Row Evaluation Type Accuracy %
Exact

Accuracy %
Proximity

Accuracy %
Constraint Evaluation

Accuracy %
Overall

1 Human-written Ground Truth (Top-3) 100% 93.8% 100% 97.5%
Human-written Ground Truth (Top-2) 100% 89% 98% 95%
Human-written Ground Truth (Top-1) 100% 81.6% 97% 91.3%

2 Domain-expert 1 100% 93.3% 100% 98.7%
3 Domain-expert 2 100% 85.7% 100% 97%
4 Domain-expert 3 100% 90% 100% 98%
5 Domain-expert 4 100% 87.5% 100% 97.5%
6 Search Engine: Bing 100% 46.9% 19.3% 69.5%
7 Search Engine: Google 83% 51% 22.5% 65.5%

Table 2: Evaluating ConfSeer accuracy against human-written rules, domain-experts and search engines.

There are also state-of-the-art methods for harnessing knowl-
edge bases for data and text analytics. Comprehensive machine-
readable KBs have been pursued since the seminal projects
Cyc [40] and WordNet [46]. Other prominent endeavors in-
clude DBpedia [17], KnowItAll [29], NELL [20] and YAGO [59],
as well as industrial ones such as Freebase. These projects
provide automatically constructed KBs of facts about named
entities, their semantic classes, and their mutual relationships.
While we leverage NLP fundamentals from these works, we
leave it to future work to explore how these systems can help
improve ConfSeer’s accuracy.

9. CONCLUSION
Software misconfigurations continue to be prevalent and are

a major cause of system failures. We presented ConfSeer that
automatically detects configuration errors by matching them
against a knowledge base of technical articles. Our evalua-
tion of ConfSeer shows that it achieves 80%-97.5% accuracy
while incurring low overheads. ConfSeer has been running
in Microsoft Operations Management Suite for over a year to
automatically detect software configuration errors. In future
work, we plan to extend our techniques to (a) handle KB ar-
ticles with multiple conditional expressions and dependence
between configuration parameters, and (b) analyze technical
blogs and question and answer forums (e.g., stackoverflow)
written in free-form text similar to KB articles.

10. ACKNOWLEDGEMENTS
We thank Arnd Christian König, Vivek Narasayya, Sriram

Rao, Raghu Ramakrishnan and the OMS team for insightful
discussions, and the anonymous reviewers for their feedback.

11. REFERENCES
[1] Apple Knowledge Base. http://kbase.info.apple.com/.
[2] Desk.com. http://desk.com.
[3] EMC Powerlink. http://powerlink.emc.com.
[4] Google Knowledge Base. http://goo.gl/6wN6oB.
[5] How to query the Microsoft Knowledge Base.

http://support.microsoft.com/kb/242450.
[6] IBM Software Knowledge Base. http://goo.gl/fY0cDQ.
[7] Microsoft Operations Management Suite.

http://www.microsoft.com/en-us/server-cloud/
operations-management-suite/.

[8] Microsoft Support. http://support.microsoft.com/.
[9] Oracle Support. http://support.oracle.com.

[10] StackOverflow. http://stackoverflow.com.

[11] SysSieve. http://research.microsoft.com/en-us/um/
people/navendu/syssieve/.

[12] VMWare KB - Knowledge Base Articles for all VMWare
Products. http://kb.vmware.com.

[13] B. Agarwal, R. Bhagwan, T. Das, S. Eswaran, V. N.
Padmanabhan, and G. M. Voelker. Netprints: Diagnosing home
network misconfigurations using shared knowledge. In NSDI,
2009.

[14] H. Altwaijry, D. V. Kalashnikov, and S. Mehrotra. Query-driven
approach to entity resolution. Proceedings of the VLDB
Endowment, 2013.

[15] M. Attariyan, M. Chow, and J. Flinn. X-ray: automating
root-cause diagnosis of performance anomalies in production
software. In OSDI, 2012.

[16] M. Attariyan and J. Flinn. Automating configuration
troubleshooting with dynamic information flow analysis. In
OSDI, 2010.

[17] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and
Z. Ives. Dbpedia: A nucleus for a web of open data. Springer,
2007.

[18] E. Bounimova, P. Godefroid, and D. Molnar. Billions and
billions of constraints: Whitebox fuzz testing in production. In
IEEE ICSE, 2013.

[19] C. Cadar, D. Dunbar, and D. R. Engler. Klee: Unassisted and
automatic generation of high-coverage tests for complex
systems programs. In OSDI, 2008.

[20] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R.
Hruschka Jr, and T. M. Mitchell. Toward an architecture for
never-ending language learning. In AAAI, 2010.

[21] K. Chen, C. Guo, H. Wu, J. Yuan, Z. Feng, Y. Chen, S. Lu, and
W. Wu. Generic and automatic address conf for data center
networks. SIGCOMM CCR, 2010.

[22] X. Chen, Y. Mao, Z. M. Mao, and J. Van der Merwe.
Declarative configuration management for complex and
dynamic networks. In CoNEXT, 2010.

[23] K. Church and W. Gale. Inverse document frequency (idf): A
measure of deviations from poisson. In NLPVLC. 1999.

[24] D. Crockford. The application/json media type for javascript
object notation (json). https://goo.gl/SM1kDa, 2006.

[25] H. Dai, C. Murphy, and G. Kaiser. Configuration fuzzing for
software vulnerability detection. In IEEE ARES, 2010.

[26] D. Deng, Y. Jiang, G. Li, J. Li, and C. Yu. Scalable column
concept determination for web tables using large knowledge
bases. VLDB, 2013.

[27] H. Duan, C. Zhai, J. Cheng, and A. Gattani. Supporting
keyword search in product database: a probabilistic approach.
Proceedings of the VLDB Endowment, 2013.

[28] S. Duan, V. Thummala, and S. Babu. Tuning database
configuration parameters with ituned. VLDB Endowment, 2009.

[29] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A.-M. Popescu,
T. Shaked, S. Soderland, D. S. Weld, and A. Yates. Web-scale
information extraction in knowitall. In ACM WWW, 2004.

1838

http://kbase.info.apple.com/
http://desk.com
http://powerlink.emc.com
http://goo.gl/6wN6oB
 http://support.microsoft.com/kb/242450
http://goo.gl/fY0cDQ
http://www.microsoft.com/en-us/server-cloud/operations-management-suite/
http://www.microsoft.com/en-us/server-cloud/operations-management-suite/
http://support.microsoft.com/
http://support.oracle.com
http://stackoverflow.com
http://research.microsoft.com/en-us/um/people/navendu/syssieve/
http://research.microsoft.com/en-us/um/people/navendu/syssieve/
http://kb.vmware.com
https://goo.gl/SM1kDa

[30] Y. Fang and K. C.-C. Chang. Searching patterns for relation
extraction over the web: rediscovering the pattern-relation
duality. In WDSM. ACM, 2011.

[31] N. Feamster and H. Balakrishnan. Detecting bgp configuration
faults with static analysis. In NSDI, 2005.

[32] C. Giuliano, A. Lavelli, and L. Romano. Exploiting shallow
linguistic information for relation extraction from biomedical
literature. In EACL. Citeseer, 2006.

[33] M. U. Haq, H. Ahmed, and A. M. Qamar. Dynamic entity and
relationship extraction from news articles. In ICET. IEEE, 2012.

[34] A. Kapoor. Web-to-host: Reducing total cost of ownership.
Technical report, 200503, The Tolly Group, 2000.

[35] L. Keller, P. Upadhyaya, and G. Candea. Conferr: A tool for
assessing resilience to human configuration errors. In DSN,
2008.

[36] J. Kiefer. Sequential minimax search for a maximum. AMS,
1953.

[37] R. Kohavi et al. A study of cross-validation and bootstrap for
accuracy estimation and model selection. In IJCAI, volume 14,
pages 1137–1145, 1995.

[38] H. Köpcke, A. Thor, and E. Rahm. Evaluation of entity
resolution approaches on real-world match problems. VLDB,
2010.

[39] J. Langford, L. Li, and T. Zhang. Sparse online learning via
truncated gradient. JMLR, 2009.

[40] D. B. Lenat and R. V. Guha. Building large knowledge-based
systems; representation and inference in the Cyc project.
Addison-Wesley Longman Publishing Co., Inc., 1989.

[41] G. Limaye, S. Sarawagi, and S. Chakrabarti. Annotating and
searching web tables using entities, types and relationships.
Proceedings of the VLDB Endowment, 2010.

[42] J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li. Mining invariants
from console logs for system problem detection. ATC, 2010.

[43] A. McCallum and W. Li. Early results for named entity
recognition with conditional random fields, feature induction
and web-enhanced lexicons. In NLL. ACL, 2003.

[44] Microsoft. Microsoft Developer Network.
http://msdn.microsoft.com/.

[45] Microsoft. Windows Error Reporting.
http://goo.gl/Tma5G3.

[46] G. A. Miller. Wordnet: a lexical database for english.
Communications of the ACM, 1995.

[47] J. C. Perez. Google outages blamed on sign-in system.
http://goo.gl/PScp6m.

[48] M. F. Porter. Snowball: A language for stemming algorithms,
2001.

[49] R. Potharaju, N. Jain, and C. Nita-Rotaru. Juggling the jigsaw:
Towards automated problem inference from network trouble
tickets. In NSDI, 2013.

[50] A. Rabkin and R. Katz. Precomputing possible configuration
error diagnoses. In IEEE ASE, 2011.

[51] V. Ramachandran, M. Gupta, M. Sethi, and S. R. Chowdhury.
Determining configuration parameter dependencies via analysis
of configuration data from multi-tiered enterprise applications.
In ACM ICAC, 2009.

[52] W. Rao, L. Chen, P. Hui, and S. Tarkoma. Bitlist: New full-text
index for low space cost and efficient keyword search. VLDB,
2013.

[53] V. Rastogi, N. Dalvi, and M. Garofalakis. Large-scale collective
entity matching. Proceedings of the VLDB Endowment, 2011.

[54] G. Salton and M. J. McGill. Introduction to modern information
retrieval, McGraw-Hill, Inc. 1986.

[55] G. Simoes, H. Galhardas, and L. Gravano. When speed has a

price: Fast information extraction using approximate
algorithms. VLDB, 2013.

[56] F. Smadja. Retrieving collocations from text: Xtract. CL, 1993.
[57] Y.-Y. Su, M. Attariyan, and J. Flinn. Autobash: improving

configuration management with operating system causality
analysis. SIGOPS OSR, 2007.

[58] F. M. Suchanek, S. Abiteboul, and P. Senellart. Paris:
Probabilistic alignment of relations, instances, and schema.
VLDB, 2011.

[59] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of
semantic knowledge. In WWW. ACM, 2007.

[60] The Guardian. Choose customer service without the call center.
http://goo.gl/8sUj7D.

[61] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang.
Automatic misconfiguration troubleshooting with peerpressure.
In OSDI, 2004.

[62] Y.-M. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. J. Wang,
C. Yuan, and Z. Zhang. Strider: A black-box, state-based
approach to change and configuration management and support.
SCP, 2004.

[63] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and
J. Attenberg. Feature hashing for large scale multitask learning.
In ICML, 2009.

[64] A. Whitaker, R. S. Cox, and S. D. Gribble. Configuration
Debugging as Search: Finding the Needle in the Haystack. In
OSDI, 2004.

[65] A. Wilhelm. Microsoft: Azure went down in Western Europe
due to misconfigured network device.
http://goo.gl/USVRlC.

[66] W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: A probabilistic
taxonomy for text understanding. In SIGMOD. ACM, 2012.

[67] Y. Xiong, A. Hubaux, S. She, and K. Czarnecki. Generating
range fixes for software configuration. In ICSE, 2012.

[68] T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan,
Y. Zhou, and S. Pasupathy. Do not blame users for
misconfigurations. In In ACM SOSP, 2013.

[69] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan.
Detecting large-scale system problems by mining console logs.
In SOSP. ACM, 2009.

[70] W. Xu, L. Huang, A. Fox, D. A. Patterson, and M. I. Jordan.
Mining Console Logs for Large-Scale System Problem
Detection. SysML, 2008.

[71] M. Yamamoto and K. Church. Using suffix arrays to compute
term frequency and document frequency for all substrings in a
corpus. CL, 2001.

[72] Z. Yan, N. Zheng, Z. G. Ives, P. P. Talukdar, and C. Yu. Active
learning in keyword search-based data integration. The VLDB
Journal, 2015.

[73] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. Bairavasundaram, and
S. Pasupathy. An empirical study on configuration errors in
commercial and open source systems. In SOSP. ACM, 2011.

[74] C. Yuan, N. Lao, J.-R. Wen, J. Li, Z. Zhang, Y.-M. Wang, and
W.-Y. Ma. Automated known problem diagnosis with event
traces. In SIGOPS OSR, 2006.

[75] D. Yuan, Y. Xie, R. Panigrahy, J. Yang, C. Verbowski, and
A. Kumar. Context-based online configuration-error detection.
In ATC, 2011.

[76] J. Zhang, L. Renganarayana, X. Zhang, N. Ge, V. Bala, T. Xu,
and Y. Zhou. Encore: exploiting system environment and
correlation information for misconfiguration detection. In
ASPLOS, 2014.

[77] S. Zhang and M. D. Ernst. Automated diagnosis of software
configuration errors. In ICSE, 2013.

1839

http://msdn.microsoft.com/
http://goo.gl/Tma5G3
http://goo.gl/PScp6m
http://goo.gl/8sUj7D
http://goo.gl/USVRlC

	Introduction
	Our Contributions

	Customer Service and Support
	ConfSeer Overview
	Offline Index Building Phase
	Document Parsing
	Document Analysis
	Constraint-based Search
	Synonym Search

	Online Query Processing Phase
	Query Processing
	Matching Engine
	Ranking

	Interactive Learning Phase
	System Evaluation
	Evaluating Accuracy
	Evaluating Performance

	Related Work
	Conclusion
	Acknowledgements
	References

