
Demonstration of Santoku: Optimizing
Machine Learning over Normalized Data

Arun Kumar Mona Jalal Boqun Yan Jeffrey Naughton Jignesh M. Patel
University of Wisconsin-Madison

{arun, jalal, byan23, naughton, jignesh}@cs.wisc.edu

ABSTRACT
Advanced analytics is a booming area in the data man-
agement industry and a hot research topic. Almost
all toolkits that implement machine learning (ML) al-
gorithms assume that the input is a single table, but
most relational datasets are not stored as single tables
due to normalization. Thus, analysts often join tables
to obtain a denormalized table. Also, analysts typ-
ically ignore any functional dependencies among fea-
tures because ML toolkits do not support them. In
both cases, time is wasted in learning over data with
redundancy. We demonstrate Santoku, a toolkit to help
analysts improve the performance of ML over normal-
ized data. Santoku applies the idea of factorized learn-
ing and automatically decides whether to denormalize
or push ML computations through joins. Santoku also
exploits database dependencies to provide automatic in-
sights that could help analysts with exploratory feature
selection. It is usable as a library in R, which is a pop-
ular environment for advanced analytics. We demon-
strate the benefits of Santoku in improving ML perfor-
mance and helping analysts with feature selection.

1. INTRODUCTION
Many projects in both industry and academia aim to

integrate ML algorithms as well as statistical comput-
ing languages such as R with scalable data processing
in RDBMSs, Hadoop, and other systems. Almost all
implementations require that the input to an ML algo-
rithm be a flat single table. However, most relational
datasets are not stored as single tables due to normal-
ization. Thus, analysts often perform joins, especially
key-foreign key joins, to bring in more features and ma-
terialize a single denormalized table.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150-8097/15/08.

Example: Customer Churn (based on [3]). Con-
sider an insurance company analyst modeling customer
churn, i.e., predicting how likely a customer is to leave
the company. She builds an ML classifier using data
about customers, including past customers that have
churned, which are stored in the Customers table with
the schema Customers (CID, Churn, Sex, EID, . . .). EID

is a foreign key that refers to the Employers table, which
contains information about the customers’ employers
such as corporations and non-profits. It has the schema
Employers (EID, State, Size, . . .), wherein Size in-
dicates how big the employer is in terms of its rev-
enue. Intuitively, the features of the customers’ employ-
ers could help a classifier predict if the customer will
churn. For example, customers employed by large cor-
porations from Wisconsin might be unlikely to churn, in
which case including the State and Size features could
improve accuracy. She performs a key-foreign key join
to create a denormalized table: Temp← π(Customers ./
Employers), as shown in Figure 1. She feeds Temp to a
toolkit that implements a classifier, e.g., Naive Bayes.

The above is a case of “learning after joins” – the
analyst is forced to materialize Temp because existing
ML toolkits cannot process normalized data directly.
As we explain in [3], this could introduce redundancy
that is avoided by normalization and hurt performance.
Moreover, it causes data management burdens for ana-
lysts, which could hinder exploratory analyses [5]. Our
recently introduced paradigm of “learning over joins”,
specifically factorized learning (FL), helps mitigate these
issues by “pushing the ML computations down through
joins” to the base tables [3]. In our example, if the ana-
lyst provides the base tables (Customers and Employers)
and the join column (EID), one can apply FL to Naive
Bayes to avoid redundant computations on Temp, which
could improve performance (see Figure 1; details in Sec-
tion 2). Santoku is the first toolkit to offer FL for a set
of popular ML models such as Naive Bayes. While FL
avoids redundant computations, it performs extra work
for “book-keeping”. Thus, FL could be slower than op-
erating over denormalized data on some inputs depend-
ing on various parameters of the data, system, and ML
model [3]. It will be helpful for analysts if a system could
automatically decide which tables to join and which to

1864

EID State Size …

1 WI L

2 WI S

3 CA L

CID Churn Sex EID …

1 Y M 1

2 N F 1

3 N M 1

4 N F 1

5 Y M 2

6 N M 2

7 N F 2

8 Y F 2

9 Y F 3

10 Y M 3

11 Y M 3

12 N F 3

Employers Customers

Customers.EID
refers to
Employers.EID

Temp ← 𝜋(𝐂𝐮𝐬𝐭𝐨𝐦𝐞𝐫𝐬
 ⋈𝐄𝐈𝐃=𝐄𝐈𝐃 𝐄𝐦𝐩𝐥𝐨𝐲𝐞𝐫𝐬)

CID Churn Sex EID State Size …

1 Y M 1 WI L

2 N F 1 WI L

3 N M 1 WI L

4 N F 1 WI L

5 Y M 2 WI S

6 N M 2 WI S

7 N F 2 WI S

8 Y F 2 WI S

9 Y F 3 CA L

10 Y M 3 CA L

11 Y M 3 CA L

12 N F 3 CA L

Temp

#(Churn=N) = 1+1+1+1+1+1 = 6

P(State=WI | Churn=N)

=
#(State=WI,Churn=N)

#(Churn=N)

=
|*t∈Temp|t.State=WI^t.Churn=N+|

6

=
1+1+1+1+1

6
 =

5

6

 P(Size=L | Churn=N)

=
#(Size=L,Churn=N)

#(Churn=N)

=
|*t∈Temp|t.Size=L^t.Churn=N+|

6

=
1+1+1+1

6
 =

4

6

FL avoids redundancy by pre-counting references and factorizing the sums: Naive Bayes computations
with redundancy:

Churn EID Count

Y 1 1

Y 2 2

Y 3 3

N 1 3

N 2 2

N 3 1

CustRefs

State EIDs

WI {1,2}

CA {3}

StateRefs

Size EIDs

L {1,3}

S {3}

SizeRefs

P(State=WI | Churn=N)

=
#(State=WI,Churn=N)

#(Churn=N)

=
 CustRefs,Churn=N^EID=e-e∈StateRefs,WI-.EIDs

6

=
3+2

6
 =

5

6

P(Size=L | Churn=N)

=
#(Size=L,Churn=N)

#(Churn=N)

=
 CustRefs,Churn=N^EID=e-e∈SizeRefs,L-.EIDs

6

=
3+1

6
 =

4

6

 A B C

5 terms

4 terms

2 terms

2 terms

Figure 1: Illustration of Factorized Learning for Naive Bayes. (A) The base tables Customers (the “entity table”
as defined in [3]) and Employers (an “attribute table” as defined in [3]). The target feature is Churn in Customers.
(B) The denormalized table Temp. Naive Bayes computations using Temp have redundancy, as shown here for the
conditional probability calculations for State and Size. (C) FL avoids computational redundancy by pre-counting
references, which are stored in CustRefs, and by decomposing (“factorizing”) the sums using StateRefs and SizeRefs.

apply FL on in order to optimize the performance of the
ML model over normalized data. Santoku provides such
an optimization capability by using a simple cost model
and a cost-based optimizer.

A closely related scenario is learning over a table with
functional dependencies (FDs) between features. For
example, we can view Temp as having the following FD:
EID → {State, Size, . . . }. This FD is a result of the
key-foreign key join.1 In general, there could be many
such FDs in a denormalized table. From speaking to an-
alysts at various companies, we learned that they ignore
such FDs altogether because their ML toolkits cannot
handle them. While they may not use the database
terminology (FD), analysts recognize that such “func-
tional relationships” can exist among features. One can
use the FDs to normalize the single table, and then ap-
ply FL to different degrees. But once again, these ap-
proaches could be slower than using the single table on
some inputs. Santoku enables analysts to integrate such
FD-based functional relationships into some popular ML
models and automatically optimizes performance.

Finally, we consider the important related task of fea-
ture selection. It is often a tedious exploratory pro-
cess in which analysts evaluate smaller feature vectors
for their ML model to help improve accuracy, inter-
pretability, etc. [1, 2]. Ignoring FD-based functional re-
lationships could mean ignoring potentially valuable in-
formation about what features are “useful”. Santoku
helps analysts exploit FD-based functional relationships
for feature selection purposes. Santoku provides a “fea-
ture exploration” option that automatically constructs
and evaluates smaller feature vectors by dropping dif-
ferent combinations of sides of FDs. For example, one
can drop EID (perhaps an uninterpretable identifier), or
other features from Employers, or both. While this may
not “solve” feature selection fully, it provides valuable
automatic insights using FDs that could help analysts
with feature selection.

1Key-foreign key dependencies are not FDs, but we can
view them as such with some obvious assumptions.

Santoku is designed as an open-source library usable
in R, which is a powerful and popular environment for
statistical computing. R provides easy access to a large
repository of ML codes 2. By open-sourcing our API
and code, we hope to encourage contributions from the
R community that extend Santoku to more ML models.
Many data management companies such as EMC, Ora-
cle, and SAP have also released products that scale R
scripts transparently to larger-than-memory data. We
implement Santoku fully in the R language, which en-
ables us to exploit such R-based analytics systems to
provide scalability automatically. For users that do not
want to write R scripts, Santoku also provides an easy-
to-use GUI, as illustrated in Figure 2.

In summary, we demonstrate Santoku, the first toolkit
to integrate common database dependencies with pop-
ular ML models. We explain FL with an example in
Section 2 and present Santoku’s architecture in Section
3. In Section 4, we discuss how demonstration attendees
can interact with Santoku to see its benefits.

2. FACTORIZED LEARNING
Factorized learning (FL) was first proposed for gen-

eralized linear models [3]. Santoku extends FL to a few
other popular ML models, including Naive Bayes. We
explain FL with a detailed example using Naive Bayes.

Example: Naive Bayes assumes that the data examples
are samples from a (hidden) joint probability distribu-
tion P (X, Y) over the class label Y , and feature vector
X. But it also assumes conditional independence among
the features, given Y . Thus, it computes the following:
P (X, Y) = P (Y)P (X|Y) ≈ P (Y)ΠF∈XP (F |Y). The
probabilities are estimated by counting the frequencies
of various combinations of features values and class la-
bels in the training dataset. In SQL terms, this involves
a bunch of COUNT aggregation queries, which could be
batched into a single pass over the data.

2http://cran.r-project.org/

1865

http://cran.r-project.org/

B

C D A

Figure 2: Screenshots of Santoku: (A) The GUI to load the datasets, specify the database dependencies, and train
ML models. (B) Results of training a single model. (C) Results of feature exploration comparing multiple feature
vectors. (D) An R script that performs these tasks programmatically from an R console using the Santoku API.

Figure 1(A) shows a simple instance of our insur-
ance customer churn example. The output of the join,
Temp, has redundancy in the features from Employers,
e.g., values of State and Size get repeated more of-
ten. This results in redundancy in the computations for
Naive Bayes when it counts occurrences to estimate the
conditional probabilities for those features. Figure 1(B)
illustrates the additions needed for both State=WI and
Size=L when operating over Temp. In contrast, FL avoids
redundant computations by pre-computing the num-
ber of foreign key references, and by factoring them
into the counting. Figure 1(C) illustrates the reference
counts that are temporarily stored in CustRefs, which
is obtained, in SQL terms, using a GROUP BY on Churn

and EID along with a COUNT. The list of EID values for
State=WI (and Size=L) are also obtained. Thus, we can
reduce the sums for those features into smaller sums,
viz., 2 terms instead of 5 for State=WI, and 2 instead of
4 for Size=L. While training computations are reduced,
extra work is needed to obtain the pre-aggregated ref-
erences. Thus, whether or not this approach is faster
depends on the data properties, especially the dimen-
sions of the input tables. Santoku uses a simple cost
model to pick the faster approach on a given input.

Usually, the learned ML models are also “scored”, i.e.,
their prediction accuracy is validated with a set of test
examples. For Naive Bayes, this requires us to compute
the maximum a posteriori (MAP) estimate on a given
test feature vector x as follows: argmaxy∈DY P (Y =
y)ΠF∈XP (F = x(F)|Y = y) [4]. Essentially, scoring in-
volves a multiplication of conditional probabilities. Thus,
we can exploit the redundancy in scoring as well, not
just learning, by factorizing the computations on a test
set and pushing them through the joins. We call this

 Console

Santoku
Optimization

Engine

 Execution
Engine

In-Memory R

Oracle R
Enterprise

SparkR

…

Factorized ML
Models

Feature
Manager

Cost-based
Optimizer

GUI

Figure 3: High-level architecture. Users interact with
Santoku either using the GUI or R scripts. Santoku
optimizes the computations using factorized learning,
and invokes an underlying R execution engine.

technique factorized scoring, and we use it in Santoku
when the models need to be validated.

3. SYSTEM OVERVIEW
We discuss Santoku’s architecture (see Figure 3), and

explain how it fits into a standard analytics ecosystem.

Front-end: Santoku provides custom front-ends for
two kinds of analysts – those who prefer a graphical user
interface (GUI), and those who prefer to write R scripts.
The GUI is intuitive and has three major portions (Fig-
ure 2(A)). The first portion deals with the data – an-
alysts can specify either a multi-table (normalized) in-
put or a single-table (denormalized) input. For normal-
ized inputs, the analyst specifies the base tables and the
“join columns”, i.e., the features on which the tables are
joined (the foreign keys and primary keys in database
parlance) using menus. For denormalized inputs, the
analyst specifies the single table and any “functional

1866

relationships” among the features (the left and right
sides of FDs in database parlance) using menus. The
second portion deals with the ML model – they choose
a model and its parameters, and can either train a sin-
gle model or perform feature exploration, possibly with
validation. The third portion displays the results – a
summary of the execution for training (Figure 2(B)),
and plots comparing several feature vectors for feature
exploration (Figure 2(C)). Interestingly, we were able
to implement Santoku’s GUI in R itself using its graph-
ics and visualization libraries. The GUI is rendered in a
browser, which makes it portable. Santoku also provides
an intuitive API that can be used in R scripts (Fig-
ure 2(D)). This enables analysts to exploit Santoku’s
factorized ML models programmatically. The opera-
tions on Santoku’s GUI also invoke this API internally.

Santoku Optimization Engine: The core part of
Santoku is its optimization engine, which has three com-
ponents. The first component is a library of R codes
that implement factorized learning and scoring for a
set of popular ML techniques – decision trees, feature
ranking, Naive Bayes, and Tree-Augmented Naive Bayes
(TAN) [4] as well as linear and logistic regression using
gradient methods [3]. We adapted the implementations
of these models from standard R packages on CRAN.
We expect to add more as our system matures. The
second component is the feature manager. It manip-
ulates the feature vectors of the datasets. It handles
three major tasks: normalization of single tables using
FDs, denormalization by joining multiple tables, and
constructing the alternative feature vectors for feature
exploration. The third component is a cost-based opti-
mizer that uses a cost model to determine whether or
not to use factorized learning and scoring on a given
input (given by the analyst, or constructed internally
as part of feature exploration). The cost model is cali-
brated based on the R execution engine.

Back-end: Since Santoku is implemented in R, it sim-
ply “piggybacks” on existing R execution engines, with
the standard in-memory R perhaps being the most pop-
ular. Several commercial and open-source systems scale
R to different data platforms, e.g., Oracle R Enterprise
operates over an RDBMS (and Hive), while SparkR op-
erates over the Spark distributed engine. Such systems
enable Santoku to automatically scale to large datasets.

4. DEMONSTRATION DETAILS
We divide the demonstration into three phases: (1)

A brief introduction to factorized learning with an ex-
ample, and an overview of Santoku. (2) A “hands-
on” phase in which we demonstrate Santoku’s GUI and
API in an R console to show its benefits on multi-
ple datasets. (3) A performance comparison phase in
which we present Santoku’s performance against naive
approaches on both real and synthetic datasets to give
a better picture of Santoku’s optimizations. We will
use animated slides during the demonstration to explain
the example. Next, we describe the hands-on phase (the

GUI and the R console) as well as the performance com-
parison phase in more detail.

End-to-end Execution with GUI: We demonstrate
both multi-table (normalized) and single-table (denor-
malized) inputs using real datasets from different appli-
cation domains – retail, hospitality, transportation, and
recommendation systems. A Santoku user can specify
the kind of input as well as the join columns (for normal-
ized input) or the functional relationships between fea-
tures (for denormalized input) on the GUI using drop-
down menus that list the features. We will provide the
schemas of our datasets to help users choose features.
The user can then select an ML model they want and
specify its parameters (or use default parameters). Fi-
nally, they can run the training. They also have an
option of validating the model to check its accuracy on
a test set. This step is illustrated in Figure 2(A). The
quality and performance results of the execution will be
displayed on the screen, as illustrated in Figure 2(B).
They can then try feature exploration, possibly includ-
ing validation. Santoku will automatically create mul-
tiple feature vectors and plot their quality and perfor-
mance results, as illustrated in Figure 2(C). This will
demonstrate how Santoku can be helpful in selecting
a more accurate subset of features. The user can also
change the ML model to see new results displayed, or
perform a similar exploration with another dataset.

R Script with Console: We demonstrate how San-
toku’s API can be used in R scripts. We will show the
scripts that are automatically generated by the GUI-
based input specifications from the previous phase. The
user can edit the scripts in an R console and modify the
specifications. We will explain the usage of the functions
in our API. This will show how more advanced analysts
might interact with Santoku. This step is illustrated
with a screenshot in Figure 2(D).

Performance Comparison: We demonstrate the ex-
ecutions of the R scripts on the real datasets with San-
toku’s optimizer disabled. This will provide a better
picture of the performance optimizations performed by
Santoku. We present a set of “offline” results based on
synthetic datasets that drill into Santoku’s optimizer by
varying the number of tables joined, the number of tu-
ples, the number of features, different ML models, etc.
This will provide users with a better picture of the per-
formance tradeoff space for Santoku’s optimizer when
operating over normalized data without having to wait
for these executions to finish.

5. REFERENCES
[1] M. Anderson et al. Brainwash: A Data System for Feature

Engineering. In CIDR, 2013.

[2] P. Konda et al. Feature Selection in Enterprise Analytics:
A Demonstration using an R-based Data Analytics System.
In VLDB, 2013.

[3] A. Kumar et al. Learning Generalized Linear Models Over
Normalized Data. In SIGMOD, 2015.

[4] T. M. Mitchell. Machine Learning. McGraw Hill, 1997.

[5] C. Zhang et al. Materialization Optimizations for Feature
Selection Workloads. In SIGMOD, 2014.

1867

	Introduction
	Factorized Learning
	System Overview
	Demonstration Details
	References

