
Provenance for SQL through Abstract Interpretation:
Value-less, but Worthwhile

Tobias Müller Torsten Grust
Universität Tübingen
Tübingen, Germany

[to.mueller, torsten.grust]@uni-tuebingen.de

ABSTRACT
We demonstrate the derivation of fine-grained wherewhere- and
whywhy-provenance for a rich dialect of SQL that includes re-
cursion, (correlated) subqueries, windows, grouping/aggre-
gation, and the RDBMS’s library of built-in functions. The
approach relies on ideas that originate in the programming
language community—program slicing and abstract inter-
pretation, in particular. A two-stage process first records a
query’s control flow decisions and locations of data access
before it derives provenance without consultation of the ac-
tual data values (rendering the method largely “value-less”).
We will bring an interactive demonstrator that uses this
provenance information to make input/output dependencies
in real-world SQL queries tangible.

1. PROVENANCE AWAY FROM THE LAB
We demonstrate the derivation of fine-grained provenance

for a full-featured dialect of SQL. Data provenance for SQL
uncovers the—sometimes intricate—dependencies between
the output and inputs of a given query [2]:
• Exactly which parts of the input were used to compute

this particular piece of the output? [where-provenance]
• Which parts of the input were inspected to decide that this

piece is present in the output? [why-provenance]
Provenance has long been identified as a valuable tool in
tracking data lineage [4] as well as the understanding and de-
bugging of queries [1]. A considerable gap, however, yawns
between the languages for which provenance has been stud-
ied and those queries actually found in the field. “In the
lab,” the principal objects of study have been the (posi-
tive) relational algebra and its SQL equivalent, possibly aug-
mented with aggregation, over sets of tuples. The language
subsets grew over time [5] but significant restrictions regard-
ing the data model, acceptable query constructs, or tractable
query classes (e.g., invertible queries only [11]) remained.

Data provenance for SQL queries “away from the lab.” Here,
we explore an approach that embraces SQL constructs like

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150-8097/15/08.

grouping, aggregation, window functions, (correlated) sub-
queries, recursive common table expressions, as well as built-
in and user-defined functions. We stay true to SQL’s tables-
of-rows data model. Where- and why-provenance is derived
in the granularity of individual table cells.

The present method translates SQL queries into program
code (a subset of Python [9] for this demonstration, but any
imperative language would do). We then build on ideas de-
veloped by the programming language community—program
slicing [10] and abstract interpretation [3], specifically. In
a nutshell, we (1) instrument the code to write a log of
control flow decisions as well as data access locations, then
(2) interpret selected aspects of the code to derive where-
and why-dependencies. The latter, abstract interpretation
of the query code is “value-less,” i.e., it is entirely based on
the succinct logs and does not consult or compute actual
data.

This alternative route to provenance derivation might lead
to a general framework that can cope with rich query lan-
guages, types, and function libraries. In the present case of
full-featured SQL, the results certainly are promising. We
will bring a fully functional implementation of the technique,
hosted on top of PostgreSQL v9 [8]. An interactive demon-
strator allows to examine the input/output dependencies of
canned and ad hoc SQL queries.

2. IN/OUTPUT DEPENDENCIES FOR SQL
We continue to briefly explore three SQL queries and the

dependencies they establish between their input and output
table cells. This also provides a flavor of what the demo
audience will encounter on-site.

Let us focus on a deliberately simple example first. Two
base (input) tables represent travel agencies and the external
tours they advertise (Figure 1). Among these agencies, the
SQL query of Figure 2(a) finds those that offer boat trips.
The scenario has been directly copied from [2] to manifest
that where-/why-dependencies found by abstract interpre-
tation coincide with established notions of provenance [1,2].

Output dependency and input influence. Mouse clicks in the
input and output tables inspect the provenance of the se-
lected cell (indicated by in Figure 1 and Figure 2(b)).
Clicks 1 and 2 reveal that the values of the selected output
cells depend on (here: were copied from) column name of
input rows t5 and t6, respectively. Such where-dependencies
are highlighted via . Color-coding identifies exactly
which input row participated in the computation of the

1872

agencies
name based in phone

t1 BayToursBayTours San Francisco 415-1200415-1200
t2 HarborCruzHarborCruz Santa Cruz 831-3000831-3000 3

externaltours
name destination type price

t3 BayToursBayTours San Francisco cable carcable car $50
t4 BayToursBayTours Santa Cruz busbus $100
t5 BayToursBayTours Santa Cruz boatboat $250
t6 BayToursBayTours Monterey boatboat $400
t7 HarborCruzHarborCruz Monterey boatboat $200
t8 HarborCruzHarborCruz Carmel traintrain $90

Figure 1: Travel agency scenario. The ti denote row ids.
WhereWhere- and whywhy-dependencies are marked by and ,
respectively (indicates a combination of both).

SELECT e.name, a.phone
FROM agencies AS a,

externaltours AS e
WHERE a.name = e.name
AND e.type = ’boat’

(a) Which travel agencies
offer boat tours?

output
name phone

HarborCruzHarborCruz 831-3000831-3000
BayToursBayTours 415-1200415-1200
BayToursBayTours 415-1200415-12001

2
(b) Inspecting the provenance
of two output table cells.

Figure 2: Finding output dependencies in a SQL join query.

individual output cells. Abstract interpretation thus pin-
points individual witnesses [2], a notion not supported by [4],
for example. We also learn that it is not t1.name of ta-
ble agencies that contributed the ’BayTours’ value (in the
query’s SELECT clause, note that the developer used the col-
umn reference e.name but not the equivalent a.name).

All input cells that were inspected to decide the pres-
ence of the selected outputs are highlighted via (why-
dependency). We find the expected dependency on the
type cells of rows t5,6. Row t1 served as the single join part-
ner for t5 and t6 based on the matching ’BayTours’ values
in their name columns.

Symmetrically, click 3 on input row t1 discloses that its
phone cell value has contributed to the construction of two
joined rows in the output (see the 415-1200415-1200 where-depen-
dencies identified in Figure 2(b)).1 Such input influences
may be explored just like output dependencies in a bidirec-
tional fashion.

Group construction and aggregate contributions. The SQL
GROUP BY clause and its associated aggregation functions col-
lapse input rows and thus, inherently, lose information. Pro-
venance can help to unravel how groups were formed and
identify those values that contributed to an aggregate. The
1Why-dependencies not shown to avoid clutter.

SQL query of Figure 3(b) uses grouping to find boat tour
destinations of high average price.

Click 4 on the aggregate price $300$300 identifies why-de-
pendencies on the rows t6,7 in table externaltours: (1) the
type cells of both rows were read (WHERE clause), (2) their
destination cells were found to agree on value ’Monterey’
such that t6 and t7 form one group, and (3) inside that
group all cells in column price were inspected (HAVING). The
additional where-dependency on t6,7 indicates that the price
cells were also used to compute the average of $300 (a new
value not present in the input database).

Click 5 on the MontereyMonterey output uncovers the known
why-dependencies in table externaltours: the ’Monterey’
group is in focus again and the same WHERE/HAVING con-
ditions had to be checked to produce the output cell. We
additionally see that t6’s destination cell has been used to
form the group’s key—by definition, all destination values in
the group are equal but it was the particular row t6 whose
key was picked.

Provenance in recursive common table expressions. Deriving
provenance through abstract interpretation has the poten-
tial to embrace expressive query languages. We turn to a
recursive SQL query (based on SQL:1999’s WITH RECURSIVE)

s0 s1

s2 s3

[A..Za..z]

[A..Za..z0..9]

[+-] [A..Za..z]
[0..9]

[+-]
[0..9]

Figure 4: Formula syntax FSM.

to make this point. The query
is designed to parse chemical
formulae—like C6H5O7

3-—held
in input table compounds (see
Figure 5(a)). Formula syntax
is given in terms of the finite
state machine (FSM) shown
on the right and encoded in
table fsm in relational form.
The query of Figure 5(b)
parses all formulae “in paral-
lel.” For each compound, the
recursively defined run table
holds the current FSM state
as well as the residual input formula to parse. Note how
the query relies on built-in string functions (left, right,
strpos, length [8]) to process its inputs and drive the FSM.
The final output table of Figure 5(d) contains a trace of the
(partially) parsed citrate formula as well as the FSM states
and transitions that were activated during the parse.

SQL:1999 iteratively evaluates the common table expres-
sion’s body, yielding table run in each step, until run is found
to be empty. Abstract interpretation can record provenance
for each step, providing insight into how the recursive com-
putation progressed. Figure 5(c) shows two such run tables
at different time instants.

urs
me destination type price

t3 San FranciscoSan Francisco cable carcable car $50$50
t4 Santa CruzSanta Cruz busbus $100$100
t5 Santa CruzSanta Cruz boatboat $250$250
t6 MontereyMonterey boatboat $400$400
t7 z MontereyMonterey boatboat $200$200
t8 z CarmelCarmel traintrain $90$90

urs
me destination type price

San FranciscoSan Francisco cable carcable car $50$50
Santa CruzSanta Cruz busbus $100$100
Santa CruzSanta Cruz boatboat $250$250
MontereyMonterey boatboat $400$400

z MontereyMonterey boatboat $200$200
z CarmelCarmel traintrain $90$90

(a) Excerpt of input table externaltours (two copies to aid presentation).

SELECT e.destination,
AVG(e.price)

FROM externaltours AS e
WHERE e.type = ’boat’
GROUP BY e.destination
HAVING AVG(e.price) > $250

(b) SQL query text.

output
destination AVG(·)
MontereyMonterey $300$300

45

(c) Output table.

Figure 3: In/output dependencies for a grouping query: What are the pricey boat tour destinations? (Query adapted from [2].)

1873

compounds
compound formula

t9 citratecitrate C6H5O73-C6H5O73-

t10 glucoseglucose C6H12O6C6H12O6
t11 hydroniumhydronium H3O+H3O+

fsm
source labels target final

t12 00 A..Za..zA..Za..z 11 false
t13 11 A..Za..z0..9A..Za..z0..9 11 true
t14 11 0..90..9 22 true
t15 11 +-+- 33 true
t16 22 0..90..9 22 false
t17 22 +-+- 33 false
t18 33 A..Za..zA..Za..z 11 true

(a) Input and transition tables.

WITH RECURSIVE
run(compound, step, state, formula) AS (

SELECT compound, 0, 0, formula
FROM compounds

UNION ALL
SELECT this.compound,

this.step + 1 AS step,
edge.target AS state,
right(this.formula, -1) AS formula

FROM run AS this,
fsm AS edge

WHERE length(this.formula) > 0
AND this.state = edge.source
AND strpos(edge.labels,

left(this.formula, 1)) > 0
)
SELECT r.step, r.state, r.formula
FROM run AS r
WHERE r.compound = ’citrate’

(b) SQL query (drives the FSM).

run
compound step state formula
citrate 00 00 C6H5O73-C6H5O73-

glucose 00 00 C6H12O6C6H12O6
hydronium 00 00 H3O+H3O+

7

...
run

compound step state formula
citrate 33 11 5O73-5O73-

glucose 33 11 12O612O6
hydronium 33 11 ++

(c) Intermediate parser states.

output
step state formula

00 0 C6H5O73-C6H5O73-

11 1 6H5O73-6H5O73-

22 1 H5O73-H5O73-

33 1 5O73-5O73-

44 1 O73-O73-

55 1 73-73-

66 1 3-3-

77 2 --

88 3

6

(d) Parsing trace.

Figure 5: Deriving in/output dependencies for a SQL:1999 recursive common table expression (FSM parses chemical formulae).

Just like before, we select individual table cells to in-
spect the data dependencies created by the recursive query.
Click 6 inquires on the intermediate parsing state when all
but the residual formula ’O7

3-’ has already been read. We
see that this suffix exclusively where-depends on the formula
cells of compound ’citrate’ (see the run tables as well as
the original input row t9 in table compounds). The why-
dependencies reveal that only the FSM states s0 and s1
were activated to parse the formula prefix so far: the source,
labels, and target cells of rows t12 and t13 of table fsm were
inspected—up to this point in the recursion, no further row
was touched.

Tracking input influence can help to assess query correct-
ness. To illustrate, turn to column step which the developer
introduced to watch recursion depth—otherwise this column
is not meant to affect the computation. Indeed, with click 7
on 00 in table run we find that this step cell exclusively in-
fluences other step cells: neither are further cells “polluted”
with step values (no other where-dependencies), nor does
the query inspect step to guide the actual parsing (no why-
dependencies). We conjecture that such assertions may turn
out valuable in the understanding and debugging of complex
queries.

1 def ascending(xs):
2 peak = xs[0]
3 i = 1
4 while i < len(xs):

5 x = xs[i]
6 if x >= peak:

7 peak = x
8 else:

9 return (peak,False)
10 i = i+1

11 return (peak,True)

put(logcf , True)

put(logix , i)

put(logcf , True)

put(logcf , False)

put(logcf , False)

(a) Original code and its instrumentation.

logcf

〈 True,
True,
True,
True,
True,
False 〉

logix

〈 1,
2,
3 〉

written/read
sequentially

(b) Log contents.

Figure 6: Python function ascending() and final log contents
after execution of ascending([3,4,7,5,1,2]).

3. VALUE-LESS, BUT WORTHWHILE
Behind the scenes, a given SQL query is translated into

equivalent procedural code. This demonstration employs
a subset of Python—featuring atomic values, dictionaries,
lists, key lookups and index accesses, variable assignment,
if-else conditionals, and while loops—chosen to faithfully
represent the semantics of SQL as well the database host’s
library of built-ins. (Sub)queries are mapped into functions
that receive input tables and correlated row variables as ar-
guments.

We do not hinge on Python. In fact, the current wave
of work on compiling queries into program code perfectly
complements the approach: what is described here would
fit with, for example, the Scala source produced by Lego-
Base [6] or the LLVM code emitted by HyPer [7].

To keep this exposition brief, we sketch the two-phase ap-
proach using the archetypical Python function of Figure 6(a):
ascending(xs) finds the largest element peak in a monoton-
ically ascending prefix of list xs and returns (peak,True) if
peak is the last element of xs (or else returns (peak,False)).

Phase 1 instruments the code such that (1) its control flow
decisions (“Has a while loop been entered/left?”, “Which
branch of this if-else was taken?”), and (2) the location of
data structure accesses (non-constant list indices or dictio-
nary keys) are logged. The resulting logs logcf and logix are
lean streams of Booleans and indices, respectively, and are
only appended to (using put(), see Figures 6(a) and 6(b)).

1 def ascending(xs):
2 peak = xs[0]
4 while get(logcf):
5 x = xs[get(logix)]
6 if get(logcf):
7 peak = x ∪ why(x) ∪ why(peak)
8 else:

peak = x ∪ why(x) ∪ why(peak)
9 return (peak,why(x) ∪ why(peak))

11 return (peak,∅)

Figure 7: Abstract variant of ascending(). Variables hold
dependency sets, not values. When ascending() is entered,
its argument wherewhere-depends on itself, i.e.i.e., xs[i] = {xs[i]}.

1874

Figure 8: Provenance analysis for a full run of the SQL finite state machine of Figure 5(b). WhyWhy-dependencies highlight all state
machine transitions that have been activated. The selected fully parsed string wherewhere-depends on the input C6H5O7

3- string only.

Phase 2 replays the behavior of the function solely based on
one sequential scan of both logs (via get(), see Figure 7)—
no actual database values are consumed or manipulated.
Since dependencies are the only aspect of interest during
provenance analysis, it suffices to execute a simplified value-
less abstraction of the program [3]. The abstracted function
computes dependency sets x for all variables x:
• y ⊆ x if x’s value has been computed based on variable y,
• why(y) ⊆ x if y has been used to decide whether x’s value

is computed in the if or else branch of a conditional.2

The lightweight logging of Phase 1 and the value-less Phase 2
both aid the non-intrusive and scalable implementation of
provenance analysis. For the example of Figure 6, the phases
derive the output dependency

ascending([33 , 44 , 77 , 55 , 11 , 22]) (77 ,False).
8

We observe that ascending() inspects the list only up to
element 5 where it finds the monotonically ascending prefix
to end; the preceding peak 7 is used to construct the output
pair.

4. DEMONSTRATION SETUP
The on-site demonstration features a comprehensive im-

plementation of provenance derivation for SQL, resting on
top of a PostgreSQL (version 9) backend. Given a SQL query,
we reach into the database host’s log to extract a sanitized
and typed parse tree before the translation into procedural
form is initiated. The demonstrator permits to review the
Python code that is generated under the hood. Abstract
interpretation then derives dependency sets (in a tabular
representation, held by the database backend itself) as de-
scribed in Section 3.

To make data provenance tangible, we will bring an inter-
active frontend that renders dependencies much like we did
in Figures 3 and 5 of Section 2. Clicks on table cells highlight
all where- and why-dependent pieces in the input or output
(see the screenshot of Figure 8). For recursive common table
expressions, the intermediate states of the recursion may be

2We use why(y) to convert set y of where-dependencies into
a set of why-dependencies.

inspected as well (not shown in the screenshot, but recall ta-
bles run and run of Figure 5(c)). Tables whose contents
is better understood in terms of scatter/line mosaic plots or
histograms can be rendered in alternative forms. These vi-
sualizations, too, allow a point-and-click exploration of the
derived dependencies.

The demonstration will be live: we will bring a canned
set of interesting data provenance scenarios—ranging from
obvious to “tricky”—but the audience is invited to also for-
mulate and analyze SQL queries in an ad hoc fashion.

Acknowledgments. Janek Bettinger built the browser-based
interactive visualization of input/output dependencies.

5. REFERENCES
[1] P. Buneman, S. Khanna, and W.-C. Tan. Why and

Where: A Characterization of Data Provenance. In
Proc. ICDT, 2001.

[2] J. Cheney, L. Chiticariu, and W.-C. Tan. Provenance
in Databases: Why, How, and Where. Foundations
and Trends in Databases, 1(4), 2007.

[3] P. Cousot and R. Cousot. Inductive Definitions,
Semantics and Abstract Interpretation. In Proc.
POPL, 1992.

[4] Y. Cui, J. Widom, and J. Wiener. Tracing the Lineage
of View Data in a Warehousing Environment. ACM
TODS, 25(2), 2000.

[5] B. Glavic and G. Alonso. Provenance for Nested
Subqueries. In Proc. EDBT, 2009.

[6] Y. Klonatos, C. Koch, T. Rompf, and H. Chafi.
Building Efficient Query Engines in a High-Level
language. In Proc. VLDB, 2014.

[7] T. Neumann. Efficiently Compiling Efficient Query
Plans for Modern Hardware. In Proc. VLDB, 2011.

[8] The PostgreSQL Relational Database System.
postgresql.org.

[9] The Python Programming Language. python.org.
[10] M. Weiser. Program Slicing. IEEE Transactions on

Software Engineering, SE-10(4), 1984.
[11] A. Woodruff and M. Stonebraker. Supporting

Fine-Grained Data Lineage in a Database
Visualization Environment. In Proc. ICDE, 1997.

1875

