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ABSTRACT

The ubiquity of location-aware devices, e.g., smartphones and GPS
devices, has led to a plethora of location-based services in which
huge amounts of geotagged information need to be efficiently pro-
cessed by large-scale computing clusters. This demo presents
AQWA, an adaptive and query-workload-aware data partitioning
mechanism for processing large-scale spatial data. Unlike existing
cluster-based systems, e.g., SpatialHadoop, that apply static parti-
tioning of spatial data, AQWA has the ability to react to changes in
the query-workload and data distribution. A key feature of AQWA
is that it does not assume prior knowledge of the query-workload or
data distribution. Instead, AQWA reacts to changes in both the data
and the query-workload by incrementally updating the partitioning
of the data. We demonstrate two prototypes of AQWA deployed
over Hadoop and Spark. In both prototypes, we process spatial
range and k-nearest-neighbor (kKNN, for short) queries over large-
scale spatial datasets, and we exploit the performance of AQWA
under different query-workloads.

1. INTRODUCTION

Typical spatial query-workloads exhibit skewed access patterns,
where certain spatial areas receive queries more frequently than
others. As noted in several research efforts, e.g., [9, 5], accounting
for the query-workload can achieve significant performance gains.
Furthermore, the spatial distribution of the data can change over
time. However, existing cluster-based systems for processing spa-
tial data employ static partitioning schemes that are insensitive to
the query-workload. For instance, SpatialHadoop [6] supports only
static partitioning to handle spatial data in Hadoop. To handle a
batch of data updates in SpatialHadoop, the entire data needs to be
repartitioned from scratch, which is quite costly.

This demo presents AQWA, an adaptive and query-workload
aware mechanism for partitioning large-scale spatial data. Accord-
ing to the query-workload and the data distribution, AQWA recur-
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sively divides the underlying space/data into partitions. In case
of Hadoop, these partitions reside in disk as HDFS files. In case
of Spark [12], these partitions reside in main-memory as Resilient
Distributed Datasets [11] (RDDs, for short). Whenever a query is
received, only the partitions (i.e., files in HDFS or RDDs in Spark)
that are relevant to the query are processed. AQWA does not pre-
sume any knowledge of the query-workload or the data distribution.
Instead, AQWA can detect, in an online fashion, the changes in the
query-workload or data distribution, and accordingly reorganize the
partitioning of the data.

Traditional spatial index structures try to increase the pruning
power at query time by having (almost) unbounded decomposition
until the finest granularity of the data is reached in each partition.
However, in a typical distributed system, e.g., HDFS, allowing too
many small partitions can be very harmful to the overall health of
the underlying cluster (e.g., see [3, 7, 8]). The metadata of the
partitions is usually managed in a centralized shared resource. For
instance, the NameNode is a centralized resource in Hadoop that
manages the metadata of the files in HDFS, and that handles the file
requests across the whole cluster. Similarly, in Spark, the metadata
of the RDDs is shared in a centralized resource. Hence, AQWA
keeps a lower bound on the size of each partition that is equal to
the data block size in the underlying distributed file system.

Due to the scale of the data, the search space of the boundaries
of the partitions is huge, and hence the process of finding the parti-
tioning that would result in good performance gains is challenging.
AQWA employs a cost function that models the cost of executing
the queries. In addition, AQWA employs a set of main-memory
structures that summarize the data distribution as well as the query-
workload. These structures enable AQWA to efficiently perform its
adaptive repartitioning decisions by supporting O(1) computation
of the cost function.

We will demonstrate AQWA based on two prototypes deployed
on top of Hadoop and Spark using large-scale datasets from Twitter,
and different query-workloads of spatial range and kNN queries.

2. OVERVIEW OF AQWA

In AQWA, given a query, the goal is to avoid unnecessary scans
of the data. The cost of executing a query is estimated by the num-
ber of records it has to read. The cost, i.e., quality, of a partitioning
layout is estimated by the number of points that the queries of the
workload will have to retrieve. More formally, given a partition-
ing layout composed of a set of partitions, say L, the overall query
execution cost can be computed as:

Cost(L) = > Qo(p) x N(p), M
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Figure 1: An overview of AQWA.

where Q,(p) is the number of queries that overlap Partition p, and
N (p) is the count of points in p.

Figure 1 gives an overview of AQWA that is composed of two
main components: 1) a k-d tree decomposition' of the data, where
each leaf node is a partition, and 2) a set of main-memory struc-
tures that maintain statistics about the distribution of the data and
the queries. Four main processes define the interaction between
the components of AQWA, namely, Initialization, Query Execu-
tion, Data Acquisition, and Repartitioning.

1. Initialization: During this process, statistics (i.e., counts)
about the data distribution are collected, and accordingly, an
initial partitioning of the data is created.

. Query Execution: This process selects the partitions that
are relevant to, i.e., overlap, the invoked query. The answer
of the query is determined from the selected partitions.

. Data Acquisition: Given a batch of data, a MapReduce job
(or a Spark job) appends each new data point to its corre-
sponding partition according to the current layout of the par-
titions. In addition, the counts collected in the Initialization
process are incremented according to the given batch of data.

. Repartitioning: Based on the history of the query-workload
as well as the distribution of the data, this process deter-
mines the partition(s) that, if altered (i.e., further decom-
posed), would result into better query performance.

Below, we list the performance challenges that the above four
processes raise, and briefly describe how they are addressed in
AQWA.

e Overhead of rewriting: After a batch of data is appended,
some partitions may need to be split in order to have good
pruning power at query time. If the process of altering the
partitioning reconstructs the partitions from scratch, it would
be very inefficient because it will have to read and write the
entire data. Hence, AQWA adopts an incremental mecha-
nism that alters only a minimal set of partitions according to
the query-workload.

' AQWA is applicable to R-Tree or quadtree decomposition, but the
demo is based on a k-d tree implementation.
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o Efficient search: AQWA repeatedly searches for the parti-
tions to be split in order to achieve good query performance
according to Equation 1. The search space is large, and hence
we need an efficient way to determine the partitions to be fur-
ther split and how/where the split should take place. As we
explain in Section 3, AQWA maintains a set of main-memory
aggregates to efficiently determine the best splits via O(1)
main-memory lookups.

Keeping a lower bound on the size of each partition: Allow-
ing too many small partitions can introduce a performance
bottleneck in a distributed file system (e.g., see [3, 7, 8]).
Hence, AQWA avoids splitting a partition if either of the two
resulting partitions is of size less than the block size in the
distributed file system (e.g., 128 MB in HDFS).

Time differentiation between queries: Although AQWA
keeps the history of all the queries that have been processed,
AQWA differentiates between fresh queries (i.e., those that
belong to the current query-workload) and relatively old
queries. This is achieved through a time-fading mechanism
that assigns lower weights to the cost corresponding to older
queries. In turn, this alleviates the redundant repartitioning
overhead corresponding to older query-workloads.

Concurrency control: As queries are processed by AQWA,
some partitions get split. It is possible that while a partition
is being split, a new query is received that may also trigger
another change to the very same partition being split. Unless
an appropriate concurrency control protocol is used, incon-
sistent partitioning can occur. To solve this problem, we use
a simple locking mechanism that coordinates the incremental
updates of the partitions.

3. ADAPTIVITY IN AQWA

3.1 Data Acquisition

AQWA is most useful in dynamic scenarios where new batches
of data are received frequently. For instance, consider the Twit-
ter dataset, where more than 500 Million tweets are created every-
day [1]. During the Data Acquisition process, each of the partitions
is appended with a new set of data points. In case of Hadoop, this
is performed through a MapReduce job, where in the Map phase,
the partition of each data point is determined, and in the Reduce
phase, the data points are appended to the corresponding partitions.
In case of Spark, a Spark job is employed to achieve the same be-
havior, where two transformations are used: the first transformation
finds the partition of each data point, and the second transformation
merges the data points with the corresponding partitions.

After the data is appended, some (if not all) partitions may in-
crease in size. In order to have good pruning at query time, these
partitions need to be split. A straightforward approach is to ag-
gressively repartition the entire data. However this would be quite
costly because the process of reading and rewriting the entire data is
prohibitively expensive due to the scale of the data. Furthermore,
this approach may require the entire system to halt until the new
partitions are created.

AQWA applies an incremental mechanism that avoids reading
and rewriting the entire dataset, but rather splits a minimal number
of partitions according to the query-workload. In particular, after a
query is executed, it may (or may not) trigger a change in the parti-
tioning layout by splitting a leaf node (i.e., a partition) in the kd-tree
into two nodes. A partition, say p, is split into two partitions, say p1
and pa, if the performance gain (according to Equation 1) resulting
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Figure 2: An illustration of the main-memory aggregates maintained for the data and query-workload distributions.

from splitting p is expected to be greater than the split overhead,
i.e., reading p and writing p1 and po.

AQWA repeatedly tries to find the best horizontal/vertical lines
at which each partition needs to be split, and prioritizes all the par-
titions in a priority queue according to the expected gain resulting
from further splitting. Hence, two operations need to be efficiently
supported, namely, finding the number of points in a partition, and
finding the number of queries that overlap a partition. To this end,
AQWA employes a main-memory fine-grained grid, say G, of n
rows and m columns. Each grid cell, say G[i, j], maintains ag-
gregate statistics (i.e., counts) about the data distribution as well
as the query-workload. As we show next, the fine-grained grid
enables AQWA to efficiently perform its repartitioning decisions
using O(1) lookups.

3.2 Statistics for Data Distribution

During the Initialization process, we count the number of points
in each grid cell. This is achieved through a MapReduce job (or
Spark job) that reads the entire data and determines the count of
points in each grid cell. Afterwards, we aggregate the counts in
each grid cell as follows. For every row in (G, we scan the cells
from column O to column m and aggregate the values as we go,
ie., G[i, j] = G[i, j] + Gi, j — 1]V j € [2, m]. Afterwards,
we repeat the same process on the column level, ie., G[¢, j] =
G[i, j1+ Gli — 1, j] Vi € [2, n]. At this moment, the value at
each cell, say G[i, j], corresponds to the number of points in the
rectangle bounded by G0, 0] (top-left) and G[7, j] (bottom-right).

To compute the number of points corresponding to any given
partition, i.e., rectangle, bounded by Cell G[b, r] (bottom-right)
and Cell Gt, [] (top-left), we add/subtract the values of only four
cells, i.e., perform an O(1) operation in the following way. As Fig-
ure 2(a) illustrates, the number of points, say N, in Rectangle(b, r,
t,1)is Np(b, 7, t, 1) = G[b, 7] —G[t—1, r]—G[b, | —1]+G[t—
1, I — 1]. Observe that this O(1) lookup operation is key for the
efficiency of AQWA during the Initialization as well as the Repar-
titioning processes. Without the main-memory aggregate counts,
other alternatives, e.g., successively scanning the data in order to
find the number of points in a rectangle, would be impractical due
to the large scale of the data.

Whenever data updates are received, we process these updates in
batches, and update the counts in the grid accordingly.

3.3 Statistics for Query-Workload

At each grid cell, say G[i, j] we maintain four additional coun-
ters. Refer to Figure 2(b) for illustration.

e (C'i: a counter for the number of queries that overlap Gz, j],

e (5 a counter for the number of queries that overlap G[i, j],
but not G[¢, j — 1] (not in left),

e (C3: a counter for the number of queries that overlap G[i, j],
but not G[¢ — 1, j] (not in top), and

e (4 a counter for the number of queries that overlap G[i, j],
but not G[¢ — 1, j] or G[i, j — 1] (neither in top nor left).

We aggregate the values of the above counters as follows. For
Cs, for each row in the grid, we horizontally aggregate the values
in each grid cell from left to right, i.e., G[i, j].C2 = G[i, j].C2 +
G[i, j — 1].C2 ¥V j € [2, m]. For Cs, for each column, we verti-
cally aggregate the values in each grid cell from top to bottom, i.e.,
G[i, j]C3 = G[h ]]C3 + G[’L -1, 1].03 Vie [27 n] For C4y,
we horizontally and then vertically aggregate the values in the same
manner as we aggregate the number of points (see Figure 2(a)). As
queries are invoked, the aggregate values of the counters are up-
dated according to the overlap between the invoked queries and the
cells of the grid. Although the process of updating the aggregate
counts is repeated per query, it does not incur overhead because the
fine-grained grid that maintains the counts resides in main-memory,
and hence the fine-grained grid is cheap to update.

A partition, say p, can be divided into four regions R; through
Ry asillustrated in Figure 2(c). To determine the number of queries
that overlap a certain partition, say p, we perform the following four
operations.

e We determine the value of C in Region Rp, which is the
top-left grid cell that overlaps p.

e We determine the aggregate value of C'; in Region Rz, which
is the top border of p except for the top-left cell.

e We determine the aggregate value of C's in Region R3, which
is the left border of p except for the top-left cell.

e We determine the aggregate value of C4 for Region Ry,
which is every grid cell that overlaps p except for the left
and top borders.

The sum of the above values represents the number of queries that
overlap p.

3.4 Support for k-Nearest-Neighbor Queries

So far, we have only shown how to process spatial range queries,
and how to update the partitioning accordingly. Range queries are
relatively easy to process because the boundaries in which the an-
swer of the query resides are predefined within the query itself. In
contrast, the boundaries that contain the answer of a kNN query are
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Figure 3: Interactive partition visualizer. A display of the layout of the partitions when the query-workload moves over time from
one hotspot to another. The partitions are aggressively split at the region of the hotspot.

unknown until the query is executed. In particular, the spatial re-
gion that contains the answer of a kNN query depends on the value
of k, the location of the query focal point, and the distribution of
the data (see [4])

To address this problem, we make use of the fine-grained
grid that contains statistics about the data distribution and query-
workload. Given a k-NN query, we determine the grid cells that are
guaranteed to contain the answer of the query using the MINDIST
and MAXDIST metrics as in [10]. In particular, we scan the cells in
increasing order of their MINDIST from the query focal point, and
count the number of points in the encountered cells. Once the accu-
mulative count reaches the value k, we mark the largest MAXDIST,
say M, between the query focal point and any encountered cell. We
continue scanning until the MINDIST of a scanned block is greater
than M. The rectangular region that bounds the scanned cells maps
the kNN query into a range query.

Observe that the process of determining the region that encloses
the KNN is efficient because it is based on counting of main-
memory aggregates, and it does not require scanning any data
points. Moreover, because the granularity of the grid is fine (com-
pared to that of the partitions), the determined region is compact.

4. DEMO SCENARIO

We will demonstrate AQWA and showcase its performance using
two prototypes® deployed over Hadoop and Spark. We use a real
spatial dataset from Twitter. The dataset was gathered over a period
of nearly two years, and only the tweets that have spatial coordi-
nates inside the United States were considered. We will show how
AQWA can consume batches of tweets, and yet, maintain steady
query performance using its adaptive repartitioning mechanism.

As part of our prototypes, we implement an interactive visualizer
that displays the layout of the partitions over time. Figure 3 dis-
plays the layout of partitions under a certain query-workload that
moves across the map as illustrated in Figures 3(a), 3(b), and 3(c),
respectively. It is clear from the figure how AQWA adaptively up-
dates the partitioning of the data according to the changes in the
query-workload.

We will show the performance of AQWA under different query-
workloads of spatial range and kNN queries. We will use differ-
ent setups for the query-workloads, where the workload can shift

2AQWA’s implementation is publicly available on GitHub [2].

1971

from one spatial hotspot to another, and when there are multiple si-
multaneous hotspots. We will compare the performance of AQWA
against static partitioning structures, and show how AQWA can
achieve orders of magnitude gain in query performance.
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