
S+EPPs: Construct and Explore Bisimulation Summaries,
plus Optimize Navigational Queries;

all on Existing SPARQL Systems

Mariano P. Consens
University of Toronto

consens@cs.toronto.edu

Valeria Fionda
University of Calabria, Rende(CS), Italy

fionda@mat.unical.it

Shahan Khatchadourian
University of Toronto

shahan@cs.toronto.edu

Giuseppe Pirrò
ICAR-CNR, Rende(CS), Italy
pirro@icar.cnr.it

ABSTRACT
We demonstrate S+EPPs, a system that provides fast con-
struction of bisimulation summaries using graph analytics
platforms, and then enhances existing SPARQL engines to
support summary-based exploration and navigational query
optimization. The construction component adds a novel op-
timization to a parallel bisimulation algorithm implemented
on a multi-core graph processing framework. We show that
for several large, disk resident, real world graphs, full sum-
mary construction can be completed in roughly the same
time as the data load. The query translation component
supports Extended Property Paths (EPPs), an enhance-
ment of SPARQL 1.1 property paths that can express a
significantly larger class of navigational queries. EPPs are
implemented via rewritings into a widely used SPARQL
subset. The optimization component can (transparently to
users) translate EPPs defined on instance graphs into EPPs
that take advantage of bisimulation summaries. S+EPPs
combines the query and optimization translations to enable
summary-based optimization of graph traversal queries on
top of off-the-shelf SPARQL processors. The demonstra-
tion showcases the construction of bisimulation summaries
of graphs (ranging from millions to billions of edges), to-
gether with the exploration benefits and the navigational
query speedups obtained by leveraging summaries stored
alongside the original datasets.

1. INTRODUCTION
Querying and exploring big graphs is of crucial importance

in several contexts, including social networks, Linked Open
Data, and exploratory search. In this context, techniques
to “reduce” the size of graphs in order to provide answers
to navigational queries in a timely manner, and without
compromising the quality of results, become a must. One

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th, 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150-8097/15/08.

way of achieving this goal is to construct bisimulation sum-
maries [10], that is, graph-based indexes that group nodes
with equivalent structure [3, 5]. These summaries provide
valuable insight into describing and exploring the unique
semi-structure of data collections [6].

Recent work [11] shows that summary-based optimiza-
tions can improve query performance, at the expense of
modifying the internals of the target SPARQL system. Other
proposals construct external, stand-alone, indexes based on
summaries, but do not integrate them into existing SPARQL
query processors [13].

The S+EPPs system supports a class of navigational queries
defined by the Extended Property Paths (EPPs) language [2].
EPPs extend the navigational core of the SPARQL lan-
guage, that is, property paths, by allowing to write more
expressive navigational queries in a succinct way. Our ap-
proach to optimize EPPs on top of existing SPARQL proces-
sors consists of three components. First, an algorithm that
translates EPPs into standard SPARQL queries. Second, a
mechanism to construct and store summaries alongside the
original graph in an RDF store. Third, a rewriting optimiza-
tion, which converts graph traversal queries into equivalent
SPARQL queries to be executed over the RDF graphs of
both the original data and the summary.

The literature describes parallel construction of bisimula-
tion summaries [1] using message-passing along with their
adaptation to MapReduce environments [9, 12]. The fix-
point nature of bisimulation is well-suited to iterative graph
processing; efficient and scalable summary construction is
challenging because existing MapReduce solutions do not
significantly decrease per-iteration times as the computation
progresses.

The S+EPPs system constructs bisimulation summaries in
roughly the same amount of time that it takes to input the
data into a processing framework. We introduce a sum-
mary construction implementation [7] in GraphChi [8], a
multi-core graph parallel processing framework. We present
a novel and very effective singleton optimization that allows
us to achieve the goal of drastically reducing per-iteration
times after only a few iterations. We experimentally vali-
date that our GraphChi-based implementation achieves the
goal of constructing summaries in an amount of time similar
to the time required to load the dataset and then write the
summary for several large, disk resident, real world graphs.

2028

Figure 1: A fragment of data from LinkedMDB - dataset graph (left) and summary graph (right)

We also compare our multi-core approach with Hadoop and
give evidence to support our GraphChi-based summary con-
struction on a laptop as well as on large multi-core systems.

The S+EPPs approach to store summaries alongside the
corresponding instance data enables the use of RDF tools
(e.g., visualizations) to explore both summaries and instances.
In the demonstration we show how exploration tools facili-
tate the writing of navigational queries.

Contributions. To the best of our knowledge, S+EPPs is
the first system that combines fast building of bisimulation
summaries with navigational query translators that lever-
age existing SPARQL query processors to take advantage
of summary-based optimizations without modifying the in-
ternals of SPARQL engines. In addition, the availability of
summaries as graphs alongside the original instance graphs
provides additional support for data exploration activities.

The rest of this paper is organized as follows. In Section 2,
we elaborate on the construction of summaries. In Section 3,
we outline the language of EPPs, the translations, and how
they can be used to implement summary-based optimization
techniques. In Section 4, we describe the demonstration
scenarios.

2. SUMMARY CONSTRUCTION
Preliminaries. We consider an RDF dataset graph as a
finite set of labeled, directed edges between distinctly la-
beled nodes. We construct structural summaries that group
nodes of a dataset graph using bisimilarity as the notion of
equivalence. Figure 1 (a) (right) shows a dual bisimulation
summary materialized as an RDF graph, which connects
to the original data fragment in Figure 1 (a) (left). Each
block node in the summary is identified by a URI (minted
from a hash function) that represents a non-overlapping sub-
set of the fragment’s nodes using bc:extentContains edges to
each of the dataset graph nodes belonging to the block (re-
ferred to as the block’s extent). Blocks are also connected
by edges that summarize the corresponding semantic rela-
tionships between dataset nodes across blocks (e.g., :actor,
:director, :country, etc.). Specifically, a summary edge means

that each node in the source block’s extent has an edge to
some node in the target block’s extent, and dually, each
node in the target block’s extent has an incoming edge from
some node in the source block’s extent. This specification
warranties that graph traversals in the summary graph will
match exactly those nodes in the instance that satisfy those
same traversals.

We demonstrate a GraphChi-based algorithm to construct
summaries in around the same amount of time as it takes
to load the instance dataset and then write the summary.
GraphChi supports an iterative Bulk Synchronous Parallel
(BSP) model using multi-core parallelism to target scala-
bility on “just a laptop”. BSP is a node-centric processing
model by which nodes in the current iteration execute an
Update function that depends on values from the previous
iteration. Our summary construction algorithm, described
in [7], uses the BSP processing model with the parallel, hash-
based approach defined in Blom and Orzan [1], with the im-
portant addition of a novel singleton optimization. A block
with exactly one dataset graph node in its extent is called a
singleton, and our optimization skips processing singletons.
We highlight that the singleton optimization is not captured
by the stable/unstable block optimization described in [1].
Also, the system of [9] focuses on optimizing processing of
(the few) large blocks, while we target the opposite spectrum
of block sizes because we can skip processing (the many) sin-
gleton blocks.

Figure 2: Example query graph

2029

epp ::= ‘ˆ’ epp | epp ‘+’ | epp ‘?’ | epp‘∗’ | epp ‘/’ epp |
epp ‘|’ epp |‘(’ epp ‘)’ | [pos]1 test [pos]2 |
epp ‘&’ epp | epp ‘∼’ epp

test ::= ‘!’ test | test ‘&&’ test | test ‘||’ test |
‘(’ test ‘)’ | base

base ::= uri | ‘TP(’pos ‘,’ epp ‘)’ | ‘T(’EExp‘)’
EBInCall ::= BuiltInCall | pos

pos ::= ‘ s’ | ‘ p’ | ‘ o’

Table 1: Syntax of EPPs

3. EPPS TO SPARQL TRANSLATIONS
Our demonstration focuses on navigational queries ex-

pressed in the EPPs language [2]. The EPPs syntax shown
in Table 1 allows expressing navigational queries as traversal
operations over edge labels in an RDF graph1. EPPs nav-
igational patterns can be executed either on the instance
graph (denoted as EPPsI) or the summary graph (denoted
as EPPsS). EPPs can be automatically translated into a
SPARQL query.

In what follows, we describe the S+EPPs translations us-
ing one of the example EPPs used in the demonstration,
showing its translation to SPARQL. The navigational query
answers find actors who appear in movies without coun-
try information; additionally, the director of those movies
should also be the producer of a movie with country in-
formation. We can express this query as an EPPsI from the
:Director node to all the reachable ?Actor nodes.

:Director o(rdf:type && TP(s,:producer/:country)) s/

(:director && !TP(o,:country))/:actor ?Actor

The above EPPsI is evaluated on the instance graph in
Figure 1 (a) (left) as follows. First, there is a backward
traversal over rdf:type edges to the node dir:8487 from where
it is necessary to check the existence of a traversal across
:producer edges followed by :country edges. Then, there is
also a traversal from those nodes across :director edges to
movies; then, movies that support a :country edge traver-
sal (i.e., movie:38125) have to be kept. Finally, a traversal
from movie:38125 across :actor edges returns actor nodes, i.e.,
actor:45772. The EPPstoSPARQL translation automatically
generates the following SPARQL query over the instance
graph.

SELECT DISTINCT ?Actor WHERE { GRAPH <http://instance> {
?Director rdf:type :Director .
?Director :director ?MovieNoC .
FILTER EXISTS { ?Director :producer ?MovieC .

?MovieC :country ?Country . }
?MovieNoC :actor ?Actor .
FILTER NOT EXISTS { ?MovieNoC :country ?someCountry }}}

This query corresponds to the graph pattern shown in
Figure 2, which can be executed on existing SPARQL pro-
cessors. Note that movies with country information are dis-
covered via the pattern (?MovieC,:country,?Country) while
its counterpart, the edge with a cross through it, searches
for movies without country information. Finally, note that
the translation of the EPPsI is a SELECT query that, in
this case, returns distinct ?Actor nodes.

Summary-based optimization occurs when a navigational
query on the instance is translated into a navigational query
on the summary. In the translated query, edge traversals
occur between blocks instead of between instance nodes, and
a last step is added to traverse bc:extentContains edges to

1note that [pos]1 defaults to s and [pos]2 defaults to o

Figure 3: Architecture of S+EPPs system

navigate from summary blocks back to instance nodes. The
EPPsItoEPPsS translation implements this optimization.

Returning to our example EPPsI from the :Director node
to all the reachable ?Actors nodes, the EPPsItoEPPsS trans-
lation produces the following EPPsS.

:Director o bc:extentContains s/ o(rdf:type &&

TP(s,:producer/:country)) s/(:director && !TP(o,:country))

/:actor/bc:extentContains ?Actor

The EPPstoSPARQL translation of the example EPPsS gives
the following (summary-optimized) SPARQL query.

SELECT ?Actor WHERE {
GRAPH <http://summary/blockedges> {

?Director rdf:type ?DirectorTypeBlock .
?Director :director ?MovieNoC .
FILTER EXISTS { ?Director :producer ?MovieC .

?MovieC :country ?Country .}
?MovieNoC :actor ?ActorBlock .
FILTER NOT EXISTS { ?MovieNoC :country ?someCountry .}}

GRAPH <http://summary/extentedges> {
?DirectorTypeBlock bc:extentContains :Director.
?ActorBlock bc:extentContains ?Actor .} }

4. DEMONSTRATION
Figure 3 summarizes the S+EPPs approach. The main goal

of the demonstration is to inform attendees about the fea-
tures of S+EPPs. We demonstrate scenarios that include
efficient summary construction using a novel singleton op-
timization, query optimization, and summary-based explo-
ration. Our demonstration includes LinkedMDB [4] and
DBpedia, two datasets from the Linked Open Data project.
LinkedMDB’s dataset graph has around 1.3M nodes and 6M
edges, and DBpedia’s dataset graph has over 48M nodes and
317M edges.

Summary Construction. We demonstrate to attendees
that multi-core architecture is a viable way to construct
summaries of large graphs. We process LinkedMDB on our
demonstration laptop. We process real-world datasets on
a remote multi-core machine that has 8 Xeon X6550 2GHz
8-core CPUs, and which can process 64 nodes in parallel.
The machine allocates 80GB of main-memory to the Java
8 JVM, though our implementation executes on unmodi-
fied GraphChi 0.2 using less than half that amount. Our
results show that our implementation computes DBpedia’s
summary over 50% faster than the time to load the dataset
graph and write the RDF summary; We further demonstrate

2030

the effectiveness of our summary construction with a com-
parison to a Hadoop-based implementation [12] that shows
that our implementation is up to 8x faster.

Query Optimization. We now describe our demonstra-
tion’s main scenario - navigational query optimization on
graphs with hundreds of millions of edges. Attendees can
choose from EPPs that induce neighborhoods with a vari-
ety of path lengths, cycles, forward traversals, and backward
traversals, and that return zero to millions of results. We
also provide attendees with the opportunity to learn to write
their own EPPs. Our demonstration will validate that our
summaries are effective for navigational query optimization
across a variety of unmodified SPARQL processors, as well
as a range of summaries.

We begin demonstrating this scenario by showing how to
answer a navigational query on LinkedMDB. Using a vi-
sualization tool, we show an RDF fragment from the full
LinkedMDB dataset that describes relationships between ac-
tors, movies and directors using properties including :actor,
:year, and :country. We point to Joe Turkel as an actor of
interest that we would like to query for; then, we show an
EPPsI (which we call Qi

a) that returns our actor of inter-
est constructed by using EPPs features like concatenation,
constraints, and negation. We execute Qi

a on an unmodified
SPARQL processor and show its results.

We describe a challenge with querying a dataset that has
millions of nodes and edges and visualize an RDF fragment
of such a dataset’s summary. We then show the EPPsS
Qs

a that results from the EPPsItoEPPsS translation of the
EPPsI Qi

a, highlighting the bc:extentContains predicates link-
ing summary blocks and the instances in their extent. We
execute Qs

a on the same unmodified SPARQL processor as
above, where both the LinkedMDB dataset and summary
are stored, and show that the result of Qs

a matches that of
Qi

a; we also compare the execution times of Qi
a and Qs

a.
We show to attendees how EPPs support answering queries

using summaries on unmodified SPARQL processors via the
EPPstoSPARQL and EPPsItoEPPsS translations. Next, we
show the EPPstoSPARQL translation of Qi

a and how it re-
turns Joe Turkel. We then show the EPPstoSPARQL trans-
lation of Qs

a which includes SPARQL graph patterns linking
summary blocks with extent instances; then, we underline
how this is automatically handled via the EPPstoSPARQL
translation. We give evidence of the versatility of our ap-
proach on several popular unmodified SPARQL processors
including Jena/Fuseki, Sesame, and Virtuoso. In compar-
ing query performance across SPARQL systems, our exper-
imental results show that Sesame benefits less from sum-
maries than Fuseki. Moreover, although using summaries
with Fuseki sometimes improves query performance more
than Virtuoso, the latter provides the best improvement ra-
tio on average across all three systems with over 7x improve-
ment.

In the last part of the demonstration, we compare query
performance of a full structural summary with query per-
formance of selective summaries. A selective summary is
one that considers a subset of predicates to summarize. The
motivation for using fewer predicates is that, since a struc-
tural summary aims to improve navigational query perfor-
mance, then a summary that focuses on specific traversals
can potentially provide equal or better query performance;
we construct selective summaries using scenarios such as
long-running queries and queries from real-world query logs.

We again invite attendees to pick from a variety of navi-
gational queries for DBpedia or to write their own EPPs.
Suppose an attendee writes the EPPs expression Qj . We
execute Qj on a Virtuoso system that has the full sum-
mary loaded alongside the dataset graph and show that the
full summary can improve query performance over 10x in
comparison to answering queries using the dataset graph.
We also execute Qj on two other Virtuoso systems, each
of which loads the full DBpedia instance and one of the
d30 or d13 selective summaries (d30 picks the 30 distinct
predicates present in at least one user query from real-world
query logs, while d13 picks the 13 predicates present in the
longest running queries and is a subset of d30). Our results
show that selective summaries can improve query perfor-
mance over 15x.

Acknowledgments
The authors generously acknowledge the support of NSERC.
G. Pirrò’s work was partially supported by the Cyber Secu-
rity Technological District, financed by the Italian Ministry
of Education, University and Research.

5. REFERENCES
[1] S. Blom and S. Orzan. A Distributed Algorithm for

Strong Bisimulation Reduction of State Spaces. Electr.
Notes Theor. Comput. Sci., 68(4):523–538, 2002.

[2] V. Fionda, G. Pirrò, and M. P. Consens. Extended
Property Paths: Writing More SPARQL Queries in a
Succinct Way. In AAAI, 2015.

[3] R. Goldman and J. Widom. DataGuides: Enabling
Query Formulation and Optimization in
Semistructured Databases. In VLDB, 1997.

[4] O. Hassanzadeh and M. P. Consens. Linked Movie
Data Base. In LDOW, 2009.

[5] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke.
Computing Simulations on Finite and Infinite Graphs.
In FOCS, 1995.

[6] S. Khatchadourian and M. P. Consens. ExpLOD:
Summary-based Exploration of Interlinking and RDF
Usage in the Linked Open Data Cloud. In ESWC,
2010.

[7] S. Khatchadourian and M. P. Consens. Constructing
Bisimulation Summaries on a Multi-Core Graph
Processing Framework Graphs. In GRADES, 2015.

[8] A. Kyrola, G. Blelloch, and C. Guestrin. GraphChi:
Large-scale Graph Computation on Just a PC. In
OSDI, 2012.

[9] Y. Luo, Y. Lange, G. H.L. Fletcher, P. Bra, J.
Hidders, and Y. Wu. Bisimulation Reduction of Big
Graphs on MapReduce. In BNCOD, 2013.

[10] T. Milo and D. Suciu. Index Structures for Path
Expressions. In ICDT, 1999.

[11] F. Picalausa, Y. Luo, G. H. L. Fletcher, J. Hidders,
and S. Vansummeren. A Structural approach to
Indexing Triples. In ESWC, 2012.

[12] A. Schätzle, A. Neu, G. Lausen, and M.
Przyjaciel-Zablocki. Large-scale Bisimulation of RDF
graphs. In SWIM, 2013.

[13] O. Udrea, A. Pugliese, and V. S. Subrahmanian.
GRIN: A graph based RDF Index. In AAAI, 2007.

2031

