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ABSTRACT

The unprecedented spread of location-aware devices has resulted in
a plethora of location-based services in which huge amounts of spa-
tial data need to be efficiently processed by large-scale computing
clusters. Existing cluster-based systems for processing spatial data
employ static data-partitioning structures that cannot adapt to data
changes, and that are insensitive to the query workload. Hence,
these systems are incapable of consistently providing good per-
formance. To close this gap, we present AQWA, an adaptive and
query-workload-aware mechanism for partitioning large-scale spa-
tial data. AQWA does not assume prior knowledge of the data dis-
tribution or the query workload. Instead, as data is consumed and
queries are processed, the data partitions are incrementally updated.
With extensive experiments using real spatial data from Twitter,
and various workloads of range and k-nearest-neighbor queries,
we demonstrate that AQWA can achieve an order of magnitude en-
hancement in query performance compared to the state-of-the-art
systems.

1. INTRODUCTION

The ubiquity of location-aware devices, e.g., smartphones and
GPS-devices, has led to a large variety of location-based services
in which large amounts of geotagged information are created ev-
ery day. Meanwhile, the MapReduce framework [14] has proven
to be very successful in processing large datasets on large clusters,
particularly after the massive deployments reported by companies
like Facebook, Google, and Yahoo!. Moreover, tools built on top
of Hadoop [43], the open-source implementation of MapReduce,
e.g., Pig [32], Hive [41], Cheetah [11], and Pigeon [18], make it
easier for users to engage with Hadoop and run queries using high-
level languages. However, one of the main issues with MapRe-
duce is that executing a query usually involves scanning very large
amounts of data that can lead to high response times. Not enough
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attention has been devoted to addressing this issue in the context of
spatial data.

Existing cluster-based systems for processing large-scale spa-
tial data employ spatial partitioning methods in order to have
some pruning at query time. However, these partitioning meth-
ods are static and cannot efficiently react to data changes. For in-
stance, SpatialHadoop [17, 19] supports static partitioning schemes
(see [16]) to handle large-scale spatial data. To handle a batch of
new data in SpatialHadoop, the whole data needs to be repartitioned
from scratch, which is quite costly.

In addition to being static, existing cluster-based systems are in-
sensitive to the query workload. As noted in several research ef-
forts, e.g., [13, 33, 42], accounting for the query workload can be
quite effective. In particular, regions of space that are queried with
high frequency need to be aggressively partitioned in comparison
to the other less popular regions. This fine-grained partitioning of
the in-high-demand data can result in significant savings in query
processing time.

In this paper, we present AQWA, an adaptive and query-
workload-aware data partitioning mechanism that minimizes the
query processing time of spatial queries over large-scale spatial
data. Unlike existing systems that require recreating the partitions,
AQWA incrementally updates the partitioning according to the data
changes and the query workload. An important characteristic of
AQWA is that it does not presume any knowledge of the data dis-
tribution or the query workload. Instead, AQWA applies a lazy
mechanism that reorganizes the data as queries are processed.

Traditional spatial index structures try to increase the pruning
power at query time by having (almost) unbounded decomposition
until the finest granularity of data is reached in each split. In con-
trast, AQWA keeps a lower bound on the size of each partition that
is equal to the data block size in the underlying distributed file sys-
tem. In the case of HDFS, the reason for this constraint is twofold.
First, each file is allocated at least one block (e.g., 128 MB) even if
the size of the file is less than the block size in HDFS. In Hadoop,
each mapper typically consumes one file. So, if too many small par-
titions exist, too many short-lived mappers will be launched, taxing
the system with the associated setup overhead of these mappers.
Second, allowing too many small partitions can be harmful to the
overall health of a computing cluster. The metadata of the partitions
is usually managed in a centralized shared resource. For instance,
the NameNode is a centralized resource in Hadoop that manages
the metadata of the files in HDFS, and handles the file requests
across the whole cluster. Hence, the NameNode is a critical com-
ponent that, if overloaded with too many small files, slows down
the overall cluster (e.g., see [5, 26, 28, 44]).



AQWA employs a simple yet powerful cost function that models
the cost of executing the queries and also associates with each data
partition the corresponding cost. The cost function integrates both
the data distribution and the query workload. AQWA repeatedly
tries to minimize the cost of query execution by splitting some par-
titions. In order to choose the partitions to split and find the best
positions to split these partitions according to the cost model, two
operations are excessively applied: 1) Finding the number of points
in a given region, and 2) Finding the number of queries that over-
lap a given region. A straightforward approach to support these
two operations is to scan the whole data (in case of Operation 1)
and all queries in the workload (in case of Operation 2), which is
quite costly. The reason is that: i) we are dealing with big data in
which scanning the whole data is costly, and ii) the two operations
are to be repeated multiple times in order to find the best partition-
ing. To address these challenges, AQWA employs a set of main-
memory structures that maintain information about the data distri-
bution as well as the query workload. These main-memory struc-
tures along with efficient summarization techniques from [8, 25]
enable AQWA to efficiently perform its repartitioning decisions.

AQWA supports spatial range and k-Nearest-Neighbor (kNN,
for short) queries. Range queries are relatively easy to process
in MapReduce-based platforms because the region (i.e., window)
that bounds the answer of a query is predefined, and hence the
data partitions that overlap that region can be determined before
the query is executed. However, the region that confines the an-
swer of a kNN query is unknown until the query is executed. Ex-
isting approaches (e.g., [19]) for processing a kNN query over big
spatial data require two rounds of processing in order to guarantee
the correctness of evaluation, which implies high latency. AQWA
presents a more efficient approach that guarantees the correctness
of evaluation through a single round of computation while minimiz-
ing the amount of data to be scanned during processing the query.
To achieve that, AQWA leverages its main-memory structures to
efficiently determine the minimum spatial region that confines the
answer of a kNN query.

AQWA can react to different types of query workloads. Whether
there is a single hotspot area (i.e., one that receives queries more
frequently, e.g., downtown area), or there are multiple simultane-
ous hotspots, AQWA efficiently determines the minimal set of par-
titions that need to be split, and accordingly reorganizes the data
partitions. Furthermore, when the workload permanently shifts
from one (or more) hotspot area to another, AQWA is able to effi-
ciently react to that change and update the partitioning accordingly.
To achieve that, AQWA employs a time-fading counting mech-
anism that alleviates the overhead corresponding to older query-
workloads.

In summary, the contributions of this paper are as follows.

e We introduce AQWA, a new mechanism for partitioning big
spatial data that: 1) can react to data changes, and 2) is
query-workload-aware. Instead of recreating the partitions
from scratch, AQWA adapts to changes in the data by incre-
mentally updating the data partitions according to the query
workload.

We present a cost-based model that manages the process of
repartitioning the data according to the data distribution and
the query workload while abiding by the limitations of the
underlying distributed file system.

We present a time-fading mechanism that alleviates the
repartitioning overhead corresponding to older query-
workloads by assigning lower weights to older queries in the
cost model.
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e Unlike the state-of-the-art approach (e.g., [19]) that requires
two rounds of computation for processing a kNN query on
big spatial data, we show how a kNN query can be efficiently
answered through a single round of computation while guar-
anteeing the correctness of evaluation.

We show that AQWA achieves a query performance gain of
one order of magnitude in comparison to the state-of-the-art
system [19]. This is demonstrated through a real implemen-
tation of AQWA on a Hadoop cluster where Terabytes of real
spatial data from Twitter are acquired and various workloads
of range and kNN queries are processed.

The rest of this paper proceeds as follows. Section 2 discusses
the related work. Section 3 gives an overview of AQWA. Sections 4
and 5 describe how data partitioning and query processing are per-
formed in AQWA. Section 6 explains how concurrency and system
failures are handled in AQWA. Section 7 provides an experimental
study of the performance of AQWA. Section 8 includes concluding
remarks and directions for future work.

2. RELATED WORK

Work related to AQWA can be categorized into four main
categories: 1) centralized data indexing, 2) distributed data-
partitioning, 3) query-workload-awareness in database systems,
and 4) spatial data aggregation and summarization.

In the first category, centralized indexing, e.g., B-tree [12], R-
tree [24], Quad-tree [39], Interval-tree [10], k-d tree [9], the goal
is to split the data in a centralized index that resides in one ma-
chine. The structure of the index can have unbounded decomposi-
tion until the finest granularity of data is reached in each partition.
This model of unbounded decomposition works well for any query
workload distribution; the very fine granularity of the splits enables
any query to retrieve its required data by scanning minimal amount
of data with very little redundancy. However, as explained in Sec-
tion 1, in a typical distributed file system, e.g., HDFS, it is impor-
tant to limit the size of each partition because allowing too many
small partitions can be very harmful to the overall health of a com-
puting cluster (e.g., see [5, 26, 28, 44]). Moreover, in Hadoop for
instance, too many small partitions lead to too many short-lived
mappers that can have high setup overhead. Therefore, AQWA
keeps a lower bound on the size of each partition that is equal to
the data block size in the underlying distributed file system (e.g.,
128 MB in HDFS).

In the second category, distributed data-partitioning, e.g., [19,
20, 21, 22, 27, 30, 31], the goal is to split the data in a dis-
tributed file system in a way that optimizes the distributed query
processing by minimizing the I/O overhead. Unlike the central-
ized indexes, indexes in this category are usually geared towards
fulfilling the requirements of the distributed file system, e.g., keep-
ing a lower bound on the size of each partition. For instance, the
Eagle-Eyed Elephant (E3) framework [20] avoids scans of data par-
titions that are irrelevant to the query at hand. However, E3 con-
siders only one-dimensional data, and hence is not suitable for spa-
tial two-dimensional data/queries. [17, 19] present SpatialHadoop;
a system that processes spatial two-dimensional data using two-
dimensional Grids or R-Trees. A similar effort in [27] addresses
how to build R-Tree-like indexes in Hadoop for spatial data. [35,
34] decluster spatial data into multiple disks to achieve good load
balancing in order to reduce the response time for range and par-
tial match queries. However, all the efforts in this category apply
static partitioning mechanisms that are neither adaptive nor query-
workload-aware. In other words, the systems in this category do not
provide a functionality to efficiently update the data partitions after



a set of data updates is received (i.e., appended). In this case, the
partitions for the entire dataset need to rebuilt, which is quite costly
and may require the whole system to halt until the new partitions
are created.

In the third category, query-workload-awareness in database
systems, several research efforts have emphasized the importance
of taking the query workload into consideration when design-
ing the database and when indexing the data. [13, 33] present
query-workload-aware data partitioning mechanisms in distributed
shared-nothing platforms. However, these mechanisms support
only one-dimensional data. [42] presents an adaptive indexing
scheme for continuously moving objects. [15] presents techniques
for supporting variable-size disk pages to store spatial data. [4]
presents query-adaptive algorithms for building R-trees. Although
the techniques in [4, 15, 42] are query-workload-aware, they as-
sume a centralized storage and processing platform.

In the fourth category, spatial data aggregation and summariza-
tion, several techniques have been proposed for efficiently aggre-
gating spatial data and supporting spatial range-sum queries. In
AQWA, computing the cost function requires support of two range-
sum queries, namely, 1) counting the number of points in a spatial
range, and 2) counting the number of queries that intersect a spatial
range. [25] presents the idea of maintaining prefix sums in a grid in
order to answer range-sum queries of the number of points in a win-
dow, in constant time, irrespective of the size of the window of the
query or the size of the data. The relative prefix sum [23] and the
space-efficient relative prefix sum [37] were proposed to enhance
the update cost and the space required to maintain the prefixes. [36]
further enhances the idea of prefix sum to support OLAP queries.
Generalizing the idea of prefix sums in a grid for counting the num-
ber of rectangles (i.e., queries) that intersect a spatial region is a bit
challenging due to the problem of duplicate counting of rectangles.
Euler histograms [8] were proposed to find the number of rectan-
gles that intersect a given region without duplicates. [7] and [40]
employ the basic idea of Euler histograms to estimate the selectiv-
ity of spatial joins. AQWA employs the the prefix sum techniques
in [25] and a variant of the Euler histogram in [8] to compute its
cost function in constant time, and hence efficiently determine its
repartitioning decisions.

3. PRELIMINARIES

We consider range and kNN queries over a set, say S, of data
points in the two-dimensional space. Our goal is to partition S
into a set of partitions such that the amount of data scanned by the
queries is minimized, and hence the cost of executing the queries is
minimized as well. The process of partitioning the data is guided
through a cost model that we explain next.

3.1 Cost Model

In AQWA, given a query, our goal is to avoid unnecessary scans
of the data. We estimate the cost of executing a query by the num-
ber of records (i.e., points) it has to read. Given a query workload,
we estimate the cost, i.e., quality, of a partitioning layout by the
number of points that the queries of the workload will have to re-
trieve. More formally, given a partitioning layout composed of a
set of partitions, say L, the overall query execution cost can be
computed as:

Cost(L) = Y Oq(p) x N(p), (1)

VpeL

where O, (p) is the number of queries that overlap Partition p, and
N (p) is the count of points in p.
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Figure 1: An overview of AQWA.

Theoretically, the number of possible partitioning layouts is ex-
ponential in the total number of points because a partition can take
any shape and can contain any subset of the points. For simplicity,
we consider only partitioning layouts that have rectangular-shaped
partitions. Moreover, to abide by the restrictions of typical dis-
tributed file systems, e.g., HDFS, we consider only partitions that
are of size greater than a certain limit, e.g., the block size in HDFS.
Our goal is to choose the cheapest partitioning layout according to
the above equation.

In AQWA, the query workload is not known in advance. As the
queries are processed, the query workload should be automatically
learned, and the underlying data points should be partitioned ac-
cordingly. Similarly, when the query workload changes, the data
partitions should be updated accordingly. Furthermore, as data up-
dates are received, the data partitions need to be incrementally up-
dated according to the distribution of the data and query workload.

3.2 Overview of AQWA

Figure 1 gives an overview of AQWA that is composed of two
main components: 1) a k-d tree decomposition' of the data, where
each leaf node is a partition in the distributed file system, and 2) a
set of main-memory structures that maintain statistics about the dis-
tribution of the data and the queries. To account for system failures,
the contents of the main-memory structures are periodically flushed
into disk. Upon recovery from a failure, the main-memory struc-
tures are reloaded from disk. Four main processes define the inter-
actions among the components of AQWA, namely, Initialization,
Query Execution, Data Acquisition, and Repartitioning.

o Initialization: This process is performed once. Given an ini-
tial dataset, statistics about the data distribution are collected.
In particular, we divide the space into a grid, say G, of n
rows and m columns. Each grid cell, say G[i, j], will con-
tain the total number of points whose coordinates are inside
the boundaries of G[¢, j]. The grid is kept in main-memory
and is used later on to find the number of points in a given
region in O(1).

Based on the counts determined in the Initialization phase,
we identify the best partitioning layout that evenly distributes

!The ideas presented in this paper do not assume a specific data
structure and are applicable to R-Tree or quadtree decomposition.

2064



the points in a kd-tree decomposition. We create the parti-
tions using a MapReduce job that reads the entire data and
assigns each data point to its corresponding partition. We
describe the initialization phase in detail in Section 4.1

Query Execution: Given a query, we select the partitions
that are relevant to, i.e., overlap, the invoked query. Then, the
selected partitions are passed as input to a MapReduce job to
determine the actual data points that belong to the answer of
the query. Afterwards, the query is logged into the same grid
that maintains the counts of points. After this update, we
may (or may not) take a decision to repartition the data.

Data Acquisition: Given a batch of data, we issue a MapRe-
duce job that appends each new data point to its correspond-
ing partition according to the current layout of the partitions.
In addition, the counts of points in the grid are incremented
according to the corresponding counts in the given batch of
data.

Repartitioning: Based on the history of the query workload
as well as the distribution of the data, we determine the parti-
tion(s) that, if altered (i.e., further decomposed), would result
into better execution time of the queries.

While the Initialization and Query Execution processes can be
implemented in a straightforward way, the Data Acquisition and
Repartitioning processes raise the following performance chal-
lenges:

e Overhead of Rewriting: A batch of data is appended during
the Data Acquisition process. To have good pruning power
at query time, some partitions need to be split. Furthermore,
the overall distribution of the data may change. Thus, we
may need to change the partitioning of the data. If the pro-
cess of altering the partitioning layout reconstructs the par-
titions from scratch, it would be very inefficient because it
will have to reread and rewrite the entire data. In Section 7,
we show that reconstructing the partitions takes several hours
for a few Terabytes of data. This is inefficient especially for
dynamic scenarios, where new batches of data are appended
on an hourly or daily basis. Hence, we propose an incremen-
tal mechanism to alter only a minimal number of partitions
according to the query workload.

Efficient Search: We repeatedly search for the best change to
do in the partitioning in order to achieve good query perfor-
mance. The search space is large, and hence, we need an ef-
ficient way to determine the partitions to be further split and
how/where the split should take place. We maintain main-
memory aggregates about the distribution of the data and the
query workload. AQWA employs the techniques in [25, 8]
to efficiently determine the partitioning decisions via main-
memory lookups.

Workload Changes and Time-Fading Weights: AQWA
should respond to permanent changes in the query workload.
However, we need to ensure that AQWA is resilient to tempo-
rary query workloads, i.e., avoid unnecessary repartitioning
of the data.

AQWA keeps the history of all queries that have been pro-
cessed. However, we need to differentiate between fresh
queries, i.e., those that belong to the current query-workload,
and relatively old queries. AQWA should alleviate the redun-
dant repartitioning overhead corresponding to older query-
workloads. Hence, we apply time-fading weights for the
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Figure 2: An example tree with 7 leaf partitions.

queries in order to alleviate the cost corresponding to old
queries according to Equation 1.

e Keeping a lower bound on the size of each partition: For
practical considerations, it is important to avoid small parti-
tions that can introduce a performance bottleneck in a dis-
tributed file system (e.g., see [5, 26, 28, 44]). Hence, in
AQWA, we avoid splitting a partition if any of the result-
ing two partitions is of size less than the block size in the
distributed file system (e.g., 128 MB in HDFS).

4. AQWA

4.1 Initialization

The main goal of AQWA is to partition the data in a way that
minimizes the cost according to Equation 1. Initially, i.e., before
any query is executed, the number of queries that will overlap each
partition is unknown. Hence, we simply assume a uniform distri-
bution of the queries across the data. This implies that the only
component of Equation 1 that matters at this initial stage is the
number of points in each partition. Thus, in the Initialization pro-
cess, we partition the data in a way that balances the number of
points across the partitions. In particular, we apply a recursive k-d
tree decomposition [9].

The k-d tree is a binary tree in which every non-leaf node tries to
split the underlying space into two parts that have the same num-
ber of points. Only leaf nodes contain the actual data points. The
splits can be horizontal or vertical and are chosen to balance the
number of points across the leaf nodes. Splitting is recursively ap-
plied, and stops if any of the resulting partitions is of size < the
block size. Figure 2 gives the initial state of an example k-d tree
with 7 leaf nodes along with the corresponding space partitions.
Once the boundaries of each leaf node are determined, a MapRe-
duce job creates the initial partitions, i.e., assigns each data point to
its corresponding partition. In this MapReduce job, for each point,
say p, the key is the leaf node that encloses p, and the value is p.
The mappers read different chunks of the data and then send each
point to the appropriate reducer, which groups the points that be-
long to the same partition, and ultimately writes the corresponding
partition file into HDFS.

The hierarchy of the partitioning layout, i.e., the k-d tree, is kept
for processing future queries. As explained in Section 3.2, once a
query, say g, is received, only the leaf nodes of the tree that overlap
q are selected and passed as input to the MapReduce job corre-
sponding to q.
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Horizontal Aggregation

(a) Sum after aggregation.

(b) O(1) lookups.

Figure 3: The prefix-sums for finding the number of points in
an arbitrary rectangle in constant time.

Efficient Search via Aggregation

An important question to address during the initialization phase is
how to split a leaf node in the tree. In other words, for a given
partition, say p, what is the best horizontal or vertical line that can
split p into two parts such that the number of points is the same
in both parts? Furthermore, how can we determine the number of
points in each split, i.e., rectangle? Because the raw data is not
partitioned, one way to solve this problem is to have a complete
scan of the data in order to determine the number of points in a
given rectangle. Obviously, this is not practical to perform.

Because we are interested in aggregates, i.e., count of points in
a rectangle, scanning the individual points involves redundancy.
Hence, in the initialization phase, we preprocess the raw data as in
a way that enables quick lookup (in O(1) time) of the count corre-
sponding to a given rectangle. We maintain a two-dimensional grid
that has a very fine granularity. The grid does not contain the data
points, but rather maintains aggregate information. In particular,
we divide the space into a grid, say G, of n rows and m columns.
Each grid cell, say G[i, j], initially contains the total number of
points that are inside the boundaries of G[¢, j]. This is achieved
through a single MapReduce job that reads the entire data and de-
termines the count for each grid cell. Afterwards, we aggregate the
data corresponding to each cell in GG using prefix-sums as in [25].

Refer to Figure 3 for illustration. For every row in G, we perform
horizontal aggregation, i.e., scan the cells from column O to column
m and aggregate the values as: G[i, j] = G[i, j| + G[i, j —
1]V j € [2, m]. Afterwards, we perform vertical aggregation for
each column, i.e., G[i, j] = G[i, j] + Gli — 1, j]Vi € [2, n].
At this moment, the value at each cell, say G[i, j], will correspond
to the total number of points in the rectangle bounded by G[0, 0]
(top-left) and G[i, j] (bottom-right). For example, the number of
points in the red rectangle of Figure 3(a) can be determined in O(1)
by simply retrieving the value of the shaded cell that corresponds
to the bottom-right corner of the rectangle. To compute the number
of points corresponding to any given partition, i.e., rectangle, only
four values need to be added/subtracted as shown in Figure 3(b).
Thus, the process of finding the number of points for any given
rectangle is performed in O(1).

In addition to the above summarization technique, instead of try-
ing all the possible horizontal and vertical lines to determine the
median line that evenly splits the points in a given partition, we
apply binary search on each dimension of the data. Given a rect-
angle of r rows and c columns, first, we try a horizontal split of
the rectangle at Row 5 and determine the number of points in the
corresponding two splits (in O(1) operations as described above).
If the number of points in both splits is the same, we terminate,
otherwise, we recursively repeat the process with the split that has
higher number of points. The process may be repeated for the ver-

tical splits if no even splitting is found for the horizontal splits. If
no even splitting is found for the vertical splits, we choose the best
possible splitting amongst the vertical and horizontal splits, i.e., the
split that minimizes the absolute value of the difference between the
number of points in the emerging splits.

The above optimizations of grid-based pre-aggregation are es-
sential for the efficiency of the initialization phase as well as the
Repartitioning process that we describe in the next section. With-
out pre-aggregation, e.g., using a straightforward scan of the entire
data, the partitioning would be impractical.

4.2 Data Acquisition and Repartitioning

4.2.1 Data Acquisition

Most sources of big spatial data are dynamic, where new batches
of data are received on an hourly or a daily basis. For instance,
since 2013, more than 500 Million tweets are created every day [3].
AQWA provides a functionality to append the data partitions with
new batches of data. In AQWA, after the Initialization process,
each of the partitions in the initial layout is appended with a new
set of data points during the Data Acquisition process. Appending
a batch of data is performed through a MapReduce job. In the Map
phase, each data point is assigned to the corresponding partition,
and in the Reduce phase, the data points are appended. In addi-
tion, each reducer determines the count of points it receives for the
grid cells that overlap with its corresponding partition. A tempo-
rary grid receives the aggregate counts and pre-computations are
performed the same way we explained in Section 4.1. Afterwards,
the counts in the fine-grained grid are incremented with the values
in the temporary grid.

We observe that after the data is appended, some (if not all) par-
titions may increase in size by acquiring more data points. In or-
der to have good pruning at query time, these partitions need to be
split. A straightforward approach for altering the partitions is to ag-
gressively repartition the entire data. However this would be quite
costly because the process of rereading and rewriting the entire data
is prohibitively expensive due to the size of the data. Furthermore,
this approach may require the entire system to halt until the new
partitions are created. As we demonstrate in Section 7, the pro-
cess of reconstructing the partitions takes several hours for a few
Terabytes of data, which is impractical for dynamic scenarios, e.g.,
Twitter datasets, where new batches of data need to be appended
frequently.

4.2.2  Adaptivity in AQWA

In AQWA, we apply an incremental mechanism that avoids
rereading and rewriting the entire dataset, but rather splits a min-
imal number of partitions according to the query workload. In
particular, after a query is executed, it may (or may not) trigger
a change in the partitioning layout by splitting a leaf node (i.e., a
partition) in the kd-tree into two nodes. The decision of whether
to apply such change or not depends on the cost function of Equa-
tion 1. Three factors affect this decision, namely, the cost gain that
would result after splitting a partition, the overhead of reading and
writing the contents of these partitions, and the sizes of the result-
ing partitions. Below, we explain each of these factors in detail.

1. The cost reduction that would result if a certain partition
is further split into two splits: Observe that a query usu-
ally partially overlaps few partitions. For instance, in Fig-
ure 4(a), ¢1 partially overlaps partitions A, D, and E. When
q1 1s executed, it reads the entire data of these overlapping
partitions. However, not all the data in these overlapping
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partitions is relevant, i.e., there are some points that are re-
dundantly scanned in the map phase of the MapReduce job
corresponding to ¢;. Thus, it would be beneficial w.r.t. ¢; to
further decompose, i.e., split, Partitions A, D, and E so that
the amount of irrelevant data to be scanned is minimized. For
example, assume that Partitions A, F, and D contain 20, 30,
and 15 points, respectively. According to Equation 1, the
cost corresponding to the partitioning layout of Figure 4(a)
is20 x 14+ 30 x 1 + 15 x 1 = 65. However, if Partition F
is split to Partitions £ and F», such that £; and > have 15
points each (Figure 4(b)), the cost would drop to 50; g1 will
have to read only half of the data in Partition F (i.e., Partition
FE)») instead of the entirety of Partition £. Thus, splitting a
partition may lead to a decrease in the cost corresponding to
a partitioning layout. Similarly, Partition A is split to A; and
Ao, and then Partition A; is further split to A;; and Aqo.
More formally, assume that a partition, say p, is to be split
into two Partitions, say pi and p>. We estimate the decrease
in cost, say Cy, associated with splitting p as:

Ca(Split, p, p1, p2) = C(p) — C(p1) — C(p2). (2)

F G F G
D D Eq
E
o} a1 Eo
B AT B
A AT Az
c Az c
(2) (b)

Figure 4: Incremental repartitioning of the data. Only parti-
tions A and F are split.

2. The cost of read/write during the split operation: Should we
decide to split a partition, the entire data of that partition will
have to be read and then written in order to create the new
partitions. More formally, assume that a partition, say p, is
to be split. We estimate the read/write cost associated with
the splitting process as:

Crw(p) =2 % N(p), (3)
where N (p) is the number of points in p.

3. The size of the resulting partitions: In AQWA, we ensure
that the size of each partition is greater than the block size
in the underlying distributed file system. If the number of
points in any of the resulting partitions is less than a threshold
minCount, the split operation is cancelled. minCount is
calculated as 212¢-2i2¢ where N B is the expected number
of bytes that a data point consumes, that can be estimated as
the total number of bytes in the dataset divided by the number
of points in the dataset.

According to Equations 2 and 3, we decide to split a partition,
say ps if:
Ca(Split, ps, ps1; ps2) > Cru
and N (ps1) > minCount 4)
and N (ps2) > minCount.

Observe that a query may overlap more than one partition. Upon
the execution of a query, say g, the cost corresponding to the par-
titions that overlap g changes. Also, for each of these partitions,
the values of cost decrease due to split (i.e., Cq) change. Two chal-
lenges exist in this situation:

1. How can we efficiently determine the best partitions to be
split? We need to choose the partition that, if split, would
reduce the cost the most.

2. How can we efficiently determine the best split of a partition
w.r.t. the query workload, i.e., according to Equation 1? We
already address this issue in Section 4.1, but w.r.t. the data
distribution only, i.e., without considering the query work-
load.

To address the first challenge above, i.e., selecting the best par-
titions to be split, we maintain a priority queue of candidate parti-
tions which we refer to as the split-queue. Partitions in the split-
queue are decreasingly ordered in a max-heap according to the cost
reduction that would result after the split operations. For each par-
tition, say ps, in the split-queue, we determine the best split that
would maximize the cost-reduction, i.e., Cy, that corresponds to
splitting ps. We explain the process of selecting the best split in
detail in the next section. Notice that for each partition, we subtract
the cost of the read/write associated with the split operation from
the value of the cost-reduction. Thus, the value maintained for each
partition in the split-queue is Cq — 2 X N (ps).

After a query is executed, the overlapping partitions are deter-
mined and their corresponding values are updated in the priority
queue. Observe that if the number of points in any of the resulting
partitions of a split operation is < minCount, the corresponding
partition is not inserted into the split-queue.

4.2.3 Efficient Search for the Best Split

As illustrated in Section 3.1, for a given partition, the different
choices for the position and orientation of a split can have different
costs. An important question to address is how to efficiently deter-
mine, according to the cost model of Equation 2, the best split of
a partition that would result in the highest cost gain. To compute
the cost corresponding to a partition and each of its corresponding
splits, Equation 1 embeds two factors that affect the cost corre-
sponding to a partition, say p, namely, 1) the number of points in
p, and 2) the number of queries that overlap p. In Section 4.1, we
demonstrate how to compute the number of points in any given par-
tition using an O(1) operation. Thus, in order to efficiently com-
pute the whole cost formula, we need an efficient way to determine
the number of queries that overlap a partition.

In Section 4.1 above, we demonstrate how to maintain aggregate
information for the number of points using a grid. However, ex-
tending this idea to maintain aggregate information for the number
of queries is challenging because a point resides in only one grid
cell, but a query may overlap more than one grid cell. Unless care-
ful aggregation is devised, over-counting may occur. We apply the
Euler Histogram that is introduced in [8, 7, 40] to address the prob-
lem of duplicate rectangle counting. We extend the fine-grained
grid G that maintains counts for the number of points (as explained
in Section 4.1). At each grid cell, say G[i, j] four additional coun-
ters are maintained, namely,

e (Ci: a counter for the number of queries that overlap G[i, j],

e (C: a counter for the number of queries that overlap G[i, j],
but not G[¢, j — 1] (not in left),
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(C1, Cz, Cs, C4) 1,1,,111,0,1,0.1,0,1,01,0,1,0
1,1,0,0 1,0,0,0 1,0,0,0 1,0,0,0
In cell
1,1,0,0 1,0,0,0 2,1,1,1 2,0,1,0 1,0,1,0 1,0,1,0
Not in Left
L 1,1,0,0/1,0,0,021,0,0 20,00 1,0,0,0:1,0,0,0
Not in_Top

1,1,0,0 1,0,0,0 1,0,0,0 1,0,0,0

Neither in Left nor Top

1,1,0,0 1,0,0,0 1,0,0,0 1,0,0,0

Figure 5: The four counters maintained for each grid cell.

e ('5: a counter for the number of queries that overlap G[i, j],
but not G[¢ — 1, j] (not in top), and

e (4 a counter for the number of queries that overlap G[i, j],
but not G[i — 1, j] or G[i, j — 1] (neither in left nor in top).

Figure 5 gives an illustration of the values of the four counters that
correspond to two range queries.

We maintain prefix-sums as in [25] for the values of C'; through
Cy in a way similar to the one discussed in Section 4.1. For Cb,
we maintain horizontal prefix-sums at each row. For C'3, we main-
tain vertical prefix-sums at each column. For Cjy, we horizontally
and then vertically aggregate the values in the same manner as we
aggregate the number of points (see Figure 3). As queries are in-
voked, the aggregate values of the counters are updated according
to the overlap between the invoked queries and the cells of the grid.
Observe that the process of updating the prefix-sums is repeated
per query. [23] introduces some techniques for minimizing the
update overhead required to maintain the prefix-sums. However,
because the fine-grained grid that maintains the counts resides in
main-memory it is is cheap to update even if the techniques in [23]
are not applied.

A partition, say p, can be divided into four regions R; through
Ry as illustrated in Figure 6. To determine the number of queries
that overlap a certain partition, say p, we perform the following
four operations.

e We determine the value of C; in Region R;, which is the
top-left grid cell that overlaps p.

e We determine the aggregate value of C'> in Region Rz, which
is the top border of p except for the top-left cell.

e We determine the aggregate value of C's in Region R3, which
is the left border of p except for the top-left cell.

e We determine the aggregate value of C4 for Region Ry,
which is every grid cell that overlaps p except for the left
and top borders.

Because prefix-sums are maintained for Counters C'; through Cl4,
each of the above aggregate values can be obtained in constant time
as in [25]. The sum of the above values represents the number
of queries that overlap p. Thus, we can determine the number of
queries that overlap a partition in an O(1) computation. This re-
sults in efficient computation of the cost function and significantly
improves the process of finding the best split of a partition. Given
a partition, to find the best split that evenly distributes the cost be-
tween the two splits, we apply a binary search in a way that is sim-
ilar to the process we discuss in Section 4.1. The main difference
is that the number of queries is considered in the cost function.

Number of all overlapping
queries (C4) in top left cel

+ Sum of not in left queries\
(C2) in top row _

+ Sum of not in top queries
(Ca) in left column

+ Sum of neither in left nor Rs R

in top queries (C4) forthe —|
remaining —

Figure 6: Determining the number of queries that overlap a
partition in O(1).

4.2.4  Accounting for Workload Changes

AQWA is resistant to abrupt or temporary changes to the query
workload. Inequality 4 ensures that AQWA does not aggressively
split partitions that do not receive queries or that receive queries
with lower frequency. A partition is split only if it is worth splitting,
i.e., the gain corresponding to the split is greater than the overhead
of the split operation. However, when the query workload perma-
nently changes (e.g., moves to a new hotspot area), the number of
queries received in the new workload would satisfy Inequality 4,
and the desired splits will be granted.

Time-Fading Weights

AQWA keeps the history of all the queries that have been pro-
cessed. For every processed query, say g, grid cells overlapping
q are determined, and the corresponding four counters are incre-
mented for each cell (see Section 4.2.3). Although this mechanism
captures the frequency of the queries, it does not differentiate be-
tween fresh queries (i.e., those that belong to the current query-
workload) and relatively old queries; all queries have the same
weight. This can lead to poor performance in AQWA especially
when a query workload changes. To illustrate, consider a scenario
where a certain area, say A,q4, has received queries with high fre-
quency in the past, but the workload has permanently shifted to
another area, say Ancw. If @ new batch of data is received, it may
trigger a set of split operations at A,;4. However, these splits are
redundant, i.e., would not lead to any performance gains because
the workload has permanently shifted.

To address this issue, we need a way to “forget” older queries, or
equivalently alleviate their weight in the cost function. To achieve
that, we differentiate between queries received in the last 7" time
units that we refer to as current queries, and queries received be-
fore T time units that we refer to as old queries. T is a system pa-
rameter that we refer to as the time-fading cycle. In Section 7.2.2,
we study the effect of varying 7.

For each of the four counters (refer to ¢; through c4 in Sec-
tion 4.2.3) maintained at each cell in the grid, we maintain separate
counts for the old queries and the current queries. The count cor-
responding to old queries, say Cy4, gets decaying weight by being
divided by c every T time units, where ¢ > 1. The count corre-
sponding to current queries, say Crew, has no decaying weight.
Every T time units, Cr,e is added to Cy;4, and then Cheqy is set to
zero. At any time, the number of queries in a region is determined
as (Cnew + Ctold)~

Observe that every 7' time units, the sum (Chew + Coid)
changes, and this can change the weights of the partitions to be
split. This requires revisiting each partition to determine its new
weight and its new order in the split-queue. A straightforward ap-
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proach is to update the values corresponding to all the partitions
and reconstruct the split-queue every 7' time units. However, this
approach can be costly because it requires massive operations to re-
build the split-queue. To solve this problem, we apply a lazy-update
mechanism, where we process the partitions in a round-robin cycle
that takes 7" time units to pass over all the partitions. In other words,
if N, is the number of partitions, we process only % partitions ev-

ery time unit. For each of the % partitions, we recalculate the cost
and reinsert these partitions into the split-queue. Eventually, after
T time units, all the entries in the split-queue are updated.

S. SUPPORT FOR KNN QUERIES

So far, we have only shown how to process spatial range queries,
and how to update the partitioning accordingly. Range queries are
relatively easy to process because the boundaries in which the an-
swer of the query resides are predefined (and fixed within the query
itself). Hence, given a range query, only the partitions that overlap
the query can be passed as input to the MapReduce job correspond-
ing to the query without worrying about losing the correctness of
the answer of the query. In contrast, for a kNN query, the bound-
aries that contain the answer of the query are unknown until the
query is executed. Hence the partitions that are needed as input
to the MapReduce job corresponding to the query are unknown.
In particular, the spatial region that contains the answer of a kNN
query depends on the value of k, the location of the query focal
point, and the distribution of the data (see [6]). To illustrate, con-
sider the example in Figure 7. Partition p in which ¢; resides is
sufficient to find ¢;’s k1-nearest-neighbors. However, for ko > ki,
Partition p is not sufficient, and two further blocks (one above and
one below) have to be considered. Similarly, Partition p is not suf-
ficient to find the k-closest neighbors of g2 because of the location
of g2 w.r.t. Partition p (i.e., being near one corner).

@

Figure 7: The partitions that contain the k-nearest-neighbors
of a query point vary according to the value of &, the location
of the query focal point, and the distribution of the data.

[19] tries to solve this challenge by following a three-step ap-
proach, where execution of the query starts with a MapReduce job
that takes as input the partition, say p, in which the query’s focal
point, say g, resides. In the second step, which is a correctness-
check step, the distance, say 7, between g and the kth neighbor is
determined, and a check is performed to make sure that the bound-
aries of p are within r distance from g, i.e., Partition p is sufficient
to guarantee the correctness of the answer. If it is not the case that
Partition p is sufficient, the third step is performed, where another
MapReduce job is executed with the partitions surrounding p being
added as input. The second and third steps are repeated until the
correctness-check is satisfied.
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A major drawback of the above solution is that it may require
successive MapReduce jobs in order to answer a single query. To
solve this problem, we present a more efficient approach that re-
quires only one MapReduce job to answer a kNN query. In par-
ticular, we make use of the fine-grained virtual grid that contains
statistics about the data distribution. Given a kNN query, we deter-
mine the grid cells that are guaranteed to contain the answer of the
query using the MINDIST and MAXDIST metrics as in [38]. In par-
ticular, we scan the grid cells in increasing order of their MINDIST
from the query focal point, and count the number of points in the
encountered cells. Once the accumulative count reaches the value
k, we mark the largest MAXDIST, say M, between the query fo-
cal point and any encountered cell. We continue scanning until the
MINDIST of a scanned grid cell is greater than M. To illustrate, con-
sider the example in Figure 8. Given Query g, count of the number
of points in the cell that contains ¢ is determined. Assuming that
this count is > k, the MAXDIST between ¢ and the cell in which it
is contained is determined. Cells that are within this MAXDIST are
guaranteed to enclose the k-nearest-neighbors of g.

S

q

Figure 8: Finding the grid cells (with fine granularity) that are
guaranteed to enclose the answer of a kNN query. The rectan-
gular region that bounds these cells transforms a kNN query
into a range query.

After we determine the grid cells that contain the query answer,
we determine a rectangular region that bounds these cells. Thus, we
have transformed the kNN query into a range query, and hence our
algorithms and techniques for splitting/merging and search can still
handle NN queries in the same way range queries are handled.

After the rectangular region that bounds the answer is deter-
mined, the partitions that overlap that region are passed as input to
the MapReduce job corresponding to the query. Refer to Figure 9
for illustration. Partitions p1, p2, and p3 are passed as the input for
Query g2, while Partition p, is passed as the input for Query ¢ .

P2

Q2

NS

P

P3

Figure 9: A kNN query is treated as a range query once the
rectangular bounds enclosing the answer are determined.



Observe that the process of determining the region that encloses
the k-nearest-neighbors of a query point is efficient. The reason
is that the whole process is based on counting of main-memory
aggregates without any need to scan any data points. Moreover,
because the granularity of the grid is fine, the determined region
is compact, and hence few partitions will be scanned during the
execution of the kNN query, which leads to high query throughput.

6. SYSTEM INTEGRITY

6.1 Concurrency Control

As queries are received by AQWA, some partitions may need
to be altered. It is possible that while a partition is being split, a
new query is received that may also trigger another split to the very
same partitions being altered. Unless an appropriate concurrency
control protocol is used, inconsistent partitioning will occur.

To address the above issue, we use a simple locking mechanism
to coordinate the incremental updates of the partitions. In particu-
lar, whenever a query, say g, triggers a split, before the partitions
are updated, q tries to acquire a lock on each of the partitions to be
altered. If ¢ succeeds to acquire all the locks, i.e., no other query
has a conflicting lock, then ¢ is allowed to alter the partitions. The
locks are released after the partitions are completely altered. If ¢
cannot acquire the locks due to a concurrent query that already has
one or more locks on the partitions being altered, then the decision
to alter the partitions is cancelled. Observe that canceling such de-
cision may negatively affect the quality of the partitioning, but only
temporarily because for a given query workload, queries similar to
q will keep arriving afterwards and the repartitioning will eventu-
ally take place.

A similar concurrency issue arises when updating the split-
queue. Because the split-queue resides in main-memory, updating
the entries of queue is relatively fast (requires a few milliseconds).
Hence, to avoid the case where two queries result in conflicting
queue updates, we serialize the process of updating the split-queue
using a critical section.

6.2 Fault Tolerance

In case of system failures, the information in the main-memory
structures might get lost which can affect the correctness of the
query evaluation and the accuracy of the cost computations corre-
sponding to Equation 1.

The main-memory grid contains two types of counts: 1) counts
for the number of points, and 2) counts for the number of queries.
When a new batch of data is received by AQWA, the counts of
the number of points in the new batch are determined through a
MapReduce job that automatically writes these counts into HDFS.
Observe that the data points in the new batch are appended through
the same MapReduce job. At this moment, the counts (of the num-
ber of points) in the grid are incremented and flushed into disk.
Hence, the counts of the number of points are always accurate even
if failures occur. Thus, the kNN queries are always answered cor-
rectly.

As mentioned in Section 3.2, the counts corresponding to the
queries (i.e., rectangles) are periodically flushed to disk. Observe
that: 1) the correctness of query evaluation does not depend on
these counts, and 2) only the accuracy of the computation of the
cost function is affected by these counts, which, in the worst case,
leads to a delayed decision of repartitioning. In the event of failure
before the counts are flushed into disk and if the query workload
is consistently received at a certain spatial region, the counts of
queries will be incremented and repartitioning will eventually oc-
cur.
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7. EXPERIMENTS

In this section, we evaluate the performance of AQWA. We re-
alized a cluster-based testbed in which we implemented AQWA as
well as static grid-based partitioning and static k-d tree partitioning
(as in [19, 16]).> We choose the k-d and grid-based partitioning as
our baselines because this allows us to contrast AQWA against two
different extreme partitioning schemes: 1) pure spatial decompo-
sition, i.e., when using a uniform grid, and 2) data decomposition,
i.e., when using a k-d tree.

Experiments are conducted on a 7-node cluster running
Hadoop 2.2 over Red Hat Enterprise Linux 6. Each node in the
cluster is a Dell r720xd server that has 16 Intel ES-2650v2 cores,
64 GB of memory, 48 B of local storage, and a 40 Gigabit Ethernet
interconnect. The number of cores in each node enables high paral-
lelism across the whole cluster, i.e., we could easily run a MapRe-
duce job with 7 x 16 = 112 Map/Reduce tasks.

We use a real spatial dataset from Twitter. The tweets were
gathered over a period of nearly 20 months (from January 2013
to July 2014). Only the tweets that have spatial coordinates inside
the United States were considered. The number of tweets in the
dataset is 1.5 Billion tweets comprising about 250 GB. The format
of each tweet is: tweet identifier, timestamp, longitude-latitude co-
ordinates, and text. To better show the scalability of AQWA, we
have further replicated this data 10 times, reaching a scale of about
2.5 Terabytes.

We virtually split the space according to a 1000 x 1000 grid that
represents 1000 normalized unit-distance measures in each of the
horizontal and vertical dimensions. Because we are dealing with
tweets in the United States, that has an area of 10 Million square
kilometers, each grid cell in our virtual partitioning covers nearly
10 square kilometers, which is a fairly good splitting of the space
given the large scale of the data. The virtual grid represents the
search space for the partitions as well as the count statistics that we
maintain.
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Figure 10: Performance of the initialization process.

In this experiment, we study the performance of the initialization
process of AQWA (Section 4.1). Figure 10 gives the execution time
of the initialization phase for different sizes of the data. Observe
that the initialization phase in AQWA is the same as that of a k-d
tree partitioning. Hence, in the figure, we compare the performance
of AQWA’s initialization phase against the partitioning process of
a uniform grid. For the grid-partitioning, we set the number of
partitions to the number of partitions resulting from the k-d tree.
Recall that in the initialization phase of AQWA, we apply recursive

2Qur implementation is publicly available on GitHub [1].



k-d partitioning, and we stop when splitting a partition would result
into small partitions, i.e., of size less than the block size in HDFS.

We observe that grid-partitioning requires relatively high execu-
tion time. Each reduce task handles the data of one partition. Due
to the skewness of the data distribution, the load across the reduce
tasks will be unbalanced, causing certain grid cells, i.e., partitions,
to receive more data points than others. Because a MapReduce job
does not terminate until the last reduce task completes, the unbal-
anced load leads to a relatively high execution time compared to the
kd-tree. In contrast, the k-d tree partitioning, which is employed by
AQWA, balances the data sizes across all the partitions.

We also observe that as the data size increases, the time required
to perform the partitioning increases. As Figure 10(b) demon-
strates, building the partitions from scratch for the whole data takes
nearly five hours for only two Terabytes of data. Although this
is a natural result, it motivates AQWA'’s incremental methodology
in repartitioning, which is to avoid repartitioning the whole data
throughout the system lifetime. In particular, after the initializa-
tion phase, AQWA never reconstructs the partitions again if new
batches of data are received. In contrast, AQWA alters a minimal
number of partitions according to the query workload and the data
distribution.

7.2 Adaptivity in AQWA

In the following experiments, we study the query performance in
AQWA. Our performance measures are: 1) the system throughput,
which indicates the number of queries that can be answered per unit
time, and 2) the split overhead, which indicates the time required to
perform the split operations. To ensure full system utilization, we
issue batches of queries that are submitted to the system at once.
The number of queries per batch is 20. The throughput is calculated
by dividing 20 over the elapsed time to process the queries in a
batch.

7.2.1 Data Acquisition and
Incremental Repartitioning

In this experiment, we study the query performance of AQWA
after batches of data are appended through the data acquisition pro-
cess. To simulate a workload with hotspots, we concentrate the
queries over the areas that we identify as having relatively high
data density. Figure 11 gives the query performance when batches
of tweets are appended, where each batch is nearly 50 GB. Note
that appending each batch of data takes almost the same time it
takes to create partitions for 50 GB of data (i.e., first reading in Fig-
ure 10(a)). In this experiment, we focus on the query performance
after the data is appended. Each point in Figure 11(a) represents the
average performance for 50 batches of queries (each of 20 queries).
Each point in Figure 11(b) represents the total time required for all
the split operations for all the 50 batches, i.e., 1000 queries. Fig-
ure 12 repeats the same experiment, but for a higher scale, where
250 GB of data is appended at each batch.

As Figures 11 and 12 demonstrate, AQWA is an order of magni-
tude faster than a static grid-partitioning, and nearly 4 times faster
than a static k-d partitioning. As more data is appended, the perfor-
mance of both the static grid and k-d partitioning degrades because
both are static. In contrast, AQWA maintains steady throughput re-
gardless of the overall size of the data because it can dynamically
split the partitions according to the query workload. One can ar-
gue that the static k-d partitioning could split as data is appended,
however, this is quite costly because it requires reading and writ-
ing (almost) all the partitions (i.e., the entire data) from scratch.
In contrast, AQWA determines a minimal set of partitions to split
according to the query workload.

Query Performance Time of Split Operations

3
3

* AQWA

Time (sec)

4 Static k-d tree
o Static Grid 6
* AQWA

Throughput (query / min)
5

1 2 3 4 5 1 2 3 4 5
Timeline — Data Batch ID

(b) Split overhead

Timeline — Data Batch ID

(a) Query performance

Figure 11: Performance with data updates for small scale data.
Each data batch is 50 GB.
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Figure 12: Performance with data updates for large scale data.
Each data batch is 250 GB.

Figures 11(b) and 12(b) give the overhead incurred by AQWA in
order to incrementally update the partitions. Notice that this over-
head is in the scale of seconds, and hence is negligible when com-
pared to the hours required to recreate the partitions from scratch
(refer to Figures 10(b) and 10(a)). Furthermore, this overhead is
amortized over 1000 queries. Observe that the split overhead is not
consistently the same for each data batch because the distribution
of the data can change from one batch to another, which directly
affects the sizes of the partitions to be split.

In the above experiment, we have used range queries of size 5x 5
according to our virtual grid, which is equivalent to 0.0025% of the
area of the United States. Figure 13 gives the steady-state perfor-
mance, i.e., at the last data batch, when varying the query region
size. Observe that the performance degrades when the query area
size increases. However, an area of 1% of the United States is fairly
large (10,000 square kilometers). Figure 14 gives the performance
of kNN queries for different values of k.
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Figure 13: Performance of Range queries against the query re-
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7.2.2  Handling Multiple Query-Workloads

In this set of experiments, we study the effect of having two
or more query-workloads. To have realistic workloads, i.e, where
dense areas are likely to be queried with high frequency, we iden-
tify 5 hotspot areas that have the highest density of data. We have
two modes of operation:

1. Serial Execution: In this mode, we simulate the migration
of the workload from one hotspot to another. For instance, if
we have 2000 queries and 2 hotspots, the first 1000 queries
will be executed over one hotspot, followed by the other 1000
queries executed over the other hotspot.

2. Interleaved Execution: In this mode, queries are executed
across the hotspots simultaneously, i.e., they are generated in
a round-robin fashion across the hotspots. For instance, for
2000 queries and 2 hotspots, say h1 and ha, the first query is
executed at hi, the second query is executed at h2, the third
query is executed at k1, and so forth.
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Figure 15: Serial execution of five different hotspots.

Figure 15 gives the performance for the serial execution of five
hotspots, where each hotspot gets 1000 range queries of region
0.01% of the area of the United States. Observe that due to the
skewness in the data, some hotspots may incur higher split over-
head than others (Figure 15(b)). Similarly, the query throughput is
not the same at all hotspots. However, for all hotspots, AQWA is
superior to the static grid and k-d partitioning (Figure 15(a)).

As discussed in Section 4.2.4, AQWA differentiates between
older workloads and the current workloads through the time-fading
mechanism, which enables AQWA to avoid redundant split opera-
tions and reduce the overhead of repartitioning. To demonstrate the
effect of varying the time-fading cycle 7', we serially execute 2000
queries at two hotspots. After the queries in the first hotspot are ex-
ecuted, some queries are executed at the second hotspot, and at this
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Figure 16: Performance against the time-fading cycle 7 for se-
rial hotspot execution.

point a batch of data of 250 GB is received. Figure 16 gives the per-
formance when varying the time-fading cycle T'. As Figure 16(b)
demonstrates, a small value of the fading-cycle (i.e., 100 queries or
less) leads to a 5 times reduction in the split overhead. In contrast,
a relatively large fading-cycle (i.e., 1000 queries or more) does
not avoid that redundant overhead. In all cases, however, AQWA
achieves superiority in terms of query throughput (Figure 16(a))
over both the static grid and k-d partitioning.

We have also experimented a mode of operation that is slightly
different from the serial execution mode, where the transition from
one hotspot to another is gradual. For instance, if we have two
hotspots, say hi and hz, some queries are executed first at hi,
then, afterwards, some queries are executed at h; and ho simul-
taneously. Finally, all the queries are executed at h2 only. We find
that this mode of operation yields (almost) the same performance
as the serial mode. We omit the results due to space limitations.

Figure 17 gives the performance for the interleaved mode of ex-
ecution of different numbers of simultaneous hotspots, where each
hotspot receives 1000 range queries of region 0.01% of the area
of the United States. As the number of simultaneous hotspots in-
creases, the split overhead increases. However, the split overhead
is amortized over thousands of queries. Moreover, the incremental
repartitioning overhead is much smaller than the time required to
recreate the partitions from scratch.
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Figure 17: Performance against the number of hotspots.

8. CONCLUDING REMARKS

In this paper, we presented AQWA, an adaptive and query-
workload-aware partitioning mechanism for large-scale spatial
data. In AQWA we addressed several performance and system
challenges; these include the limitations of Hadoop (i.e., the Na-
meNode bottleneck), the overhead of rebuilding the partitions in
HDEFS, the dynamic nature of the data where new batches are cre-
ated every day, and the issue of workload-awareness where not
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only the query workload is skewed, but also it can change. We
showed that AQWA successfully addresses these challenges and
provides an efficient spatial-query processing framework. Using
our implementation of AQWA on a Hadoop cluster, real spatial data
from Twitter, and various workloads of range and kNN queries, we
demonstrated that AQWA outperforms the state-of-the-art system
by an order of magnitude in terms of query performance. Further-
more, we demonstrated that AQWA incurs little overhead (during
the process of repartitioning the data) that is negligible when com-
pared to the overhead of recreating the partitions.

Although our experimental evaluation is based on Hadoop, we
believe that AQWA can be applied to other platforms. An exam-
ple is Storm [2], a distributed platform for processing streaming
data. In Storm, distributed processing is achieved using topologies
of bolts (i.e., processing units), where the bolts can be connected
according to a user-defined structure (not necessarily MapReduce).
AQWA can dynamically reorganize the data in the bolts accord-
ing to the query workload and the data distribution (e.g., see [29]).
One of the limitations of Storm is that the number of bolts is fixed
throughout the lifetime of a topology. Hence, in addition to the
split operations, AQWA has to support merge operations in order
to abide by that system limitation and keep a constant number of
data partitions (i.e., bolts).

In our design of AQWA, we focused on spatial range and kNN
queries, which cover a large spectrum of (useful) spatial queries.
Extending AQWA to spatial-join queries is another potential future
work. In particular, this demands extending AQWA’s cost model to
account for the overhead of communicating the data between the
processing units (e.g., mappers and reducers) in order to compute a
spatial join.
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