
Deployment of Query Plans on Multicores

Jana Giceva§ Gustavo Alonso§ Timothy Roscoe§ Tim Harris†

§Systems Group †Oracle Labs
Department of Computer Science, ETH Zürich Cambridge, UK

{gicevaj, alonso, troscoe}@inf.ethz.ch timothy.l.harris@oracle.com

ABSTRACT
Efficient resource scheduling of multithreaded software on multi-
core hardware is difficult given the many parameters involved and
the hardware heterogeneity of existing systems. In this paper we
explore the efficient deployment of query plans over a multicore
machine. We focus on shared query systems, and implement the
proposed ideas using SharedDB.

The goal of the paper is to explore how to deliver maximum per-
formance and predictability, while minimizing resource utilization
when deploying query plans on multicore machines. We propose
to use resource activity vectors to characterize the behavior of in-
dividual database operators. We then present a novel deployment
algorithm which uses these vectors together with dataflow infor-
mation from the query plan to optimally assign relational operators
to physical cores. Experiments demonstrate that this approach sig-
nificantly reduces resource requirements while preserving perfor-
mance and is robust across different server architectures.

1. INTRODUCTION
Increasing data volumes, complex analytical workloads, and ad-
vances in multicores pose various challenges to database systems:

First, most database systems experience performance degrada-
tion with increasing data volume and workload concurrency. The
loss in performance and stability is due to contention and load inter-
action among concurrently executing queries [23,38]. These effects
will become worse with more complex workloads.

Second, multicores, due to their parallelism and heterogeneity,
are a difficult target for databases since poor deployments and/or
scheduling lead to performance penalties [8,19]. The internal prop-
erties of the architecture dominate performance and require tailor-
ing of the operators to the architecture [5, 9, 29, 39].

Finally, a generous allocation of resources to guarantee perfor-
mance and stability leads to overprovisioning. Overprovisioning
results in lower efficiency and prevents the system from leveraging
the full potential of the underlying architecture. This problem is
being addressed in the context of virtualization and multitenancy
but it also exists on multicore machines [14, 33].

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 3
Copyright 2014 VLDB Endowment 2150-8097/14/11.

In this paper we address the question of how to efficiently deploy
query plans on multicore machines. In particular, we focus on two
problems: (i) consolidation of relational operators running on mul-
ticore according to temporal (when operators are active) and spatial
requirements (memory bandwidth, CPU demand), and (ii) resource
allocation to a given query plan, i.e., decide which operators should
be placed on which cores, rather than treating the cores as a homo-
geneous array of processors. The goal is to find a deployment that
minimizes the amount of resources used while maintaining perfor-
mance and stability guarantees.

To provide a concrete context and a platform for experimenta-
tion, we work on global query plans such as those used in shared
works systems and evaluate the ideas proposed on top of SharedDB
[17]. Shared work systems are good examples of increasing com-
plexity in query plans [4, 17, 20]. Even though most of these sys-
tems are motivated by multicores, to our knowledge no work has
been done in mapping their complex plans onto modern architec-
tures. Thus, with the results in the paper we provide both a con-
crete solution for a class of emerging systems, as well as a number
of ideas valuable for conventional engines running on multicore.

Based on this, the paper makes the following contributions:

• We show that scheduling query plans on multicores is a non-
trivial problem. We identify its performance implications
and characterize the elements needed to solve it.

• We introduce the concept of resource activity vectors (RAVs)
as a means to characterize and quantify the computational
and memory bandwidth requirements of relational operators.

• We present a novel deployment algorithm for temporal and
spatial scheduling that performs two important tasks: (i) com-
putes the minimum computational requirements of a query
plan, and (ii) suggests a deployment considering the NUMA-
properties of the underlying architecture. Our algorithm op-
erates on input consisting of the machine characteristics, op-
erators’ RAVs, and the dataflow properties of a query plan.

We evaluate our algorithm against existing deployment approaches
for a complex query plan (TPC-W workload) on two multicore ma-
chines with different architectures. We show that the proposed al-
gorithm decreases resource utilization (number of cores) by a factor
of 7.4 without sacrificing either system’s performance or its pre-
dictability. Results indicate that our approach based on RAVs ac-
curately characterizes resource utilization properties and require-
ments of relational operators. Furthermore, the characterization
is valid across different hardware architectures and over different
data volumes, thereby establishing a solid basis for future query
optimizers targeting multisocket multicore machines.

233

Q2

Q3

𝚪

𝚪

𝝉

Q1

C

Q2

𝚪

𝝉

Q1 Q3

𝚪

Query-centric Operator-centric

A B C A B C B A B A

Figure 1: Examples for query-centric and operator-centric execu-
tion models. Three different query types (Q1, Q2, and Q3) need
to be executed. The query-centric model generates three different
query plans, while the operator-centric uses data and work sharing
among operators and handles the three queries in a single plan.

2. BACKGROUND

2.1 Complex Query Plans
Several recent systems suggest sharing of computation and data as a
means to overcome resource contention and provide good and pre-
dictable performance. Such shared-work (SW) systems were first
introduced at the storage engine level in the form of shared (co-
operative) scans implemented in systems such as Blink [37], Cres-
cando [40] and in MonetDB/X100 [45]. Psaroudakis et al. [36]
describe the main approaches to work and data sharing: (a) simul-
taneous pipelining (SP) – originally introduced in QPipe [20], and
(b) global query plans (GQP) – introduced for joins in CJOIN [10]
and then extended to support more complex relational operators in
DataPath and SharedDB [4,17]. All these systems abandon the tra-
ditional query-at-a-time execution model (query-centric) and im-
plement an operator-centric query execution model (see Figure 1
for an illustration also motivated from the classification presented
by Psaroudakis et al. [36]).

Operator-centric systems try to maximize the sharing of both
computation and data among concurrent queries using shared op-
erators. By executing more queries in one go they achieve higher
throughput, and in some cases, also more stable performance. We
distinguish three common properties of these systems:

1. Operators are deployed as a pipeline (QPipe) or dataflow
graph (DataPath, SharedDB). This is particularly important
because the information about dataflow relationship can help
in achieving better data-locality when deploying an operator.

2. Plans are composed of shared and ‘always-on’ relational op-
erators (CJOIN, Blink, SharedDB, QPipe): the operators are
active throughout the whole execution of the workload and
are shared among the concurrently executing queries. Dif-
ferent systems leverage different techniques in order to max-
imize sharing of computation and data (batching, detecting
common sub-plans, or sub-expressions, etc).

3. Operators can be characterized as either blocking or non-
blocking, depending on whether one requires the full input
before starting to work or can start processing as data arrives.

We have implemented and evaluated our ideas on SharedDB. It
compiles the entire workload into a single global query plan that
serves hundreds of concurrent queries and updates, and can be
reused for a long period of time.

Sharing data and work can be easily exploited in a scalable and
generic way as a result of SharedDB’s batching of incoming queries
and updates. SharedDB’s query optimizer can automatically gener-
ate the global query plan, and assigns each operator to one core [18].

4

3 5

2

0

1

6

7

Core

0 D

R

A

M

L3 cache

Core

4
Core

8
Core

12

Core

16
Core

20
Core

24
Core

28

Figure 2: Layout of a typical four-socket AMD Bulldozer sys-
tem. One the right is the interconnect topology of the eight NUMA
nodes. On the left is the layout of cores on NUMA node 0. Note
that the used NUMA and core IDs are taken from the output of the
numactl --hardware command.

2.2 Scheduling of Shared Systems
Scheduling parallel query plans on multisocket multicore machines
is a challenging, multifaceted problem. Not only do modern ma-
chines add many more factors to consider (shared caches, shared
processing units, NUMA regions, processor interconnects, etc.),
but are also far more heterogeneous even among processors of the
same vendor. Although motivated by and designed for multicores,
operator-centric database engines have not yet addressed the prob-
lem of efficient resource utilization and deployment on multicore
machines. In this subsection we provide a short overview of the
current approaches.

Existing shared work systems have different approaches for as-
signing processing threads to their relational operators/operator’s
work units: a micro-engine’s thread pool [20], per-operator threads
[17], fixed worker threads executing specific work-units [4], etc.
All of these approaches, however, fix the number of threads as-
signed to the operators. Each thread is pinned to a particular core
and there is only one thread assigned to a core. Such an imple-
mentation provides (i) predictable performance because there is no
thread migration [17], and (ii) progress is always guaranteed [20].

The cost for this performant deployment is system-wide resource
overprovisioning. This problem is further aggravated by the rigidity
of assigning the same amount of resources for all operators, which
does not account for the individual resource footprints and require-
ments. Moreover, none of the approaches currently employed in
operator-centric systems takes into consideration the architecture
and properties of the multicore machine or the data-dependency of
the shared query plan.

2.3 Problem Statement
Our goal is to determine how to deploy a query plan minimizing the
amount of resources used while maintaining required performance
and predictability guarantees. There are two different aspects of the
problem: (i) temporal and (ii) spatial scheduling.

Temporal scheduling aims at deciding which operators are suit-
able candidates to time-share a CPU, i.e., can be deployed to run
on the same core. The challenging part is to avoid co-locating op-
erators which will interfere with each other, so that we maintain the
required system stability and performance. Example of a suitable
pair of operators that could time-share a core are pipelined blocking
operators where it is certain that the downstream operator is only
active after its predecessor has finished processing the result-set.
Additionally, they may also benefit from data locality.

Spatial scheduling, on the other hand, aims at determining which
cores should be used for the deployment of the operators. This has

234

Deployment algorithm

Query plan
Resource requirements
of relational operators Multicore machine

Data dependency
graph

Resource activity
vectors

Model of multicore
machine

Deployment layout of relational
operators to specific CPU cores

(1)
(2)

(3)

Figure 3: Sketch of the solution – overview of the information flow
in the deployment algorithm.

two versions: collocating operators to run concurrently on the same
core if one is CPU and the other is memory bound; and placing
operators communicating with each other in ways that optimize the
data traffic on the processor interconnect network. This is a difficult
problem which is architecture-dependent and must be addressed ac-
cordingly. In order to illustrate the complexity of the problem and
the necessity of appropriate solutions, we present a sample multi-
core architecture in Figure 2. By looking at the inter-NUMA links
one can easily grasp the difference in communication cost and re-
dundant data traffic on the interconnect network when one chooses
to place two communicating operators on cores 0 and 4 which share
a last level cache (LLC) and a local NUMA node, as opposed to us-
ing core 0 on socket 0 and core 1 which is on a remote socket (one
or two NUMA-hops away).

2.4 Sketch of the Solution
Optimized resource management and scheduling must take into
consideration (Figure 3): (1) the data-flow dependency graph in
the query plan which is used to determine temporal dependencies;
(2) the resource footprint and characteristics of the individual op-
erators, which are used to determine spatial placement; and (3) the
intrinsic properties of the underlying architecture, which determine
the available resources and constraints on the operator placement
and inter-operator communication.

The next two sections describe in detail the two main contri-
butions of the paper, the resource activity vectors as a means to
characterize the resource requirements of the database operators
(Section 3) (addressing points 2 and 3), and a novel algorithm (Sec-
tion 4) mapping operators to cores (under the constraints of point
1) while maintaining the system’s performance and stability.

3. RESOURCE ACTIVITY VECTORS
Good resource management and relational operator deployment re-
quires awareness of the thread’s resource requirements. In the last
decade, we have witnessed significant progress in tuning DBMS
performance to the underlying hardware [2, 3, 5, 9, 25, 29, 30, 39,
42, 45]. As a result databases and their performance have become
more sensitive to the resources they have at hand, and poor schedul-
ing can lead to performance degradation [19, 27].

In order to capture the relevant characteristics, in this paper we
introduce resource activity vectors (RAVs). These vectors concen-
trate on the most important resources, CPU and memory bandwidth
utilization. This approach of characterization is inspired by the
notion of activity vectors, initially introduced for energy-efficient
scheduling on multicores [32].

3.1 RAV Definition
We use RAVs to characterize the resource footprints of relational
operators. They summarize the amount of resources needed such
that each thread delivers its best performance. In the current imple-
mentation we consider two dimensions:

1. CPU utilization represents how efficiently the operator thread
uses the CPU throughout the workload execution. This is
highly relevant for the deployment algorithm as it identifies
the threads that are either rarely active, or when active make
poor use of the CPU time. These types of threads are usually
good candidates for sharing the core with another task. At
the other extreme, operator threads with high CPU utiliza-
tion are both active for a very long time and efficiently use
the CPU and should be thus left to run in isolation. This way
their performance will not be hurt by time-sharing the CPU.
We elaborate more in Section 3.3.

2. Memory bandwidth utilization identifies both interconnect
and DRAM bandwidth consumption of the operator threads
throughout the workload execution. This information is rel-
evant for deployment because, for instance, if several band-
width thirsty operators are placed on the same NUMA node,
one can easily hit the bandwidth limit and affect performance.
Similar to the arguments used for the CPU utilization, it is
not enough to look only at the memory bandwidth utilization
as an average over the active time but over the total duration
of the workload execution. Only then will we be able to avoid
over-provisioning of the machine resources by reducing the
significance of short running tasks with heavy memory ac-
cess requirements. We elaborate more in Section 3.4.

3.2 RAV Implementation
One approach to obtain the RAV values is to model the relational
operators and use the model to deduce their behavior on a set of
resources. The alternative is to treat the operator threads as ‘black
boxes’ and use available hardware instrumentation tools to calcu-
late their resource requirements. We chose the second option be-
cause we believe it offers better scalability and could also handle
future hardware extensions.

The operator threads were instrumented on two different archi-
tectures (introduced in Section 5.1). The Performance Measuring
Units (PMUs) on both architectures differ in their structure, orga-
nization and supported events [1, 16, 21, 22]. For simplicity of ar-
gumentation in this paper we are only going to use generic names,
as summarized in Table 1.

The instrumentation is performed while running a representative
sample of the workload in the following way: in the initial system
deployment all operator threads are pinned to different cores with
nothing else scheduled at the time. Every PMU has a number of
registers that can be used for gathering performance event counts.

Table 1: Instrumentation events, terminology description

Term Description
cycles CPU clocks unhalted, i.e., # of clocks,

when the CPU was not idle
ret_inst # of useful instructions the CPU executes

on behalf of the program
DRAM_accesses # of DRAM accesses by the program as

measured by the memory controller(s)
sys_read # of system reads by coherency state
sys_write # of octwords written to system
LLC_misses # of last level cache misses

235

Because there is a limited number of such registers, we execute a
number of runs to gather all data required for the statistics. Upon
completion of data gathering, we postprocess the measurements to
derive the final values of the two RAV components.

When the number of cores on the machine is smaller than the
total number of operators, one can use the ‘separate-thread’ option
in the profiling tool. This way the post-processing step can distin-
guish between events that occurred as a result of another thread’s
activity, running on the same core.

3.3 Capturing CPU Utilization
The CPU utilization needs to represent both efficient utilization of
the CPU cycles when in possession of the core, as well as the active
time of the operator thread as a fraction of the total duration of the
workload-sample execution.

In order to derive the efficient utilization of the CPU, we calcu-
late the IPC (instructions per cycle) value for each operator. The
IPC can be calculated using the ret_inst and cycles events.

Although we work with ‘always-on’ operators, they are not ac-
tive at the same time, for instance, because of a data-dependency.
Furthermore, we expect to see discrepancies among operators when
comparing their active runtime. As mentioned earlier, the deploy-
ment algorithm should consider the substantial difference in long-
and short-running threads and handle each class accordingly. The
active runtime of a thread is derived as the ratio of total number of
unhalted CPU cycles measured on that core to the total duration of
the workload-sample execution.

The formula used to calculate CPU utilization for the RAVs nor-
malizes the thread’s IPC value with its active runtime as presented
in Equation (1). Please note that after simplifying the formula,
the CPU utilization is only dependent on the measured number of
ret_inst events and the total_cycles (duration of the work-
load sample). Also note that the latter one is constant for all opera-
tors in the same query plan.

CPUutil = IPC× active time

=
ret_inst

cycles
× cycles

total_cycles

=
ret_inst

total_cycles

(1)

3.4 Capturing Memory Utilization
The values for memory bandwidth utilization can be calculated in
a similar fashion. The first factor is the measured data bandwidth
transfer (in bytes). We gather information for both the intercon-
nect and the DRAM bandwidth utilization. The events used for
data gathering and exact formulas used for deriving these values
are highly architecture-dependent. While on AMD the core PMUs
can gather specific events that capture both DRAM and system ac-
cesses [16], on Intel one is limited to using approximation formulas
based on the last level cache (LLC) [21].

The second factor, just as in the CPU utilization case, is the active
runtime of the operator threads. The total duration of the workload
sample is used to normalize the memory bandwidth requirements
of the threads of interest. Equation (2) shows the derivation for
memory bandwidth utilization:

MEMutil = bandwidth× active time

=
bytes

cycles
× cycles

total_cycles

=
bytes

total_cycles

(2)

The bandwidth utilization of an operator is only dependent on the
amount of data transfered over the duration of the workload sam-
ple (expressed as total_cycles). For simplicity the total bytes
transferred is the sum of interconnect and DRAM bandwidth con-
sumption (events DRAM_accesses, sys_read, sys_write).

Note that with this particular profiling setup (‘operator-per-core’
deployment, and distributing all operators across the cores), the
memory and in particular the interconnect bandwidth utilization
for the operators is overestimated. If the operators are placed on
the same NUMA region, it is likely that most of the data-transfer
would occur via the shared last-level cache.

3.5 Parallel Operators
Until now, we have discussed how to capture the resource footprints
and requirements of single-threaded operators. We assume that the
degree of parallelism assigned to an operator is decided by the op-
timizer. Multithreaded operators are then supported in a similar
manner – we just consider the individual operator threads as sepa-
rate entities to be scheduled and hence RAV-annotated. In fact, in
the context of SharedDB, we already do this for the scans. The per-
formance of a scan operator, like Crescando (used in SharedDB),
can be improved by increasing the number of scan threads working
on horizontal partitions. In our experiments we RAV-annotate and
schedule each scan thread separately.

4. DEPLOYMENT ALGORITHM
The deployment algorithm we propose aims at delivering a de-
ployment plan of the operators which (i) minimizes the computa-
tional and bandwidth requirements of the query plan; (ii) provides
NUMA-aware deployment of the relational operators; and (iii) en-
hances data-locality.

As presented in Figure 4, the algorithm consists of four phases:
(1) operator graph collapsing, (2) bin-packing of relational oper-
ators to clusters based on the CPU utilization dimension of the
RAVs, (3) bin-packing of operator-clusters (output of (2)) to num-
ber of NUMA nodes based on the RAV’s memory bandwidth uti-
lization dimension as well as the capacity of the NUMA nodes and
(4) deployment mapping of the computed number of NUMA nodes
onto a given multicore machine. The first two phases compute
the required number of cores which corresponds to the temporal
scheduling subproblem, the third phase approximates the minimum
number of required NUMA nodes, and the fourth computes the fi-
nal placement of the cores on the machine such that it minimizes
bandwidth usage – spatial scheduling subproblem.

4.1 Operator Graph Collapsing
The first phase of the algorithm takes as input an abstract repre-
sentation of the complex query plan – dataflow graph of database
operators. It iterates over the operators in the dataflow graph and
compacts each operator-pipeline into one so-called compound op-
erator. An operator-pipeline is characterized by non-branching
dataflow between the operators belonging to the pipeline. An ex-
ample of such pipeline is presented in Figure 5.

This phase of the algorithm targets operator-pipelines with block-
ing operators. Here, by design, there is a guarantee that the in-
volved operators will never overlap each other’s execution and as a
result can be temporally ordered. Since there is a temporal order-
ing between the blocking operators belonging to the same operator-
pipeline, one can easily think of them as an atomic scheduling unit
(i.e., they can be grouped into one compound operator). This way
the scheduler can safely place all such operators to run on the same
set of resources, one after another. Additionally, the new compound
operator is expected to have better data locality. Scheduling the

236

M

u
lt

ic
o

re
 m

ac
h

in
e

m
o

d
e

l

Deployment algorithm

1

2

3

Operator graph collapsing

Minimizing
computational requirements

Minimizing
bandwidth requirements

Deployment decision

Operator data-
dependency graph

Resource activity
vectors (RAVs)

NUMA-node
internal properties

4
Deployment mapping

Interconnect
topology

Figure 4: Overview of the deployment algorithm

component operators sequentially on the same core will leverage
the warm data caches and reduce unnecessary memory movement.

The new composed compound operator inherits the RAV char-
acteristics of its components as presented in equations (3) and (4).

C.cpu util =
∑

i.cpu util,∀i ∈ P (3)

C.mem util =
∑

i.mem util, ∀i ∈ P (4)

where C denotes the compound operator, and P denotes the set of
all operators belonging to the operator-pipeline.

Both dimensions of the compound operator’s RAV are computed
as the sum of the values of the corresponding dimensions of its
components. The formulas are a direct consequence from the defi-
nitions of CPU and memory bandwidth utilization in equations (1)
and (2). Intuitively, the compound operator now has to execute the
cumulative number of instructions of its components in the same
amount of time (total_cycles). The same reasoning applies for
the total number of bytes transferred.

4.2 Minimizing Computational Requirements
Once the original set of operators has been compressed by collaps-
ing the operator-pipelines into compound operators, the subsequent
phases of the deployment algorithm operate on a smaller set of op-
erators. Please note that due to the ‘always-on’ nature of the oper-
ators of the shared-work systems, the operators of the new set can
no longer be temporally ordered, i.e., we have to assume that they
could run concurrently.

The second phase iterates over this new set of operators in search
of suitable clusters of operators that can be safely placed on the
same CPU core. This clustering is based on the values of the CPU
utilization component of the operators’ RAVs. The goal is to de-
termine the minimum number of CPU cores needed to accommo-
date all relational operators. Note that the second dimension of the
RAVs does not play a role. This is because the operator cluster-
ing solely determines which operators can be placed safely on the
same CPU core. The operators belonging to the same cluster tech-
nically only share CPU time. Hence, they will never be executed
concurrently so memory bandwidth is not going to be shared.

This phase of the algorithm is an instance of the bin packing
problem, defined as follows: Items of different sizes must be packed
into a finite number of bins, each of capacity X , in a way that min-
imizes the number of bins used. Even though it is an NP-hard prob-
lem, there are many approximation algorithms proposed that give

Q2

𝚪

𝝉

Q1 Q3

𝚪

B A C

Q2 Q1 Q3

𝚪

B A C

𝝉
𝚪

<15,05>

<30,10>

<45,15>

Blocking operatorpipeline Compound operator

Figure 5: The highlighted rectangle illustrates: (left) an example of
an operator pipeline that can be collapsed into one compound oper-
ator, (right) the resulting compound operator. For readability, only
the operator-pipeline and the corresponding compound operator are
RAV-annotated.

nearly optimal solution in polynomial time [13]. Since we know
the items (operators) and their properties in advance, we can use of-
fline bin packing solutions. Therefore, in our algorithm, this phase
is implemented using an adapted version of one of the simplest
heuristics – the first-fit decreasing (FFD) algorithm. Algorithm 1
provides a pseudo-code implementation of the bin-packing algo-
rithm. The change we added to the standard FFD is related to the
support for parallel operators, i.e., checks whether another thread
of the same operator (aka sibling item) was previously placed in
the same bin and avoids the bin if so (line 5). The standard FFD
algorithm has been proven to have a tight approximation bound of
11/9·OPT+6/9, where OPT is the optimal number of bins [15].

Eventually, it returns an approximate of the minimum number of
cores that can fit all operator threads such that the computational
constraints are met. Furthermore, it also outputs the contents of the
bins, i.e., how the relational operators are clustered.

Data: List of items
Result: Number of bins, contents of bins

1 SortDecreasing (items);

2 BinPacking (items)
3 for items i=1,2,...n do
4 for bins j=1,... do
5 if item i fits in bin j and i’s sibling is not in bin j then
6 pack item i in bin j
7 break the loop, and pack the next item
8 end
9 end

10 if item i was not placed in any bin then
11 create new bin k
12 pack item i in bin k
13 add bin k to bins
14 end
15 end
16 return number of bins, and bins’ contents

Algorithm 1: FFD bin-packing algorithm

237

4.3 Minimizing Bandwidth Requirements
The third phase of the algorithm operates on the following input:

• Model of the internal NUMA-node properties: (1) number of
cores, and (2) local bandwidth capacity.

• Memory bandwidth requirements of the (bins) operator clus-
ters, which were computed during the previous phase of the
algorithm. One can compute the resource requirements of
these operator clusters in a similar manner as with the com-
pound operators (equations (3) and (4)).

The goal is to compute the minimum number of NUMA nodes re-
quired to accommodate all operator-clusters and their bandwidth
requirements given the node’s capacity constraints.

This can be formalized as another instantiation of the bin pack-
ing problem: the items to be packed are the operator-clusters and
the bins are the NUMA nodes. The capacity of the bins is deter-
mined by the maximum attainable local DRAM bandwidth. Fur-
thermore, the bins are also constrained on the cardinality of items
they can accommodate (the number of CPU cores on the corre-
sponding NUMA node). Hence, it is an instantiation of cardinality-
constrained offline bin packing problem. We can, thus, use the
same FFD algorithm to compute an approximate solution. The only
modifications needed are when evaluating whether an item can fit in
a certain bin, and when updating the corresponding data structures
(lines 5 and 6 of Algorithm 1).

4.4 Deployment Mapping
The last phase of the algorithm computes the final deployment map-
ping of the operator-clusters onto actual CPU cores of the multicore
machine. It uses the output of the previous phase, which computed
the minimum number of NUMA nodes required to accommodate
the operator-clusters. If one NUMA node is sufficient, the output is
trivial – any subset of the cores belonging to the same NUMA node
will do, provided it is of cardinality k, where k denotes the required
number of CPU cores (as computed in phase (2)). The rest of this
subsection explains the steps needed should the number of NUMA
nodes be larger than one.

In order to determine the optimal mapping, this phase first mod-
els the multicore’s NUMA interconnect topology as a graph. The
graph is defined as G(V,E), where the set of vertices V corre-
sponds to the set of all NUMA nodes and the set of edges E is
composed of all direct links between the NUMA nodes. Further-
more, G is an undirected graph, with maximum one link (edge)
allowed between a pair of NUMA nodes.

As initially presented in Section 7 (Figure 2) two communicat-
ing operators should ideally be placed close to each other so that
we reduce data-access latency and interconnect bandwidth usage.
Thus, if it is not possible to accommodate them on a single NUMA
node, then a priority should be given to the neighboring nodes.

As an example, we present the following problem: it has been
determined that the deployment of a certain query plan on a given
machine needs four NUMA nodes. To demonstrate the generality
of the approach, let us assume that the interconnect topology of the
machine is not symmetric and looks like shown in Figure 7. We
have denoted with D1 and D2 two of the many possible deploy-
ments (subgraphs) encapsulating four NUMA nodes. Ideally, the
deployment algorithm should return deployment D1 as a prefer-
ence because that way all operators will be at the shortest possible
distance of each other (1-hop) as opposed to the other alternative
where the average distance between the NUMA nodes is 1.33 hops.

Therefore, the algorithm needs to also quantify how close the
nodes of a certain subgraph are. In order to do that it leverages the

A B

4

3 5

2

0

1

6

7

D1

D2

Figure 7: Example of two possible deployments (D1,D2) of 4
NUMA nodes within an 8-node AMD Bulldozer machine. The
asymmetric topology means deployment D1 is preferable.

concept of graph density. Graph density (dG) of a graph G(VG, EG)
is defined as the number of edges divided by the number of vertices,
or more formally:

dG =
|EG|
|VG|

Using this metric we can formalize the problem that needs to
be solved in this phase as an instantiation of finding the densest
k-item subgraph problem. Khuller and Shaba [24] proved that the
solution is NP-hard, but given the small size of our graph this is
still within acceptable boundaries. Given a multicore machine a
prephase of our naı̈ve implementation iterates over all subgraphs of
size k, and computes the density of each. The desired output is a
query for the subgraph with highest density. The final operator-to-
core deployment mapping is chosen accordingly.

4.5 Discussion and Possible Extensions
With the deployment algorithm presented in this section we lever-
age the dataflow information from the database query plan, the
RAV properties of the operators, and the NUMA model of the mul-
ticore machine. Using this input the algorithm is able to signif-
icantly reduce the total number of resources required by a query
plan and at the same time avoid contention for the most critical
resources: CPU cycles and memory bandwidth.

One immediately applicable enhancement is the following: The
chosen implementation of the bin-packing algorithm (sorted first
fit) can provide a good approximation on the minimum number of
cores/NUMA nodes required but does not guarantee that all the bins
will be equally balanced. Consequently, one can extend it with an
additional epilogue phase that will perform load-balancing of the
content in the bins.

Moreover, it can be extended with an OS system-wide knowl-
edge of the current resource utilization among all running tasks,
similar to the approach suggested in COD [19].

5. EVALUATION
In this section we show that the performance, stability and pre-
dictability of the query plan remains unaffected despite the heavy
reduction in the allocated resources by the deployment algorithm.
We evaluate the performance of the deployment of a TPC-W query
plan on different dataset sizes on two different multicore architec-
tures. We demonstrate the accuracy of the RAV characterization,
and conclude the section with an analysis on the different phases of
the deployment algorithm.

238

ITEMAUTHOR ORDERSORDER_LINECUSTOMERADDRESS ITEM
SHOPPING

CARTLINE

SHOPPING

CART
CCXACTS

Hash ⋈Hash ⋈

Sort

(by Date)

Sort

(by Title)

Hash ⋈

Sort

Hash ⋈NL ⋈

Hash ⋈

Sort

GroupBy

NL ⋈

Network

Sort

GroupBy

Hash ⋈

Network

NetworkNetworkNetwork

Nework Network NetworkNetwork Network Network Network

Buy
Request

New
Products

Products
Detail

Search Item (by
Title, Subject or

Author)

Best
Sellers

Admin
Confirm

Related
Items View Cart

Limit(Sort)

3

2

10

6

5

7 47 32

22

23

16

11

17 18

21 15

19

20 424

25

31

26

27

28

29

30

36

37

38

39

40

41 42

43

44

45

COUNTRY

scan

COUNTRY

8

9 ADDRESS

scan 1

ADDRESS

scan 20 1

AUTHOR

scan
12

ITEM

scan 1
13

ITEM

scan 2
14

Figure 6: TPC-W shared query plan – as generated for SharedDB

5.1 Experiment Setup
Infrastructure: For our experiments we used two multicore ma-
chines from different vendors in order to compare the influence of
their architectures both on the operators’ RAVs and the outcome of
the deployment algorithm. The machines used are:

1. AMD MagnyCours: Dell 06JC9T board with four 2.2GHz
AMD Opteron 6174 processors. Each processor has two 6-
core dies. Each die has its own 5MB LLC (L3 cache) and a
NUMA node of size 16GB. The operating system used was
Ubuntu 12.04 amd64 with kernel 3.2.0-23-generic.

2. Intel Nehalem-EX: Supermicro X8Q86 board with four 8-
core 1.87GHz Intel Xeon L7555 processors with hyperthreads.
The hyperthreads were not used for the experiments. Each
processor has its own 20MB LLC (L3 cache) and a NUMA
node of size 32GB. The operating system used was Debian
with Linux kernel-3.9.4 x86 64.

The clients were running on four machines with two 2.26GHz Intel
Xeon L5520 quadcore processors, and a total of 24GB RAM.

Workload: In order to evaluate the deployment algorithm for a
query plan we used SharedDB’s global query plan for the TPC-W
benchmark. The TPC-W workload consists of 11 web-interactions,
each consisting of several prepared statements, which are issued
based on the frequencies defined by the TPC-W browsing mix.
The query parameters were also generated as defined in the TPC-
W specification. SharedDB’s TPC-W query plan has 44 operators,
as presented in Figure 6. In the figure we marked all 44 operators
with an ID which corresponds to the OS core-ID assigned in the
initial deployment. Please note that the range of the IDs is between
0-47 but some core IDs (4 to be exact) are skipped1. The storage
1Due to difference in the core-ID mapping between the application
and the OS

engine operators work with data local to their threads, and the in-
ternal logic operators fetch their input from their predecessors and
generate data on their local NUMA node. Our analysis focuses on
two dataset sizes: 5GB (1.2k emulated browsers(EBs), 100k items),
and 20GB (5k EBs, 100k items).

Setup: Every experiment was run for 10 minutes, plus two min-
utes dedicated for warm-up and cool-down phases. The record logs
obtained in the warm-up and cool-down phases were not taken into
account in the final results presented here. The profiling on both
machines was done with Oprofile (operf).

Metrics: Throughput is reported in Web Interactions Per Second
(WIPS), and all the reported numbers on latency are in seconds
(s). Maximum attainable bandwidth is not taken from the machine
specifications but measured with the STREAM benchmark [31]. In
the figures it is expressed in Gigabytes per second (GB/s).

5.2 Resource Activity Vectors (RAVs)
As explained in Section 3, the RAVs are derived from statistics
gathered by profiling the operator threads. Here we present a break-
down of the main factors that constitute the values for CPU and
memory bandwidth utilization dimensions. The results are from an
experiment run on the AMD MagnyCours on the 20GB dataset.

We measured cycles and ret_instr to derive the IPC values.
Moreover, in order to calculate the memory bandwidth consumed
we used the formulas as presented in [16] and collected the fol-
lowing events: sys_read, sys_write and DRAM_accesses. The
last one included measurements of two different DRAM channels
(DCT0 and DCT1). The per-core PMUs on AMD MagnyCours can
collect up to four events per run, so in total we needed two runs to
derive the RAV properties for the operators.

The results presented in Figure 8 illustrate the measured values
of the operator threads in terms of IPC (8a) and memory bandwidth
(8b) (consisting of DRAM, and system- read and write bandwidth).

239

 0

 0.5

 1

 1.5

 2

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
7

IP
C

Operator ID

IPC

(a) Instructions per Cycle (IPC)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
7

M
em

o
ry

 b
an

d
w

id
th

 [
G

B
/s

]

Operator ID

DRAM bandwidth
System read bandwidth

System write bandwidth

(b) Memory Bandwidth

 0

 20

 40

 60

 80

 100

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
7

C
P

U
 A

ct
iv

it
y

 [
%

]

Operator ID

CPU Activity

(c) Active Runtime Distribution

 0

 20

 40

 60

 80

 100

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
7

R
A

V
 [

%
]

Operator ID

CPU utilization
Mem utilization

(d) Resource Activity Vectors (RAVs)

Figure 8: Understanding the derivation of RAVs, AMD MagnyCours, 20GB dataset

From these two graphs, one can notice variety in the distribution of
resource consumption among the different operators.

As discussed on Section 3, looking at the raw performance met-
rics presented in Figures 8a,8b is not enough to make a sound deci-
sion on the threads’ resource requirements. One must also consider
the total active time for each operator thread, and normalize the
derived values for both RAV dimensions accordingly. Figure 8c
presents the active runtime of the operators with respect to the to-
tal duration of the experiment. It shows that only a few operator-
threads are actively using the CPU time. This is an important ob-
servation, as it emphasizes the large number of idle threads and the
opportunity for resource consolidation.

The final values for CPU and memory bandwidth are presented
in Figure 8d. Please note that the memory bandwidth utilization
no longer contains the bandwidth breakdown but rather considers
their sum. Figure 8d shows that both the CPU and memory band-
width utilization values look significantly different than on the raw
performance/resource metrics in Figures 8a,8b. This confirms that
the resources of the machine are overprovisioned and that there is
room for improvement.

In the rest of the evaluation section we focus on the CPU utiliza-
tion dimension of the RAVs. The same observations also hold for
memory bandwidth utilization.

Impact of Dataset Size on RAVs
This subsection analyzes the effect that dataset size has on opera-
tor’s RAVs. The experiments were executed on the AMD Magny-
Cours machine and the two dataset sizes used are 5GB and 20GB.

A summary of the output of the experiment is presented in Fig-
ure 9a. It displays the derived CPU utilization values for the two
experimental configurations. For readability, in the figure we only
present the values (in a decreasing order) for the operators with
CPU utilization higher than 5 percent (in this case the top 19). Each
row in the x-axis denotes the operator-IDs for the corresponding ex-
periment run. As shown in the figure, the distribution of the CPU
utilization varies with the changes in the dataset size. Intuitively,
the larger dataset puts more strain on some of the scan operators
(operator IDs 0 and 1), while the CPU-heaviest join (ID 16) is bus-
ier in the smaller dataset. The difference in CPU-utilization of the
other operators in both datasets is almost negligible.

The difference in both distribution and absolute values of the
CPU utilization influence the output of the deployment algorithm.
In this case their effects canceled each other and consequently the
second phase of our algorithm derived the same number of bins
(cores) for both configurations – six.

240

 0

 20

 40

 60

 80

 100

0 1 13 14 16 12 5 18 17 23 32 38 22 44 47 9 30 24 25 7
0 1 14 13 16 12 7 5 23 18 32 38 44 17 22 24 30 36 9 11

C
P

U
 u

ti
li

za
ti

o
n

 [
%

]

Operator ID (decreasing CPU utilization)

20GB dataset
5GB dataset

(a) CPU utilization: Varying dataset size

 0

 20

 40

 60

 80

 100

0 1 13 14 16 12 5 18 17 23 32 38 22 44 47 9 30 24 25 7
1 0 14 13 16 12 17 5 18 6 23 3 7 11 31 24 9 22 4 8

C
P

U
 u

ti
li

za
ti

o
n

 [
%

]

Operator ID (decreasing CPU utilization)

AMD MagnyCours
Intel Nehalem-EX

(b) CPU utilization: Influence of architecture (20GB dataset)

Figure 9: Analyzing the impact of dataset size and multicore architecture on the RAVs

Influence of Architecture on RAVs: Intel vs AMD
Another important factor that influences the values of the RAVs
is the underlying multicore architecture. In order to show its im-
pact on the RAVs we executed the same workload with dataset size
of 20GB on the two different machines introduced in Section 5.1
(AMD MagnyCours and Intel Nehalem-EX).

In Figure 9b we present the results of the CPU utilization of the
operators in decreasing order. We focus on operators with CPU uti-
lization higher than 5 percent (i.e. the top 19). Once again, there
are two x-axis denoting the operator-ids on the corresponding ar-
chitectures. On Intel we observe that the heavy scan operators (IDs
0,1,13,14) have higher utilization of the CPU, but also that fewer
operators have CPU utilization higher than 5 percent (only the first
8). The observed difference in both distribution and absolute val-
ues confirms the benefits of using the RAVs as a means to detect
architecture-specific sensitivity. For this setup the deployment al-
gorithm allocated 5 cores for the run on Intel Nehalem-EX and 6
for AMD MagnyCours.

5.3 Performance Comparison:
Baseline vs Compressed deployment

The following experiment compares the performance of the query
plan when deployed on a compressed-set of resources (based on
the output of our algorithm) versus the approach using operator-
per-core deployment. As baseline we use the performance when
the deployment of operators is handled by the OS scheduler.

The results show that both performance and stability of the query
plan are unaffected by the heavy reduction of resources allocated
by the deployment algorithm. This can be observed for a range
of workload configurations and architectures (Table 2). The table
summarizes the performance expressed both in throughput (WIPS),
and latency (s). In order to capture the stability of the system,
alongside with the aggregated average, we also present the stan-
dard deviation in parenthesis. Additionally, for the latency mea-
surements we present the 50th, 90th and 99th percentile of the re-
quests’ response time.

The presented values for throughput and latency confirm that the
resulting system performance was not compromised by the signif-
icant reduction in allocated resources. Furthermore, in all experi-
ments the stability and predictability of the system remain intact,
which is important for databases and their SLAs.

The performance of the query plan when the OS scheduler was
in charge of deployment (represented in row 3 in Table 2) is poorer
both in terms of absolute values and stability than the other two
approaches, including the operator-per-core deployment (row 2).
The latter suggests that performance can be affected as a result of
thread migration.

Performance/Resource Savings Ratio
In order to observe the significance of the gain in deployment ef-
ficiency we introduce a new metric: performance/resource effi-
ciency savings factor. It is calculated using the measured through-
put (Tput) on the allocated set of resources (Res) using the follow-
ing formula:

savings factor =
Tputc
Resc

× Resb

Tputb
(5)

where the subscript c denotes the compressed, and b the operator-
per-core deployment.

Table 3 illustrates the efficiency boost obtained by the compressed
deployment for the different workload setups. The gain in perfor-
mance/resource (calculated from the throughput values in Table 2)
is usually in the range of 6-7x compared with the operator-per-core
deployment. In other words, with our deployment algorithm the
query plan can achieve the same performance by using only 14%
of the resources, or even less when compared to the baseline OS
operator scheduling.

5.4 Analysis of the Deployment Algorithm
The deployment algorithm delivers an approximation to the min-
imum number of cores needed by the query plan, and a mapping
on how to optimally choose cores on the given multicore architec-
ture, in order to reduce bandwidth consumption. As presented in
Figure 4, it consists of four phases and each phase of the algorithm
contributes to the final result from different aspects:

Phase (1) reduces the total number of operators by collapsing
the operator-pipelines to compound operators. In the case of the
TPC-W global query plan, this phase decreases the number of op-
erators from the original 44 down to 32. A second contribution is
the constructive cache sharing between the operators in the original
operator-pipelines. These are now scheduled on the same core and
benefit from data-locality.

241

Table 2: Performance on default vs. compressed deployment

row # Architecture #Cores Throughput [WIPS] Response Time[s]
(exp. config) Average (stdev) Average (stdev) 50th 90th 99th

AMD
1 (20GB) 6 428.07 (+/- 32.80) 14.62 (+/- 0.76) 15.36 23.73 36.13
2 44 425.86 (+/- 54.34) 14.69 (+/- 0.85) 14.59 22.93 36.08
3 (OS baseline) 48 317.30 (+/- 31.11) 20.81 (+/- 2.55) 8.22 72.43 82.03
4 (5GB) 6 645.71 (+/- 38.24) 8.41 (+/- 0.46) 7.00 16.44 19.69
5 44 703.51 (+/- 55.66) 7.38 (+/- 0.55) 5.65 14.81 17.87

Intel
6 (20GB) 5 362.62 (+/- 62.16) 18.05 (+/- 2.77) 18.35 31.73 43.94
7 32 386.97 (+/- 59.34) 16.70 (+/- 2.47) 16.95 28.03 41.93

Table 3: Performance/Resources
efficiency savings

Setup savings factor
AMD 5GB x6.73

AMD 20GB x7.37
Intel 20GB x5.99

Phase (2) is responsible for a more aggressive reduction in the
allocation of computational resources. It further decreases the total
number of required cores down from 32 to 6 or 5 cores, depending
on the architecture. The optimality of the algorithm was briefly ad-
dressed in Section 4. In order to evaluate the accuracy of the output
of this phase, we did another experiment on the AMD MagnyCours
(20GB) where we took the content of the sixth bin and evenly dis-
tributed it across all other bins (i.e, test a deployment on a smaller
number of cores). The results are presented in a row dedicated to
Phase (2) in Table 4. The first row shows the system’s performance
based on the output of the algorithm, and we use it as a baseline for
comparison. Comparing the first two rows confirms that both the
absolute performance and the stability of the system are decreased
when reducing the number of cores allocated from six down to five.

Table 4: Evaluating the design choices of algorithm phases

Phase layout #Cores Throughput [WIPS]
same NUMA 6 428.07 (+/- 32.80)

(2) same NUMA 5 366.08 (+/- 51.01)
(3,4) dist NUMA 6 401.84 (+/- 33.21)

Phases (3) and (4) compute the final placement of operators to
cores. In order to evaluate the heuristic and importance of the actual
core placement on the machine, we compare the output of our algo-
rithm (the heuristic being, if no contention for memory bandwidth,
place the bins as close as possible) to the other extreme where ev-
ery bin is placed on a different NUMA node. The results are pre-
sented in row dedicated to Phase (3,4) in Table 4. The difference in
performance favors the heuristic approach, although the results are
still within the error bars. We expect that it will have higher impact
when dealing with bandwidth-heavier workloads.

5.5 Discussion
The results confirmed that RAVs successfully characterize the prop-
erties of relational operators, and can accurately capture the changes
in resource requirements for different dataset sizes. Furthermore,
the evaluation on the two machines (Intel Nehalem-EX and AMD
MagnyCours) points out that both the operator’s resource require-
ments and consequently the optimal resource allocation and query
plan deployment are architecture-dependent.

Most importantly, the performance of SharedDB on the com-
pressed set of resources (compressed-deployment) is as good as the
performance on the operator-per-core deployment both in terms of
throughput and latency, and in their stability, and better when com-
pared to the OS operator scheduling baseline.

Eventually, we emphasized the significance in efficient resource
utilization when delivering performance with a performance/resource
savings factor of 6-7x when compared to the baseline.

6. GENERALIZING THE APPROACH

6.1 Parallel Operators
In SharedDB and its original operator-per-core deployment policy,
because of the ‘always-on’ nature of the operators, even though it
was conceptually possible, in practice one was not able to paral-
lelize all operators at the same time, simply because there were not
enough contexts available on current multicores. Therefore, one
had to choose to parallelize only a few heavy operators (in our case
the scans) that could improve the performance.

One of the benefits of this work is that it allows the system to
improve its performance by adding more resources to the existing
operators, as a result of the reduction of the amount of resources
allocated to the original query plan. We have shown how multi-
threaded operators are supported with our deployment algorithm
and RAV-annotations. Here, in order to demonstrate the immedi-
ate benefits of the smart deployment, without having to parallelize
the internal ‘logic’ operators, we increased the number of threads of
all Crescando operators and replicated the internal ‘logic’ operators
(the KV store operators were not parallelized/replicated). Since the
original plan deployment fitted on one NUMA, we deployed every
new replica on a new NUMA node.

Table 5: Plan replication

Dataset # of replicas (Throughput [WIPS])
size 1 2 4 8

5GB 452.87 1073.51 1923.41 2610.30
20GB 495.64 1031.64 1969.14 2834.98

Table 5 summarizes the performance of the system in terms of
throughput. The experiments were executed on the AMD Magny-
Cours machine. The results indicate that with the simple technique
of plan-replication the system scales almost linearly up until four
replicas, and achieves a scale-up of almost six when using eight
replicas. We would like to point out that this boost in performance
was achieved without any system fine-tuning.

6.2 Dynamic Workload
We distinguish three different types of dynamism in a workload: (i)
known-in-advance queries vs. query-types, where in the latter case
the known part is implemented in the form of JDBC-like prepared
statements, (ii) changes in the workload distribution, which refers
to the percentage of query types being present in the workload mix,
and (iii) ad-hoc queries and their arrival rates and distribution.

In this work we present a solution handling the first type of work-
load dynamism – which follows by design and implementation of
SharedDB. Furthermore, given the reduction of the amount of re-
sources allocated to the global query plan, it is immediately possi-

242

ble to handle incoming ad-hoc queries by running them on the side,
using some of the extra, now available, resources.

The only dynamism that is not supported by the current imple-
mentation of the global query plan and its static deployment of op-
erators is the second one – with changes in the distribution of query
types in the workload mix which will affect the hot-paths/spots in
the query plan. We believe that adding support for continuous mon-
itoring of the operators’ activity and computing the RAVs can assist
the DBMS and its optimizer by providing additional information
about potential bottleneck operators and heated paths in the sys-
tem. This way the optimizer can adapt the global query plan and
use the same deployment algorithm to re-deploy its operators.

6.3 Non-shared (Traditional) Systems
To our knowledge, there is very little work focusing on deployment
and scheduling of query plans on multicore machines. While in
this paper we work on shared work systems, the approach of us-
ing RAVs and basing the deployment on temporal and spatial con-
siderations can also be used in conventional systems. RAVs can
be obtained by instrumenting and observing ongoing execution of
queries (much as, e.g., selectivity estimates, result caching, hints
for indexing, and data statistics are collected today). Using RAVs
the query optimizer can be extended to consider the CPU and mem-
ory requirements of the operators and use the algorithm proposed
in this paper to identify how many cores to allocate to a plan and
how to deploy the operators of the plan among the cores that have
been allocated. Obviously, the more complex the plan in terms of
overall costs, data movement, and number of operators, the more
gains are to be expected from using an approach such as the one
outlined in this paper.

Although our prototype has been evaluated using SharedDB, we
believe that our techniques generalize beyond this kind of shared
work systems. In fact most of the placement decisions apply to
conventional query plans. For instance, blocking operators within
the same query plan can be placed on the same bin (core). Op-
erators streaming to each other can be placed on adjacent cores.
Operators that will not be active at the same time can be placed
on the same core. Operators active at the same time but comple-
mentary in terms of resource usage (CPU vs. memory bound) can
be placed on the same core, etc. The spatial scheduling in these
systems would additionally have to take into account the physical
data placement and data access patterns of the operators (similar
to [34]), in order to decide the most suitable cores/NUMA regions
(spatial scheduling subproblem) but, overall, the same concepts as
those used here would apply.

7. RELATED WORK
Scheduling on multicores has inspired a lot of research targeting
different systems, which we cover here as part of related work.

7.1 General Scheduling
There is a considerable amount of research aimed at contention-
aware scheduling on multicore machines (Zhuravlev et al. [44] pro-
vide a comprehensive survey). These efforts (e.g. [7,26,43]) achieve
higher resource efficiency by classifying the application’s behaviour
and assigning cores so that contention, typically in the memory sub-
system, is reduced.

Additionally, there are several methods for characterizing and
modeling thread performance on multicores [32,41], and their pos-
sible interference when sharing resources [6, 11]. Some of these
models are used to aid comprehension and optimization of code
performance, while others are used to minimize overall resource
contention and performance degradation. Although these methods

provide valuable insight in the performance bottlenecks of multi-
core systems as well as techniques to identify and alleviate con-
tention, they are application-agnostic and consequently unable to
provide any performance guarantees to the executing application.
Furthermore, none of these optimizes the overall resource alloca-
tion so as to maximize their utilization efficiency.

7.2 Scheduling for Databases
Databases, traditionally, have dealt pessimistically with the chal-
lenges imposed by modern hardware by exclusively allocating (or
assuming exclusive access to) hardware resources such as cores and
memory. This practice leads to hardware resources being overpro-
visioned and underutilized.

However, scheduling becomes an increasing topic of interest in
databases. For example, cache-aware scheduling (e.g. [12,27]) con-
centrates on minimizing the cache-conflicts and benefiting of con-
structive cache sharing via cache-aware scheduling on multicore
machines. Existing work by Porobic et al. [35] also argues that
the topology of modern hardware favors coupling communicating-
threads and deploys them onto cores on the same ‘hardware island’
(NUMA node, or CPU-socket) in order to minimize cross-node
communication. Follow up work enhances system’s data-locality
and reduces redundant bandwidth traffic by providing means for
suitable data placement and adaptive re-partitioning techniques as
the workload changes [34]. Leis et al. [28] take it a step further
and propose a novel morsel-driven query execution model which
integrates both NUMA-awareness and fine grained task-based par-
allelism. This allows for maximizing the utilization of the CPU
resources and provides elasticity with respect to load balancing the
resource allocation to dynamic query workloads. Furthermore, they
also advocate the deployment of operator pipelines and assign hard
CPU affinities to threads in order to maintain locality and stability.

These examples provide highly valuable techniques, mechanisms
and execution models but none uses the knowledge at hand to solve
the problem we address, which is how to use operator character-
istics and inter-thread relationships to minimize the total number
of resources allocated to a query plan without affecting perfor-
mance and predictability. Nevertheless, we corroborate previous
works’ observations that leveraging the knowledge of the underly-
ing hardware for operator deployment is essential for minimizing
bandwidth traffic and maximizing data locality [28, 35].

8. CONCLUSION
In this paper we address the problem of minimizing resource uti-
lization for complex query plans on modern multicore architectures
without affecting performance or sacrificing desired performance
properties such as stability and predictability.

We base our solution on two contributions: (i) resource activ-
ity vectors (RAVs), an abstraction for the performance profile of
each relational operator that can be derived from offline measure-
ments, and (ii) a deployment algorithm that computes the minimum
amount of resources needed and which proposes an optimal assign-
ment of the operator threads to processor cores.

Our evaluation confirms that RAVs can accurately characterize
database operators and that our deployment algorithm significantly
reduces the computational resource requirements, while leaving
performance unaffected.

As a continuation to this work, we plan to evaluate and possibly
augment our model to accommodate alternative scenarios to the
ones we presented here. We consider an on-line monitoring of the
resource utilization of the operator threads, and operator-to-core
mapping which will additionally exploit runtime information about
the machine topology and overall system-state.

243

Acknowledgements
The authors would like to thank the anonymous reviewers for useful
feedback to improve this paper. Part of this work has been funded
through a grant from Oracle Labs. Jana Giceva is supported by a
Google PhD Fellowship.

9. REFERENCES
[1] Advanced Micro Devices, Inc. (AMD). BIOS and Kernel

Developer’s Guide (BKDG) For AMD Family 10h Processors, 2013.
[2] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood. DBMSs on a

Modern Processor: Where Does Time Go? In VLDB ’99, pages
266–277.

[3] M.-C. Albutiu, A. Kemper, and T. Neumann. Massively parallel
sort-merge joins in main memory multi-core database systems.
PVLDB ’12, 5(10):1064–1075.

[4] S. Arumugam, A. Dobra, C. M. Jermaine, N. Pansare, and L. Perez.
The DataPath system: a data-centric analytic processing engine for
large data warehouses. In SIGMOD ’10, pages 519–530.

[5] C. Balkesen, J. Teubner, G. Alonso, and M. T. Ozsu. Main-memory
hash joins on multi-core CPUs: Tuning to the underlying hardware.
ICDE ’13, 0:362–373.

[6] M. Banikazemi, D. Poff, and B. Abali. PAM: a novel
performance/power aware meta-scheduler for multi-core systems. In
SC ’08, pages 39:1–39:12.

[7] M. Bhadauria and S. A. McKee. An approach to resource-aware
co-scheduling for CMPs. In ICS ’10, pages 189–199.

[8] S. Blagodurov, S. Zhuravlev, A. Fedorova, and A. Kamali. A Case
for NUMA-aware Contention Management on Multicore Systems. In
PACT ’10, pages 557–558.

[9] P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100:
Hyper-Pipelining Query Execution. In CIDR ’05, volume 5, pages
225–237.

[10] G. Candea, N. Polyzotis, and R. Vingralek. A scalable, predictable
join operator for highly concurrent data warehouses. PVLDB ’09,
2(1):277–288.

[11] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting Inter-Thread
Cache Contention on a Chip Multi-Processor Architecture. In
HPCA ’05, pages 340–351.

[12] S. Chen, P. B. Gibbons, M. Kozuch, V. Liaskovitis, A. Ailamaki,
G. E. Blelloch, B. Falsafi, L. Fix, N. Hardavellas, T. C. Mowry, and
C. Wilkerson. Scheduling threads for constructive cache sharing on
CMPs. In SPAA’07, pages 105–115.

[13] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation
algorithms for NP-hard problems. In D. S. Hochbaum, editor,
Approximation algorithms for bin packing: a survey, pages 46–93.
1997.

[14] S. Das, V. R. Narasayya, F. Li, and M. Syamala. CPU Sharing
Techniques for Performance Isolation in Multitenant Relational
Database-as-a-Service. PVLDB ’13, 7(1):37–48.

[15] G. Dósa. The tight bound of first fit decreasing bin-packing algorithm
is FFD(I) ≤ 11/9OPT (I) + 6/9. In Combinatorics, Algorithms,
Probabilistic and Experimental Methodologies, pages 1–11.
Springer, 2007.

[16] P. J. Drongowski and B. D. Center. Basic Performance Measurements
for AMD Athlon 64, AMD Opteron and AMD Phenon Processors.
AMD whitepaper, 25, 2008.

[17] G. Giannikis, G. Alonso, and D. Kossmann. SharedDB: killing one
thousand queries with one stone. PVLDB ’12, 5(6):526–537.

[18] G. Giannikis, D. Makreshanski, G. Alonso, and D. Kossmann.
Shared Workload Optimization. PVLDB ’14, 7(6).

[19] J. Giceva, T.-I. Salomie, A. Schüpbach, G. Alonso, and T. Roscoe.
COD: Database/Operating System Co-Design. In CIDR ’13.

[20] S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki. QPipe: a
simultaneously pipelined relational query engine. In SIGMOD ’05,
pages 383–394.

[21] Intel Corporation. Intel 64 and IA-32 Architectures Optimization
Reference Manual, 2008.

[22] Intel Corporation. Intel 64 and IA-32 Architectures Software
Developer’s Manual Combined Volumes 3A, 3B, and 3C: System
Programming Guide, 2013.

[23] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B. Falsafi.
Shore-MT: A Scalable Storage Manager for the Multicore Era. In
EDBT ’09, pages 24–35.

[24] S. Khuller and B. Saha. On finding dense subgraphs. In Automata,
Languages and Programming, volume 5555 of Lecture Notes in
Computer Science, pages 597–608. Springer Berlin Heidelberg,
2009.

[25] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen, N. Satish,
J. Chhugani, A. Di Blas, and P. Dubey. Sort vs. Hash revisited: fast
join implementation on modern multi-core CPUs. PVLDB ’09,
2(2):1378–1389.

[26] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn. Using OS
Observations to Improve Performance in Multicore Systems.
Micro ’08, 28(3):54–66.

[27] R. Lee, X. Ding, F. Chen, Q. Lu, and X. Zhang. MCC-DB:
minimizing cache conflicts in multi-core processors for databases.
PVLDB ’09, 2(1):373–384.

[28] V. Leis, P. Boncz, A. Kemper, and T. Neumann. Morsel-driven
Parallelism: A NUMA-aware Query Evaluation Framework for the
Many-core Age. In SIGMOD ’14, pages 743–754.

[29] Y. Li, I. Pandis, R. Müller, V. Raman, and G. M. Lohman.
NUMA-aware algorithms: the case of data shuffling. In CIDR ’13.

[30] S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizing database
architecture for the new bottleneck: memory access. PVLDB ’00,
9(3):231–246.

[31] J. D. McCalpin. Memory Bandwidth and Machine Balance in
Current High Performance Computers. TCCA ’95, pages 19–25.

[32] A. Merkel, J. Stoess, and F. Bellosa. Resource-conscious scheduling
for energy efficiency on multicore processors. In EuroSys ’10, pages
153–166.

[33] B. Mozafari, C. Curino, and S. Madden. DBSeer: Resource and
Performance Prediction for Building a Next Generation Database
Cloud. In CIDR ’13.

[34] D. Porobic, E. Liarou, P. Tozun, and A. Ailamaki. ATraPos: Adaptive
transaction processing on hardware Islands. In ICDE ’14, pages
688–699.

[35] D. Porobic, I. Pandis, M. Branco, P. Tözün, and A. Ailamaki. OLTP
on Hardware Islands. PVLDB ’12, 5(11):1447–1458.

[36] I. Psaroudakis, M. Athanassoulis, and A. Ailamaki. Sharing Data and
Work Across Concurrent Analytical Queries. PVLDB ’13,
6(9):637–648.

[37] V. Raman, G. Swart, L. Qiao, F. Reiss, V. Dialani, D. Kossmann,
I. Narang, and R. Sidle. Constant-Time Query Processing. In
ICDE ’08, pages 60–69.

[38] T.-I. Salomie, I. E. Subasu, J. Giceva, and G. Alonso. Database
engines on multicores, why parallelize when you can distribute? In
EuroSys ’11, pages 17–30.

[39] N. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W. Lee, D. Kim,
and P. Dubey. Fast sort on CPUs and GPUs: a case for bandwidth
oblivious SIMD sort. In SIGMOD ’10, pages 351–362.

[40] P. Unterbrunner, G. Giannikis, G. Alonso, D. Fauser, and
D. Kossmann. Predictable performance for unpredictable workloads.
PVLDB ’09, 2(1):706–717.

[41] S. Williams, A. Waterman, and D. Patterson. Roofline: an insightful
visual performance model for multicore architectures. Commun.
ACM ’09, 52(4):65–76.

[42] J. Zhou and K. A. Ross. Buffering database operations for enhanced
instruction cache performance. In SIGMOD ’04, pages 191–202.

[43] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing shared
resource contention in multicore processors via scheduling. In
ASPLOS XV ’10, pages 129–142.

[44] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto.
Survey of scheduling techniques for addressing shared resources in
multicore processors. ACM Comput. Surv. ’12, 45(1):4:1–4:28.

[45] M. Zukowski, S. Héman, N. Nes, and P. Boncz. Cooperative scans:
dynamic bandwidth sharing in a DBMS. In VLDB ’07, pages
723–734.

244

