
Efficient Top-K SimRank-based Similarity Join

Wenbo Tao Minghe Yu Guoliang Li
Department of Computer Science, Tsinghua University, Beijing, China

twb11@mails.tsinghua.edu.cn; yumh12@mails.tsinghua.edu.cn; liguoliang@tsinghua.edu.cn

ABSTRACT
SimRank is a popular and widely-adopted similarity mea-
sure to evaluate the similarity between nodes in a graph.
It is time and space consuming to compute the SimRank
similarities for all pairs of nodes, especially for large graphs.
In real-world applications, users are only interested in the
most similar pairs. To address this problem, in this paper
we study the top-k SimRank-based similarity join problem,
which finds k most similar pairs of nodes with the largest
SimRank similarities among all possible pairs. To the best
of our knowledge, this is the first attempt to address this
problem. We encode each node as a vector by summariz-
ing its neighbors and transform the calculation of the Sim-
Rank similarity between two nodes to computing the dot
product between the corresponding vectors. We devise an
efficient two-step framework to compute top-k similar pairs
using the vectors. For large graphs, exact algorithms cannot
meet the high-performance requirement, and we also devise
an approximate algorithm which can efficiently identify top-
k similar pairs under user-specified accuracy requirement.
Experiments on both real and synthetic datasets show our
method achieves high performance and good scalability.

1. INTRODUCTION
With the proliferation of web search, clustering and col-

laborative filtering, identifying analogous nodes in a large
graph has attracted unprecedented research attention. The
similarity measures between pairs of nodes in a graph play
an important role in many real-world applications such as
friend recommendation and link prediction in social net-
works. SimRank is a popular and widely-adopted mea-
sure [7], which recursively computes the similarity between
two nodes based on the similarities of their neighbors.
Nevertheless, it is rather challenging to devise efficient

SimRank computation algorithms. First, the iterative method
proposed by Jeh and Widom in [7] to solve the all pair Sim-
Rank problem that computes the similarities of all pairs
of nodes has the time complexity of O(ξn2D2), where n is

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 3
Copyright 2014 VLDB Endowment 2150-8097/14/11.

the number of nodes in a graph, D is the average in-degree
and ξ is the number of iterations, and will regress to O(n4)
in the worst case. That is uncomputable for nowadays in-
creasingly large networks. Second, although several recent
works [16,18] have been proposed to optimize the inefficient
all pair SimRank calculation, the state-of-the-art algorithm
proposed in [11] still has the time complexity of O(ξn3),
which is still not scalable, especially for large graphs.
In real-world applications, users are only interested in

highly similar node pairs. For example, social network sys-
tems want to identify similar users and recommend potential
friends for users. In knowledge bases, we aim to find the sim-
ilar concepts to facilitate concept/entity linking. To identify
the highly similar node pairs, existing methods usually re-
quire users to input a similarity threshold and two nodes are
similar if their SimRank value exceeds the threshold [10,19].
However, this threshold is not known and different applica-
tions have different thresholds. Moreover, it is rather hard
to select an appropriate threshold because a large threshold
leads to few results and a small threshold generates large
numbers of irrelevant results. An appealing alternative is to
find k most similar pairs of nodes with the largest SimRank
similarities. We call this top-k SimRank-based similarity join
(SRK-Join). The advantage of SRK-Join is obvious – it does
not require a specified threshold and avoids a tedious step
to tune the threshold.
To identify the most similar node pairs, we encode each

node as a vector by summarizing its neighbors and transform
the calculation of the SimRank similarity between two nodes
to computing the dot product between the corresponding
two vectors. Therefore, the SRK-Join problem is equiva-
lent to identifying top-k pairs of vectors with the largest dot
product values. The advantage of using the vector is that we
can directly compute the SimRank value of two nodes using
the two corresponding vectors and avoid the expensive iter-
ative method which computes the SimRank values relying
on similarities of other node pairs. In addition, we devise
an efficient two-step framework to compute top-k similar
pairs using the vectors. In the first phase, we identify a set
of candidate nodes which the top-k similar pairs must be
composed by. We propose effective techniques to reduce the
number of candidate nodes to 2k. In the second phase, we
develop a tree-based WAND algorithm to efficiently identify
the top-k similar pairs from the candidate nodes. For large
graphs, exact algorithms cannot meet the high-performance
requirement, and we also devise an approximate algorithm
which can efficiently calculate the top-k similar pairs under
user-specified accuracy requirement.

317

To summarize, we make the following contributions.
• To the best of our knowledge, this is the first attempt
to study the top-k SimRank-based similarity join prob-
lem. We novelly convert the SimRank similarity com-
putation to the dot product calculation.
• We devise a two-step framework to identify top-k simi-
lar pairs of vectors with the largest dot product values.
The first step identifies a set of candidate nodes and re-
duces the size of the candidate nodes to 2k. The second
step utilizes a tree-based WAND algorithm to efficiently
identify the answers based on candidate nodes.
• We devise an approximate algorithm which can effi-
ciently calculate the top-k similar pairs under user-
specified accuracy requirement.
• We conduct extensive experiments on both real and
synthetic datasets and the results show the good scal-
ability and high performance of our method.

The rest of this paper is organized as follows. We formal-
ize the problem in Section 2. We introduce the transforma-
tion of SimRank computation to dot product calculation in
Section 3. Section 4 describes the two-step framework for
answering the SRK-Join queries. An approximation algo-
rithm is presented in Section 5 and the experimental results
are reported in Section 6. Section 7 reviews the related work
and Section 8 concludes the paper.

2. PRELIMINARIES
In this section, we first introduce the iterative model to

compute SimRank in Section 2.1 and then discuss its equiv-
alent random surfer model in Section 2.2. Finally we present
the formal definition of our problem in Section 2.3.

2.1 Iterative Model
Consider a directed graph G(V,E) with a set of nodes V

and a set of directed edges E. We denote |V | = n as the
number of nodes in G and |E| = m as the number of edges.
Let D denote the average in-degree, i.e, D = m

n
. For a

node a, let I(a) denote the set of its in-neighbors and Ii(a)
denote the i-th in-neighbor of a1. Given two nodes a and b,
the SimRank similarity S(a, b) ∈ [0, 1] is defined by Eq(1) :

S(a, b) =


1 a = b

C
|I(a)||I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

S(Ii(a), Ij(b)) a 6= b
(1)

where C ∈ [0, 1] is a decay factor. The basic intuition behind
Eq(1) is that two objects are similar if they are linked by
similar objects. The initial case of the recursion is S(a, a) =
1.0 which indicates each node is completely similar to itself.
For directed acyclic graphs (DAG), we can solve the system

of linear equations formulated by Eq(1) through dynamic
programming. However, many real-world graphs have cy-
cles, and we have to use the following iterative form to com-
pute the SimRank similarity:

S(a, b) ≈ Rt(a, b) =
C

|I(a)||I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

Rt−1(Ii(a), Ij(b))) (2)

where Rt(∗, ∗) is the SimRank value on the t-th iteration.

Example 1. Consider a tiny Twitter network G in Fig-
ure 1(a) with 5 nodes and 10 directed edges. We label the
1We randomly assign a number for each of its in-neighbors.

a

b

c

d

e

(a) An example graph

1.000 0.115 0.086 0.115 0.184

0.115 1.000 0.149 0.212 0.019

0.086 0.149 1.000 0.149 0.030

0.115 0.212 0.149 1.000 0.019

0.184 0.019 0.030 0.019 1.000

a

b

c

d

e

a b c d e

(b) Result of the 3rd iteration
Figure 1: A graph and its 3-iteration results

nodes from a to e for simplicity. In this graph, each node
represents a user and the directed edges represent the rela-
tionship between users. For instance, the edge 〈b, c〉 denotes
user b follows user c on Twitter. We set the decay factor
C = 0.36 and the number of iterations ξ = 3. The SimRank
similarities on the final iteration, i.e, R3(∗, ∗), are shown in
Figure 1(b). From the table we can see the SimRank matrix
is symmetric and has value 1.0 on all its diagonal grids.
Convergence of SimRank. The iterative form of Sim-
Rank has fast convergence rate. A few iteration steps will
be enough to yield desirable accuracy and fixing the number
of iterations was applied in most of state-of-the-art works [5,
6,10,16,18] to quickly calculate approximate SimRank with
little accuracy loss. Existing work [7] shows the ranking of
SimRank stabilizes within 5 iterations. Therefore, perform-
ing limited number of iterations is acceptable for ranking
queries such as top-k search [10] and SRK-Join.

2.2 Random Surfer Model
While Eq(1) serves as a fundamental tool for SimRank

calculation, Jeh and Widom [7] offered another figurative
model for computing SimRank values equivalently. Intu-
itively, SimRank measures how soon two random surfers are
expected to meet at the same node if they start at node a
and b respectively and randomly travel the backward edges.
To formulate this model, we introduce a concept:

Definition 1 (Two-Way Path). Given a graph G(V,E),
a node-pair sequence T P = {(a1, b1) → (a2, b2) → · · · →
(a`+1, b`+1)} is called a two-way path if it satisfies :

∀ i ∈ [1, `+ 1], ai, bi ∈ V,
and ∀ i ∈ [1, `+ 1), 〈ai+1, ai〉, 〈bi+1, bi〉 ∈ E.

We use `(T P) to denote the length of a two-way path and
st(T P) to refer to the starting pair of it. The probability of
this two-way path is defined as :

P (T P) =
∏̀
i=1

C

|I(ai)||I(bi)|
(3)

We call T P a first-meeting two-way path if ai 6= bi
for 1 ≤ i ≤ ` and a`+1 = b`+1. For example, consider a
first-meeting two-way path in Figure 1(a). T P = {(a, b)→
(c, e)→ (b, c)→ (e, e)}. It is clear that st(T P) = (a, b) and
`(T P) = 3. The probability of two random surfers starting
from nodes a and b respectively and surfing on this two-way
path can be calculated according to Eq(3) as:

P (T P) =
C

|I(a)||I(b)| ·
C

|I(c)||I(e)| ·
C

|I(b)||I(c)|

=
0.363

2× 2× 3× 1× 2× 3
= 0.000648.

We can compute the SimRank based on the probability
of two-way paths as formalized in Theorem 1.

2

318

Theorem 1 (Random Surfer Model).

Rt(a, b) =
∑
T P

P (T P) (4)

where T P is an arbitrary first-meeting two-way path with
st(T P) = (a, b) and `(T P) ≤ t.

It requires complex statements to prove Theorem 1 and
interested readers can refer to [7] for detailed proofs. The
rationale of this model is that, the larger probabilities two
random surfers meet with, the more similar their starting
nodes are. Theorem 1 suggests by summarizing all first-
meeting two-way paths which start at (a, b) and end within t
steps, we can compute SimRank values on the t-th iteration.

2.3 Problem Definition
Definition 2 (Top-k SimRank-based Similarity Join).

Given a graph G(V,E) with n nodes and m edges and an
integer k, the top-k SimRank-based similarity join problem
(SRK-Join) aims to find a set of k node pairs K such that
for (a, b) ∈ K and (a′, b′) ∈ V ∗ V −K, S(a, b) ≥ S(a′, b′).

For example, consider the graph in Figure 1(a) and assume
k = 2. SRK-Join returns two pairs - (b, d) and (a, e) - as
the query answer. Their SimRank similarities on the 3-rd
iteration are highlighted in Figure 1(b).

3. FROM SIMRANK TO DOT PRODUCT
A straightforward approach to calculate SimRank S(a, b)

enumerates all possible two-way paths within length ξ. How-
ever, this approach is rather expensive for SRK-Join queries,
because the complexity of computing S(a, b) is determined
by the number of enumerated two-way paths which isO(D2ξ)
and the overall time complexity is O(n2D2ξ). To address
this issue, we introduce a partition-and-combine method
which splits a two-way path into independent one-way paths
and then merges them together. This method reduces the
number of enumerated paths to O(nDξ). Next we transform
the SimRank computation to the dot product calculation.

3.1 Partitioning the Two-Way Paths
Consider a first-meeting two-way path T P = {(a1, b1)→

(a2, b2) → · · · → (a`+1, b`+1)}. Two surfers a1 and b1 walk
simultaneously and first meet at the same location a`+1 =
b`+1. We observe that the probability of this two-way path
P (T P) can be computed based on the probabilities of a1 →
a2 → · · · → a`+1 and b1 → b2 → · · · → b`+1. Next we
present the details of this method. For ease of presentation,
we first introduce some concepts.

Definition 3 (One-Way Path). Given a graph G(V,E),
a node sequence OP = {a1 → a2 → · · · → a`+1} is called a
one-way path if it satisfies:

∀ i ∈ [1, `+ 1], ai ∈ V,
and ∀ i ∈ [1, `+ 1), 〈ai+1, ai〉 ∈ E.

Let `(OP) denote the length of one-way path OP. The
probability of OP is defined as:

P (OP) =
∏̀
i=1

√
C

|I(ai)|
(5)

For example, {a→ e→ c} is a one-way path on the graph
in Figure 1(a). P ({a→ e→ c}) =

√
C·
√
C

|I(a)||I(e)| = 0.36
2×1

= 0.18.

b

a e

c e c

a b e c a b e

Figure 2: A path tree rooted at user b.

We can prove that the probability of a two-way path
P (T P) equals to the multiplication of the probabilities of
two corresponding one-way paths.

Lemma 1. For any two-way path T P = {(a1, b1)→ (a2, b2)→
· · · → (a`+1, b`+1)}, let OP1 = {a1 → a2 → · · · → a`+1}
and OP2 = {b1 → b2 → · · · → b`+1}. Then, we have

P (T P) = P (OP1) · P (OP2) (6)

If we only require to enumerate all one-way paths, the
overall time complexity is significantly reduced to O(nDξ)
from O(n2D2ξ) (which enumerates all two-way paths). This
fact motivates us to partition the random two-way paths
into autonomous one-way paths and utilize the information
of one-way paths to calculate the probabilities in Eq(4). To
this end, we propose a new notation Sim(∗, ∗, ∗) to help
gather the information of one-way paths.

Definition 4 (Summation of One Way Paths).
Given a graph G(V,E), Sim(a ∈ V, x ∈ V, l ∈ [0, ξ]) is the
sum of the probabilities of all one-way paths with starting
node a, destination x and length l.

Sim(∗, ∗, ∗) captures the most essential information about
the probabilities of one-way paths. On one hand, it elimi-
nates redundant nodes in the path. For instance, for the
graph in Figure 1(a), consider the two different one-way
paths : {b → a → c → e} and {b → e → c → e}. When
we compute Sim(∗, ∗, ∗), the probabilities of them are both
added into Sim(b, e, 3). On the other hand, as we will see
in following discussions, the summation of one-way paths is
a powerful tool to obtain the summation of two-way paths.
For simplicity, we use “summation of paths” to refer to “sum-
mation of the probabilities of paths” if the context is clear.
We propose an efficient algorithm for calculating the sum-

mation of one-way paths based on the fact that the summa-
tion of one-way paths with longer length can be calculated
through the combination of shorter ones. Thus, the Sim
array can be calculated by dynamic programming and the
transition equation is formulated in Eq(7):

Sim(a, x, l) =
∑

y|x∈I(y)

√
C

|I(y)| · Sim(a, y, l − 1) (7)

We can utilize this property to compute the summation of
all possible one-way paths. Given a node, we generate a path
tree rooted at the node. The children of the root include all
of its in-neighbors. We recursively add the in-neighbors of
these children as their child nodes. The recursion terminates
if the path tree reaches ξ levels. Obviously for each node in
the path tree, the path which travels from the root to the
node along the tree edges corresponds to a valid one-way
path. For example, Figure 2 shows the path tree rooted at
b with depth ξ = 3 for the example graph in Figure 1(a).
Then we utilize the path tree to compute the summation

of one-way paths. Algorithm 1 illustrates the pseudo-code

3

319

Algorithm 1: Generate-Sim(G(V,E), C, ξ)
Input: G(V,E) : A directed graph;
C : A decay factor between 0 and 1
ξ : The maximum length of one/two-way paths
Output: Sim: Summation of one-way paths

1 Sim← an empty hash map;
2 for each node a ∈ V do

// R[i] is the set of the nodes with depth i
in the path tree rooted at a

3 R [1 . . . ξ]← ∅; R[0] = {a};
4 Sim(a, a, 0)← 1.0;
5 for each l ∈ [0, ξ − 1] do
6 for each y ∈ R[l] do
7 for each x ∈ I(y) do

8 Sim(a, x, l + 1)+ =

√
C

|I(y)| · Sim(a, y, l) ;

9 R[l + 1]←R[l + 1] ∪ {x};

10 return Sim;

for calculating Sim values. For each node a (line 2), we
process the nodes in the path tree from top to bottom. We
denote the set of nodes with depth i as R[i]. Initially, for
each depth i greater than 0, R[i]=∅; for depth 0, R[0]={a}
(line 3). Then, the algorithm uses Eq(7) to calculate the
Sim array with increasing order of l (lines 5-8). Line 9
updates the node set R[i] of current depth i.

Example 2. Consider calculating Sim(b, ∗, ∗) on the graph
in Figure 1(a) by using the path tree in Figure 2. For l = 0,
Sim(b, b, 0) = 1.0 and R[0] = {b}. When l = 1, Sim(b, a, 1) =

Sim(b, e, 1) =
√
0.36
2

= 0.3 and R[1] = {a, e}. Then,

Sim(b, c, 2) =

√
C

|I(a)| · Sim(b, a, 1) +

√
C

|I(e)| · Sim(b, e, 1)

= 0.3× 0.3 + 0.6× 0.3 = 0.27

The calculation of the nodes in depth 3 is similar. Note
that R[3] only has 4 elements while there are 7 one-way paths
with length 3. This is the effect of combining redundant paths
by summarizing one-way paths.

3.2 Combining the One-Way Paths
Algorithm 1 can efficiently calculate the Sim values. Now,

we propose Theorem 2 to integrate the one-way paths to
compute the summation of two-way paths.

Theorem 2.∑
T P

P (T P) = Sim(a, x, l) · Sim(b, x, l) (8)

where T P is an arbitrary two-way path with st(T P) = (a, b)
and meets at node x in exactly l steps.

Proof. Suppose Sim(a, x, l) consists of the probabilities
ofNa one-way paths, OPa,1,OPa,2, · · · ,OPa,Na , Sim(b, x, l)
consists of the probabilities ofNb one-way paths, OPb,1,OPb,2,
· · · ,OPb,Nb . Then, we have

Sim(a, x, l) · Sim(b, x, l) (9)

=

Na∑
i=1

P (OPa,i)
Nb∑
j=1

P (OPb,j) =

Na∑
i=1

Nb∑
j=1

P (OPa,i)P (OPb,j)

Note that OPa,i and OPb,j are both ending at x in ex-
actly l steps. So if we denote T Pi,j as the two-way path
with length l constituted by OPa,i and OPb,j , according to
Lemma 1, Eq(10) can be transformed to

Sim(a, x, l) · Sim(b, x, l) =

Na∑
i=1

Nb∑
j=1

P (T Pi,j) (10)

Note that ∀i, j, st(T Pi,j) = (a, b). So Eq(10) tells us that
the multiplication of Sim(a, x, l) and Sim(b, x, l) is the sum-
mation of Na · Nb two-way paths which start at (a, b) and
meet at node x in precisely l steps.
Next, consider an arbitrary two-way path T P whose start-

ing pair is (a, b), ending pair is (x, x) and length is l. Obvi-
ously T P is contained in theNa·Nb two-paths in Eq(10).

Theorem 2 suggests for two-way paths sharing the same
starting node, meeting location and length, we calculate the
summation of probabilities of them by first summing up the
one-way paths and then multiplying the summation.
Nevertheless, recall Theorem 1, the random surfer model

requires the summation of all first-meeting two-way paths.
In Eq(8), it is obvious that there are multi-meeting paths.
For example, let us consider the graph in Figure 1(a) and
the multiplication, Sim(a, e, 3) · Sim(b, e, 3), which summa-
rizes all two-way paths that start from (a, b) and meet at
e in exactly 3 steps. We can see that the two-way path
{(a, b) → (e, a) → (c, c) → (e, e)}, which is a multi-meeting
path because the two surfers already met at node c before
they met at e, is contained in this summation. Accordingly,
we must subtract these extra paths from Eq(8) in order to
compute the real SimRank similarity. To this end, we intro-
duce the notation of the second meeting probability.

Definition 5 (Second Meeting Probability).
The second meeting probability ∆(x, l) is the summation of
probabilities of two-way paths that satisfy (1) starting from
node x; (2) ending at the same node; (3) no other meeting
node; and (4) length no longer than ξ − l.

The ∆ array actually describes the probability of two ran-
dom surfers both start at node x and meet only once again
within ξ − l steps. To efficiently compute the probability,
as these two-way paths all have a common starting node,
namely, x, we can utilize the path tree rooted at node x to
calculate ∆(x, l) for l ∈ [0, ξ]. For each one-way path OP in
the path tree, it is simple to use the inclusion-exclusion prin-
ciple to find the set of one-way paths which have the same
length as OP and only share a common ending node with
OP(we do not take into account the starting nodes, because
they are always the same). Then according to Lemma 1, by
summarizing the multiplication of these one-way paths we
can easily compute ∆(x, l).
For example, consider the path tree in Figure 2. When

we calculate ∆(b, 0), the probability of two random surfers
starting from b and meeting again at b within 3−0 = 3 steps,
for the one-way path {b→ a→ c}, we find another one-way
path {b→ e→ c} with the same length 2 which only shares
a common ending node with it, so we add to ∆(b, 0) the
multiplication of these two one-way paths, i.e, P ({b→ a→
c}) · P ({b → e → c}). We will also add to ∆(b, 0) the
multiplication of {b → a → c} and itself, i.e, P 2({b → a →
c}) in that according to the inclusion-exclusion principle,
we must add to ∆(b, 0) the multiplications one-way paths
which share at least one common node and obviously the

4

320

e

a

c

a

b

e

Two surfers’ penultimate meeting at node c on the 1st step

Figure 3: An illustration of Lemma 2

two identical paths meet this requirement. Next, when we
compute the multiplication of one-way paths which share at
least two common nodes, we will subtract P 2({b → a →
c}) from ∆(b, 0). Thus, by using the inclusion-exclusion
principle, for {b → a → c}, we can correctly find the set of
one-way paths that have the same length with it and only
share a common ending node with it. Similarly, we can
summarize every one-way path in the path tree.

Lemma 2.∑
x∈V

ξ∑
l=0

Sim(a, x, l) · Sim(b, x, l) ·∆(x, l) (11)

is the summation of all multi-meeting two-way paths that
start at (a, b) and end at the same node within ξ steps.

Proof. According to Theorem 2, Sim(a, x, l)·Sim(b, x, l)
is the summation of a set of two-way paths that share the
same starting nodes (a, b), the same meeting node x and the
same length l. A thoughtful observation reveals that, when
it is multiplied by ∆(x, l), the summation of another set of
two-way paths which have starting nodes (x, x) and end up
meeting at another node within ξ − l steps, it becomes the
summation of all multi-meeting two-way paths shorter than
or equal to ξ steps which have their penultimate meeting
on the l-th step at node x. And by summarizing different
penultimate meeting nodes and steps, we can prove that
Eq(11) equals to the summation of all multi-meeting two-
way paths that start at (a, b) and meet within ξ steps.

Figure 3 shows a multi-meeting two-way path on the graph
in Figure 1(a) which illustrates this process. The solid lines
represent a two-way path which was added into Sim(e, c, 1) ·
Sim(a, c, 1). The slashed lines represent a two-way path
which was added into ∆(c, 1). When the two two-way paths
are combined, it becomes a 2-meeting two-way path, the
probability of which is contained in Sim(e, c, 1)·Sim(a, c, 1)·
∆(c, 1). Lemma 2 exploits a crucial property of a multi-
meeting two-way path – there is always a penultimate meet-
ing situation, i.e, the meeting node and meeting step.
Next, we propose the transformation from SimRank to

dot product in Theorem 3.
Theorem 3.

S(a, b) ≈ Rξ(a, b) =
∑
x∈V

ξ∑
l=0

Sim′(a, x, l) · Sim′(b, x, l) (12)

where Sim′(a, x, l) = Sim(a, x, l) ·
√

1−∆(x, l).
Proof Hint. This Theorem can be easily proved based

on Theorem 1 and Lemma 2.

To facilitate computation, we model Sim′(a, ∗, ∗) as a vec-
tor with n(ξ+1) dimensions. We first number the nodes from
0 to n−1 and let |x| denote the order of node x. The dimen-
sion with respect to Sim′(∗, x, l) is (|x| · (ξ + 1) + l). Then

Node Non-zero dimensions and values

a
0 2 3 6 7 9 10 11 17 18 19

0.90 0.05 0.05 0.05 0.04 0.28 0.17 0.05 0.24 0.05 0.07

b
1 3 4 7 10 11 17 18 19

0.27 0.05 0.89 0.05 0.25 0.05 0.24 0.07 0.05

c
1 2 3 5 7 8 10 11 17 18 19

0.18 0.05 0.04 0.18 0.04 0.93 0.17 0.09 0.16 0.10 0.05

d
1 3 7 10 11 12 17 18 19

0.27 0.05 0.05 0.25 0.05 0.89 0.24 0.07 0.05

e
2 3 6 9 11 16 18 19

0.11 0.04 0.11 0.56 0.11 0.80 0.10 0.07

Figure 4: The vector matrix of Figure 1(a)

the calculation of SimRank similarity is simply equivalent
to the calculation of dot product between two vectors. For
node x, let ~x denote its corresponding vector. In the follow-
ing, we will use node x and vector ~x interchangeably
when the context is clear.

Example 3. Figure 4 is the vector matrix of the graph in
Figure 1(a) with C = 0.36 and ξ = 3. A gray grid represents
a dimension and the white grid below is the corresponding
value of this dimension rounded to two decimals. In the
example graph, there are 5×(3+1) = 20 dimensions in total,
numbered from 0 to 19. For instance, if the numeric orders
of a, b, c, d and e are 0, 1, 2, 3 and 4 respectively, then the
dimension with respect to Sim′(∗, c, 2) is the 2×(3+1)+2 =
10-th dimension. From the highlighted grids in the vector
matrix, we can see Sim′(d, c, 2) = 0.25.
Consider calculating the dot product between vector d and

vector e. ~d · ~e = 0.04 × 0.05 + 0.05 × 0.11 + 0.07 × 0.10 +
0.05 × 0.07 = 0.019 which is the same as the 3-rd iteration
results shown in Figure 1(b).

Complexity Analysis. The time complexity of calcu-
lating Sim(∗, ∗, ∗) is O(nDξ) because the scale of one-way
paths is O(nDξ). When we compute ∆ array, for each
one-way path in all n path trees, we perform a hash-based
inclusion-exclusion operation, so there are approximately
2ξnDξ hash operations. Existing works [7] have shown ξ = 5
is enough for stabilizing the relative ranking of SimRank,
so in practice 2ξ can be regarded as a constant with O(1)
time complexity. Thus the time complexity of calculating
∆ array is O(nDξ) and the overall time complexity of the
transformation from SimRank to dot product is O(nDξ).
The space complexity is O(nDξ) which is determined by

the number of non-zero elements in Sim′ array. Note that
the vector matrix is theoretically very sparse and we can use
adjacent lists like Figure 4 to store the whole matrix.

4. TWO-STEP JOIN FRAMEWORK
In this section, we first propose a two-step join frame-

work to address the dot product problem in Section 4.1 and
then devise a novel technique in Section 4.2 to generate a
set of candidate nodes such that the top-k similar pairs can
be composed by the candidate nodes. We propose an effi-
cient algorithm to compute the top-k similar pairs using the
candidate nodes in Section 4.3.

4.1 Join Framework
Basic Idea. Consider a common situation where a user
requires the system to return the 1000 most similar pairs on
a graph with 1M nodes. The answer pairs will contain at
most 2000 distinct nodes. That is to say, there are almost
1M−2000

1M
= 99.8% nodes that are not included in any answer

5

321

pairs. So we are motivated to devise a method which can
efficiently eliminate unpromising nodes.
Formally, given a vector ~x(which corresponds to one of

the n nodes in a graph), we use ~Sx to denote the vector that
has the largest dot product value with ~x among other n− 1
vectors. We extract 2k pairs with the largest dot product
values from the pair set {(~x, ~Sx) |x ∈ V } and denote them
as (~x1, ~y1), (~x2, ~y2), . . . , (~x2k, ~y2k). We prove that nodes from
S = { ~x1, ~y1, ~x2, ~y2, . . . , ~x2k, ~y2k} are enough to constitute an
answer set K of the SRK-Join query.

Theorem 4. Nodes from the set S are enough to consti-
tute an answer pair set K of the SRK-Join query.

Proof. Consider an arbitrary answer pair set K′. If K′
contains a node pair (x, y) such that x /∈ S, then we have:

~x · ~y ≤ ~x · ~Sx ≤ ~x1 · ~y1, ~x2 · ~y2, · · · , ~x2k · ~y2k (13)

Assume (x1, y1) is not in K′, then if we replace (x, y) with
(x1, y1), K′ will still be a qualified answer pair set according
to Definition 2. If there still exists a pair (x′, y′) such that
x′ /∈ S, we replace it with another pair that is not in K′ and
is from the set {(~x, ~Sx) |x ∈ V }. Note that there are at least
k distinct pairs of vectors in (~x1, ~y1), (~x2, ~y2), · · · , (~x2k, ~y2k)
and there are exactly k pairs in K′, so after less than or equal
to k replacements, K′ will consist nodes only from S.
Framework. We can improve the idea and only find the
top pairs with exactly 2k distinct nodes. Thus we can reduce
the candidate node size to 2k which is not large because k in
practice is usually small. Based on this idea, we propose a
two-step framework. In the first step, we generate a candi-
date node set with 2k nodes. In the second step, we identify
the top-k similar pairs based on the candidate nodes.

4.2 Phase 1: Candidate Generation
4.2.1 Algorithm Overview
Algorithm 2 illustrates how to generate the candidate

nodes. We maintain a heap H which contains at most 2k
elements (line 1). Each element has the form (pair, value).
The elements in the heap represent the pairs with the largest
dot product values. For each vector ~x (line 2), we use func-
tion find(~x, θ) to check whether ~x· ~Sx is larger than or equal
to the smallest value θ in H. If so (line 5), we replace the
smallest value in H with ~x · ~Sx(Line 8). At the end of the
algorithm, nodes in H are added to the candidate node set.
In the algorithm, the find(~x, θ) function takes an important
role to achieve high performance. A naive algorithm to im-
plement the function enumerates all vectors, finds the most
similar one ~Sx, and checks whether ~x · ~Sx ≥ θ. But this
method is rather expensive. To address this issue, we pro-
pose an inverted-list-based method, which can significantly
improve the performance.

4.2.2 Inverted-List-Based Early Termination
We build inverted lists on top of the vectors. In the dot

product model, the entry of the inverted index is a dimen-
sion and the inverted list of each dimension is a list of ele-
ments with the form 〈vector_id, value〉 which represent vec-
tors that have non-zero values in this dimension, associat-
ing with the corresponding values. For example, consider
the 9-th dimension in Figure 4, its inverted list consists of 2
elements : 〈a, 0.28〉 and 〈e, 0.56〉.
Using the inverted lists, we can quickly find vectors which

have a non-zero dot product value with a given vector ~x. A

Algorithm 2: Generate-Candidate(X , k)
Input: X : A set of n vectors

k : The SRK-Join query integer
Output: S : The candidate node set

1 H ← an empty small heap;
2 for each ~x ∈ X do
3 θ←H has 2k distinct nodes?0 : smallest value in H;
4 (exist, ~Sx, val)← find(~x, θ);
5 if exist then
6 if H has 2k distinct nodes then
7 pop the element with the smallest val;

8 insert ((~x, ~Sx), val) into H;

9 S ← all nodes in H;
10 return S;

9

6

2

11

18

19

3

0.56 0.28

0.11 0.05

0.11 0.05

0.11 0.09

0.10 0.10

0.07 0.07

0.04 0.05

d v maxv

<a, 0.28> 0.1568

0.0055

0.0055

0.0099

0.0100

0.0049

0.0020

ub

<a, 0.05>

<a, 0.05>

<c, 0.09>

<c, 0.10>

<a, 0.07>

<a, 0.05>

<c, 0.05>

<a, 0.05>

<b, 0.07>

<b, 0.05>

<b, 0.05>

<b, 0.05>

<d, 0.07>

<c, 0.05>

<d, 0.05>

<d, 0.05>

<a, 0.05>

<d, 0.05>

<c, 0.04>

Figure 5: An example of inverted lists

naive idea to compute ~Sx is to union the inverted lists of all
its non-zero dimensions for each ~x, and aggregate the dot
product values at the same time. However, this approach
becomes increasingly inefficient with increasing number of
vectors. To this end, we propose an early-termination strat-
egy which skips unnecessary inverted lists and only uses a
small portion of lists to find ~Sx.
The basic intuition is to maintain a variable currentMax,

which stores the maximum dot product value currently, and
an upper bound for each dimension ub, which marks the
maximum possible value a dot product can get from this
dimension. We can use the bounds to do early termination.
The pseudo-code is shown in Algorithm 3. We first pick out
the non-zero dimensions into a list (line 1), then initialize the
upper bounds (line 3) and the references of the inverted lists
(line 4). The notation V~x,Di represents the value of the Di-
th dimension of ~x. Then Algorithm 3 uses a hash map aggr
(line 7) to store the dot product values of the current stage.
We aggregate the inverted lists one by one (line 8). For each
element in the inverted list (line 9), we aggregate it onto
corresponding aggr entry (line 10) and update currentMax
(line 11). Line 13 embodies an effective early termination
idea. If the summation of upper bounds(ub) of all dimen-
sions which have not been aggregated is already smaller than
currentMax or θ, we can conclude that vectors that we have
not seen yet will not be the expected answer. To terminate
as early as possible, we sort inverted lists in non-increasing
order by ubi

|Ii|
(line 5). The reason is that, (1) the fewer ele-

ments an inverted list contains, the earlier this list should be
aggregated. Then early termination will avoid aggregating
long lists; (2) the larger the upper bound of an inverted list
is, the earlier this list should be aggregated as this would
make currentMax become large in early stages and at the
same time make the remaining summation of upper bounds
become small. Thus it will make the pruning more powerful.

6

322

Algorithm 3: find(~x, θ)
Input: ~x : One of the n vectors; θ : A threshold
Output: Whether ~x · ~Sx ≥ θ. If yes, return ~Sx, ~x · ~Sx

1 D ← the list of non-zero dimensions of ~x;
2 for each i ∈ [1, |D|] do
3 ubi ← V~x,Di ·max

~y∈X
V~y,Di ;

4 Ii ← the inverted list of the Di-th dimension;

5 sort the dimensions in D in non-increasing order of
ubi
|Ii|

;

6 currentMax← 0;
7 aggr← an empty hash map from vector to real value;
8 for each i ∈ [1, |D|] do
9 for each element 〈~y, val〉 ∈ Ii do

10 aggr(~y)← aggr(~y) + val · V~x,Di ;
11 if aggr(~y) > currentMax then
12 currentMax← aggr(~y); ~Sx ← ~y;

13 if
∑|D|
i+1 ubi < max(currentMax, θ) then

14 stopDimension← i; break;

15 F ← the list of vectors which have aggr > 0;
16 sort the vectors in F in non-increasing order of aggr;
17 for each ~y ∈ F do
18 for each i ∈ [stopDimension + 1, |D|] do
19 aggr(~y)← aggr(~y) + V~y,Di · V~x,Di ;

20 if
∑|D|
i+1 ubi+aggr(~y)<max(currentMax, θ) then

21 break;

22 if aggr(~y) > currentMax then
23 currentMax← aggr(~y); ~Sx ← ~y;

24 if currentMax ≥ θ then return (Yes, ~Sx, currentMax);
else return (No, null, null);

Next we find all vectors with positive aggr values (line 15)
which may become Sx and complete the aggregating process
of these vectors (line 19). Line 20 is also a pruning skill:
if the current aggr value plus the maximum possible dot
product value of the remaining dimensions is still less than
currentMax or θ, we do not need to aggregate this vector
any more. To make this pruning more effective, before ag-
gregating, we first sort the vectors by their prior aggr values
(line 16). Similar to previous techniques, the reason is that
this will make currentMax become large quickly and cut off
a lot of unnecessary aggregate operations.

Example 4. Consider the vector matrix in Figure 4 and
find(~e, 0.1) to check whether ~e · ~Se ≥ 0.1. Figure 5 shows
the inverted lists of non-zero dimensions of vector e. The
lists are sorted according to Line 5. After we aggregate the
inverted list of the 9-th dimension, we have aggr(~a) = 0.56×
0.28 = 0.1568. The summation of the upper bounds of the
remaining 6 dimensions is 0.0378 which is already smaller
than aggr(~a). We conclude that ~Se = ~a. In this example,
we get the answer by only aggregating one short list.

4.3 Phase 2: Tree-Based Wand Algorithm
After generating the candidate nodes, we can enumerate

all candidate node pairs to compute top-k similar pairs with
O(k2Dξ) time complexity which is already affordable for
small k. Nonetheless, for social network analysis where k

Algorithm 4: TreeWand-locatePivot(root, θ)
Input: root: The root node of the Bst

θ : The threshold of treewand function
Output: The pivot dimension

1 curNode← root; pivotDimension← null;
2 while curNode is not empty do
3 if curNode.leftSum+ curNode.ub > θ then
4 pivotDimension← curNode.dimension;;
5 curNode← curNode.leftChild;

6 else
7 θ ← θ − curNode.leftSum− curNode.ub;
8 curNode← curNode.rightChild;

9 return pivotDimension;

can be up to 1,000 or 10,000, this method is not efficient.
Here, we propose a fast method to efficiently retrieve the
answer pairs from the candidate nodes. Our algorithm is in-
spired from the WAND algorithm [2] which was originally pro-
posed for efficient top-k document retrieval where queries
are short, e.g, less than 30. However, its overhead becomes
evident for long queries, i.e, vectors with many non-zero el-
ements. We present a tree-based WAND algorithm which can
handle long queries to find top-k pairs based on the candi-
date nodes. The tree-based WAND algorithm is characterized
by a function treewand(θ, ~x) which returns a vector whose
dot product value with the vector ~x is probably larger than
θ. To identify the join answer, we maintain a heap similar to
Algorithm 2 which stores the most similar pairs and uses the
treewand function incrementally for each of the 2k vectors.
To implement the treewand function, all the elements in

each list are first sorted in alphabetical order and each list
maintains a top element which is initially pointed to the first
element in the sorted list. Then we sort all lists in alpha-
betical order of their top elements. Next, we find a pivot
dimension, whose prefix summation of the upper bounds,
ub, is larger than θ. After the pivot dimension is identified,
the elements before this dimension (in sorted order) whose
alphabetical values are smaller than the top element of the
pivot dimension will not have dot product larger than θ.
Thus we skip these elements and repeat the above process
until the top elements of the dimensions before the pivot di-
mension are the same as the pivot element. We combine the
process of sorting the lists and locating the pivot dimension
together by a balanced binary search tree (Bst) with alpha-
betical value as the key. Each node in the Bst represents
a top element of a dimension. The operation of skipping
inverted lists and getting a new top element can be done by
first deleting an element and then inserting a new element.
Thus the inefficient sort process can be omitted.
This Bst can also be used to locate the pivot dimension.

The pseudo-code of locating the pivot is presented in Algo-
rithm 4. The variable curNode has various fields. leftChild
and rightChild denote the pointer of the left child and
right child of this node respectively. leftSum is maintained
throughout the whole query procedure and represents the
summation of all upper bounds in the left subtree. Algo-
rithm 4 traverses the Bst from top to bottom. For each
node, we first check whether the leftSum plus ub of this
top element is larger than θ. If so, we are sure that the
pivot dimension is in the left subtree, then we record this

7

323

0.1568
0

b

b

b b

b b b

c

e

e 0.005
0

0.002
0

0.0025
0.005

0.0055
0.0095

0.0049
0

0.0576
0

0.0425
0.0775

0.0055
0

0.0055
0.1568

Figure 6: An example of Bst

dimension as a temporary answer and go left. Otherwise,
we subtract leftSum + ub from θ and go to the right sub-
tree recursively. Once we reach a leaf node, we terminate
the process and return the answer. Example 5 shows the
procedure of the first repetition of treewand(0.15,~a) where
~a is the query vector in Figure 4.

Example 5. Figure 6 shows a Bst with 10 nodes. Each
node represents a top element of a dimension. The up-
per number beside each node is ub and the lower number
is leftSum. We start from the root. As leftSum + ub =
0.0775 + 0.0425 < 0.15, we set θ = 0.15− 0.0775− 0.0425 =
0.03 and go right. At the node labeled with c, 0.0055 + 0 <
0.03, we set θ = 0.03− 0.0055 = 0.0245 and go right again.
At next node we find the summation of leftSum and ub is
larger than θ, so we record the this dimension as a temporary
answer and go left. At the leaf node labeled with e, the sum-
mation of leftSum and ub is still larger than θ, hence we set
the final pivot dimension to the dimension of this node and
terminate the process. Here we get the answer by accessing
only 4 nodes. The linear search requires 9 accesses.

Given one of the 2k vectors, the difference between tree-
based WAND and the original WAND is that WAND sorts the di-
mensions in O(d log d) time and finds the pivot dimension
using a linear search in O(d) time where d is the number of
non-zero dimensions of the vector. Thus WAND fails to handle
long queries. Instead, by the use of a balanced Bst, we re-
duce the time complexity of both sorting the lists and locat-
ing the pivot dimension to O(log d). The top-k search WAND
algorithm is significantly improved to support long queries.

5. APPROXIMATION ALGORITHM FOR
SCALE-FREE GRAPHS

Recall that the scale of one-way paths with regard to a
starting point is O(Dξ) which is theoretically affordable for
most graphs. However, many real-world graphs are scale-
free [3] which means there is a small portion of high-degree
nodes. These nodes pose a significant challenge to the SimRank-
based similarity join problem, because if the path tree gen-
erated by Algorithm 1 contains such nodes, it will spread
a lot of branches and reduce the efficiency. On the other
hand, the high-degree nodes also bring opportunities. We
find that high-degree nodes will cause the probability of a
one-way path to be negligible, and thus the probabilities of
many one-way paths have tiny difference. If users can toler-
ate the tiny difference between different pairs, we can devise
more efficient approximation algorithms.
For example, consider a one-way path of length 2: {a1 →

a2 → a3} where |I(a1)| = |I(a2)| = |I(a3)| = 100. If
C = 0.5, then the probability of this path is 5× 10−5. If we
still extend the path tree from a3 as Algorithm 1 does, it will
generate another 100 one-way paths, each with the proba-
bility less than 5 × 10−7. Note that each of them is only

a one-way path, and if we use them to compute the Sim-
Rank values with other paths, they should be multiplied
by another one-way path. Thus the maximum contribu-
tion of these one-way paths to the final SimRank value is
5×10−7× (

√
C)3, which is rather small and can be ignored.

In this section, we present an approximation algorithm
which can efficiently identify the top-k similar pairs un-
der user-specified accuracy requirement. We modify Al-
gorithm 1 to prune unnecessary one-way paths while still
meeting a user-specified accuracy requirement δ.
User-Specified Accuracy Requirement. As we men-
tioned before, the ranking of SimRank values stabilizes within
5 iterations [7]. So we set ξ = 5 and use R5(∗, ∗) as the
ground truth for SRK-Join query. If we denote the Sim-
Rank values of the top-k results generated from R5(∗, ∗) as
ψ(1), . . . , ψ(k), sorted by SimRank value in non-increasing
order, and those of the approximate results as Ψ(1), . . . ,Ψ(k),
sorted by SimRank value in non-increasing order, then the
accuracy loss is formulated as maxki=1 |ψ(i)−Ψ(i)|. The ac-
curacy loss describes the maximum absolute difference be-
tween the similarity values of answer pairs returned from
the approximation algorithm and the real result R5(∗, ∗).
The user requirement has a parameter δ which requires

the accuracy loss is no more than δ:

k
max
i=1
|ψ(i)−Ψ(i)| ≤ δ (14)

Upper Bound of Accuracy Loss. In Algorithm 1, before
we aggregate the Sim value of the current node in the path
tree to its children, we first check whether the accuracy loss
of pruning the one-way path represented by this node would
be greater than δ. To this end, we introduce a new notation
N (x, d) which refers to the number of nodes with depth d
in the path tree rooted at x. This array can be calculated
recursively by the following equation:

N (x, 1) = |I(x)|, ∀x ∈ V

N (x, d) =
∑
y∈I(x)

N (y, d− 1), ∀x ∈ V and d > 1

Then we propose Theorem 5 to predict the upper bound
of accuracy loss of pruning a one-way path.

Theorem 5. If we prune the one-way path represented
by Sim(a, y, l), i.e, we do not aggregate its value any more,
the accuracy loss is bounded by :

ξ−l∑
d=1

N (y, d) · Sim(a, y, l)

|I(y)| · C
2d+l

2 (15)

Proof. For each d ∈ [1, ξ − l], there are N (y, d) one-
way paths which were pruned. Sim(a,y,l)

|I(y)| · C
d
2 is the upper

bound of the probabilities of these one-way paths. Then
according to Eq(12), to get the maximum contribution of
these one-way paths to the real SimRank value, each of
them should be multiplied by another one-way path, the
maximum probability of which is C

d+l
2 . Thus, the upper

bound of accuracy loss of pruning one-way paths on depth
d is N (y, d) · Sim(a, y, l) ·C

2d+l
2 . By summarizing d from 1

to ξ − l, we can prove Eq(15).
Pruning Algorithm. Algorithm 5 illustrates the basic
idea of our approximation algorithm by modifying Algo-
rithm 1. In Line 1, we use Theorem 5 to judge whether

8

324

Algorithm 5: Generate-Sim(G(V,E), C, ξ)

// Insert the following statements before
Line 7 of Algorithm 1.

1 if
∑ξ−l
d=1N (y, d) · Sim(a,y,l)

|I(y)| · C
2d+l

2 ≤ δ then
2 δ ← δ −

∑ξ−l
d=1N (y, d) · Sim(a, y, l) · C

2d+l
2 ;

3 continue;

the accuracy loss caused by pruning current one-way path
represented by node y exceeds δ. If it does not exceed δ,
we prune this one-way path(Line 3) and subtract the upper
bound of the accuracy loss from δ(Line 2).
Accuracy Analysis. Algorithm 5 prunes a one-way path
as long as the upper bound of the accuracy loss is within
δ. This will decrease the SimRank values no more than δ.
Similarly, we can design an algorithm for pruning one-way
path for ∆ array which will increase the SimRank values
no more than δ. So the absolute difference between the
SimRank values after pruning and R5(∗, ∗) is no more than
δ. Then it is evident that Eq(14) is satisfied.
Efficiency Analysis. The time complexity of calculating
N array is obviously O(nξ). In Algorithm 5, the time com-
plexity of the pruning operation(Line 1) is O(1) as we can
pre-calculate the summation

∑ξ−l
d=1N (y, d) and the expo-

nentiation C
2d+l

2 , thus the time complexity of Algorithm 5
is O(nDξ) but it avoids calculating a significant number of
unnecessary one-way paths caused by high-degree nodes.

6. EXPERIMENTAL STUDY
We have implemented our method and conducted exten-

sive experiments, using both real and synthetic datasets, to
evaluate our method. We have also compared our method
with two baselines extended from state-of-the-art works.
Real Datasets. Epinion2 is who-trust-whom online social
network of a general consumer review site Epinions.com.
It has 76K nodes and 509K directed edges. Berkstan3 is a
dense Berkeley-Stanford web page graph with 685K pages
and 7.6M edges. The edges represent hyperlinks between
web pages. Youtube4 is a social network of 1.14M Youtube
users and 4.9M connections. All these three real datasets are
scale-free graphs. Table 1 shows the details of the datasets.
Synthetic Datasets. We generate two different synthetic
datasets. One is Ed (Evenly Distributed) which is controlled
by three parameters, the number of nodes in a graph, the
minimum in-degree Imin and the maximum in-degree Imax.
The default values for Imin and Imax are 2 and 5 respec-
tively. Ed generates a graph with evenly distributed in-
degrees. Another is Scale-Free 5 which generates scale-
free graphs. The in-degrees in Scale-Free satisfy the power-
law distribution. There are two parameters in Scale-Free,
the number of nodes and α which controls the distribution
of in-degrees. The default value of α is 3.
Parameter Choosing. In our experiments, we set the
decay factor C = 0.3 which is an effective value used in [19].
The maximum path step ξ is set to 5 which enables the
2http://snap.stanford.edu/data/soc-Epinions1.html
3http://snap.stanford.edu/data/web-BerkStan.html
4http://konect.uni-koblenz.de/networks/youtube-links
5http://fabien.viger.free.fr/liafa/generation/

Table 1: Real Datasets.
Dataset |V | |E| D = |E|

|V | max
x∈V
|I(x)|

Epinion 75,879 508,837 6.71 3,622
Berkstan 685,230 7,600,595 11.10 84,290
Youtube 1,138,499 4,942,297 4.34 54,051

stabilization of rankings of SimRank values [7]. The user-
specified accuracy tolerance δ is 10−3 if it is not specified.
Experiment Setup. All algorithms were implemented in
C++ and compiled using GCC 4.8.1 with -O3 flag. The
experiments were conducted on a Ubuntu server with two
Intel Xeon X5670 CPUs (2.93GHz) and 64GB RAM. Each
experiment was run 5 times and average time are reported.

6.1 Evaluating Tree-Based Wand Algorithm
In this section, we will first evaluate the second phase of

the join framework which identifies the SRK-Join answers
among all the candidate nodes generated in the first phase.
We compared our tree-based wand algorithm (denoted as
treewand) with the original WAND algorithm and the naive
algorithm (naivek2). We used Algorithm 5 to generate the
vector matrix and used Algorithm 3 and Algorithm 2 to gen-
erate the candidate node set. Figure 7 depicts the results.
We can see for small k, e.g., k = 100, naivek2 had high

performance and even was better than WAND. This is because
its time complexity was O(k2Dξ) which was very efficient for
small k values. However for large k, e.g., k = 3000, naivek2
had much worse performance than the other two methods.
Our treewand method achieved the best performance over
all three datasets, because treewand combined the sorting
dimension and searching pivot process to O(log d) while the
original WAND algorithm needed to iterate the pivot finding
process a lot of times and each iteration took O(d log d) to
sort the dimensions and O(d) to search the pivot. For ex-
ample, on the Youtube dataset, treewand took 5.48s which
was 8 times faster than WAND (45.41s) and 30 times faster
than naivek2 (152.45s) when k = 3000.

6.2 Evaluating the Approximation Algorithm
In this section, we evaluate the accuracy and efficiency of

our approximation algorithm, denoted as approx, which cuts
off unnecessary one-way paths while has theoretical accuracy
guarantee. We also compare the efficiency of the approx
algorithm with the exact algorithm, denoted as exact.
6.2.1 Accuracy
We first evaluate the influence of the user-specified ac-

curacy requirement δ in Eq(14) on the “accuracy” of ap-
prox. Given a query integer k, if we denote the answer
pair set returned by exact and approx as PE and PA re-

spectively, then the accuracy is defined as
|PE ∩ PA|

k
. Intu-

itively, the “accuracy” describes the proportion of the “right
positioned pairs”. We evaluated the accuracy of three differ-
ent δ values, 10−2, 10−3 and 10−4. We denote the approx-
imation algorithm which uses the vector matrix generated
by δ = 10−2, δ = 10−3, δ = 10−4 as respectively 1e-2, 1e-
3 and 1e-4. Figure 8 shows the results. We can see from
Figure 8 that for δ = 10−2, the accuracy was always less
than 90% for each k over the three real datasets. But for
δ = 10−3 and 10−4, approx achieved a higher accuracy which
was above 95% and 98% respectively, because larger δ values
were prone to cut off more one-way paths and thus lead to
the loss in accuracy. We can also observe that for the same
δ, the accuracy values on three datasets had no large differ-
ences. The reason of this kind of “graph independence” is

9

325

100 500 1500 3000
Query integer k

0

5

10

15

20

25

30

35

40

45

T
im

e
(S

ec
on

ds
)

treewand
wand
naivek2

(a) Epinion

100 500 1500 3000
Query integer k

0

20

40

60

80

100

T
im

e
(S

ec
on

ds
)

treewand
wand
naivek2

(b) Berkstan

100 500 1500 3000
Query integer k

0

20

40

60

80

100

120

140

160

T
im

e
(S

ec
on

ds
)

treewand
wand
naivek2

(c) Y outube
Figure 7: Evaluation on Phase 2

20 200 2000
Query integer k

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

1e-2
1e-3
1e-4

(a) Epinion

20 200 2000
Query integer k

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

1e-2
1e-3
1e-4

(b) Berkstan

20 200 2000
Query integer k

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

1e-2
1e-3
1e-4

(c) Y outube
Figure 8: Accuracy of the approximation algorithms with different δ

20 200 2000
Query integer k

0

2

4

6

8

10

12

T
im

e
(S

ec
on

ds
)

1e-2
1e-3
1e-4

MatrixGen
Phase1
Phase2

(a) Epinion

20 200 2000
Query integer k

5

10

15

20

T
im

e
(S

ec
on

ds
)

1e-2
1e-3
1e-4

MatrixGen
Phase1
Phase2

(b) Berkstan

20 200 2000
Query integer k

0

10

20

30

40

50

60

T
im

e
(S

ec
on

ds
)

1e-2
1e-3
1e-4

MatrixGen
Phase1
Phase2

(c) Y outube
Figure 9: Running time of approximation algorithms

that Algorithm 5 will give each node an accuracy “budget”
δ and will subtract from δ the upper bounds of the accuracy
losses and prune the branches at the same time. This makes
accuracy only relate to the vicinity of a single node rather
than the entire graph.

6.2.2 Running Time
We evaluated the running time of the approx algorithm

with three different δ values. The overall running time of
approx consists of three parts - the vector matrix generation
(denoted as MatrixGen), the Phase1 and the Phase2 of our
join framework. Figure 9 depicts the detailed running time
of different parts of the approx algorithm.
We made the following observations. First, the total run-

ning time increased when δ decreased as smaller δ values
limited the pruning power of one-way paths in Algorithm 5.
Second, Phase1 which generated O(k) number of candidate
nodes from all n nodes had high efficiency. For example, on
Youtube, a graph with more than 1M nodes and 4M edges,
1e-3 returned the candidate in 7.2 seconds for k = 20 and in
8 seconds for k = 200. This efficiency should be attributed
to the early-termination strategy adopted in Algorithm 3.
Table 2 shows the percentage of skipped inverted lists in

Line 13 of the 1e-3. Although the number of skipped lists
decreased as k increased because larger k values will have
slower growth of the threshold θ in Algorithm 3, the results
on three real datasets show that our method still skipped
more than 98% of the lists and thus our early-termination
strategy was very powerful.
Third, the running time of our approximation algorithms

were not sensitive to the query integer k. For example, on
Berkstan, the overall running time for k = 20, 200 and 2, 000
of 1e-4 were 15.2s, 17.8s and 18.9s. We analyzed the rea-

Table 2: Percentage of lists skipped by Algorithm 3
k = 20 k = 200 k = 2000

Epinion 98.83% 98.47% 98.10%
Berkstan 99.85% 99.68% 99.52%
Youtube 99.28% 99.10% 98.93%

Table 3: The ratio of #non-zero to n2

Dataset exact 1e-2 1e-3 1e-4
Epinion 0.8× 10−1 7.7× 10−5 4.2× 10−4 1.4× 10−4

Berkstan 1.5× 10−1 7.9× 10−6 6.2× 10−5 4.5× 10−4

Youtube 0.3× 10−1 3.6× 10−6 3.5× 10−5 5.5× 10−4

son for all the three parts of approx. (1) For the MatrixGen
part, the running time were identical for any k. (2) The
early termination in Algorithm 3 did not rely too much on
k as shown in Table 2. (3) The running time of Phase2 was
very small as compared to the overall running time. Thus,
although it was subjected to k, the influence of k on it was
ignorable when we evaluated the overall time.
Fourth, as shown in Figures 8 and 9, δ = 10−3 was an opti-

mal value for pragmatic uses among all three values to trade
off accuracy for time. It maintained an accuracy higher than
95% and ran less than 35 seconds on all three datasets.
Fifth, on all the three real datasets, the overall time of

exact were 476s, 3,594s and 5,278s. It indicated that (1) ap-
prox was much faster than exact; (2) for real graphs which
are always scale-free, exact suffered a lot from the existence
of high-degree nodes. Table 3 shows the ratio of non-zero
elements in the vector matrix. We can see that the ap-
proximation algorithms significantly reduced the number of
non-zero elements in the vector matrix.
To deeply compare the exact algorithm and the approx

algorithm, we used the Ed generator to generate graphs
with evenly distributed in-degrees. The results are shown

10

326

5 10 20 50 100 500 2000
Query integer k

0

10

20

30

40

50

60

T
im

e
(S

ec
on

ds
)

SRK-Join
Srj-query
TopSim

(a) Epinion

5 10 20 50 100 500 2000
Query integer k

0

50

100

150

200

T
im

e
(S

ec
on

ds
)

SRK-Join
Srj-query
TopSim

(b) Berkstan

5 10 20 50 100 500 2000
Query integer k

0

100

200

300

400

T
im

e
(S

ec
on

ds
)

SRK-Join
Srj-query
TopSim

(c) Y outube

Figure 10: Comparison with state-of-the-art algorithms Srj-query and TopSim

3 4 5 6 7 8 9
Number of nodes(×1, 000, 000)

30

40

50

60

70

80

90

T
im

e
(S

ec
on

ds
)

k = 20
k = 200
k = 2000

(a) Running time of exact

3 4 5 6 7 8 9
Number of nodes(×1, 000, 000)

50

60

70

80

90

100

110

T
im

e
(S

ec
on

ds
)

k = 20
k = 200
k = 2000

(b) Running time of approx

3 4 5 6 7 8 9
Number of nodes(×1, 000, 000)

100

150

200

250

300

350

400

450

500

In
de

x
Si

ze
(M

B
)

exact
approx

(c) Index size
Figure 11: Scalability

in Table 4. We can see that on SYN1 and SYN2 which are
relatively sparse and have evenly distributed in-degrees, the
running time of exact was tolerable and approx was faster.

6.3 Comparison with State-of-the-art Methods
We extended two state-of-the-art methods Srj-query and

TopSim which solve the SimRank-based similarity join prob-
lem and the top-k SimRank search problem respectively to
support our problem and compared the performance.
Srj-query [19] aims to solve the SimRank-based similarity
join problem which takes a threshold θ as the input and
returns all pairs of nodes whose SimRank values exceed θ.
We extended Srj-query to solve the SRK-Join problem by
dynamically tuning θ and adjusting the searching bounds
according to the number of returned pairs. Srj-query had a
very time-consuming off-line phase for creating indices, and
we discarded the time of this phase and compared our overall
running time with its online query time. Moreover, Srj-query
used a partition-based approach for large graphs which was
also an approximation approach. We set the approximation
ratio of Srj-query to 10−3.
TopSim [10] finds the most similar nodes with regard to a
query node. We extended it to our join framework by first se-
lecting candidate node set using TopSim and then extracting
the most similar pairs among the candidate nodes. TopSim
adopts the random surfer model and prunes two-way paths
to offer an approximation algorithm for large graphs. We
also set the approximation ratio to 10−3.
To enable comparison, we set the accuracy requirement

δ = 10−3 and used the approximation algorithm to com-
pare with Srj-query and TopSim. We denoted our method
as SRK-Join. Figure 10 shows the results. On Epinion and
Berkstan whereD is relatively large, TopSim was better than
Srj-query for small k values because it used k to do early
termination. But for large k values, e.g., k = 2000, TopSim
became very inefficient. Our method outperformed both of
the two approaches significantly for any query integers, even
by an order of magnitude. The main reason is that, (1) Srj-
query used an offline strategy to solve the SimRank equation
system (Eq(2)). As the graph became increasingly large, the
number of equations grew quadratically. (2) TopSim aggre-

Table 4: Running time: exact vs approx on synthetic
datasets (k = 200)

|V | Imin Imax exact 1e-2 1e-3 1e-4
SYN1 10,000 2 5 5.6s 2.1s 4.1s 5.3s
SYN2 100,000 1 4 12.4s 7.3s 9.9s 11.8s
Table 5: Comparison of the running time with state-
of-the-art methods over synthetic datasets(k = 200)

|V | Imin Imax exact Srj-query TopSim
SYN3 300,000 2 5 15.9s 78.9s 110.6s
SYN4 500,000 1 5 22.6s 107.6s 130.3s
SYN5 800,000 1 3 31.8s 306.1s 254.2s

gated two-way paths and had a time complexity of O(nD2ξ),
thus when D was large, it had to enumerate a huge number
of paths. Instead, our method aggregated one-way paths
and utilized the information of one-way paths to calculate
the summation of two-way paths. For instance, on Berkstan,
when k = 500, Srj-query took 105s and TopSim took 110s.
Our method improved it to 13s.
On Youtube, a relatively sparse and huge social network,

TopSim outperformed Srj-query for all tested query integers
and our method was 7 ∼ 9 times faster than TopSim. This
is because Srj-query had to tackle a significant number of
equations on a huge graph, although it could utilize off-line
indices. We can also see that the running time of TopSim
varied significantly with the query integers. On the other
hand, our method had very stable performance for different
k values. For example, when k = 20, the running time of
our method and TopSim were 27s and 217s, when k = 2000,
they became 33s and 312s respectively.
We also compared the performance of the exact algo-

rithms. The exact form of the two-state-of-the-art works
cannot support scale-free graphs, thus we use graphs gener-
ated by Ed. Table 5 shows the results. We can see that our
exact algorithm outperformed TopSim and Srj-query greatly.

6.4 Evaluating Scalability
In this section, we used synthetic datasets to test the scal-

ability of our methods. We used Ed to generate sparse and
in-degree evenly distributed graphs to test the scalability
of exact. The scalability of approx was tested by scale-free
graphs which were generated by Scale-Free.

11

327

Figure 11 shows the results. We can see that the running
time of both exact and approx achieved linear scalability. For
example, for exact, the overall running time on graphs with
4M, 5M and 6M nodes when k = 200 were respectively 42s,
50s and 59s. For approx, the overall running time on graphs
with 5M, 6M, 7M nodes when k = 2000 were respectively
79s, 86s and 92s. We also evaluated the scalability of the
index size, i.e, the memory usage of the entire vector matrix,
and the results are shown in Figure 11(c). We can see that
both two algorithms had very good scalability. This is at-
tributed to our transformation from the iterative SimRank
computation to the dot product calculation and our pruning
and early-termination techniques.

7. RELATED WORK
Recently significant efforts have been devoted to optimize

the calculation of all-pair SimRank [14,16,18]. Lizorkin et.
al. [11] proposed an accuracy-guaranteed method to effi-
ciently compute all-pair SimRank in O(n3) time. There
have been many works which focused on new queries that
accessed only a small portion of nodes. Lee et. al. [10] stud-
ied the top-k search problem which returns the most similar
nodes with regard to a query node. Kusumoto et. al. [8] also
addressed the top-k search problem using a linear recursive
framework and obtained similar results to [10]. Fujiwara
et. al. [5] focused on the range search problem which re-
turns the nodes whose similarities with a query node exceed
a specified threshold. He et. al. [6] concentrated on solving
the single pair query problem. Zheng et. al. [19] studied
a more fundamental database operation, namely, the tradi-
tional similarity join problem, where a user inputs a thresh-
old t and requires the system to return all pairs of nodes
whose SimRank values exceed t. Yu et. al. [17] addressed
a “zero-SimRank” issue and proposed methods to improve
the quality of the SimRank metric. Antonellis et. al. [1]
proposed a refined SimRank similarity called SimRank++.
Different from existing works, we identify the top-k sim-

ilar node pairs and this is the first attempt to address this
problem. We extended state-of-the-art threshold-based sim-
ilarity join algorithm Srj-query [19] and top-k search method
TopSim [10] to support our problem and compared them
with our algorithm. Experiment results in Section 6.3 show
that our method significantly outperformed them. Nonethe-
less, it is not feasible to revise all-pair or single-pair Sim-
Rank computation methods to solve the SRK-Join problem
because even if we compute the SimRank value for each pair
in O(1) time, we still have to make a quadratic number of
computations. On the other hand, our method first builds
the vector matrix by visiting only a small portion of neigh-
bors of each node and then uses a fast inverted-list-based
method to select only 2k candidate nodes. Thus our method
is very efficient for the top-k join problem.
The other related studies focused on dot product simi-

larity. Broder et. al. [2] proposed WAND algorithm for top-k
information retrieval. Although there have been many works
which focused on optimizing the WAND algorithm such as
[4,13,15], none of them made WAND efficient for long queries.
Other works include top-k cosine similarity join [9,12].

8. CONCLUSION
We have studied the top-k SimRank-based similarity join

problem. We encoded a node to a vector by summarizing all

one-way paths between this node to its neighbors. We con-
verted the calculation of SimRank similarities to calculating
the dot product between vectors. We designed a two-step
framework to find top-k similar pairs. In the first phase, we
proposed effective techniques to reduce the candidate node
size to O(k). In the second step, we developed a tree-based
WAND algorithm to efficiently identify answers based on the
candidate nodes. To support large graphs, we devised an
approximate algorithm which can efficiently identify top-k
similar pairs under user-specified accuracy requirement. Ex-
periments on both real and synthetic datasets showed our
method achieved high performance and good scalability.

9. ACKNOWLEDGEMENT
This work was partly supported by the 973 Program of

China (2015CB358700 and 2011CB302206), and the NSFC
project (61373024 and 61422205), Beijing Higher Educa-
tion Young Elite Teacher Project (YETP0105), Tsinghua-
Tencent Joint Laboratory, the “NExT Research Center” (WBS:R-
252-300-001-490), and the FDCT/106/2012/A3.

10. REFERENCES
[1] I. Antonellis, H. Garcia-Molina, and C.-C. Chang. Simrank++:

query rewriting through link analysis of the clickgraph (poster).
In WWW, pages 1177–1178, 2008.

[2] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Y.
Zien. Efficient query evaluation using a two-level retrieval
process. In CIKM, pages 426–434, 2003.

[3] C. Cooper and A. M. Frieze. Random walks with look-ahead in
scale-free random graphs. SIAM J. Discrete Math.,
24(3):1162–1176, 2010.

[4] M. Fontoura, V. Josifovski, J. Liu, S. Venkatesan, X. Zhu, and
J. Y. Zien. Evaluation strategies for top-k queries over
memory-resident inverted indexes. PVLDB, 4(12):1213–1224,
2011.

[5] Y. Fujiwara, M. Nakatsuji, H. Shiokawa, and M. Onizuka.
Efficient search algorithm for simrank. In ICDE, pages
589–600, 2013.

[6] J. He, H. Liu, J. X. Yu, P. Li, W. He, and X. Du. Assessing
single-pair similarity over graphs by aggregating first-meeting
probabilities. Inf. Syst., 42:107–122, 2014.

[7] G. Jeh and J. Widom. Simrank: a measure of
structural-context similarity. In KDD, pages 538–543, 2002.

[8] M. Kusumoto, T. Maehara, and K.-i. Kawarabayashi. Scalable
similarity search for simrank. In SIGMOD, pages 325–336,
2014.

[9] D. Lee, J. Park, J. Shim, and S. goo Lee. An efficient similarity
join algorithm with cosine similarity predicate. In DEXA (2),
pages 422–436, 2010.

[10] P. Lee, L. V. S. Lakshmanan, and J. X. Yu. On top-k structural
similarity search. In ICDE, pages 774–785, 2012.

[11] D. Lizorkin, P. Velikhov, M. N. Grinev, and D. Turdakov.
Accuracy estimate and optimization techniques for simrank
computation. VLDB J., 19(1):45–66, 2010.

[12] Y. Low and A. X. Zheng. Fast top-k similarity queries via
matrix compression. In CIKM, pages 2070–2074, 2012.

[13] O. Rojas, V. G. Costa, and M. Marín. Efficient parallel
block-max wand algorithm. In Euro-Par, pages 394–405, 2013.

[14] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu. Pathsim: Meta
path-based top-k similarity search in heterogeneous information
networks. PVLDB, 4(11):992–1003, 2011.

[15] H. Yan, S. Ding, and T. Suel. Inverted index compression and
query processing with optimized document ordering. In WWW,
pages 401–410, 2009.

[16] W. Yu, X. Lin, and W. Zhang. Towards efficient simrank
computation on large networks. In ICDE, pages 601–612, 2013.

[17] W. Yu, X. Lin, W. Zhang, L. Chang, and J. Pei. More is
simpler: Effectively and efficiently assessing node-pair
similarities based on hyperlinks. PVLDB, 7(1):13–24, 2013.

[18] W. Yu, W. Zhang, X. Lin, Q. Zhang, and J. Le. A space and
time efficient algorithm for simrank computation. World Wide
Web, 15(3):327–353, 2012.

[19] W. Zheng, L. Zou, Y. Feng, L. Chen, and D. Zhao. Efficient
simrank-based similarity join over large graphs. PVLDB,
6(7):493–504, 2013.

12

328

	Introduction
	Preliminaries
	Iterative Model
	Random Surfer Model
	Problem Definition

	From SimRank to Dot Product
	Partitioning the Two-Way Paths
	Combining the One-Way Paths

	Two-Step Join Framework
	Join Framework
	Phase 1: Candidate Generation
	Algorithm Overview
	Inverted-List-Based Early Termination

	Phase 2: Tree-Based Wand Algorithm

	Approximation Algorithm for Scale-Free Graphs
	Experimental Study
	Evaluating Tree-Based Wand Algorithm
	Evaluating the Approximation Algorithm
	Accuracy
	Running Time

	Comparison with State-of-the-art Methods
	Evaluating Scalability

	related work
	Conclusion
	Acknowledgement
	References

