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ABSTRACT

A complete description of an entity is rarely contained in a single
data source, but rather, it is often distributed across different data
sources. Applications based on personal electronic health records,
sentiment analysis, and financial records all illustrate that signifi-
cant value can be derived from integrated, consistent, and query-
able profiles of entities from different sources. Even more so, such
integrated profiles are considerably enhanced if temporal informa-
tion from different sources is carefully accounted for.

We develop a simple and yet versatile operator, called PRAWN,
that is typically called as a final step of an entity integration work-
flow. PRAWN is capable of consistently integrating and resolv-
ing temporal conflicts in data that may contain multiple dimen-
sions of time based on a set of preference rules specified by a
user (hence the name PRAWN for preference-aware union). In the
event that not all conflicts can be resolved through preferences, one
can enumerate each possible consistent interpretation of the result
returned by PRAWN at a given time point through a polynomial-
delay algorithm. In addition to providing algorithms for imple-
menting PRAWN, we study and establish several desirable proper-
ties of PRAWN. First, PRAWN produces the same temporally inte-
grated outcome, modulo representation of time, regardless of the
order in which data sources are integrated. Second, PRAWN can be
customized to integrate temporal data for different applications by
specifying application-specific preference rules. Third, we show
experimentally that our implementation of PRAWN is feasible on
both “small” and “big” data platforms in that it is efficient in both
storage and execution time. Finally, we demonstrate a fundamental
advantage of PRAWN: we illustrate that standard query languages
can be immediately used to pose useful temporal queries over the
integrated and resolved entity repository.

1. INTRODUCTION

Complete information about an entity is rarely contained in a single
data source, but rather, it is often distributed across different data
sources. As a result, there is great value in combining data from
multiple sources to build a comprehensive understanding of enti-
ties. The combined understanding of entities is considerably en-
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hanced if temporal information from different sources is also care-
fully accounted for [31, 34] in order to determine when facts about
entities are true.

For example, patients typically visit multiple medical profes-
sionals/facilities over the course of their lifetime, and often even
simultaneously. While it is important for each medical facility to
maintain medical history records for its patients to provide more
comprehensive diagnosis and care, there is even greater value for
both the patient and the medical professionals to have access to an
integrated profile derived from the histories kept by each institu-
tion. Through the integrated profile, one could understand when
a drug was administered and taken by a patient and for how long.
In turn, one could determine whether drugs with adverse interac-
tions have been unintentionally prescribed to a patient by different
institutions at the same time. Another example comes from the re-
tail industry, where retailers are interested to understand the profile,
purchase intents, and sentiments of their (potential) customers over
time. With a comprehensive understanding of an individual drawn
from different sources, including when certain intentions or sen-
timents are expressed, recommendations and advertisements can
be targeted appropriately. Yet another real world example comes
from reports that are filed with the U.S. Securities and Exchange
Commission (SEC) at different times, where there is a critical need
to provide an integrated understanding across individual reports of
the stock holdings and professional relationships of executives over
time (which we will detail shortly). These examples all illustrate
that the time aspects of data can be critically relevant and, in par-
ticular, it is important to know the time periods in which a fact
about an entity is true.

Several challenges arise when integrating temporal data, which
refers to data that contains explicit time-specific information, such
as the date of a prescription, or implicit time information, such as
the version number or timestamp of an instance. First, the time
aspect associated with the data is often imprecise. A facility may
report that a patient was treated for a condition on a specific date.
From this information, we can infer that the patient must have had
the condition on the day he was seen, but we cannot say if the
patient still has the condition, or for how long prior to or after the
visit he had the condition.

Second, as in traditional data integration, inconsistencies may
arise with respect to certain constraints when data from multiple
sources are combined together. In our setting, an added complexity
arises from the need to handle certain constraints across time [24].
For example, reports that are filed with the SEC or corporate press
releases may state that an executive held a particular title on a given
day, but it does not provide information about when that title was
first held, or even if it is still held after the report or press release
is made public. Another data source (or even the same data source
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Figure 1: Creating an integrated profile of Freddy Gold from multiple temporal sources. Temporal contexts are shaded (in blue).

at a different time) may report that the executive was employed by
the company at a later date and with a different title. If there is
a constraint that an employee can only have a single title at any
point in time, what can we infer about the employment history of
the executive? Should we assume that she had been employed by
the company as of the (earlier) date associated with her title for
some time before it was changed to the other title at a later date,
or should the earlier title be completely disregarded? How would
the integration be different if we had assumed that an employee
can hold multiple titles at any point in time or if we had preferred
information from one source over the other?

We illustrate next with a concrete example the subtleties that are
associated with consistently integrating temporal data.

Motivating Example Figure 1 shows a simplified form of a real
example where information about Freddy Gold is obtained and in-
tegrated from several sources and at various times. The data sources
include reports that are continually filed with the SEC (Forms 10K
and 3/4/5) and are available via the EDGAR database [15], and dif-
ferent versions of resumes, corporate websites, and news articles
available electronically. However, for simplicity, our discussion
will focus on the integration of SEC reports only. We assume that
each row shown on the left of Figure 1 represents a separate filing
or a version, even though in general, a filing or version may contain
many rows of data.

For example, “Different SEC filings” in Figure 1 shows 7 facts
from 7 reports filed with the SEC that each indicate the number of
shares of a particular stock (OLP and BRT) held by Freddy Gold
during the second half of 2010 (year is not shown). The first row
shows that Freddy owned 300000 OLP shares on JulO1 in a report
filed on JulO1. The second row shows Freddy owned 141 OLP
shares on Aug23 in a report filed on Aug24. The third row shows
Freddy had 13415 OLP shares on Aug25 in a report filed on Aug26.

How can we best reconcile and compactly represent the given
information to understand, for example, what Freddy’s affiliation
was or how many shares of BRT he owned on Jull5? The 4th
filing, with an‘asof” date of Jul14, shows that he had 0 BRT shares
on Jull4, and so it would be reasonable to assume that Freddy still
had O shares of BRT on Jul15. On the other hand, the 5th filing has a
‘knownsince’ date of Aug22, which is later than the ‘knownsince’
date of the 4th filing, and it shows that he had 1820 shares as of
Jul09, so another interpretation is that the 5th filing superscedes
or corrects the 4th, and therefore Freddy had 1820 shares on Jull5.
The correct interpretation depends the semantics of the application,
but it should not depend upon the order in which the information
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is received and integrated. We dive into some of the details of how
we can answer these questions next.

Overview of our approach Though the ‘asof” date associated with
a filing only records the day on which a fact was known to be true,
it is reasonable to assume that the data in the filing continues to be
true until new information is received. For example, the first SEC
filing indicates that until we receive new information, Freddy owns
300000 OLP shares during the time interval Jul01-now and this was
known since JulO1, which we denote with the same time interval
JulO1-now. The second filing indicates that until we receive new
information, Freddy owns 141 OLP shares during the time interval
Aug23-now and this was known since Aug26, which we denote
with another time interval Aug26-now.

Since there can be only one quantity of OLP shares owned by
Freddy at any point in time, the two filings provide conflicting
information on the quantity of shares from Aug23 onwards. An
aggregated understanding can be derived based on the following
preference: information with a later ‘asof’ date is preferred over
information with an earlier ‘asof’ date. In this way, one can con-
clude that Freddy owns 300000 shares between Jul01-Aug23 and
he owns 141 shares between Aug23-now according to the filings
that were received on Jul01 and Aug24. This example describes a
key step behind our preference-aware union operator: When the
second SEC filing is integrated with the first, the asof time pe-
riod for 300000 shares is retroactively adjusted from JulO1-now to
Jul01-Aug23 to resolve conflicts. Our operator resolves temporal
conflicts under constraints and preference rules that are provided
by the administrator, if available. The result that is obtained does
not depend on the order in which the data is integrated.

The aggregated knowledge from the entire set of SEC filings
under the above preference is compactly represented in the up-
per portion of Figure 2. This outcome is obtained if filings are
received and integrated in any order and one favors information
with a later ‘asof’ time whenever there is a conflict. Other inter-
pretations are possible; the bottom portion of Figure 2 shows the
aggregated knowledge when it is assumed that later reports (i.e.,
later ‘knownsince’ date) always contain the latest information and
hence, preferred over filings with an earlier ‘knownsince’ date. Un-
der this interpretation, the 6th report (1322179 OLP shares) com-
pletely overwrites information from the 2nd report (141 OLP shares)
and the 3rd report (13415 OLP shares).

In the above example, it happened that all conflicts are resolved
based on preferences. If some conflicts cannot be resolved (e.g.,
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Figure 2: Two different ways of adjusting ‘asof’ time.

this may happen when no preferences are specified), then all con-
flicting values over time are retained.

The end-to-end entity integration framework PRAWN is a new
operator that performs temporal integration as part of a traditional
rule-based entity integration framework in which the goal is to pro-
duce a repository of clean, consistent entities that are aggregated
from partial information available from a myriad of sources [1]
and over which consistent temporal query answers can be easily
derived. Figure 3 shows where PRAWN fits into the workflow of
this framework. As shown in the figure, an administrator specifies
rules at design time to customize the workflow for a particular ap-
plication, and these rules are applied at runtime. Initial steps in the
workflow include information extraction to extract structured infor-
mation about the entity from unstructured sources (such as public
or enterprise documents, social media feeds), schema mapping to
map data extracted from both structured and unstructured sources
to a common schema, and entity resolution to group data that cor-
responds to the same entity together in a unified object. PRAWN is
typically invoked after the entity resolution step to reconcile tem-
poral conflicts among an entity’s attributes to produce a temporally
consistent object.

In real-life scenarios where information is integrated from het-
erogeneous sources, the ability of PRAWN to resolve temporal con-
flicts according to multiple policies is especially important. Con-
sider the scenario of creating the profile of a company executive
across regulatory filings and social media activity. For an attribute
such as number of shares held in a particular stock, the temporal
resolution may prefer records with a later ‘asof’ value. In contrast,
for an attribute such as current location, integrated from a social
media feed, temporal resolution may take into consideration the
provenance of the attribute, e.g. prefer the location inferred from
geo-coordinates associated with a posted message over the infor-
mation given by the user when the profile was created.

Other strategies are possible to derive a temporally consistent
object, such as machine-learning based approaches for learning the
true values among conflicting values (e.g., see [12, 30]). Both
rule-based approaches and machine-learning based approaches are
desirable and complementary approaches for managing conflict-
ing values. However, the integrated outcome from rule-based ap-
proaches is more amenable to debugging and understanding in gen-
eral. On the other hand, machine-learning based approaches allow
one to determine a true value when no rules are known or can be
learned. We refer the interested reader to [9] for an analogous dis-
cussion of rule-based and machine-learning based approaches in
the context of information extraction systems. PRAWN is a rule-
based operator where preference rules are used to discern preferred
values. The rules can be used to understand how an integrated result
is arrived at and values that are not known to be false will always be
kept until more rules can be learned or applied, or machine-learning
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Figure 3: PRAWN enables temporal integration as part of an
entity integration workflow.

approaches can also be applied to learn the true values among the
preferred values.

Contributions We make the following contributions:

e We present a simple and yet versatile operator, called preference-
aware union (PRAWN), that is capable of consistently merging
(hierarchical) temporal data based on a set of preference rules
specified by a user. To the best of our knowledge, this is the
first operator for merging temporal data based on user-specified
preference rules.

e In the event that not all conflicts can be resolved through pref-
erences, one can enumerate each possible consistent interpre-
tation of the result returned by PRAWN at a given time point
through a polynomial-delay algorithm. We establish the con-
nection between our work and prior work on inconsistent database
and repairs and show that each consistent interpretation corre-
sponds to a repair of the result at that given time point.

e We present several desirable properties of PRAWN.

— We show that PRAWN upholds important algebraic identi-
ties, which makes it suitable for integrating temporal data:
PRAWN produces the same integrated archive, modulo rep-
resentation of time, regardless of the order in which sources
are integrated.

We demonstrate the generality of PRAWN by illustrating
how PRAWN can capture different classes of applications

such as archiving scientific data, updates in bitemporal databases,

integrating SEC data, and integrating (non-temporal) data.

We implemented the PRAWN operator and showcase the ef-
fectiveness of both a serial and parallel version of the oper-
ator experimentally on several real-world data sets. Specif-
ically, we show that our implementations on both “small”
and “big” data platforms are efficient in both storage and
execution time.

Because our hierarchical data model captures both time and
data as first-class citizens and can be represented easily in
standard hierarchical formats such as XML or JSON, we
show how the result of PRAWN is immediately admissible
to temporal querying through standard query languages.



2. PRELIMINARIES

Data model We adopt a hierarchical data model for naturally cap-
turing real-world data sources such as SEC, Twitter, and scientific
databases, which typically occur in XML or JSON formats. Our
hierarchical data model is based on nested relations. However,
for simplicity, we will describe our data model through examples,
which are largely relational.

Concepts related to time We now describe some concepts related
to time: time instant, time interval, time dimension, time point, and
temporal context.

We view time as a linear structure (T, <), where T is a discrete
set of time instants and < is a precedence relation on T.

In this paper, we assume time are dates of the form mmmdd (e.g.,
Jun06), and a special symbol now denotes the current date. The pair
[Time-Time) describes a closed-open time interval, which finitely
represents a possibly infinite set of time instants. For example,
[JulO1-Aug25) is a time interval that represents a finite number of
days beginning on July 1, and ends before Aug 25, and [Jul01-now)
represents an arbitrary number of days beginning on July 1.

There are multiple types of time and each type of time is called
a temporal dimension [10]. There are two temporal dimensions,
‘asof” and ‘knownsince’, in our running example. In bi-temporal
databases, valid and transaction time are used. Sometimes a third
dimension, called decision time [29], is also used along with valid
and transaction time. As another example, it is conceivable that
SEC data can be modeled with three time dimensions, with ‘pub-
lished’ time in addition to ‘asof’ and ‘knownsince’, where ‘pub-
lished’ time refers to the time when SEC made the filing public,
and ‘knownsince’ refers to the time a particular quantity of shares
with a particular ‘asof’ time is known to be true.

If there are n time dimensions, then a time point is an n-tuple
(t1,...,tn), where ¢t;, 1 <4 < n,is a time instant in the 7th tempo-
ral dimension. We write ¢ to denote the vector (t1, ..., t,) of time
instants.

A temporal context is a set of records that describe a set of multi-
dimensional time points. For example,

asof
[Jul01-Aug20)
[Aug26-now)

knownsince
[Jul01-now)
[Aug30-now)

is a set of two records, where each record describes a possibly infi-
nite set of two dimensional time points. For example, (Jul01,Jul01)
and (Aug30,Aug26) are time points that occur in the first record,
and, respectively, the second record above, while the time point
(Jul01,Apr01) does not occur in the above temporal context.

Intuitively, if a temporal context is associated with an entity, then
the values of that entity‘s attributes are true during the set of all
time points given by the temporal context. In what follows, we will
abbreviate a temporal context with the notation M and describe the
temporal context explicitly only when needed. A temporal context
will always be shown shaded (in blue in color printout).

Prawn schemas and prawn instances A PRAWN schema is a set
of relation schemas, where every non-key attribute may contain a
set of values annotated with temporal contexts. We will denote the
usual schema with S and the corresponding PRAWN schema as Sy,

S: Stock(ticker*:Str,shares:Int).
Sp: stocksHeld::= Stock(ticker*:Str, shares:SetOfPreferred[MInt])

In the above S denotes the Stock relation (without time) and the
corresponding PRAWN schema is Sp. The notation “*” denotes the
key attribute. Under Sy, the non-key attribute ‘shares’ may con-
tain a set of (conflicting) values. The set of conflicting values is
flagged with a special SetOfPreferred type to denote that this
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is a set of values that remain after preference rules (see Section 3)
have been applied. (Hence the name “SetOfPreferred”.) Each
value in this set is associated with a temporal context M that speci-
fies the set of all time points when the value is true. In other words,
the temporal contexts capture when various quantities of shares of
a stock exist. In general, temporal contexts can also be associated
with the set or the relation but we have omitted them for simplicity.

In effect, our data model extends the deterministic data model
of [7], which is used in [8]. However, the annotation scheme of [8]
is limited to describing a single time interval and the algorithm
of [8] makes an implicit hard-coded preference for information in
the later version. As we shall explain, our algorithm allows more
than one time dimension and provides a declarative mechanism for
domain experts to specify preferences.

The annotated table below is a PRAWN instance that conforms
to Sp. It shows that for OLP, 300000 shares is the preferred true
value of the number of shares at some time point while 141 is the
preferred true value of the number of shares at some other time
points.

[ ticker ] shares |
knownsince asof
OLP [JulO1-now) [Jul01-Aug20) | 300000
[Aug30-now) | [Aug26-now)
knownsince asof 141
[Aug24-now) | [Aug23-Aug25)

Snapshot We write DQ(t1, ..., t,), written as D@ in short, to
denote the snapshot of D at time point t. Without belaboring the
exact definition of a snapshot, which is defined inductively on the
structure of a schema, we give an example next. If D denotes the in-
stance above, then the respective snapshots D@ (Jul01,Jul01) and
D @(Aug24,Aug23) are shown below.

orp |11

Each snapshot above consists of only one fact. As another exam-
ple, the snapshot D@ (Jul01,Aug22) is the emptyset, since the time
point (Jul01,Aug22) is not among the set of time points represented
by the temporal contexts in D.

Conformance to schema and key constraints Let S be a schema
and Sy denote the corresponding PRAWN schema. We say that an
instance D conforms to Sp, if at every time point ¢, the snapshot
D@t conforms to the schema S in the usual sense. Similarly, we
say that D satisfies a key constraint K (i.e., D is consistent w.r.t. to
K), if for every time point Z, the snapshot D@ satisfies K. In other
words, apart from the structural and type constraints of S that must
be adhered to, every relation in D@Qf must satisfy the associated
key constraint.

In the full generality of our data model, we require that there is a
key defined for every (nested) relation. This enables every element
of an instance to be uniquely identified by a sequence of element
names and key values along the path from the root of the instance
to that element.

PROPOSITION 2.1. Let D be an instance of a PRAWN schema
and t be a time point. Then, every element (i.e., set or record or
atomic value) of DQt can be uniquely identified by some path from
the root of DQt to that element.

A path has the form DQt/(p) or D/(p), where D is an in-
stance, ¢ is a time point, and (p) is a path in D@Q¢. Sometimes
D is omitted if it is understood from the context. For example, the
path D@ (Jul01,Jul01)/[ticker=OLP] uniquely identifies the OLP
record in the stocksHeld relation on (Jul01,Jul01) and the set of



quantities of shares of stock OLP on (Jul01,Jul01) is identified by
the path D@ (Jul01,Jul01)/[ticker=OLP]/shares.

3. PREFERENCE-AWARE UNION (PRAWN)

Recall that the PRAWN operator is part of an entity integration
framework. It assumes that data from different sources or different
versions are already transformed into a common PRAWN schema
before the PRAWN operator is applied. PRAWN is a binary opera-
tor that derives a merged instance from two instances of the same
schema based on a set of preference rules. We describe how pref-
erence rules are declaratively specified next.

3.1 Preference rules

A preference rule may be specified for each non-key attribute.
For example, one may state that values of shares with a later ‘asof’
date are preferred over values with an earlier ‘asof” date as follows:

11:  for r1 and 7o in stocksheld/Stock[ticker="*]/shares
prefer ry if rq.start(asof) > ro.start(asof)

The path ‘stocksheld/Stock[ticker=*]/shares’ refers to the set of
values under the attribute shares of each tuple in the Stock relation.
It states that if there are two quantities of shares that coexist at some
time point, preference will be given to the quantity that is associated
with a greater beginning ‘asof’ time.

As another example, suppose there are three data sources A, B,
and C. The preference that data about quantities of shares from
source A is preferred over that of source B can be specified follows:

1a:  for r; and 7o in stocksheld/Stock[ticker="*]/shares
prefer ry if r1.source = ‘A’ and ra.source = ‘B’

In the above, the metadata ‘source’ describes the origin. The rule
states that share values from source A is preferred over those from
source B but it does does not mention preferences over data from
B and C, or from A and C for that matter.

In general, a preference rule v is of the following form:
for r1 and r2 in (path)
prefer r1 if p(r1,r2)
where ¢(r1,72) is a conjunction of comparison predicates of the
form vy 6 vo, where vy is either an attribute of 1 or a constant,
vo is either an attribute of ro or a constant, and 6 is one of the
comparison operators {<, <, >, > =, <>},

Every preference rule over an instance D induces a preference
relation wpDal‘h’ which describes an explicit partial ordering between
values. We assume preference relations are acyclic binary relations
that are also closed under transitivity. Otherwise, one can extract
an acyclic binary relation as follows: Take the transitive closure of
the relation. If r is preferred over ' and r’ is not preferred over
7, then the new relation asserts that r is preferred over 7. In other
words, cyclic preferences are omitted in the new relation.

We say that an instance D satisfies a preference rule ¢pmh if
for every time point ¢, there does not exist distinct r1 and r2 that
both occur in the set referred to by path (path) in D@t such that
@(r1,72) holds. A preference specification is a set of preference
rules. An instance D satisfies a preference specification V¥ if D
satsifies every preference rule ¢ € .

Ypath’

DEFINITION 3.1. (Preference over PRAWN instances) Given two
instances D and D' of the same schema Sy, and a preference speci-
fication U over Sp, we say D' is preferred over D w.r.t. W, denoted
as D' >y D, if

1. D' satisfies W, D satisfies ¥, and

2. for every time point t, it is the case that D' Qt dominates DQt.
We say that D' @t dominates D@t if for every path p in DQX,
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e palso occurs in D'Qt, and

e if ppoints to a set, it must be that for every element e € (D@t /p—
D'Qt/p), there is an element e’ € D'QL/p such that €’ is pre-
ferred over e according to .

Intuitively, if D’ @t dominates D@{, then every elementin D@t /p
either occurs in D'@#/p or is dominated by some element in D’ Q% /p.
When combining information from different sources or different
versions of the same source, our goal is to derive a “maximal” in-
stance that satisfies the given preference rules. We formalize the

meaning of such an instance next.

DEFINITION 3.2. (Preference-aware union Wy ) Let D1 and D2
be two instances of a PRAWN schema Sy and ¥V be a preference
specification. Then D1 Wy D3 is an instance D of Sp such that

1. D satisfies U,

2. for every time point t and for every path p in DQt, it must be
that p is a path in D1Qt or D@,

3. for every other instance D' such that the above holds, it is not
the case that D' >g¢ D.

The first condition states that D satisfies the preference rules.
The second condition ensures that values of D are from D1 or Do
and the third condition ensures that D is “maximal”.

3.2 Properties of the Prawn operator

We first show that there is a unique instance that represents the
merge D1 Wy Do.

PROPOSITION 3.1. Let D1 and D2 be two instances of a PRAWN
schema Sp and U be a preference specification. Then, there is a
unique instance of Sp (modulo representation of time points) for
D1 Wy Do.

Next, we show that Wy is idempotent, commutative, and asso-
ciative. The idempotence property ensures that an instance that
is integrated with itself will continue to be the same as the orig-
inal instance. Furthermore, with commutativity and associativity,
we obtain the following guarantee: regardless of the order that data
sources are integrated, though the syntactical representation of time
instants may vary, the final result contains identical time points.
This operator is thus well-suited for entity integration as data from
different sources (and the same source) can be integrated in any
order, as and when it becomes available.

The proof of Theorem 3.2 (see below) can be found in [2] and it
makes use of the definition of equivalence, which is defined next.
The proof of idempotency is straightforward since the inputs to Wy
are identical and already satisfy ¥, and D Wg D is exactly D by
Definition 3.2. We prove commtuativity by showing that at every
time instant ¢, (D1 Wy D2)@t is identical to (D2 Wy D1)@Qt. We
prove associativity by showing that at every time instant ¢, ((D1 W
D;) Wy D3)@t is identical to (D1 Wy (D2 Wy Ds3))@t, and then
apply induction on the structure of S.

DEFINITION 3.3. Let D; and D5 be two instances that con-
form to a PRAWN schema Sp. We say that D, is equivalent to Do,
denoted as D1 = Do, if for every time point £, the instance D; Q%
is identical to D2@t in the following sense:

e if D@t and D-@t are sets of atomic values, then the sets D1
and D> are equal. That is, D1 = Ds.

e if D1@t and D-@t refer to sets of (non-atomic) elements, then
e € D,Qtiff e € D@t where e and ¢’ have the same key
value, and e is identical to e’.



e if D1@t and D@t are records (i.e., tuples of relations) of the
form Red[l; : vi,...,lk : vk,...] and, respectively, Red[l; :
vi,...,lg : v,...], then vy is identical to vf, ..., and vy is
identical to v},.

THEOREM 3.2. Let D1, D», and Ds be instances that conform
to the same PRAWN schema Sp, and let VU be a set of preference
specifications such that D1 (resp. D2 and Ds3) satisfies V. Then,
the following identities hold for Wy :

o (Idempotence) (D1 Wy D1) = Dh.
o (Commutativity) D1 Wy Dy = D2 Wy D;.
o (Associativity) (D1 Wy D2) Wy D3 = D1 Wy (D2 Wy Ds3).

Connection to inconsistent databases and repairs In the event
that not all conflicts can be resolved through preferences, one can
enumerate each possible consistent interpretation of the result re-
turned by PRAWN at a given time point through a polynomial-delay
algorithm. We first describe the connection between our work and
prior work on inconsistent database and repairs. We show that
each consistent interpretation of the integrated result corresponds
to a repair at that given time point. After this, we describe the
polynomial-delay algorithm that enumerates each repair.

Recall that an inconsistent database [3] is a database that may
violate some integrity constraints (e.g., keys). The fundamental
philosophy behind inconsistent databases is to conservatively keep
all inconsistencies and resolve inconsistencies through some other
means or during query time (e.g., through the notion of certain an-
swers). This is in contrast to applying data cleaning techniques,
which is sometimes perceived as ad hoc, to derive a single consis-
tent database.

The integrated archive D Wy Do is, in general, an inconsistent
temporal database as it captures, at every time point, the remain-
ing inconsistencies at that time point after preferences have been
applied. For example, suppose there are no preference rules for our
SEC reports. If D1 and D3 refer to the first and second SEC filings
under ‘Different SEC reports’ of Figure 1, then Dy Wy D2, shown
below, is an inconsistent temporal database.

[ ticker ] shares l
knownsince | asof
OLP [ul0l-now) | [ul0l-now) |>00%
knownsince asof l
[Aug24-now) | [Aug23-now)

This is because the snapshot (D1 Wy D2)@t, where £ is the time
point (Aug24,Aug23), is an inconsistent database, as it contains
two quantities of shares (i.e., 300000 and 141) for OLP. This vio-
lates the key of the relation of S which asserts that there can only be
one quantity of share for each ticker symbol at any time point. Sim-
ilarly, (D1Wg D2)@(Aug30,Aug30) and (D1 Wy D2)@(Decl,Decl)
are inconsistent databases.

Let D be an instance of a PRAWN schema, and ¢ be a time point.
An instance D’ is an optimal repair of DQt w.r.t. a preference
specification ¥ and a set K of key constraints if

1. D’ satisfies ¥ and K.
2. for every path p in D’, it must be that p is a path in D@%, and

3. there does not exist another instance D’ such that the above
holds for D", and D" dominates D’.

Intuitively, D’ is a maximal consistent database of D@ that satis-
fies ¥ and K. In particular, if ¥ = () in the relational case, each
maximal consistent database of D@t corresponds to a subset re-
pair [3] of the inconsistent database D@t w.r.t. K (hence, the name
optimal repair).
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Continuing with our example, there are two optimal repairs at
the time point (Aug24,Aug23), which are shown below:

Given an instance D of Sp, and a time point Z, there is a polynomial-
delay algorithm that enumerates all the optimal repairs of D w.r.t.
¥ and K at time point .

Next, we informally describe a polynomial-delay algorithm for
enumerating all optimal repairs of an instance D w.r.t. ¥ and K
at time point ¢. Given an input to a problem, a polynomial-delay
algorithm [25] generates the first solution in polynomial time in
the size of the input and each subsequent solution in polynomial
time in the size of the input.

Polynomial-delay enumeration algorithm The enumeration
algorithm keeps a pointer for every SetOfPreffered type in D. Ini-
tially, each pointer points to the first element of the set. To gen-
erate the first optimal repair, D is traversed in document-order.
Whenever the traversal reaches a the path that refers to an element
whose temporal context contains #, the algorithm emits that ele-
ment. Whenever a path refers to a SetOfPreferred type, the algo-
rithm emits the next element e (according to the pointer) of that set
whose temporal context contains ¢ and advances the pointer. This
check can be done in polynomial time in the size of the temporal
context. To generate the next optimal repair, we repeat the proce-
dure above.

The constructed output is a optimal repair because there can be at
most one element per SetOfPreferred type under a key constraint.
It is also easy to verify that each optimal repair can be constructed
in polynomial time in the size of D and .

The integrated archive D returned by PRAWN is a compact rep-
resentation of all optimal repairs over time. Note however that the
integrated archive has the property that at every time point ¢, DQt
satisfies W (since preference rules have already been applied by
PRAWN) even though D@t may not satisfy K. So in particular, this
polynomial-delay algorithm gives us the option to systematically
enumerate the remaining consistent interpretations (i.e., maximal
consistent databases) of D1 Wy Do in the event that not all con-
flicts can be resolved through preference rules.

3.3 The PRAWN Algorithm

We now describe the PRAWN algorithm that computes D1 Wy Da.
Obviously, it is infeasible to resolve inconsistencies that may occur
at every time point according to Definition 3.2, since there can be a
large number of time points to consider in general. Our algorithm
computes D1 Wy D2 by manipulating temporal contexts to satisfy
the given preference specification.

The PRAWN algorithm recurses on the structure of D; (resp. D2)
based on the types of Dy (resp. D2). Observe that the elements of
D1 and D> must have the same type as the algorithm proceeds,
since they both conform to the schema Sp. Otherwise, an error is
immediately returned (line 26).

For simplicity, we present our algorithm only for the relational
case, where a relation is represented as a SetOf records, and each
record is defined as Red[ly : 71,...,ln : Tn,...], Where [; are
labels (or attributes) and each corresponding 7; is an atomic type
Str or Int. The “..” at the end allows for flexibility in the def-
inition of attributes in the relation. It denotes that the record may
contain more and more attributes as integration occurs. An attribute
of a record can also be a nested set of Str or Int values, denoted
as SetOfPreferred Str or SetOfPreferred Int type.
Recall that the SetOfPreferred type is used to capture a set of pre-
ferred values. In our example, we have used SetOfPreferred



Algorithm 1: PRAWN(S, D1, D2, V)

Algorithm 2: resolve(d:, dz2, V)

1 Input: Two instances D1 and D2 of a PRAWN schema Sp, and a
preference specification W.
2 Output: D1 Wy Do.

3 case D and D3 are SetOf types

4 Let D} (resp. DY) be the set of all elements in Dy (resp. D2)
whose keys do not occur in D2 (resp. D1);

5 LetT' = 0;

6 for every t1 € D1 and ta € Do such that t1 and to have the
same key value do

7 T' = T'"U PRAWN(SL, t1, t2, ¥), where S}, denotes the
type of t1;

8 Let Res= D} U D, UT';

9 return M Res, where M represents all time points in the temporal

| contexts of Dy and Da;
10 case Dy and Dy are both Rcd types

11 Let D1 be Red[p1 : w1y.. -y Pm & Um,y -..];

12 Let Da be Red[q1 : v1,...,qn & Un,-..];

13 Wlog, assume p; = q;, where 1 < ¢ < k, and k < min(m, n);

14 Let w; = PRAWN(S;,u;,v;,¥), where 1 < ¢ < k, and S+, ..., Sk
denote the schemas of w1, ..., uj respectively.

15 Let Res = (Red[p1:w1,. . ..pi wg,

16 Pk41:Uk+15 - - - Pm Um,

17 Qk4+1:Vk+415- - xGn Vn, ---1);

18 return Res;

19 case D1 and Do are SetOfPreferred|[T] types, where T is Str or Int

20 for every [@l(d1) € D1 do

21 for every [@sl(dz2) € D2 do

2 Let (@(d1)J8(d2)) = resolve(@m(d), @@(dz), V);

23 Replace @iil(d1) € D1 with [@l(d1);

24 Replace [ggl(d2) € D2 with .(dg);

25 return [@(D1 U D2), where c is a temporal context that represents

| all time points of the temporal contexts associated to D1 and D2;
26 return Error; / D1 and D2 have different types

Int to capture the quantity of a share.

If Dy and D, are both SetOf types, which represent relations,
then by the requirements of a PRAWN schema, the elements in each
set must be identifiable through keys (see line 3). An element of
D is recursively merged with an element of D2 with the same
key. The temporal context of the result consists of all time points
of the temporal contexts associated with D; and Ds.

The case of record types (Rcd), which represent tuples of re-
lations, works similarly to SetOf types (see line 10). Values of
common attributes are merged via recursive calls, while values of
attributes that occur exclusively in the first or second record are
simply returned (see fields £ 4 1 to m and k + 1 to n respectively.
Similar to the case of SetOf type, the temporal context of the re-
sult consists of all time points of the temporal contexts associated
with Dy and Ds.

If Dy and D» are both SetOfPreferred types, which rep-
resent sets of possibly conflicting values, then the temporal con-
texts of D and D3 are adjusted through the subroutine resolve
whenever a conflict occurs. A temporal context is implemented as
a set of records. Lines 3-11 of Algorithm 2 first checks whether
c1 and cz overlaps at some time point by checking whether there
is a pair of records in c¢i and, respectively, ca that overlaps. The
notation 7 denotes the set of all time dimensions (e.g., ‘asof” and
‘knownsince’). We shall exemplify in Section 3.4 that different
subsets of time dimensions can be used in general. Formally, we
say that two temporal contexts overlap in time dimensions T, if
they share at least one common time point in the time dimensions
given by 7. The difference is defined accordingly. The difference
between two temporal contexts w.r.t. T, denoted as c1 7 co, is the
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1 Input: Two atomic values d; and d2 of the same type, their associated
temporal contexts ¢1 and cg, a set ¥ of preference specifications.
2 Output: { [g d1, [ d> }, which is { @@ d1 } Wy { @3 d2 }.
3 for each r1 € jei do
for each ro € [gg] do
if r1 and ro overlaps in T then
if d2 is preferred over dy according to ¥ then
L /I prefer dg over dy

replace r; with 7y &7 r2;
if dy is preferred over dg according to ¥ then

1 L replace 72 with ro ©7 71

S e NN s

11 return { di,[C2)d2 };

set of all time points in ¢; that do not overlap with ¢ in the time di-
mensions given by 7. Hence, if the temporal contexts overlap, and
ds is preferred over d; (see line 6), then the temporal context of di
is adjusted by removing the time points of d; that causes the over-
lap in the time dimensions given by 7. A symmetric case happens
in line 9.

We now show that our implementation for PRAWN, described
earlier, is correct in that it indeed computes D1 Wy D2. The proof
of Theorem 3.3 (see below) uses induction on the structure of S
and can be found in [2]. Since it makes one pass through D; and
D», it runs in polynomial time in the size of its input.

THEOREM 3.3. Let D1 and D2 be two instances of the same
PRAWN schema S, that satisfy a set ¥ of preference rules. Then,

PRAWN(Sy, D1, D2, V) returns D1Wy Da. Furthermore, PRAWN(Sp,

D1, Do, V) executes in polynomial time in in the size of the input.

To the best of our knowledge, this is the first algorithm for merg-
ing two temporal instances according to a preference specification
and the presented algorithm is optimal in the sense that it makes
only one pass through both instances.

3.4 Versatility of PRAWN

Next, we demonstrate how PRAWN can capture the integration
semantics of several types of real-world integration scenarios, by
simply customizing the preference specification and/or the time di-
mensions used in the computing the difference between two tempo-
ral contexts. We discuss three specific applications below and omit
the discussion of how the semantics of integrating data (without
time) can be achieved by PRAWN which can be found in [2].

Semantics of archiving (i.e., integrating versions of data) The
nested merge operator of [8] which is used to archive versions of
data can be reduced to PRAWN as follows.

We define the temporal context to contain a single time dimen-
sion, say “version”. The temporal context of every element in the
ith version will contain the interval [i —now) and the temporal con-
text of every element in a later version, say (¢ + 1)th version, will
contain the interval [¢ + 1 — now). We define 7 = {version} and
we define a preference rule

for r1 and ro in (path)

prefer rq if rq .start(version) > rg.start(version)
to always prefer values from a later version. Hence, if the value of
an element is 71 in the ith version but 72 in the (¢ + 1)th version,
the difference operation will modify the temporal context of 71 to
[i,7 4+ 1), and the temporal context of ro will continue to have the
time interval [i + 1 — now).

Semantics of updates in bi-temporal databases In bi-temporal
databases (see [23] for a comprehensive overview of concepts and



related work in this area), there are two notions of time, namely
valid-time and transaction-time. Valid-time denotes the time at
which a tuple is valid in the real-world, while transaction-time de-
notes the time updates are entered into the database. Hence, the
transaction times of updates can only increase with each update.
An update on a relation in bi-temporal databases is reduced as in-
put to PRAWN as follows. We model a relation as a SetOf records,
where there is a temporal context, with valid and transaction time
dimensions, associated with each record. An update is a record
with an associated temporal context whose transaction time corre-
sponds to the time the update was sent to the bi-temporal database.
For example, when an update occurs with a valid time interval
[vs — v4) at transaction time ¢, the corresponding temporal con-
text of the update record is co = [valid: [vs-v4), trans:[t-now)].
Now suppose a tuple occurs in the relation with valid time interval
[v1-v2) and transaction time interval [¢1-t2). The associated tem-
poral context is ¢; = [valid:[v1-v2), trans:[t1-t2)]. When an update
is applied at time ¢, where ¢ > t1, a conflict occurs if there is a
time point (vs,t3) that belongs to both ¢; and co. In a bi-temporal
database, a new tuple is inserted into the relation with the valid and
transaction time intervals as described in c2. At the same time, the
old tuple is updated to be associated with the time interval(s) that
represent (cy ©7 cz), where 7 = {valid, transaction}. Overall, two
additional copies of the old tuple may need to be inserted to the
relation, since as many as three pairs of valid and transaction time
intervals may be needed to syntactically represent (c1 &7 c2).
The PRAWN preference rule that achieves the above effect is:

for r1 and r2 in (relation)
prefer ry if rq.start(transaction_time) > rg.start(transaction_time)

In other words, PRAWN prefers values with a later transaction
time and the difference of two temporal contexts would capture the
difference in the set of time points in both time dimensions as is
intended in bi-temporal databases.

Semantics of integrating SEC data Like bi-temporal databases,
there are two time dimensions (‘knownsince’ and ‘asof’) for SEC
data. Unlike bi-temporal databases, however, a conflict occurs when
there is overlap only in the ‘asof’ time dimension. In other words,
a conflict occurs if two filings of the same share of the same per-
son overlap on an ‘asof’ time instant. Furthermore, when a conflict
occurs, preference is given to the quantity of shares with a later
starting ‘asof” time.

To capture the semantics of integrating SEC filings with PRAWN,
we define the preference specification as 1, in Section 3 and define
T = {asof}. In other words, suppose v1 and v, are two values
of the same share that both occur on an ‘asof’ time instant a, then
preference is given to the value (among v1 and v2) whose starting
‘asof” time is the larger of the two.

To exemplify further, consider the first three SEC filings on the
left in Figure 1. After the first two reports are integrated under 1)1,
where 7 = { asof }, we obtain:

[ ticker | shares l
knownsince | asof
oLP [Dul0l-now) | [ul0l-Aug23) | 00000
knownsince asof 141
[Aug24-now) | [Aug23-now)

Observe there are no conflicts since the ‘asof’ time interval of
the quantity 300000 has been modified to [Jul01-Aug23). After the

third report is integrated, we obtain:
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[ ticker | shares l
knownsince | asof
oLP [ul0l-now) | [Jul01-Aug23) | 0000
knownsince asof 141
[Aug24-now) | [Aug23-Aug25)
knownsince | asof
[Aug26-now) [Aug25-now) 13415

3.5 Discussions
We discuss several fine points of our implementation next.

Prawn in one pass As long as the elements of every nested set
are accessible based on key values (e.g. either by sort order or
an index), preference-aware union can be performed in one pass
through each instance; A depth-first traversal of the input instances
is performed in synchrony followed by a write of the combined
content back to disk. The same idea of sorting before merge has
been used in [8].

Inheritance and containment In its full generality, a temporal
context can be associated with a set, or record, or attribute, in ad-
dition to atomic types. Similar to the idea of inheritance of times-
tamps [8], PRAWN does not store the temporal context ¢, of an ele-
ment e if ez is nested under an element e; whose temporal context
contains an identical set of time points to the set of time points rep-
resented by co. For archiving data, [8] has shown that this simple
idea can result in substantial space savings for data that does not
change frequently. In Section 4, we verify experimentally that we
continue to obtain substantial space savings on real data sets even
when the temporal contexts that may be composed of multiple time
dimensions and the data may involve relatively frequent updates.

Extensions to the algorithm We have presented PRAWN in Sec-
tion 3.3 on the assumption that conflicts can only occur at the level
of atomic types. Hence, if we have two records with identical keys
k that occur at the same time, such as R(key:k, A:a1, B:b1) and
R(key:k, A:az, B:b2), PRAWN will produce R(key:k, A:{a1,as2},
B:{b1,b2}) when no preferences are specified. In the result, the
association between the A and B values in the original inputs are
lost. In particular, one valid interpretation of the result is the record
R(key:k, A:a1, B:b2), which was not among the original inputs to
PRAWN. However, note that this record is a perfectly valid interpre-
tation given that a1 and a2 (resp. b1 and b2) are essentially equiva-
lent under the key k, since no preferences are given. One can also
extend the algorithm to manage conflicts for complex types (i.e.,
records or sets). This can be achieved by allowing SetOfPreferred|[7]
types, where 7 need not be an atomic type and elements under 7
need not be keyed. The details are omitted.

4. EXPERIENCE WITH REAL DATA

We implemented PRAWN in Java 6 running on a Xeon Intel 3.4GHz
dual core Linux workstation with hyper-threading enabled and 4GB
RAM. Our implementation is built on top of XArch [28], and lever-
ages their schema and key specification framework. We experi-
mented with several data sets to analyze the algorithm with respect
to compactness, performance, and parallelization.

SWISS-PROT The SWISS-PROT data set, which was used in [26],
is a large, regularly updated body of protein sequence data pub-
lished over many years by different organizations [22]. It encom-
passes two distinct types of data: hand-curated and machine-generated.
As aresult, integrating multiple releases requires merging data that
conforms to different schemas, and each release includes both new
elements and updates to existing elements. We obtained 10 differ-
ent releases of SWISS-PROT data. Release 40 has over 17 million
elements and its file size is 403MB, while release 49 has over 51
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Figure 4: Size of the integrated archives of (a) SWISS-PROT, (b) Gene Ontology and (c) SEC data.

million elements with a file size of 1225MB. As described in Sec-
tion 3.4, temporal context consists of the version release of SWISS-
PROT, and the reported time given by the date of the press release
announcing the version was available. Preference is given to infor-
mation from a later version.

Gene Ontology The Gene Ontology database [11] is a medium
size data set in RDF-XML format that contains a hierarchical de-
scription of gene characteristics for multiple species. The database
is updated daily, and monthly extracts of the ontology going back
to 2002 are available via ftp. We chose 20 release files, ranging
in size from 27 MB to 53 MB. The temporal context consists of
two time dimensions ‘since’ and ‘reported’, which we define as the
first day of the month in which the database was released, and, re-
spectively, the timestamp of the database. If overlap occurs on the
‘since’ time, we prefer information with a later since time.

SEC The SEC requires that corporations regularly report infor-
mation disclosing the stock transactions of its officers and direc-
tors [15]. Each report is small, and includes the date the transaction
occurred (asof time) and filed (knownsince time) with the SEC. For
our experiments, we arbitrarily extracted reports for the second half
of 2010. The temporal context is as described in Section 3.4, con-
sisting of both time dimensions. However, overlap is defined only
for ‘asof” time.

Compactness We show experimentally that the result of preference-
aware union is compact. Even though the temporal context takes
up some space in general, and can in fact become quite lengthy
for elements that undergo frequent changes, the total storage re-
quired for representing the integrated archive and temporal context
remains small compared to storing individual versions or reports.
The graphs in Figure 4 show more detailed analysis for these three
datasets. For each data set, the graph shows the number of the files
to be merged on the x-axis and the total size of the file, as produced
by preference-aware union on these files, on the y-axis. As shown,
the changes in the consecutive sizes of the merged data set are sub-
stantially less than the cumulative size of each data set. For ex-
ample, a merged file that contains all 10 releases of SWISS-PROT
is less than 50% of the cumulative size of the releases themselves,
and a merged file that contains all 20 versions of the Gene Ontology
database is less than 30% of the cumulative size of the version files.
The storage savings is because a change to an element only adds the
new value and modifies the temporal context for previous values,
results that are similar to those observed in [8]. Figure 4(c) illus-
trates a different storage pattern for the SEC data, with the merged
data set size after 20,000 files to be about 30% less than the cumu-
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lative file size. This is because each filing is relatively small, and
the temporal context makes up a larger percentage of the data itself.

We chose a fairly verbose representation for temporal context
for readability purposes, and we chose to store it uncoalesced [6].
Thus, each time an entity is seen in the merge, its temporal context
is updated. As a result, the context itself can become quite lengthy
for large data sets in which entities are repeated across updates,
even if they are unchanged. This is true for both SWISS-PROT and
Gene Ontology since each release represents a complete version of
the data, most of which are unchanged. For the SWISS-PROT data,
temporal context annotations make up 50% of the total file size of
the final archive, and for the Gene Ontology data, the context makes
up almost 60%. The SEC data, on the other hand, had a much
higher percentage of unique entities, and the temporal annotations
make up only 13% of the size of the final archive.

Scalability We applied preference-aware union to merge succes-
sive versions of the SWISS-PROT data, and successive versions
of the Gene Ontology data. For both of these cases, the input to
the preference-aware union algorithm is the data set containing the
cumulative merged versions, and the new version. The graphs in
Figure 5(a) and Figure 5(b) show the time in seconds (y-axis) it
takes to merge the SWISS-PROT and Gene Ontology data with re-
spect to the file size in MB of each release (x-axis), and the dashed
line shows a linear fit of the data points for comparison. Sorting
was done according to [8] and [26] and the time shown does not
include the time to sort the new file to be merged. As shown in the
graphs, the results are consistent with those reported in [8] and the
execution time is roughly proportional to the size of the instances to
be merged. This is because the algorithm reads both input instances
once (in this case, the cumulative merged file and the new file to be
merged), and writes their merged content back to disk. For a given
execution of the algorithm, let m; and mgo represent the sizes of
the two files to be merged. In the worst case, m1 = ma, both files
contain a distinct set of entities, and algorithm runs in m-+m+2m,
or O(m) time, where m = m;1 (or m2).

Parallel implementation of preference-aware union The serial
implementation of preference-aware union can easily be applied to
data sets with a small number of instances, since each instance can
be merged in a single pass. The SEC data, however, is made up of
over 20,000 instances. Therefore, a more efficient implementation
of preference-aware union is to build up a larger result by repeat-
edly unioning individual files in parallel. The algebraic properties
described in Section 3.2 imply that it is possible to parallelize the
algorithm in this way and still guarantee a unique result (modulo
representation of time).
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Figure 5: (a), (b): Time to PRAWN SWISS-PROT and Gene Ontology data. (c) time and speedup to PRAWN SEC data in parallel.

We tested the parallel version of PRAWN on the SEC data with a
reduction factor =2, and the results are shown in Figure 5(c). The
graphs show consistent speedup and resource utilization, with the
largest speedup occurring with 24 processes, indicating resource
utilization of the test machine was at its maximum. It should be
noted that in each iteration of the parallel version, each parallel
process essentially runs the serial version of the algorithm, which
requires reading both input files once, and writing out the merged
file, once for each file assigned to that process. This is because
the merged data is stored as one contiguous file. These results pro-
vide evidence of the performance gains for PRAWN with a parti-
tioned file organization and parallel execution framework, which
we briefly discuss below and call out as an area of future work.

Experience with Large Scale Datasets We tested the scalability
of PRAWN with even larger datasets by using a Twitter social me-
dia stream. The base data originated in the GNIP Decahose Twitter
Stream ! and contains a random sample of 10% of the entire public
content posted on Twitter in the first three weeks of August 2012.
The total size of the base data is 2.25TB, containing approximately
750 million tweets from 50 million users worldwide. The base data
of individual tweets was passed through a social media analytics
flow [21] expressed in the HIL language [20]. The high-level spec-
ification is deployed as a sequence of MapReduce jobs. For our
experiments with Twitter data, we used a Hadoop cluster consist-
ing of 10 nodes, each with 8 cores and 32GB RAM. The flow first
employed text extraction techniques on the text and metadata asso-
ciated with each input tweet and inferred attributes such as name,
gender, home location, and occupation for the author of the tweet,
as gathered from each single input tweet in isolation. The result-
ing dataset was about 800 GB in size. The next and final phase
of the flow created individual user profiles by aggregating all the
data available for each user. Our PRAWN operator was employed
as part of this aggregation phase, and was integrated as a user func-
tion in the analytics flow. The attribute values inferred for gender,
home location and occupation were associated with a unidimen-
sional temporal context, bounded by the time when the tweet was
authored, and by the present time. > Later tweets were preferred
over earlier tweets for conflict resolution.

We first examined the scalability of the deployment of PRAWN
over MapReduce using a subset of the Twitter data, covering the

'gnip.com/sources/twitter

Note that we chose a single dimension of time for simplicity of the
discussion; it is straightforward to add additional time dimensions
as was done with the other data sets used for experiments.
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Figure 6: Total num. of users, num. of users for which conflict

resolution was performed by PRAWN, and execution time.

first week of August 2012. Details are omitted for brevity, but re-
sults show consistent speedup as the number of nodes increases.
For remaining experiments, we used all 10 nodes and considered
Twitter datasets of increasing size, ranging from one day to three
weeks. We computed an overall measure of attribute conflicts in
the datasets. We defined this as the sum, over all users and all at-
tributes of interest, of the number of values that had to be resolved
by PRAWN.

The execution time required for each of the datasets of increasing
size was measured and is presented in Figure 6. The execution time
increases faster than the number of conflicts in the dataset. This is
expected, since each invocation of PRAWN, in this instantiation, is
essentially a quadratic process in the size of sets of attribute values
that need to be resolved across time. While PRAWN takes advantage
of the MapReduce infrastructure for its distributed file organization
and to leverage more resources when available, individual invoca-
tions of PRAWN are not parallelized deeper. As future work, we
plan to further parallelize the computation inside each call to the
PRAWN operator.

S. TEMPORAL QUERIES OVER THE IN-
TEGRATED ENTITIES

The result of applying preference-aware union to one or more in-
stances is an integrated repository that contains a concise and com-
plete temporal history of all entities. The result instance, including
the temporal context, is human readable, making it easy to visually
explore the history of an entity, and machine readable, making it
possible to explore the history of an entity by standard languages



for hierarchical data, such as XPath for XML, and Jaql, an language
for manipulating JSON data. While the focus of the current work
has been on the preference-aware union operator, we show that it
is straightforward to support two important subclasses of temporal
queries: pure timeslice queries and range timeslice queries [27].
We will use Jaql to demonstrate pure timeslice and range times-
lice queries over an instance produced by PRAWN. Suppose the
variable tweeters was bound to the output of the PRAWN oper-
ator, and the schema for an entity in the output included attributes
called userid (which is also the key), gender, location, and
occupation, and suppose that gender, location, occupation
were all annotated with temporal context. The following pure times-
lice query (in which the timeslice is over all time) returns all occu-
pations across time for a given tweeter:

($.userid == "80376002")

transform($.occupation) -> expand;

To support timeslice queries for specific periods of time, we have
implemented a Jaql function inTemporalContext (entity,
timeVector) thatoperates on JSON objects annotated with tem-
poral context. The function takes takes as input entity represented
as a JSON object and a vector of time intervals and returns true if
the temporal context of the object contains the time interval. This
function can be used to execute a pure timeslice query at a specific
point or interval of time, e.g., to find all locations of a tweeter on a
given day:

tweeters -> filter ($.userid == "80376002")

filter (inTemporalContext ($,"2012-08-08")
transform($.location) -> expand;

This function can also be combined with other Jaql operators to
support range timeslice queries. For example, the following Jaql
expression will return all tweeters whose occupation was ‘teacher’
at a specific point in time (or interval of time):

tweeters —-> filter ($.occupation ->

filter (inTemporalContext ($,"2012-08-08")
and ($.value == "teacher"))) [1;

tweeters -> filter —>

->

| =

6. RELATED WORK

Conflict resolution operators, preferences Data fusion techniques
for combining (conflicting) information from different sources with-
out time have been extensively studied. (See, for instance, the sur-
vey [5] and tutorials [13, 14].) Our PRAWN operator is close in
spirit to the match-join operator [35] and the merge and priori-
tized merge operators [19]. When two records, such as R(key:1,
A:2, B:3, C:4) and R(key:1, A:5, B:6, D:7), are match-joined, a
total of four records will be created: R(key:1, A:2, B:3, C:4, D:7),
R(key:1, A:2, B:6, C:4, D:7), R(key:1, A:5, B:3, C:4, D:7), and
R(key:1, A:5, B:6, C:4, D:7). On the other hand, under a suit-
able PRAWN schema, PRAWN will derive a compact representation
R(key:1, A:{2,5}, B:{3,6}, C:4, D:7), where the same set of four
records can be derived from the product of the nested set of ele-
ments. With suitable extensions to the PRAWN algorithm, PRAWN
can also derive the same output obtained by the merge operator,
which consists of two records: R(key:1, A:2, B:3, C:4, D:7) and
R(key:1, A:5, B:6, C:4, D:7). Prioritized merge derives R(key:1,
A:2, B:3, C:4, D:7) by preferring tuples from the left relation. By
specifying our preference rule to always prefer values from the left
relation, PRAWN obtains the same result.

To the best of our knowledge, PRAWN goes beyond prior work on
conflict resolution operators as it can manage and resolve conflicts
across time through declarative use of preference rules.

A prioritized repair [32] is an extension of the concept of a re-
pair in inconsistent relational databases which accounts for prior-
ities among conflicting tuples. Unlike our preference rules, the
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work of [32] assumes that an explicit priority relation, which de-
fines preferences between tuples, is available. They studied various
notions of optimality of instances with respect to a given priority
relation under the class of denial constraints, which includes the
class of key constraints as a special case. They gave algorithms
that, given an inconsistent relation, a priority relation, and a set of
denial constraints, will generate one optimal repair (in their sense).
In contrast, our polynomial-delay algorithm enumerates al/l optimal
repairs at a given time point for hierarchical temporal data under
key constraints.

In [16], a language for specifying priorities among spanners in
information extraction systems has been proposed. However, un-
like [16], our preference rules are specified over temporal data that
may be hierarchical. Recently, [18] also leveraged preferences in
cleaning data in the process of mapping transformations. Trust
policies [33], which is a type of preference, have also been used
to understand how one can prioritize updates.

PRAWN distinguishes itself from prior work on preferences and
trust policies by accounting for time in a hierarchical data model.

Bitemporal databases There has been solid foundation of work
in relational bitemporal databases [10, 23], and in Section 3.4, we
have shown that PRAWN can be used to capture valid-transaction
time semantics of bitemporal databases. However, the converse
is not true in general as bitemporal databases only enable applica-
tions to manipulate valid time, and assume that updates are received
in order of increasing transaction time. Specifically, bitemporal
databases may return the wrong integrated result using its valid-
transaction time semantics for managing SEC data.

To exemplify, consider the 4th and 5th SEC filings on the left of
Figure 1, which were clearly reported out of order. Suppose these
reports are updates to a bitemporal database with transaction times
given by t; and t2 respectively. After an update for the 4th fil-
ing, a bitemporal database would record that O shares of BRT were
held from Jull4-now with a transaction time of [t;-now). After a
database update for the 5th filing, the bitemporal database would
record that O shares of BRT were held from [Jull4-now) with a
transaction time of [£1-t2), and 1820 shares were held from [Jul09-
now) with a transaction time of [t2-now). If the updates were pro-
cessed in the opposite order (i.e., the filing with 1820 BRT shares
before 0 BRT shares), then after both updates are processed, the
bitemporal database would record that 1820 shares were held from
[Jul09-Jul14) with a transaction time of [t¢1-now) and [Jul14-now)
with a transaction time of [¢; — ¢2). In addition, O BRT shares were
held from [Jull4-now) with a transaction time of [t2-now). Thus,
the number of shares held on Jul14 is O or 1820 depending on the
order in which the updates were applied. A more detailed descrip-
tion of the difference can be found in [2, 31].

Others Prior work aimed at corroborating the truth from conflict-
ing information from different sources (e.g., [12, 17, 30, 36]) con-
stitute another line of related work. In these systems, truth is de-
termined by majority voting schemes, probabilistic models (over
time), and/or trust on data sources. In contrast, PRAWN is a deter-
ministic truth finding framework over time based on user-specified
preference rules. As we have described towards the end of Sec-
tion 1, the general integration workflow is likely to deploy both
rule-based and probabilistic or machine-learning based approaches.

Complex event processing and data streams systems make deci-
sions based on continuously streaming data that may arrive in order
or out-of-order and for which the time element associated with data
values may be known with certainty or may be imprecise (e.g., [4,
37]). These systems, however, do not resolve violations through
user-specified preferences as part of the integration process to pro-
duce a consistent integrated result. Finally, three types of temporal



semantic heterogeneity in data integration were described in [38].
The focus of [38] was to develop a system to cope with the het-
erogeneity of objects over time, differences in the semantics of the
same attribute over time, and differences in time representation. It
does not resolve conflicts across time based on preferences.

7. CONCLUSION AND FUTURE WORK

Building a complete and consistent profile of an entity from mul-
tiple temporal data sources requires time-specific knowledge to be
carefully maintained as new information is integrated. We have de-
veloped a simple and yet versatile framework with a corresponding
implementation for integrating temporal data that may contain dif-
ferent dimensions of time. Our framework integrates temporal data
and resolves conflicts based on user-defined preference rules. The
consistent interpretations of the remaining conflicts at a time point,
if any, can be systematically enumerated. We have shown that the
operator is particularly suitable for data integration and paralleliza-
tion. At the same time, it is also general and can be easily special-
ized to capture different integration semantics of several real-world
applications across time.

Our experience with real data confirm that our technique can be
effectively used to integrate temporal data. Finally, since our inte-
grated archive is immediately representable in XML or JSON, we
show how some useful temporal queries about entities can be easily
answered with the archive.

This work is a step towards several directions of research (theory
and systems). We plan to explore several extensions to our operator.
E.g., allow finer-grained specification of preferences, particularly
when preferences may be qualified by time. In a separate direction,
we plan to explore how concepts in consistent query answering [3]
can be carried over inconsistent temporal databases. Finally, we
also have plans explore multi-dimensional access methods and in-
dexing methods to further improve PRAWN’s performance.
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