NVRAM-aware Logging in Transaction Systems

Jian Huang
jhuang95@cc.gatech.edu

Karsten Schwan
schwan@cc.gatech.edu

Moinuddin K. Qureshi
moin@ece.gatech.edu

Georgia Institute of Technology

ABSTRACT

Emerging byte-addressable, non-volatile memory technolo-
gies (NVRAM) like phase-change memory can increase the
capacity of future memory systems by orders of magnitude.
Compared to systems that rely on disk storage, NVRAM-
based systems promise significant improvements in perfor-
mance for key applications like online transaction process-
ing (OLTP). Unfortunately, NVRAM systems suffer from
two drawbacks: their asymmetric read-write performance
and the notable higher cost of the new memory technologies
compared to disk. This paper investigates the cost-effective
use of NVRAM in transaction systems. It shows that us-
ing NVRAM only for the logging subsystem (NV-Logging)
provides much higher transactions per dollar than simply
replacing all disk storage with NVRAM. Specifically, for
NV-Logging, we show that the software overheads associated
with centralized log buffers cause performance bottlenecks
and limit scaling. The per-transaction logging methods de-
scribed in the paper help avoid these overheads, enabling
concurrent logging for multiple transactions. Experimental
results with a faithful emulation of future NVRAM-based
servers using the TPCC, TATP, and TPCB benchmarks
show that NV-Logging improves throughput by 1.42 - 2.72x
over the costlier option of replacing all disk storage with
NVRAM. Results also show that NV-Logging performs 1.21
- 6.71x better than when logs are placed into the PMFS
NVRAM-optimized file system. Compared to state-of-the-
art distributed logging, NV-Logging delivers 20.4% through-
put improvements.

1. INTRODUCTION

Byte-addressable, non-volatile memory (NVRAM) is emerg-

ing as a promising way forward to substantially enhance fu-
ture server systems. Its main advantages of near-DRAM
speed, lower than DRAM power consumption, and non-
volatility suggest its utility both for augmenting memory
capacity, and for improving performance of systems with
persistence requirement.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.

Proceedings of the VLDB Endowment, Vol. 8, No. 4

Copyright 2014 VLDB Endowment 2150-8097/14/12.

389

Bl all-in-NVRAM

B all-in-HDD

=3 db-in-NVRAM, log-in-HDD
3 EZA db-in-HDD, log-in-NVRAM

L

TPCC

=3 NV-Logging

B all-in-SSD

B db-in-NVRAM, log-in-SSD
3 db-in-5SD, log-in-NVRAM

N
TATP TPCB
OLTP Workloads

Figure 1: Throughput comparison, taking all-in-
NVRAM as the baseline.

N

Normalized TPS
N

This paper explores the use of NVRAM for speeding up
performance-critical transaction systems. Conventional trans-
action systems use DRAM as cache to host data pages and
log records. Upon transaction commit, log records must be
flushed into persistent storage. With the relatively high la-
tency of disk storage, overall system performance, therefore,
is constrained by the disk I/O bottleneck. Past work has ad-
dressed this issue with write-ahead logging (WAL), made ef-
ficient with additional software solutions like log group com-
mit [27], early lock release (ELR) [17], and speculative lock
inheritance (SLI) [15], but at the risk of partial data loss or
incorrect results due to the inherent delays in placing data
on disk.

NVRAM offers much shorter I/O latency compared to
disk, promising notable performance improvements. This
also implies that when using NVRAM to replace formerly
disk-based storage, it will be software overheads that cause
performance bottlenecks. This suggests the need to rethink
transaction system architectures and their implementation.
Pelley et al. [25], for instance, proposed using NVRAM as
main memory for in-memory databases, thus leveraging its
potentially large memory capacity. The software overheads
exposed when using NVRAM include those caused by the
barriers used to ensure persistence for in-place updates.

This paper presents a comprehensive study on alternative
ways to restructure a transaction system for effective use
of NVRAM. As baselines, it considers options in which (1)
NVRAM is used as a disk replacement accessed via stan-
dard I/O interfaces, termed NV-Disk, and (2) NVRAM re-
places the entire system’s main memory [25], termed NV-
WSP. These baselines are compared with our improved so-
lution — NV-Logging — a cost-effective, high performance,
NVRAM-aware transaction system. In NV-Logging, im-
proved cost-performance is obtained by reducing the amount
of costly NVRAM rather than replacing all disk storage with
NVRAM, and implementing a NVRAM-aware logging sub-

system. The implementation acknowledges that (1) NVRAM
differs from DRAM in its characteristics — it has asymmetric
read-write performance and non-volatility, and (2) it avoids
the software overheads that can dominate the performance
of NVRAM-based solutions. NV-Logging’s technical contri-
butions are as follows:

e Log buffers are placed into NVRAM as data structures
directly accessed via hardware-supported memory ref-
erences vs. via costlier, software-based I/O interfaces.

e Per-transaction logging avoids the software overheads
of centralized log buffers for block-oriented storage,
and enables highly concurrent logging.

e Certain known overheads of NVRAM are avoided with
flush-on-insert and flush-on-commit methods for log
object persistence and consistency.

NV-Logging is implemented in the latest open source trans-
action system Shore-MT [5]. Experimental results with the
TPCC, TATP, and TPCB benchmarks demonstrate that
NV-Logging improves throughput by 1.42 - 2.72x compared
to the NV-Disk approach. Additional throughput improve-
ments are seen with SLI [15] and ELR [17] enabled, result-
ing in NV-Logging performing 1.18 - 2.66x better than NV-
Disk(i.e., all-in-NVRAM). Furthermore, compared to state-
of-the-art distributed logging [29], NV-Logging improves the
throughput by 8.93 - 26.81%, with a much simpler design.
Finally, using Intel Corporation’s experimental persistent
memory server, which employs a modified CPU and custom
firmware to emulate future NVRAM hardware, we compare
NV-Logging with an alternative implementation of its func-
tionality in which log data structures are supported by the
NVRAM-optimized PMFS file system [12]. In this setup, ex-
perimental results with TPCB and TATP benchmarks show
that the native implementation of NV-Logging performs 1.21
- 6.71x better than its PMFS realization, particularly for
update-intensive transactions.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the conventional disk-based logging solu-
tions. Section 3 describes candidate uses of NVRAM in
transaction systems and presents their performance analy-
sis. We describe the NV-Logging design in Section 4 and its
implementation in Section 5. Section 6 shows experimen-
tal results with OLTP benchmarks. We summarize related
work in Section 7, and conclude the paper in Section 8.

2. BACKGROUND & MOTIVATION

Logging is an essential means for guaranteeing the ACID
(Atomicity, Consistency, Isolation, and Durability) proper-
ties of database systems. It can also become a bottleneck,
as logs must be made persistent upon transaction commits.

2.1 Architecture of Disk-based Logging

A typical disk-based logging system has the two main
components depicted in Figure 2: log buffer and log par-
titions. The log buffer is located in memory, while log par-
titions are kept in persistent storage. Centralizing the log
buffer makes it possible to group log records, thereby avoid-
ing frequent disk accesses and obtaining sequential disk ac-
cess patterns. A potential drawback is logging contention
when concurrently accessed by multiple requests, which has
become evident in transaction systems in the multicore era

390

LSN #0 LSN #256 LSN #396

63 31 0
TX_A l LogRec ‘ ‘ LogRec ‘ ‘ LogRec ‘ LSN
r ¢
3 (SN #120 . LN #45}?@ partition number offset
! - ' [N
v: \‘v L Ma v‘ Centralized Log Buffer
[1208 1408 | 1008 |]
LSN #0 LSN #120 LSN #256 LSN #396 LSN #496 LSN #816_ — — —
/ - DRAM
/ =" Disk

Log Partition #(N-1) Log Partition #N Log Partition #(N+1)

Figure 2: Disk-based logging system. The log file
is organized into multiple partitions, where the log
buffer is flushed to partitions in sequential order.

[29, 17]. Furthermore, with a synchronous commit strat-
egy, each commit cannot complete until all corresponding
log records have been flushed to persistent storage, caus-
ing potentially high request delays due to today’s high disk
access latencies. With an asynchronous commit strategy,
a request can continue its execution without waiting un-
til all log records are persistent. This improves transaction
throughput dramatically, but at the expense of data dura-
bility, since all of the unflushed data in the log buffer is lost
if a crash occurs.

Logging operates as follows. Each transaction generates a
set of log records. Before inserting these into the log buffer,
the transaction must acquire a lock on the buffer to check
for available buffer space. If there is no space left, the log
buffer must be reclaimed. This requires its dirty pages to
be flushed to disk and the associated active transactions to
be aborted.

To track log record location and maintain order across
the log records among all transactions, each log record has
a unique log sequence number (LSN). In the example shown
in Figure 2, the LSN is split into two parts: the high 32
bits represent the partition number, and the low 32 bits in-
dicate its offset in the corresponding partition. When space
is available and log buffer space is allocated successfully, a
LSN is assigned to the log record, and the global LSN is
updated when the completed log record has been inserted
into the log buffer. For example, the LSN of TX_A’s first
log record is 0, the LSN of TX_B’s first log record is 120
as one log record whose size is 120 bytes from TX_A has
been inserted into the log buffer. The procedure repeats for
subsequent log records.

Each log record insertion generally involves one memory
copy and one disk I/O write, and during the entire proce-
dure, locks are used to protect the log buffer space and main-
tain log record orderings. With such a lock-based approach,
the average latency of log insertion increases dramatically
with an increasing number of threads.

2.2 Software Solutions Alleviating Contention

In a transaction system requiring durability guarantees,
logging is on the critical path of transaction processing.
With synchronous log commits, Figure 3 shows that the
transaction TXN_B cannot make progress until TXN_A has
flushed its log record into persistent storage and released the
lock. In comparison, asynchronous commits allow the trans-
action to commit and execute without waiting until log flush
completes. This removes log flushes from the critical path,
but risks partial data loss, as shown in Figure 4. Log group

commit (flushing log) unlock

lock commit (flushing log) unlock
TXN_A: — |
: wait for lock :
TXN_B: |

acquire lock

lock

Figure 3: Logging procedure in a disk-based design[14]. Transaction TXN_B has to wait until TXN_A finishes
the log commit and releases the lock. Disk I/O is the bottleneck.

commit [27] aggregates several flushes into a single I/O oper-
ation to decrease the number of disk accesses, and ELR [17]
tries to further reduce overheads by releasing locks before a
log record is written to persistent storage. Controlled lock
violation [14] is another method enabling unconflicted trans-
actions to continue without first releasing their locks. How-
ever, these speculative executions also risk data loss and may
result in inconsistencies. Consider two transactions TXN_A
and TXN_B, for instance, where TXN_A acquires an exclu-
sive lock to execute an update operation on one record in the
database, and releases the lock after the corresponding log
record is inserted into the log buffer. Next, TXN_B acquires
a lock on the same record, but executes only a read oper-
ation, so that a commit record is not needed for TXN_B.
The result of TXN_B would be the value written by TXN_A
before the log records associated with TXN_A are flushed
into persistent storage. If the system crashes at this point,
the user may get a value that never existed in the database.
Similar issues exist for the two-phase commit protocol used
in distributed databases [14].

lock unlock commit (flushing log)

TXN_A:

i lock unlock commit (flushing log)
TXN_B: —

Figure 4: Optimized disk-based solution.

Another factor affecting transaction system performance
is lock contention in the lock manager, addressed in recent
work with optimizations like SLI [15] and ELR [17]. The
improved synchronization support on multicore hardware is
also helpful for improving lock manager performance. Tak-
ing advantage of such lock manager improvements, this pa-
per focuses on improving the performance-dominant logging
subsystem, explained in more detail next.

2.3 Redesigning Logging for NVRAM

The emergence of NVRAM and its potential use for re-
placing slow disk offers new opportunities for improving log-
ging performance. Key to efficiently using NVRAM, how-
ever, is a detailed understanding of the software bottlenecks
involved with obtaining durability. Replacing slower hard
disk with faster flash drive has already been shown to pro-
vide performance advantages [7, 21], but experimental re-
sults in [17] also show that even the fastest flash drives
still cannot eliminate overheads due to buffer contention,
OS scheduling, and software overheads inherent in systems.
This will hold even more when using NVRAM with its near-
DRAM speeds, giving rise to software bottlenecks like re-
source contention in the centralized log buffer.

This paper investigates cost-effective methods for lever-
aging NVRAM, in the logging subsystem. We present a re-
design of the logging component of a transaction system,
with the goal of alleviating software-related performance

391

bottlenecks when using NVRAM while still providing strong
consistency and durability guarantees.

3. NVRAM DATABASE RESTRUCTURING
3.1 Candidate NVRAM Uses

As shown in Figure 5(a), a disk-based database system has
two main DRAM components: page cache and log buffer.
The page cache hosts a fraction of data pages populated with
the records stored in database tables. The log buffer stores
log records for transactions. Each transaction may gener-
ate multiple log records, and once the transaction commits,
all corresponding log records must be flushed to log files
on persistent storage. This design is appropriate for block
devices like hard disks and SSDs, since the centralized log
buffer and page cache hosted in DRAM encourage sequential
disk access to alleviate disk I/O bottlenecks. Yet, as faster
NVRAM devices become available, with their access laten-
cies close to that of DRAM [26, 2], it becomes important to
rethink this traditional disk-centric design.

A straightforward way to accelerate the performance of
a transaction system is with the NV-Disk approach shown
in Figure 5(b). This approach replaces the entire disk with
NVRAM. Since the speed of NVRAM is much higher than
that of hard disks and flash drives, significant performance
improvements can be gained, without the need to modify
the transaction system’s implementation. However, the ap-
proach has drawbacks. Notably, the replacement of high
capacity low-cost disks with costly NVRAM fails to lever-
age NVRAM’s byte addressability, and its interactions with
NVRAM via file system APIs suffer from software overhead.
It is also not cost-effective for typical server systems, since
the cost of NVRAM will remain substantially higher than
that of hard disks and SSDs.

The alternative NV-Logging solution explored in our work
continues to use disks to store database tables, but uses
NVRAM only to maintain logs. Specifically, log records are
stored in persistent NVRAM, database tables continue to be
cached in DRAM for performance reasons, but their origi-
nal data source and snapshots are stored on high capacity,
low cost disks for recovery and long term use. As shown
in Figure 5(c), the NV-Logging approach exploits the non-
volatility characteristic of NVRAM to overload the func-
tionality of the log buffer, but does not incur the potentially
high cost of NV-Disk. Note that the approach also applies
to today’s in-memory systems like RAMCloud [24] and in-
memory databases [1], where all of the data pages are in
DRAM, and logging is used to back up update operations.

As shown in Figure 5(d), a more aggressive approach is
NV-WSP, in which all database pages are hosted in NVRAM.
Since all updated data will be persistent without being flushed
to disk, the redo logs are no longer needed, but undo logs
are still required for transaction aborts. Due to the slower
speed of the state-of-the-art NVRAM technologies compared

Transactions Transactions
Log Buffer Page Cache Log Buffer Page Cache
(DRAM) (DRAM) (DRAM) (DRAM)

Transactions Transactions

Log Buffer

Page Cache ’
(NVRAM)

Page Cache (DRAM
(DRAM) & (DRAM)

Log and Database Files (HDD/SSD) Log and Database Files (NVRAM)

Database/Snapshot Files
(HDD/SSD)

Undo Log and Database (NVRAM)

(a) Traditional Design (b) NV-Disk

(c) NV-Logging (d) NV-WSP

Figure 5: Candidate ways to use NVRAM in a transaction system.

to DRAM, however, bridging this performance gap still re-
quires caching pages in DRAM. The resulting scale-out, non-
volatile memory design may offer sufficient capacity for to-
day’s petabyte sized data warehouses [18], but its high cost
suggests the need for alternative, more cost-effective ap-
proaches [19] like the NV-Logging outlined above.

3.2 Performance Gap Analysis

It is clear that using NVRAM can improve the perfor-
mance of transaction systems, but gaining such improve-
ments implies the need for additional hardware expenses
due to the higher cost of NVRAM compared to traditional
disk-based storage.

To make these performance opportunities concrete, we
run the Shore-MT [5] transaction system with the TPCC
benchmark. We evaluate transaction throughput with dif-
ferent memory and storage configurations. Details about the
experimental environment are described in Setup-A in Sec-
tion 6.1. Using the memory-based tmpfs file system, with
NVRAM 1I/0 latency conservatively set to be 5 microsec-
onds following an approach similar to that used in [17], we
compare the four alternative configurations shown in Fig-
ure 5. As shown in Figure 6, all-in-HDD/SSD is the default
configuration, where both the log and the database file are
stored on the ext4 file system on hard disk. For the case of
all-in-NVRAM, the log and database files are stored in the
NVRAM-based tmpfs file system. Option db-in-HDD/SSD,
log-in-NVRAM stores the database file on disk and the log
in NVRAM, and option db-in-NVRAM, log-in-HDD/SSD
stores the database file in NVRAM and the log files on disk.
File system APIs are used in all cases, to avoid the modifi-
cations of the transaction system’s implementation.

Figure 6 shows the throughput of the TPCC benchmarks
with varying numbers of threads. As expected, performance
of the options hosting log partitions in memory is dramati-
cally better than those hosting log partitions on disk. More
interestingly, the throughput gained with option db-in-HDD,
log-in-NVRAM comes close to the throughput of the much
more expensive all-in-NVRAM option, reaching an average
74% of the performance of all-in-NVRAM. The performance
gap is further reduced with db-in-SSD, log-in-NVRAM, reach-
ing an average 82.5% of all-in-NVRAM’s performance. Sim-
ilar performance trends are seen when we vary I/0 latency
from 5 to 50 ps and run the TATP benchmark. Note that
TPS stops increasing beyond 12 threads on our machine (it
has 16 logical cores in Setup-A). This lack of increase is
also due to increased logging overheads, as evident from the
fact that as we increase the page cache size to 12 GB (the
working set size of TPCC is 9 GB), essentially making the
transaction system work as an ‘in-memory’ system, through-
put does not increase further. We will discuss the logging
overheads in detail in the following section.

392

3.3 Logging Overheads

To further analyze intrinsic behaviors in transaction sys-
tems and reason about the performance gap reported in Sec-
tion 3.2, we use perf [4] to collect stack traces and report
on the timing behavior of Shore-MT’s different components.
We break down the software stack into five categories: (1)
log operations, such as flushing log buffer, populating log
record, etc.; (2) log contention, such as contention for buffer
allocation, lock overhead on log buffer, etc.; (3) lock man-
ager, including database locking, lock management, etc.; (4)
DB operations, including index lookup/update, fetch record,
etc.; and (5) Others. As shown in Figure 7, log operations
take 60.73 - 85.46% of the total time as logs are placed on
HDD/SSD, demonstrating that the I/O bottleneck domi-
nates overall performance. This situation becomes worse if
we also place database files on disk, not shown in Figure 7.
In contrast, when placing logs into NVRAM, log operations
perform much better, but log contention overhead gradu-
ally increases as we increase the number of threads. The
overheads of log operations and log contention occupy 34.1
- 39.19% of the total execution time, while the overhead in
the lock manager is almost eliminated with SLI and ELR.

[mmm10g size (log) =3 evicted page size (db) total dirty page size (db)|

3000 00
o
£ 2500 Loo
S 2000
£
® 1500 P00
=
' 1000
£ so0| g oo
i A L

20 40 60 80 100

Execution Time (seconds) Execution Time (seconds)
(a) TPCC (b) TATP

Figure 8: Write traffic of TPCC-mix and TATP-mix
benchmark running in 20 - 100 seconds.

20 40 60 80 100

The measurements above show that the logging compo-
nent strongly influences transaction performance due to log
buffer contention and log-induced lock contention. Further-
more, logging also dominates the I/O traffic in transaction
systems. We demonstrate this fact by collecting the write
traffic of the log buffer and page cache in Shore-MT over dif-
ferent time intervals, varying from 20 to 100 seconds. The
log size represents the traffic written to log partitions via the
log buffer. The evicted page size indicates the traffic caused
by the page evictions from the page cache during the spe-
cific time intervals. As shown in Figure 8, the logging traffic
is 2.88 - 5.43x larger than the total size of dirty pages for
TPCC. For TATP, the log size is dramatically larger than
that of dirty pages (about several MB).

Given the importance of logging, we argue that apply-
ing NVRAM to logging is a good choice in terms of cost-
performance. This is not a trivial endeavour, however, as de-

l- all-in-NVRAM db-in-HDD, log-in-NVRAM Em all-in-HDD E= db-in-NVRAM, log-in-HDD =3 db-in-SSD, log-in-NVRAM E=1 all-in-SSD BN db-in-NVRAM, Iog-m-SSD]
16
o 14 » [|
RE. | " 1 N
<0 1 | - Il Lo | E A
- I M
=3 8 » I | S
=3 M
<
=i 6 M [M [|
g 4 | -
£ 2 = g -
0 m m -] m
4 8 12 16 4 8 12 16 4 8 12 16 4 8 12 16
Number of Threads Number of Threads Number of Threads Number of Threads
(a) TPCC-1GB (b) TPCC-6GB (c) TPCC-9GB (d) TPCC-12GB

Figure 6: Throughput of the TPCC-mix workload with varied page cache size. The average throughput of
db-in-HDD/SSD,log-in-NVRAM is up to 74%/82.5% of the throughput of all-in-NVRAM.

[10g operations

log contention

B lock manager

DB operations [others]

NN\ Il

Percentage (%)

N

8
Number of Threads
(a) log-in-HDD, db-in-NVRAM

12 16 8 12 16
Number of Threads

(b) log-in-SSD, db-in-NVRAM

8

12
Number of Threads
(c) log-in-NVRAM, db-in-HDD

Y,

16 8 12 16
Number of Threads

(d) log-in-NVRAM, db-in-SSD

8 12 16
Number of Threads
(e) all-in-NVRAM

Figure 7: Time breakdowns for TPCC-mix benchmark.

scribed in the remainder of the paper where we discuss opti-
mizations necessitated by NVRAM’s non-DRAM-like char-
acteristics. For clarity, we refer to all-in-NVRAM as NV-
Disk in the rest of the paper.

4. LOGGING IN NVRAM

4.1 Bottlenecks Shifted from I/O to Software

Replacing traditional disk with faster flash devices and
NVRAM can reduce I/O latency and improve throughput,
but performance challenges formerly posed by disk-related
overheads shift to the software stacks being used.

According to the analysis in [6], the number of instructions
executed for a simple database transaction ranges from 20K
to 100K based on transaction logic, database structures, its
implementation and compiler optimizations. The number
of I/O operations involved in each transaction is typically
in the range from 4 to 10. On a fast system, each trans-
action executes 50K instructions and 4 I/O operations (two
for database 10s, two for log writes) on average. With the
optimistic assumption of 1 instruction per CPU cycle on av-
erage, the execution time of transaction logic will be 0.02 ms
on a 2.4 GHz mainstream server processor. Since it takes
considerably more time to commit the transaction to hard
disk (e.g., 10 ms) or flash device (e.g., 0.2 ms), the resulting
I/0 latency is an order of magnitude higher than the execu-
tion time of the transaction logic. On the other hand, even
for NVRAM accesses conservatively estimated to be 4 - 8
times slower than DRAM writes (i.e., a 60 ns latency), the
latency of I/O operations to NVRAM is smaller than that
of the transaction logic itself, thus demanding improvements
in the software stack of transaction systems.

For transaction systems, a known cause of software over-
head is the centralized log buffer, inhibiting the parallel
execution of multiple in-flight transactions [17, 29]. When
maintained in NVRAM, the log buffer can be accessed as a
block-based device via file system interfaces within N'V-Disk,
or as directly addressable memory within NV-Logging. To

393

understand the performance tradeoffs seen for both, a sta-
tistical analysis with the TPCC benchmark shows log object
sizes typically range from ~64 bytes to 6 KB. Further, with
group-commit committing log objects in batches, flush size
reaches 64 - 754 KB. Figure 9 illustrates the overhead com-
parison when using the file system vs. memory APIs for
different log object sizes. Compared to the memcpy op-
eration for a normal log object, the latency of using tmpfs
with its fils system APIs is 49 - 154x larger, and using mmap
with synchronous (MS_SYNC) writes is 5 - 18.3x larger. For
larger flushing sizes, tmpfs and mmap still perform 5 - 9.5x
and 1.4 - 2.9x slower than memcpy operations respectively.
These experimental results demonstrate that bypassing the
file system API can reduce software overheads dramatically,
thus motivating our NV-Logging solution described next.

=& tmpfs
e—e memcpy

w=—+ mmap

Avg. Latency (usec)

normal log object | group commit
!

10? !
067 191 364 615 63.34 133.05 281.92 454.59 754.45

Data Size (KB)

Figure 9: Write latency comparison of file System
and memory APIs.

4.2 Decentralized Logging

The experimental results shown in prior sections motivate
NV-Logging’s use of NVRAM as memory, exploiting both
its byte-addressability and persistence characteristics, while
continuing to use file system APIs for the conventional hard
disk drives or flash devices employed to store cold data for
backup purposes. To avoid bottlenecks in the centralized
log buffer, NV-Logging leverages per-transaction logging for
decentralized operation. With this solution, because each
transaction maintains its own private log buffer for stor-
ing log records, their creation, population, and persistence
properties can be obtained in a scalable manner. We con-
tinue to use global LSN to track the order of logs, but since

NV-Logging does not need log partitions and no offset is re-
quired, assigning a LSN to a log and updating its value are
straightforward, efficient operations.

LSN #0

LSN #2 LSN #3

63 0

LN ey e
~ A
i : : LSN (64 bits)
LSN #1 LSN #4 ¢
TX_B
DRAM
NVRAM
Log Entry

LogRec object

N 0: DRAM

il

Figure 10: NV-Logging system design.

The per-transaction log buffer depicted in Figure 10 is
structured as a set of log entries organized as a circular buffer
in NVRAM. Each log entry consists of one state bit and a
4-byte pointer to the generated log object. A log object is
first created in DRAM, with its state bit set to 0. Once it
is flushed into NVRAM and becomes persistent, the state
bit is set to 1. The pointer log_head always points at the
start entry of the circular buffer. It will point to a new loca-
tion after log truncation (Section 4.5). The pointer log_tail
always points at the first available log entry of the circular
buffer, and moves forward after a log entry is allocated.

Each transaction manages its own log records, including
maintaining their global order, as shown in Figure 10. All
log objects are tracked via a doubly linked list, but rather
than storing its adjacent log records’ LSNs and using LSN to
calculate file offsets to locate log object, NVRAM’s byte ad-
dressability afforts the use of pointers to retrieve log objects
for transaction abort and recovery.

Transaction conflicts are handled with fine-grained, row-
granularity locks. Additional optimizations enabled in our
experiments include SLI and ELR. The problems of data
loss and inconsistent results caused by these optimizations,
as discussed in Section 2.2, can be avoided with the logging
persistence techniques described in Section 4.3.

To summarize, our logging implementation reduces soft-
ware overheads (1) by using per-transaction logging, thus
decentralizing the log buffer and reducing potential lock con-
tention, and (2) by simplifying certain implementations in
lieu of the logging’s straightforward structure and use.

4.3 Logging Persistence

Like the persistence primitives discussed in Mnemosyne [28]
and NVHeap [9], NV-Logging leverages hardware primitives
and software instructions for writing data persistently and
for providing consistency guarantees. Compared to these
works, however, NV-Logging benefits from simplified per-
sistence and consistency mechanisms due to the straight-
forward nature of its data structures: the log object, and
a few variables (i.e., global LSN, log_head, log_tail and log
entry). The log object, for instance, is initially created in
DRAM, and is only later made persistent via its placement
into NVRAM, thus benefiting from DRAM’s high perfor-
mance. Further, until it is cleaned within log truncation, it
will not be updated after it has been populated, thus avoid-
ing exposure to the higher write latency of NVRAM.

394

Consistency issues with NVRAM-resident data arise from
the fact that today’s processor cache hierarchies are de-
signed for DRAM rather than NVRAM. Specifically, with
caching, writes may be reordered, resulting in potential in-
consistencies in the presence of application and system fail-
ures. To avoid the need for additional cache-level hard-
ware support [10] or the need to replace volatile with non-
volatile caches [32], NV-Logging takes advantage of well-
known hardware instructions to implement its consistency
and persistence mechansims: (1) the clflush instruction sup-
ported in most processors flushes specified cache lines out to
memory; (2) the mfence instruction is a hardware memory
barrier that enforces the ordering of memory operations. An
alternative solution is whole-system persistence [23], which
can make the entire memory persistent upon failure. With
hardware that has sufficient backup power sources, NV-
Logging can also achieve high performance with a flush-on-
failure policy. Such an approach complements this paper’s
goal to create cost-effective ways of using NVRAM.

NV-Logging uses clflush, but not mfence, as the latter is
not required because append-only logs never update a log
object once it has been written. Further, by first creating
a log object in DRAM, NVRAM writes are necessary only
when the object is fully populated after all of its data struc-
tures have been assigned with proper values. Fully pop-
ulating log object content in DRAM before flushing it to
NVRAM simplifies matters, as only completed log object
with fixed size is flushed, thus only a single clflush or write-
through store instruction is needed to complete each such
write. Finally, previous work has argued that in-memory
data copying can cause high levels of memory pressure for
large database transactions [8]. This problem can be ad-
dressed by multiplexing log objects, an approach that is
feasible with the less than tens of log objects generated by
each transaction on average, based on our statistics obtained
from well-known transaction workloads.

To obtain high performance, NV-Logging offers two per-
sistence policies, flush-on-insert and flush-on-commit.

flush-on-insert: it is similar to in-place update, but the
log object is initially allocated from volatile memory. As
stated earlier, once the log object is entirely populated, it
is flushed into the location in NVRAM to which its cor-
responding index entry points. To ensure consistency, the
clflush instruction is called to make sure that all log data is
in NVRAM and no longer resides in volatile cache or DRAM.
The state bits in both the log object and log index entry are
set to indicate the log object is persistent. After the trans-
action commits, all of its log objects in volatile memory are
cleared but not deallocated, so that they can be reused to
reduce object allocation overhead.

flush-on-commit: the log object is created as in flush-
on-insert, but instead of flushing the object immediately af-
ter it is populated, the log object is asynchronously copied
to NVRAM. Such copying is performed by a daemon pro-
cess that checks the states of DRAM-resident log objects,
persists the fully populated ones, and sets their state bits
accordingly. Since this may cause delays on transaction com-
mit, when log objects are finally flushed, we first scan the
state bit in each log object. If the bit indicates that the ob-
ject has not yet been asynchronously persisted, persistence
is ensured by calling the procedure flush-on-insert. By using
this policy, persistence overhead is removed from the critical
path, without damaging the order of persistent log objects.

In order to reduce the frequency of persistence operations,
Pelley et al. propose Group Commit [25] that orders per-
sists in batch instead of in transaction or page granularity.
However, all transactions from the in-flight batch have to be
rolled back or aborted on failure. No such constraint exists
for flush-on-commit, as only uncommitted transactions have
to execute the rollback procedure.

4.4 Transaction Abort

Following the principles introduced in ARIES (Algorithms
for Recovery and Isolation Exploiting Semantics) [30], the
log used in NV-Logging consists of both the undo and redo
log objects for all of the updated records in each transac-
tion. Undo logs provide necessary data to roll back uncom-
mitted transaction updates and recover the corresponding
records to original values. Redo logs contain the records of
update operations on data pages in the volatile page cache
in case the updates have not yet been persisted when fail-
ures or crashes occur, so that these update operations can
be replayed. As with ARIES, NV-Logging ensures that log
objects are persistent before the corresponding values are
updated in corresponding volatile data pages, with reduced
overheads compared to NV-Disk.

In NV-Disk, each log object contains the LSN of its previ-
ous log object. On transaction abort, the incomplete trans-
action reverses the updates from the latest log object one
by one. This may incur a number of disk seeks. For NV-
Logging, we use back pointers to obtain previous log objects.
For incomplete transactions, all copies of their log objects
also exist in volatile memory, although some of them may
have been persisted with flush-on-commit. In such cases,
to maintain consistency, we still persist the unflushed log
objects and set their state bits, but then insert an addi-
tional log object to indicate that this transaction has been
aborted. These log objects for aborted transactions may not
be needed, which will be cleaned later in log truncation.

4.5 Log Truncation

Log truncation is needed in part to limit the server’s total
NVRAM capacity and its consequent cost. It works collabo-
ratively with checkpointing in transaction system. For those
logs whose associated data pages have been made persistent,
they are not needed for recovery.

With the disk-based solution NV-Disk, log truncation works
at the granularity of log partitions. The two-level store hi-
erarchy (volatile centralized log buffer and disk) creates a
sequential write pattern for transactions logs, but this also
means that one partition cannot be truncated until all of its
corresponding transaction updates have been persisted. For
NV-Logging, log truncation is not constrained to partition
boundaries. After checkpointing, the log-head moves ahead
to the checkpoint, and the state bits in the log entries passed
in that move are cleared. The memory resources used by log
index entries are not reclaimed, as they can be reused. This
may waste some memory resource when log object sizes vary,
but the total allocated memory size is limited since check-
pointing runs periodically. For disk-based solution, check-
pointing is activated when the centralized log buffer is full
or transaction commits. In NV-Logging, a threshold for the
number of consumed log entries is defined. Once the thresh-
old is reached, checkpointing will be awakened. As many of
the log objects created recently have been become persis-
tent, the logging persistence will not delay the checkpoint-

395

ing. And only the pages associated with these recent logs
are involved in the checkpointing, transactions that are not
updating to these pages can proceed as normal until next
threshold is reached. In addition, dirty page cleaner threads
running in the background will traverse the whole page cache
and write out dirty pages asynchronously [16]. This is sim-
iliar to the adaptive flushing policy [20, 22] as dirty page
flushing can be interleaved with transaction processing. It
is rare that log entries are exhausted, as the log truncation
procedure wakes up intermittently and corresponding log
entries are reclaimed accordingly.

4.6 Recovery

The redo logs contain the history of all transaction up-
dates since the last checkpoint. With checkpoint or snap-
shot files, the database can accomplish point-in-time recov-
ery. Each page has a LSN to indicate the transaction that
updated it most recently. During recovery, the LSN in the
page is compared with the LSN stored in log entries to check
if the page needs to be updated with redo logs. With de-
centralized logging, the challenge is how to rapidly perform
in-order system recovery. We use the log entry index for re-
constructing the order of logs. As each entry in the structure
has a pointer that points to the address of the log object,
the object’s retrieval is simple, requiring no complex offset
calculations or file operations. For pages that were modi-
fied by transactions but not made persistent, redo logs are
applied to roll the database forward. For modified pages
that contain updates but have not been committed, a roll
back procedure is executed. Both the roll back and roll for-
ward procedures rely on LSNs to retrieve log objects. In
summary, we follow ARIES rules for database recovery, but
provide atomic and durable logging while avoiding associ-
ated software overheads.

S. IMPLEMENTATION

NV-Logging is implemented based on the latest open-
source Shore-MT [5] transaction system, providing ARIES-
based logging and recovery.

5.1 Memory Management

As shown in the system design for NV-Logging (Figure 10),
a set of log index entries are allocated upon system startup.
All state bits in the log entries are initially cleared, with
pointers set to pre-allocated space in NVRAM. A 64-bit LSN
is automatically increased as log objects are inserted. With-
out the overhead of resource allocation, acquiring a global
LSN can be done quickly. The log_head always points to the
beginning of the circular log buffer structure, and records the
LSN of the log object to which this entry points. The log_tail
always points to the first available log entry, and records the
pre-allocated LSN. With the two recorded LSNs, a log entry
can be easily located if a LSN is within the range, otherwise
an error may occur during LSN allocation and log insertion.
All of the data structures include the global LSN, log_head,
log_tail, log entries, with pre-allocated space are in NVRAM.
Atomic updates are applied to guarantee consistency.

For data structures in volatile memory like the initial ex-
isting log objects, atomic update rules must be obeyed only
when interacting with NVRAM, an example being log object
flushing. This substantially reduces the overheads of main-
taining log objects. Additional reductions are obtained by

avoiding allocation overheads: threads that execute trans-
actions pre-allocate a number of log objects in advance, and
these log objects are reused after transaction commits. This
reduces the memory footprint of log objects in volatile mem-
ory and context switch overheads from allocation calls.

In addition, NV-Logging has asynchronous log backup to
dump logs from NVRAM to disk for freeing NVRAM space.
This is done asynchronously so that it does not affect trans-
action performance. By storing cold logs on disk, more
costly NVRAM space is preserved to maintain logs related
to in-flight transactions.

5.2 Consistency and Atomic Updates

Similar to file system inode management, the update or-
der for log object persistence must be maintained if failures
occur when a log object is flushed from volatile to persistent
memory: object content is flushed first, followed by clflush,
then the state bit is set to indicate it has been made per-
sist. Violation of this order can result in what appear to
be successfully persisted log objects, but with meaningless
NVRAM pointers. Note that pointers from one space (i.e.,
pointers to either volatile or non-volatile memory locations)
used in NV-Logging never point to addresses in the other
space. Specifically, the pointer in each log index entry al-
ways points to a pre-allocated non-volatile log object, and
its state bit indicates whether the value of the log object
is valid or not. This design reduces the complexity of con-
sistency maintenance and avoids the happening of dangling
pointers. Atomic updates are guaranteed with small, atomic
eight-byte persistent writes offered by hardware (for pointer
updates, LSN updates, and etc.), along with the state bits in
log objects and log entries to detect failures during updates.

6. EVALUATION

This section evaluates the performance of NV-Logging,
as compared to NV-Disk and Distributed Logging [29]. A
challenge in this evaluation is the lack of NVRAM hard-
ware, with previous work typically resorting to the use of
simulation. In contrast, following recent work like [12], we
evaluate our solutions on emulated NVRAM hardware, us-
ing two different emulations, described in detail as Setup-A
and Setup-B in Table 1. First, experiments with OLTP
benchmarks are run in an environment approximating ex-
pected NVRAM performance (Setup-A). In order to further
verify and examine our solutions, we then run experiments
on a hardware platform precisely emulating future NVRAM
memory developed by Intel Corporation (Setup-B). Using
the latter, we also compare NV-Logging with an alternative
solution PMFS file system that specifically designed to effi-
ciently exploit NVRAM’s benefits [12]. The purpose of this
comparison is to assess the value of re-implementing com-
ponents of database systems with solutions like N'V-Logging
vs. reusing systems’ existing file-based interfaces layered on
top of NVRAM, as done by PMFS.

6.1 Experimental Setup

Setup-A: To emulate NVRAM’s slower writes relative to
DRAM, we add latency to NVRAM writes. Since NVRAM
writes may be cached in volatile processor cache, we add
these delays after executing the clflush instruction. We do
not add any latency to NVRAM reads as the asymmetric
read-write performance of NVRAM indicates that its read

396

Setup-A

CPU Intel Xeon X5550, 2.67 GHz
CPU cores 4 (16 with Hyper-threading)
Processor cache 32KB/32KB L1, 256KB L2, 8MB L3
DRAM 48 GB
NVRAM emulated with slowdown

additional latency varies from ~1 to 8 us
Disk 512 GB HDD

two 128 GB OCZ-VERTEX 4 SSDs

Operating system RHEL 6, kernel version 2.6.32

Setup-B Intel’s PMEP

CPU Intel64 Xeon-EP platform, 2.6 GHz
modified CPU & custom firmware

CPU cores 16 (Hyper-threading disabled)

Processor cache 32KB/32KB L1, 256KB L2, 20MB L3

DRAM 64 GB (DDR3 Channels 0-1)

NVRAM 256 GB (DDR3 Channel 2-3)
configurable latency

Disk 4 TB HDD

Operating system Ubuntu 13.04

Table 1: Experimental setup.

performance will be close to DRAM’s. We use the rdtscll for
timing and then compute the latency for write slowdowns.

Setup-B: Intel’s Persistent Memory Emulation Platform
(PMEP) is a system-level performance emulator for persis-
tent memory, offering configurable memory latencies and
bandwidth. The platform provides up to 4 DDR3 Chan-
nels, and partitions memory between DRAM and emulated
NVRAM, the former is unmodified and the latter is modi-
fied as per expected NVRAM properties. PMEP models la-
tency and bandwidth by introducing additional stall cycles
and using a programmable feature in the memory controller.
Details about the emulation appear in [12].

Workload | Scale factor Data size Transaction type
TPCC 70 9 GB Mix
TPCB 1000 11 GB Account updates
TATP 1000 15 GB Mix

Table 2: Benchmarks used in experiments.

Benchmarks: Shore-Kits is an open-source suite of OLTP
benchmarks implemented on top of Shore-MT storage man-
ager. Our experiments use TPCC, TPCB, and TATP bench-
marks as shown in Table 2. TPCC models a retailer’s online
transaction processing database receiving orders, payments,
and deliveries for items. We populate a database of 70 ware-
houses with 9 GB data size. The TPCB benchmark simu-
lates a banking workload against a database that contains
branches, tellers, and accounts records. A database with
1000 warehouses is populated, its size is 11 GB. The TATP
benchmark models a home location registry database used
by a mobile carrier. We populate its database with 1000
warehouses, of 15 GB size.

Configurations: the page cache size of Shore-MT is con-
figured as 6 GB, and the default page size is 8 KB. For NV-
Disk, the log buffer is set to 80 MB by default, the quota for
log partitions is 3 GB for 8 partitions. For NV-Logging, the
threshold of consumed log entries for checkpointing is 80 K
by default, its average log data size is smaller than 80 MB.
In Setup-A, we vary the relative slowdown for NVRAM up
to 8x compared to DRAM, and vary NVRAM write latency
from DRAM’s latency to 500 ns in Setup-B. All benchmarks

10°

'g = @ log size=64B w—= log size=272B —nm =
a e—e log size=968 & = log size=680B .2
= L | logsize=120B = = log size=14248
> 10 =
c -
£ - > -
I ° R
10

8 12 16
Number of Threads
(a) Baseline

20 24

< 10
Q
)
=2
o -
e L) LA A R 4

E’ ‘g- | e - —
©
— o

10 1 4 8 12 16 20 24

Number of Threads
(b) NV-Logging

Figure 11: Average latency of log insertion.

are executed 5 times, each of which lasts 30 seconds, and the
average throughput is reported.

Centralized| FS Sync/Async
Schemes log buffer | APIs E(ljon/unii]
NV-Disk v v Async
NV-Disk+decentralized-logging X v Async
NV-Logging+flush-on-insert X X Sync
NV-Logging+flush-on-commit X X Async
Distributed Logging [29] X v Async

Table 3: Schemes for the comparison.

As shown in Table 3, we compare these schemes to under-
stand the impacts of different designs on transaction through-
put. In NV-Disk+decentralized-logging, the log buffer is de-
centralized, but logs are still placed on file system via the
same way as implemented in NV-Disk. In NV-Logging, we
evaluate both the logging persistence mechanisms flush-on-
insert and flush-on-commit. For all the schemes, we use ‘OL’
(Optimized Locking) to represent enabled SLI and ELR.

We also compare NV-Logging with the state-of-the-art
Distributed Logging [29], in which both log buffers and log
partitions are distributed. Without durable processor cache
support, this method has to employ memory fences to pre-
vent reordering of stores for multicore processors. Modifi-
cations on other components in transaction system are also
required to process recovery, transaction abort and forward
processing with the distributed logging. In our experiments,
we use 16 logs, each with 192 MB NVRAM-based log buffer
for transaction-level partitioning.

6.2 Log Insertion Performance

Using Setup-A, this section evaluates the scalability of
the performance-dominant logging component, not yet con-
sidering the effects of other components like the lock man-
ager. NVRAM latency is first configured to be the same as
DRAM. Figure 11 shows the average latency of log insertion
with a varying number of threads. Measurements are based
on collected values for the typical sizes of log objects gen-
erated in OLTP benchmarks: our statistics indicate these
sizes range from ~64 bytes to several KBs.

As shown in Figure 11(a), the average latency of log inser-
tion increases dramatically (up to 74.3 us) with an increasing
number of threads in NV-Disk. This is due to log contention
in the centralized log buffer. In contrast, for NV-Logging,
the average latency of log insertion remains at a consistent
level (up to 2.5 ps), as shown in Figure 11(b). There is
no resource allocation overhead and correlated contention
in NV-Logging, as each transaction only needs to obtain a
global LSNs for its log objects. With LSNs, transactions
can easily locate the corresponding log entries.

6.3 OLTP Workloads

With Setup-A, we next vary the write latency of NVRAM
to show how overall transaction performance will be im-
pacted with NV-Disk, NV-Logging and Distributed Logging.

397

In these experiments, database files are always placed on the
ext4 file system based on disk. In NV-Disk, we place the log
partitions on tmpfs, whereas in NV-Logging, we place the log
objects directly into NVRAM, bypassing file system APIs,
and no centralized log buffer is required.

TPCC: Figure 12 shows the throughput of Shore-MT, for
varying NVRAM write latencies and numbers of threads. In-
creasing the number of threads, NV-Logging shows increased
benefits, performing 1.62 - 2.72x more throughput than NV-
Disk. Note that overall transaction throughput will also be
affected by other transaction system components like the
lock manager, but such optimizations and improvements are
out of scope for our work. We enable both SLI and ELR to
eliminate overheads in the lock manager.

Additional experiments evaluate the effects of log buffer
size on overall performance in NV-Disk. We increase the log
buffer size from 80 MB to 256 MB, the latter being close to
its maximum limit, as log buffer size depends on the number
of partitions and the quota for log files. Experimental results
show that the TPS is only increased by 1.8 - 13.6%. Since
this demonstrates that enlarging the centralized log buffer
is not a good method for performance improvement, other
experiments in this paper forego the use of larger log buffers.

Figure 12 also demonstrates that NV-Disk + decentralized-
logging performs worse than NV-Disk. This is because while
the decentralized log buffer design could perform better than
the centralized log buffer, as resource allocation and lock
contention overheads can be avoided, this also hurts the
ability of grouping logs, and increases the frequency of disk
accesses. Leveraging only the decentralized log buffer, there-
fore, cannot improve the throughput of NV-Disk, particu-
larly for update-intensive workloads.

Additional measurements examine the performance of flush-
on-insert and flush-on-commit. As NVRAM write slow-
down is increased, the performance of flush-on-insert drops
slightly, while flush-on-commit performs at a consistent level.
If NVRAM write performs 4 - 8x slower than DRAM, the
flush-on-commit performs 7.89 - 13.79% better than flush-
on-insert, since log objects can be persisted asynchronously.

Compared to Distributed Logging, NV-Logging has 13.8 -
26.81% higher TPS. This is because NV-Logging uses a sim-
pler design: (1) without calling memory barriers and fences
frequently to maintain the ordering for distributed logs, and
(2) using a simple lookup procedure. A more detailed anal-
ysis of software overhead appears in Section 6.5.

In the following sections, we only present the results with
larger numbers of threads due to space limitations. Experi-
ments with smaller numbers of threads show similar trends.

TATP: Figure 13 (a) and (b) illustrate the throughput
of TATP with mixed workloads. NV-Logging performs 1.12
- 1.62x better than NV-Disk. With SLI and ELR enabled,
the performance of both NV-Logging and NV-Disk are in-
creased. NV-Logging still processes 1.10 - 1.38x more TPS
than disk-based solution. As expected, NV-Logging with
flush-on-commit performs better than with flush-on-insert

W NV-Disk
E=3 NV-Disk + larger buffer
NV-Disk + decentralized-logging

0 NV-Logging + flush-on-insert
EEE NV-Logging + flush-on-commit
NV-Disk + OL

=3 NV-Disk + larger buffer + OL
E=3 NV-Disk + decentralized-logging + OL
S NV-Logging + flush-on-insert + OL

C—J NV-Logging + flush-on-commit + OL
EXJ Distributed Logging + OL

2x 4x 8x

Slowdown (NVRAM/DRAM)
(a) 8 threads

1x

22
220 T
e 18 S
v 16] R &
=< 14 - ml M
5 12 b = { 1 H
210 |
g 2 A :
o H
£ 4 iH
i

Slowdown (NVRAM/DRAM
(b) 12 threads

1x 2x 4x 8x

Slowdown (NVRAM/DRAM)
(c) 16 threads

IS
X
S
X

Figure 12: Throughput of TPCC benchmark with varied slowdown configurations. NV-Logging performs 1.62
- 2.72x better than NV-Disk, even when SLI and ELR are enabled.

Il NV-Disk
ZZ2 NV-Disk + OL

NV-Disk + decentralized-logging
=3 NV-Disk + decentralized-logging + OL

B NV-Logging + flush-on-insert
=3 NV-Logging + flush-on-insert + OL

B NV-Logging + flush-on-commit
[NV-Logging + flush-on-commit + OL

G754 Distributed Logging + OL

300
& 250

¥ 200
150
100
50
0

. \\!

Throughput

g
l
g
V
Y
V
V
¢!
U
i
:
/A

4x

(a) TATP (12 threads) (b) TATP (16 threads)

N E IRFH

g
g
P

i
9
|

H

FaAvAvAvAvAvAvAvAvaw)

/
;

2x 4x
(c) TPCB (12 threads)

2x 4x
(d) TPCB (16 threads)

2]
x

Figure 13: Throughput of TATP and TPCB benchmark with varied slowdown configurations. NV-Logging
performs 1.10 - 1.62x and 1.26 - 1.99x better than NV-Disk respectively, even when SLI and ELR are enabled.

by up to 24.32%. NV-Logging performs 8.94 - 10.97% bet-
ter than Distributed Logging. Overall, the results with TATP
show similar trends as those with TPCC.

TPCB: when running TPCB, as shown in Figure 13 (c)
and (d), the performance trends are similar to those in other
two benchmarks. Throughput is increased by 1.26 - 1.69x
with NV-Logging, as compared to NV-Disk. With SLI and
ELR enabled, NV-Logging performs 1.43 - 1.99x and 1.15 -
1.21x better than NV-Disk and Distributed Logging respec-
tively. As we increase NVRAM slowdown, flush-on-commit
can perform up to 29.18% better than flush-on-insert.

In summary, NV-Logging improves transaction through-
put, as compared to NV-Disk and Distributed Logging, par-
ticularly for update-intensive transactions. When NVRAM
writes are much slower than DRAM writes, flush-on-commit
performs better than flush-on-insert.

6.4 Experiments on Intel’s PMEP

To further evaluate the performance of NV-Logging, we re-
deploy Shore-MT and its Shore-Kits benchmarks on Intel’s
PMEP, described in Setup-B. This platform has been used
to evaluate the system-level performance of persistent mem-
ory software, including for the PMFS file system expressly
developed to exploit NVRAM’s byte addressability [12].

We leverage PMFS in our experiments by using it to main-
tain log files for NV-Disk. We also modify NV-Logging
and Distributed Logging with libnuma interfaces, so that
NVRAM can be allocated from the persistent memory node
in PMEP. As shown in Figure 14 (a) and (b), NV-Logging
performs 1.21 - 3.17x more TPS than NV-Disk with PMFS.
For update-intensive workloads as shown in Figure 14 (c)
and (d), the throughput of TPCB increases by 3.86 - 6.71x
with NV-Logging, compared to NV-Disk with PMFS. With
SLI and ELR enabled, NV-Logging performs 4.45 - 7.95x
better than NV-Disk. Compared to Distributed Logging,
NV-Logging increases TPS by 11.9 - 20.4%. Further, trans-
action performance does not drop dramatically as NVRAM

398

latency is increased from that of DRAM to 500 ns, matching
the trends shown in [12]. The reason for the lack of sensi-
tivity to NVRAM latency is that software overheads are the
primary performance determinants.

6.5 Software Overhead Analysis

As shown in Figure 7, logging overheads increase as we
place log partitions on NVRAM, while locking bottlenecks
in the lock manager are reduced dramatically with SLI and
ELR enabled. Compared to NV-Disk, NV-Logging decreases
the log operations overhead from 11.55% to 3.2%, and re-
duces the log contention overhead from 27.64% to 5.14%
(Figure 15). The execution time on DB operations is greatly
increased as more transactions are processed. This causes
the slight increment in lock manager overhead, but the over-
all performance is improved.

As shown in Figure 15, NV-Logging and Distributed Log-
ging can both reduce log contention overhead. However,
NV-Logging has a simpler design that requires no memory
barriers and fences, it reduces the overhead of maintaining
the ordering of logs, and also the overhead of log lookups.
Figure 15 demonstrates that log operations overhead in Dis-
tributed Logging is 10.65%, larger than NV-Logging’s, while
their log contention overheads are similar. Also note that in
order to deploy distributed logging in transaction systems,
other techniques are needed to solve associated problems
like cross-log aborts, imbalanced log space utilization, and
log ordering. We believe that our simplified solution can
obtain comparable performance with less complexity.

6.6 Cost-Effectiveness Analysis

The cost-effectiveness analysis depicted in Figure 16 illus-
trates dramatic differences in the potential cost/performance
for the different options. The analysis uses overall through-
put to represent performance, with costs including the mem-
ory and storage cost for hosting all relevant data for the
workloads. The prices used for DRAM, flash, and disk are

EEm PMFS
PMFS + OL

Bl NV-Logging + flush-on-insert
E=] NV-Logging + flush-on-insert + OL

BEm NV-Logging + flush-on-commit
[NV-Logging + flush-on-commit + OL

X3 Distributed Logging + OL

70
o k \ dl N
60 F b
Eool alb afl gttt o <
¥ | Ll .
S ool dhit gl o N
2 AL | ALE | A A | AL | A
£ 30 il |1 / A R BN
250 K B R A LAl
gl | Al | | ALl
I | 0 |0l AL i A L
DRAM 300 400 500 DRAM 300 400 500 DRAM 300 400 500 DRAM 300 400 500
NVRAM Latency (ns) NVRAM Latency (ns) NVRAM Latency (ns) NVRAM Latency (ns)
(a) TATP (12 threads) (b) TATP (16 threads) (c) TPCB (12 threads) (d) TPCB(16 threads)
Figure 14: Throughput of TATP and TPCB benchmark running on Intel’s PMEP. NV-Logging performs 1.21

- 3.17x and 3.86 - 7.95x better than NV-Disk with PMFS respectively, even when SLI and ELR are enabled.

[Iog operations =3 log contention EEEN lock manager
V-Lo ggmg Distributed Logging NV-Logging

DB operations [Others|
Distributed Logging

100
< 80
& 60
boj
$ 40
2
& 20
0]
12 16 8 12 16 8 12 16 8 12 16
Number of Threads Number of Threads
(a) TPCC (b) TPCB

Figure 15: Time breakdowns for TPCC and TPCB
with NV-Logging and Distributed Logging.

$5.5/GB, $0.7/GB, and $0.05/GB, respectively [3, 31]. Con-
cerning NVRAM, since actual NVRAM devices are not yet
on the market, we follow the assumptions in Kim et al. [19],
who conservatively assume NVRAM device to be 24x more
expensive than HDD, based on expert opinions and their
investigations. To strengthen our analysis, we explore vari-
ations in the cost ratio of NVRAM to HDD, from 1 to 256.

As depicted in Figure 16, NV-Logging offers the best TPS/$
compared to other schemes. With NV-Logging, we gain
2.61 - 6.72x more TPS/$ than the baseline all-in-NVRAM.
This illustrative analysis shows that NV-Logging is a cost-
effective solution, even when NVRAM’s cost reaches the
same level as that of disk devices (which is highly unlikely).
With the same amount of NVRAM used for logging, NV-
Logging performs 21.13% more TPS/$ than Distributed Log-
ging, because of the throughput improvement by NV-Logging
as described in Section 6.3. Similar trends are seen within
TATP and TPCB workloads.

6.7 Discussion

Contention on the centralized log buffer and log-induced
lock contention contribute a significant portion to trans-
action execution times. These software overheads become
conspicuous when replacing relatively slow disks with fast

NVRAM. The consequent need for restructuring certain trans-

action system components, in particular the logging subsys-
tem, is shown important by the experiments described in
this section. Experiments also show that our proposed so-
lution, NV-Logging, reduces these software overheads dra-
matically, including by using per-transaction logging to ex-
ploit NVRAM'’s byte-addressability. Further, addressing the
performance gap between DRAM and NVRAM, for slower
NVRAM, we show that flush-on-commit offers better per-
formance than flush-on-insert, as the former’s asynchronous
nature bypasses persistence overheads. For logging that gen-
erates data in an orderly manner, the persist barrier used
to enforce persist order can be simplified or avoided. This
could further reduce the cost on persistence and consistency.

399

7

“ EEm all-in-NVRAM [db-in-SSD, log-in-NVRAM

5 6 |z db-in-HDD; Tog-in-NVRAM BN all-in-SSD

o 5 EE all-in-HDD EEE db-in-NVRAM, log-in-SSD R { m |

= E= db-in-NVRAM, log-in-HDD EE3 Distributed Logging a

T 4 | = Nv-togging H

N =

= 3 i

@© m H

q i

=, L
NI i I

Ix 2x 4x 8x 16x 32x 64x 128x 256x

Cost Ratio (NVRAM's price/Disk's price)

Figure 16: Cost-effectiveness analysis. It shows the
normalized TPS/$ for TPCC benchmark, taking all-
in-NVRAM as the baseline.

7. RELATED WORK

Disk-based Solutions. Assuming traditional memory
hierarchies, recent studies have created innovative software
to reduce overheads. The Early Lock Release [11, 17] scheme
is based on the observation that a transaction’s locks can
be released before the corresponding log records are writ-
ten to disk. Johnson et al. [17] identify four bottlenecks re-
lated to write-ahead logging: log buffer contention, lock con-
tention, I/O delay, and excessive content switching. Flush
pipelining is proposed to avoid context switches when trans-
actions commit. Further performance improvements can be
obtained with group commit logging [27], where multiple
requests are aggregated into one log flush, thereby reduc-
ing I/O overheads. Our work differs from all such efforts
in its complementary focus on non-traditional memory hier-
archies, for systems able to leverage future NVRAM mem-
ory technologies offering both byte addressability and non-
volatility.

Flash-based Solutions. Recent studies [7, 21] have
shown the performance benefits brought by replacing hard
disks with faster flash drives. Interestingly, the experimen-
tal results from these studies [17] show that even when using
the fastest flash disk drives, one cannot eliminate all of the
software overheads associated with logging, such as those
due to buffer contention and OS scheduling. Extrapolating
from those studies, we posit that such overheads become
even more dominant for faster NVRAM.

NVRAM-based Solutions. As NVRAM is nearing its
market deployment, researchers have begun to study its use
in database systems. Pelley et al. [25] propose to leverage
NVRAM as main memory to host all of the data sets for
in-memory databases. Our concern with this solution is its
practicality, in terms of its cost-effectiveness not considered
in that work. We demonstrate those concerns with a cost-
effectiveness study evaluating alternative ways to employ
NVRAM in transaction systems. Wang et al. [29] propose

distributed logging, in which both log buffers and log parti-
tions are distributed to alleviate logging overheads, but this
design has associated issues such as cross-log abort, recovery
from distributed partitions and imbalanced log space utiliza-
tion. With NV-Logging, we offer a simplified design exploit-
ing NVRAM’s both byte-addressability and non-volatility,
and gaining improved performance through reduced over-
heads. Fang et al. [13] exploit SCM (Storage Class Mem-
ory) to reduce the logging overheads of transaction systems.
Their approach is to use SCM as cache for disks, but this so-
lutions still suffers from the software overheads introduced
by structures like the centralized log buffer. In compari-
son, we propose a decentralized logging approach that avoids
these overheads and provides a more scalable logging solu-
tion. With both software (lower-level interfaces) and hard-
ware support, Coburn et al. [§8] implemented atomic write
operations to exploit the benefits of parallelism of NVRAM-
based storage. We can take advantage of their solutions,
applying them to the specific case of log buffer access in
transaction systems.

8. CONCLUSION

This paper describes cost-effective ways to use NVRAM
technology to improve the performance of transaction sys-
tems. By implementing these solutions and evaluating them
with emulated NVRAM hardware, detailed insights are pro-
vided on how to best leverage NVRAM in future systems. In
particular, we show that it is not necessary or cost-effective
to replace all disk with NVRAM to gain high transaction
throughput. Instead, it suffices to use NVRAM to hold the
transcaction system’s logs, resulting in performance compa-
rable to that obtained for in-memory databases.

When using NVRAM vs. disk-based logging, however,
careful attention must be paid to the software overheads in-
volved in logging, in contrast to previous implementations
benefiting from the relatively slow nature of disk-based de-
vices. This inspires us to re-design logging — NV-Logging
— to use per-transaction logging that efficiently exploits the
byte-addressability of NVRAM and supports highly concur-
rent operation. Experimental results with the OLTP bench-
marks show that this design substantially outperforms previ-
ous disk-based implementations — NV-Disk — by up to 6.71x.

Acknowledgements

We thank anonymous reviewers for their feedback and com-
ments. We would like to thank Ling Liu, Ada Gavrilovska,
Xuechen Zhang for discussions, and Sanjay Kumar for his
support on Intel’s persistent memory server. We also thank
Alexander M. Merritt for proofreading an earlier version of
this manuscript. This work was supported in part by the In-
tel URO program on software for persistent memories, and
by C-FAR, one of the six SRC STARnet Centers, sponsored
by MARCO and DARPA.

9 REFERENCES

In-memory Databases.
http://en.wikipedia.org/wiki/In-memory_database.

Micron Technology, Inc.
http://us.micron.com/products-support/phase-change-memory.
Newegg. http://www.newegg.com/.

perf. https://perf.wiki.kernel.org.

Shore-MT. https://sites.google.com/site/shoremt/.

Anon et al. A measure of transaction processing power. In
Datamation, 1985.

400

(7]

8]

(9]

(10]

(11]

(12]

(13]

(14]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

28]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

S. Chen. Flashlogging: Exploiting flash devices for synchronous
logging performance. In SIGMOD’09, Providence, Rhode
Island, USA, 2009.

J. Coburn, T. Bunker, M. Schwarz, R. Gupta, and S. Swanson.
From aries to mars: Transaction support for next-generation,
solid-state drives. In SOSP’13, Famington, Pennsylvania, 2013.
J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K.
Gupta, R. Jhala, and S. Swanson. Nv-heaps: Making persistent
objects fast and safe with next-generation, non-volatile
memories. In ASPLOS’11, Newport Beach, California, USA,
2011.

J. Condit, E. B. Nightingale, C. Frost, E. Ipek, D. Burger,

B. Lee, and D. Coetzee. Better i/o through byte-addressable,
persistent memory. In SOSP’09, Big Sky, Montana, 2009.

D. J. Dewitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R.
Stonebraker, and D. A. Wood. Implementation techniques for
main memory database systems. In SIGMOD’84, New York,
NY, USA, 1984.

S. R. Dulloor, S. K. Kumar, A. K. Keshavamurthy, P. Lantz,
D. Subbareddy, R. Sankaran, and J. Jackson. System software
for persistent memory. In FuroSys’14, Amsterdam, The
Netherlands, 2014.

R. Fang, H.-I. Hsiao, C. Mohan, and Y. Wang. High
performance database logging using storage class memory. In
ICDE’11, 2011.

G. Graefe, M. Lillibridge, H. Kuno, J. Tucek, and A. Veitch.
Controlled lock violation. In SIGMOD’18, New York, USA,
2013.

R. Johnson, I. Pandis, and A. Ailamaki. Improving oltp
scalability using speculative lock inheritance. In VLDB’09,
Lyon, France, 2009.

R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and

B. Falsafi. Shore-mt: A scalable storage manager for the
multicore era. In EDBT’09, Saint Petersburg, Russia, 2009.

R. Johnson, I. Pandis, R. Stoica, and M. Athanassoulis. Aether:
A scalable approach to logging. In VLDB’10, Singapore, 2010.
P. Kieun. Database Technology for Large Scale Data.
http://www.cubrid.org/blog/dev-platform/database-
technology-for-large-scale-data/.

H. Kim, S. Seshadri, C. L. Dickey, and L. Chiu. Evaluating
phase change memory for enterprise storage systems: A study
of caching and tiering approaches. In FAST’14, Santa Clara,
CA, USA, 2014.

R. Lawrence. Early hash join: A configurable algorithm for the
efficient and early production of join results. In VLDB’05,
Trondheim, Norway, 2005.

S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W. Kim. A
case for flash memory ssd in enterprise database applications.
In SIGMOD’08, Vancouver, BC, Canada, 2008.

M. F. Mokbel, M. Lu, and W. G. Aref. Hash-merge join: A
non-blocking join algorithm for producing fast and early join
results. In ICDE’0/4, Boston, USA, 2004.

D. Narayanan and O. Hodson. Whole-system persistence. In
ASPLOS’12, London, UK, 2012.

D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and
M. Rosenblum. Fast crash recovery in ramcloud. In SOSP’11,
Cascais, Portugal, 2011.

S. Pelley, T. F. Wenisch, B. T. Gold, and B. Bridge. Storage
management in the nvram era. In VLDB’14, Hangzhou, China,
2014.

M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable high
performance main memory system using phase-change memory
technology. In ISCA’09, Austin, Texas, USA, 2009.

A. Rafii and D. DuBois. Performance tradeoffs of group commit
logging. In CMG Conference, 1989.

H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:
Lightweight persistent memory. In ASPLOS’11, Newport
Beach, California, USA, 2011.

T. Wang and R. Johnson. Scalable logging through emerging
non-volatile memory. In VLDB’14, 2014.

Wikipedia. ARIES.
http://en.wikipedia.org/wiki/Algorithms_for_Recovery
_and_Isolation_Exploiting_Semantics.

J. H. Yoon, H. C. Hunter, and G. A. Tressler. Flash and dram
si scaling challenges, emerging non-volatile memory technology
enablement-implications to enterprise storage and server
compute systems. In Flash Memory Summit, 2013.

J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi. Kiln:
Closing the performance gap between systems with and
without persistent support. In MICRO-46, Davis, CA, 2013.

