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ABSTRACT

Distributed graph processing systems increasingly require many

compute nodes to cope with the requirements imposed by contem-

porary graph-based Big Data applications. However, increasing

the number of compute nodes increases the chance of node fail-

ures. Therefore, provisioning an efficient failure recovery strategy

is critical for distributed graph processing systems. This paper pro-

poses a novel recovery mechanism for distributed graph processing

systems that parallelizes the recovery process. The key idea is to

partition the part of the graph that is lost during a failure among

a subset of the remaining nodes. To do so, we augment the exist-

ing checkpoint-based and log-based recovery schemes with a par-

titioning mechanism that is sensitive to the total computation and

communication cost of the recovery process. Our implementation

on top of the widely used Giraph system outperforms checkpoint-

based recovery by up to 30x on a cluster of 40 compute nodes.

1. INTRODUCTION
Graphs capture complex relationships and data dependencies,

and are important to Big Data applications such as social network

analysis, spatio-temporal analysis and navigation, and consumer

analytics. MapReduce was proposed as a programming model for

Big Data about a decade ago, and since then, many MapReduce-

based distributed systems have been designed for Big Data appli-

cations such as large-scale data analytics [16]. However, in recent

years, MapReduce has been shown to be ineffective for handling

graph data, and several new systems such as Pregel [20], Giraph

[1], GraphLab [10, 18], and Trinity [24] have been recently pro-

posed for scalable distributed graph processing.

With the explosion in graph size and increasing demand of com-

plex analytics, graph processing systems have to continuously scale

out by increasing the number of compute nodes, in order to handle

the load. But scaling the number of nodes has two effects on the

failure resilience of a system. First, increasing the number of nodes

will inevitably lead to an increase in the number of failed nodes.

Second, after a failure, the progress of the entire system is halted

until the failure is recovered. Thus, a potentially large number of
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nodes will become idle just because a small set of nodes have failed.

In order to scale out the performance continuously when the num-

ber of nodes increases, it is becoming crucial to provision the graph

processing systems with the ability to handle failures effectively.

The design of failure recovery mechanisms in distributed sys-

tems is a nontrivial task, as they have to cope with several adversar-

ial conditions. Node failures may occur at any time, either during

normal job execution, or during recovery period. The design of a

recovery algorithm must be able to handle both kinds of failures.

Furthermore, the recovery algorithm must be very efficient because

the overhead of recovery can degrade system performance signifi-

cantly. To a certain extent, due to the long recovery time, failures

may occur repeatedly before the system recovers from an initial

failure. If so, the system will go into an endless recovery loop with-

out any progress in execution. Finally, the system must cope with

the failures while maintaining the recovery mechanism transparent

to user applications. This implies that the recovery algorithm can

only rely on the computation model of the system, rather than any

computation logic applied for specific applications.

The usual recovery method adopted in current distributed graph

processing systems is checkpoint-based [17, 20, 26]. It requires

each compute node to periodically and synchronously write the sta-

tus of its own subgraph to a stable storage such as the distributed file

system as a checkpoint. Upon any failure, checkpoint-based recov-

ery employs an unused healthy compute node to replace each failed

node and requires all the compute nodes to load the status of sub-

graphs from the most recent checkpoint and then synchronously re-

execute all the missing workloads. A failure is recovered when all

the nodes finish the computations that have been completed before

the failure occurs. Note that the recomputation will be replayed

again whenever a further failure occurs during recovery.

Although checkpoint-based recovery is able to handle any node

failures, it potentially suffers from high recovery latency. The rea-

son is two-fold. First, checkpoint-based recovery re-executes the

missing workloads over the whole graph, residing in both failed

and healthy compute nodes, based on the most recent checkpoint.

This could incur high computation cost as well as high commu-

nication cost, including loading the whole checkpoint, performing

recomputation and passing the messages among all compute nodes

during the recovery. Second, when a further failure occurs during

the recovery, the lost computation caused by the previous failure

may have been partially recovered. However, checkpoint-based re-

covery will forget about all of this partially completed workload,

rollback every compute node to the latest checkpoint and replay

the computation since then. This eliminates the possibility of per-

forming the recovery progressively.

In this paper, we propose a new recovery scheme to enable fast

failure recovery. The key idea is to 1) restrict the recovery workload
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Table 1: Symbols and Their Meanings
Symbol Definition

G = (V ,E) graph with vertices V and edges E
N compute node

VN vertices that reside in node N

P graph partitions

Nf failed nodes

sf superstep that a failure occurs

F failure

F i i-th cascading failure for F

S state

ϕ vertex to partition mapping

φp partition to node mapping

φr failed partition to node mapping (reassignment)

to the subgraphs residing in the failed nodes using locally logged

messages; 2) distribute the subgraphs residing in the failed nodes

among a subset of compute nodes to redo the lost computation con-

currently. In our recovery scheme, in addition to global checkpoint-

ing, we require every compute node to log their outgoing messages

locally. Upon a failure, the system first replaces each failed node

with a new one. It then divides the subgraphs residing in the failed

nodes into partitions, referred to as failed partitions, and distributes

these partitions among a subset S of compute nodes. During re-

covery, every node in S will hold its original subgraph and load the

status of its newly received partitions from the latest checkpoint.

When the system re-executes missing workloads, the recomputa-

tion is confined to the failed partitions by nodes in S concurrently,

using logged messages from healthy subgraphs and recalculated

ones from failed partitions. To distribute the lost subgraphs effec-

tively, we propose a computation and communication cost model

to quantify the recovery time, and according to the model, we split

the lost subgraphs among a subset of compute nodes such that the

total recovery time is minimized.

To the best of our knowledge, this is the first parallel recovery

mechanism proposed for distributed graph processing. In contrast

with traditional checkpoint-based recovery, our approach eliminates

the high recomputation cost for the subgraphs residing in the healthy

nodes due to the fact that failures often occur among a small frac-

tion of compute nodes. Note that the subgraph in a healthy node

can include both its original subgraph (whose computation is never

lost) and a set of newly received partitions (whose computation is

partially recovered) due to previous failures. Furthermore, we dis-

tribute the recomputation tasks for the subgraphs in the failed nodes

among multiple compute nodes to achieve better parallelism. Thus,

our approach is not a replacement for checkpoint-based recovery

methods. Instead, it complements them because it accelerates the

recovery process through simultaneous reduction of recovery com-

munication costs and parallelization of the recovery computations.

Our proposed recovery scheme is an important component of

our epiCG project: a scalable graph engine on top of epiC [12].

In this paper, we use Giraph [1] as the underlying graph engine

for the experiments as epiCG was under development when our

recovery method was being designed. We have fully implemented

the proposed recovery mechanism onto epiCG and would report the

results in the future.

Contributions. Our contributions are summarized as follows.

• We formally define the failure recovery problem in distributed

graph processing systems and introduce a partition-based recovery

method that can efficiently handle any node failures, either during

normal execution or during the recovery period (Section 2 and 3).

•We formalize the problem of distributing recomputation tasks for

subgraphs residing in the failed nodes as a reassignment generation

problem: find a reassignment for failed partitions with minimized

recovery time. We show the problem is NP-hard and propose a
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Figure 1: Distributed Graph and Partitions

cost-sensitive reassignment algorithm (Section 4).

• We implement our proposed parallel recovery method on top of

the widely used Apache Giraph graph processing system, and re-

lease it as open source1 (Section 5).

•We conduct extensive experiments on real-life datasets using both

synthetic and real applications. Our experiments show our pro-

posed recovery method outperforms traditional checkpoint-based

recovery by a factor of 12 to 30 in terms of recovery time, and a

factor of 38 in terms of the network communication cost using 40
compute nodes (Section 6).

2. BACKGROUND AND PROBLEM
In this section, we provide some background of distributed graph

processing systems (DGPS), define our problem and discuss the

challenges of failure recovery in DGPS. Table 1 lists the symbols

and their meanings used throughout this paper.

2.1 Background of DGPS
Distributed graph. The input to distributed graph processing sys-

tems is a directed graph2 G = (V, E), where V and E are the sets

of vertices and edges, respectively. Every vertex in the graph has

a unique vertex identifier. In distributed graph processing, the set

of vertices is divided into partitions. A partition of G is formally

denoted by Pi = (Vi, Ei), where Vi ⊆ V and Ei = {〈vi, vj〉 ∈
E|vi ∈ Vi}. Note that Ei includes all the outgoing edges from

vertices in Vi, which may cross partitions. All the partitions are

distributed among compute nodes, i.e., physical machines.

Let P and N respectively be the set of partitions and the set of

compute nodes. Typically, the number of partitions is larger than

that of compute nodes (i.e., |P| > |N |), to achieve a better load

balance. For ease of illustration, we denote by ϕ, φp two mappings,

where (vertex-partition mapping) ϕ : V → P records which vertex

belongs to which partition and (partition-node mapping) φp : P →
N records which partition resides in which compute node. For any

node N ∈ N , we denote by VN the set of vertices residing in N .

Figure 1(a) shows a distributed graph G over two nodes N1, N2.

G is divided into 5 partitions P1 to P5, as shown in Figure 1(b). We

use colors to differentiate vertices in different partitions.

Computation model. The computation model in Pregel-like DGPS

follows the Bulk Synchronous Parallel (BSP) model [25]. Typi-

cally, the computation consists of an input phase, where a graph

is distributed among the compute nodes, followed by a set of itera-

tions, called supersteps, separated by global synchronization points,

and finally an output phase. Every vertex carries two states: active

and inactive. Initially (at the beginning of superstep 1), all the ver-

tices are active. A vertex can deactivate itself by voting to halt.

Once a vertex becomes inactive, it has no further work to do in the

following supersteps unless activated by incoming messages from

1
http://www.comp.nus.edu.sg/∼epic/recovery/

2
Undirected graphs can be represented as directed graphs where for every

edge 〈u, v〉 there is a corresponding edge 〈v, u〉
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other vertices. Within each superstep, only active vertices partici-

pate in computation: process messages sent by other vertices in the

previous superstep, update its value or the values of its outgoing

edges and send messages to other vertices (to be processed in the

next superstep). This kind of computation logic is expressed by a

user-defined function. All the active vertices in the same compute

node execute the function sequentially, while the execution in each

compute node is performed in parallel with other nodes. After all

the active vertices finish their computation in a superstep, a global

synchronization point is reached.

Basic architecture. Pregel-like DGPS follows a master/slave ar-

chitecture. The master is responsible for coordinating the slaves,

but is not assigned any graph partitions. The slaves are in charge of

performing computation over its assigned partitions in each super-

step. More details on this architecture can be found in [20].

2.2 Failure Recovery in DGPS

2.2.1 Checkpointing Scheme

We consider synchronous checkpointing to be performed every

C(∈ N
+) supersteps. At the beginning of superstep iC + 1(i ∈

N
+), we flush the complete graph status into reliable storage such

as a distributed file system, including the graph structure, vertex

values, vertex status(active/inactive), edge values, incoming mes-

sages received in the previous superstep, and other auxiliary infor-

mation. The saved status is called a checkpoint. In short, a check-

point made in superstep iC + 1 records the graph status after the

completion of superstep iC. We assume that no failures occur dur-

ing checkpointing.

2.2.2 Problem Statement

We consider a graph job that is executed on a set N of compute

nodes from superstep 1 to smax. A compute node may fail at any

time during the normal job execution. Let F (Nf , sf) denote a fail-

ure that occurs on a set Nf(⊆ N ) of compute nodes when the job

performs normal execution in superstep sf(∈ [1, smax]). We asso-

ciate with F two states SF and S∗
F , which record the statuses of

vertices before and after the recovery of F , respectively.

Definition 1 (State). The state S is a function: V → N
+ recording

the latest superstep that has been completed by each vertex (no

matter it is active or inactive in that superstep) at a certain time.

After F is detected, all the vertices residing in the failed nodes

are lost and their latest statuses are stored in the latest checkpoint.

The recovery for F is initiated after all the healthy nodes finish

their execution in superstep sf . Let c+ 1 be the superstep when

the latest checkpoint is made. We have:

SF (v) =

{

c v ∈
⋃

N∈Nf
VN

sf Otherwise
(1)

In general, the recovery for F is to re-execute the computation from

the latest checkpointing superstep to superstep sf . Hence, we have:

S
∗
F (v) = sf , ∀v ∈ V (2)

We now formalize the failure recovery problem as follows.

Definition 2 (Failure recovery). Given F (Nf , sf), the recovery for

F is to transform the statuses of all the vertices from SF to S∗
F .

Example 1 (Running example). Consider graph G distributed over

compute nodes N1, N2 in Figure 1(a) and failure F ({N1}, 12),
i.e., N1 fails during the normal execution of superstep 12. Assume

that every vertex is active and sends messages to all its neighbors

in normal execution of each superstep, and the latest checkpoint

was made in the beginning of superstep 11. SF and S∗
F are the

following.

• ∀v ∈ {A,B,C,D,E, F}, SF (v) = 10 and S∗
F (v) = 12;

• ∀v ∈ {G,H, I, J}, SF (v) = 12 and S∗
F (v) = 12;

The recovery for F is to transform the status of each vertex to

the one achieved after the completion of superstep 12.

2.2.3 Challenging Issues

Consider a failure F (Nf , sf) that occurs during normal execu-

tion of a graph job. During the recovery for F , compute nodes may

fail at any time. More specifically, multiple failures may occur se-

quentially before the system achieves state S∗
F . We refer to these

failures as the cascading failures for F .

Definition 3 (Cascading failure). Given F (Nf , sf), a cascading

failure for F is a failure that occurs during the recovery for F , i.e.,

after F occurs but before F is recovered.

Let F be a sequence of all the cascading failures for F . We

denote by F i the i-th cascading failure in F.

Challenge 1. The key challenge of recovering F is to handle cas-

cading failures for F . To the best of our knowledge, we are not

aware of any previous works that provide details on how to handle

cascading failures in distributed graph processing systems.

Our goal is to speed up the recovery process for F . Informally,

the time of recovering F is contributed by three main tasks:

• re-execute computation such that the status of every vertex is up-

dated to the one achieved after the completion of superstep sf .
• forward inter-node messages during recomputation.

• recover cascading failures for F .

A naive recovery method re-runs the job from the first superstep

upon the occurrence of each failure. Obviously, such an approach

incurs long recovery time as the execution of every superstep can be

costly in many real-world graph jobs. In the worst case, the failure

occurs during the execution of the final superstep and the system

needs to redo all the supersteps. Furthermore, it is more likely that

a cascading failure will occur as the recovery time becomes longer.

Challenge 2. Given a failure F , we denote by Γ(F ) the recovery

time for F , i.e., the time span between the start and the completion

of recovering F . The objective of this paper is to recover F with

minimized Γ(F ).
In what follows, we first describe how locally logged messages

can be utilized for failure recovery, which is the basis of our recov-

ery algorithm, and then discuss its limitations.

2.2.4 Utilizing Locally Logged Messages

Besides checkpoints, we require every compute node to log its

outgoing messages at the end of each superstep. The logged mes-

sages are used to reduce recovery workload. Consider a failure

F (Nf , sf). Following the checkpoint-based recovery method, for

any failed node N ∈ Nf , we employ a new available node to re-

place N and assign partitions in N to it. We require all the re-

placements to load the status of received partitions from the latest

checkpoint, and all the healthy nodes hold their original partitions.

In superstep i ∈ [c+ 1, sf ] during recovery, only the replacements

perform computation for the vertices in failed partitions, while ev-

ery healthy node forwards locally logged messages to the vertices

in failed partitions without any recomputation. For i ∈ [c+ 1, sf),
the vertices in failed partitions forward messages to each other, but

for i = sf , they send messages to those in healthy nodes as well.

Example 2. Continue with Example 1. To recover F ({N1}, 12),
we first employ a new node to replace N1 and then re-execute su-

persteps 11, 12. We refer to the new node by N1. N1 loads the
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statuses of P1, P2, P3 from the latest checkpoint. During recovery,

only N1 performs computation for 6 vertices A-F in two super-

steps, while the recomputation for vertices G-J is avoided. Su-

perstep 11 incurs 5 logged inter-node messages G→ B, G→ D,

H → D, H → E, H → F . Superstep 12 incurs 6 inter-node mes-

sages: the above five logged ones plus a recalculated one D → G.

Utilizing locally logged messages helps to confine recovery work-

load to the failed partitions (in terms of both recomputation and

message passing), thus reducing recovery time. Moreover, the over-

head of locally logging is negligible in many graph applications as

the execution time is dominated by computation and network mes-

sage passing (see details in Section 6). However, the recomputation

for the failed partitions is shared among the nodes that replace the

failed ones and this achieves limited parallelism as the computation

in one node can only be executed sequentially. This inspires us to

reassign failed partitions to multiple nodes to achieve parallelism

of recomputation.

3. PARTITION­BASED RECOVERY
We propose a partition-based method to solve the failure recov-

ery problem. Upon a failure, the recovery process is initiated by the

recovery executor. Figure 2 shows the workflow of our partition-

based failure recovery executor. Let c+1 be the latest checkpoint-

ing superstep for the failure. The recovery executor is responsible

for the following three tasks.

• Generating partition-based recovery plan. The input to this

task includes the state before recovery starts and the statistics stored

in reliable storage, e.g., HDFS. We collect statistics during check-

pointing, including:

(1) computation cost of each partition in superstep c.

(2) partition-node mapping φp in superstep c.

(3) for any two partitions in the same node, the size of messages

forwarded from one to another in superstep c.

(4) for each partition, the size of messages from an outside node

(where the partition does not reside) to the partition in superstep c.

The statistics require a storage cost of O(|P| + |P||N | + |P|2),
which is much lower than that of a checkpoint.

The output recovery plan is represented by a reassignment for

failed partitions, which is formally defined as follows.

Definition 4 (Reassignment). For any failure, let Pf be the set of

partitions residing in the failed nodes. The reassignment for the

failure is a function φr: Pf → N .

Figure 3(a) shows a reassignment for F ({N1}, 12) in Example 1.

We assign P1 to N1 (the replacement) and P2, P3 to N2.

• Recomputing failed partitions. This task is to inform every

compute node of the recovery plan φr. Each node N checks φr to

see whether a failed partition is assigned to it. If so, N loads the

partition status from the latest checkpoint. The status of a partition

includes (1) the vertices in the partition and their outgoing edges;

(2) values of the vertices in the partition achieved after the comple-

tion of superstep c; (3) the status (i.e., active or inactive) of every
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Figure 3: Recovery for F ({N1}, 12)

Algorithm 1: Recomputation

Input: S, the state when failure occurs
i, current superstep
N , a compute node

1 M ←logged outgoing messages in superstep i;
2 for v ∈ VN do
3 for v.Active= True and S(v) < i do
4 Perform computation for v;
5 M ←M ∪ v.Sendmsgs;

6 for m ∈M do
7 vs ← m.Getsrc(); vd ← m.Getdst();
8 if S(vd) < i or (S(vs) < i ∧ S(vd) = i) then
9 Send m to vd;

10 Flush M into local storage;

vertex in the partition in superstep c + 1; (4) messages received

by the vertices in the partition in superstep c (to be processed in

superstep c + 1). Every node then starts recomputation for failed

partitions. The details are provided in Section 3.1.

• Exchanging graph partitions. This task is to re-balance the

workload among all the compute nodes after the recomputation of

the failed partitions completes. If the replacements have different

configurations than the failed nodes, we allow a new partition as-

signment (different from the one before failure occurs) to be em-

ployed for a better load balance, following which, the nodes might

exchange partitions among each other.

3.1 Recomputing Failed Partitions
Consider a failure F (Nf , sf) that occurs during normal execu-

tion. The recomputation for the failed partitions starts from the

most recent checkpointing superstep c + 1. After all the com-

pute nodes finish superstep i, they proceed to superstep i+ 1 syn-

chronously. The goal of recovery is to achieve state S∗
F (see Equa-

tion 2). Therefore, the recomputation terminates when all the com-

pute nodes complete superstep sf .
Algorithm 1 provides recomputation details in a superstep dur-

ing recovery. Consider a node N . In superstep i (∈ [c + 1, sf ]),
N maintains a list M of messages that will be sent by vertices re-

siding in N in the current superstep. Initially, M contains all the

locally logged outgoing messages for superstep i if any (line 1).

N then iterates through all the active vertices residing in it and for

each active vertex, N executes its computation and appends all the

messages sent by this vertex to M if the vertex value has not been

updated to the one achieved in the end of superstep i (line 2-5).

After that, N iterates over messages in M . A message m in M is

forwarded if m is needed by its destination vertex to perform re-

computation in the next superstep (line 6-9). Finally, N flushes M
into its local storage (line 10), which will be used in case there are

further cascading failures.
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Example 3. Figure 3(b) illustrates recomputation for F ({N1}, 12),
given φr in Figure 3(a). We use directed edges to represent the for-

warding messages. In superstep 11, N1 and N2 respectively per-

form 2 and 4 vertex computations for A-F ; 2 inter-node messages

D → B, G → B are forwarded. N2 retrieves 4 logged messages

sent by G in normal execution of superstep 11 but only re-sends

messages to B,D because H, I belongs to healthy partition P4.

Further, N1, N2 will log 5 messages sent by A-F locally as they

have not yet been included in the log. Superstep 12 performs sim-

ilarly, except for an additional message D → G. Compared with

the approach in Example 2, our algorithm achieves more paral-

lelized recomputation and incurs less network communication cost.

Note that the messages received by the vertex during recompu-

tation might have a different order compared with those received

during normal execution. Therefore, the correctness of our recom-

putation logic implicitly requires the vertex computation is insen-

sitive to message order. That is, given messages with an arbitrary

order, the effect of a vertex computation (new vertex value and its

sending messages) remains the same. This requirement is realis-

tic since a large range of graph applications are implemented in a

message-ordering independent manner. Example includes PageR-

ank, breadth first search, graph keyword search, triangle count-

ing, connected component computation, graph coloring, minimum

spanning forest computation, k-means, shortest path, minimum cut,

clustering/semi-clustering. While we are not aware of any graph

algorithms that are nondeterministic with respect to the message

order, our recovery method can be extended easily to support such

algorithms if there is any. Specifically, we can assign a unique iden-

tifier to each message. Recall that all the messages to be processed

in a superstep must be completely collected by graph processing

engine before any vertex computation starts. In each superstep (ei-

ther during normal execution or recovery), for every active vertex

v, we can sort all these messages received by v based on their iden-

tifiers, before initiating the computation. The sorting ensures the

messages for a vertex computation during normal execution follow

the same order as those for recomputation during recovery.

3.2 Handling Cascading Failures
We now consider cascading failures for F (Nf , sf), which occur

before F is recovered. A useful property of our partition-based

recovery algorithm is that for any failure, the behavior of every

compute node only relies on the reassignment for the failure and

the state after the failure occurs. That is, in our design, given the

reassignment and state for the failure, the behavior of every node is

independent of what the failure is. The failure can be F itself or any

of its cascading failures. Therefore, whenever a cascading failure

for F occurs, the currently executing recovery program is termi-

nated and the recovery executor can start a new recovery program

for the new failure using the same recovery algorithm.

In practice, the occurrence of failures is not very frequent and

hence we expect at least one recovery program to complete suc-

cessfully. F is recovered when a recovery program exits normally.

That is, all the vertices complete superstep sf and S∗
F is achieved.

Further, due to cascading failures, a compute node may receive new

partitions during the execution of each recovery program. After re-

computation finishes, nodes may exchange partitions to re-balance

the workload. The following example illustrates how our recovery

algorithm is used to handle cascading failures.

Example 4. We start with a recovery program for F ({N1}, 12)
in Example 3. Suppose a cascading failure F 1 occurs in N2 when

the program is executing in superstep 12. Vertices C-J residing in
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N2 are lost due to F 1, while A,B in healthy node N1 are recov-

ered. Hence, the state SF1 after F 1 occurs satisfies: SF1(A) =
SF1(B) = 12 and SF1(v) = 10 for v = C-J . A new recovery

program is initiated for F 1. Suppose the reassignment for F 1 as-

signs P2, P3 to N1 and P4, P5 to N2 (replacement). N1, N2 load

the statuses of newly assigned partitions from the latest checkpoint

and start recomputation as shown in Figure 4.

Since SF1(A) = SF1(B) = 12, we only perform recompu-

tation for vertices C-J in newly failed partitions P2-P5 when re-

executing superstep 11, 12. In superstep 11, C-J forward mes-

sages to each other. In superstep 12, these vertices send messages

to A,B as well. Suppose there is no further cascading failure after

F 1. The recovery for F is accomplished upon the completion of

the new recovery program triggered by F 1.

Example 4 considers cascading failures that occur during recom-

putation. In practice, failures may occur at any time. If a failure

occurs during the period of generating a recovery plan for the pre-

vious failure, we treat both failures as one bigger failure and the

union of their failed nodes as the failed node set. If a failure occurs

during the exchanging phase, we treat it as the one that occurs in

superstep sf . Our recovery approach can be applied to both cases.

Without loss of generality, in the rest of this paper, we only con-

sider cascading failures that occur in a recomputation phase.

3.3 Correctness and Completeness
We first focus on the correctness of our recovery method.

Definition 5 (Correctness). Let VALUE(v, i) and MSG(v, i) denote

the value and the set of received messages for vertex v in the end of

superstep i during normal execution, respectively. A recovery algo-

rithm is correct if for any failure F (Nf , sf), after the recovery algo-

rithm finishes, the value of every vertex v equals to VALUE(v, sf )
and the set of messages received by v equals to MSG(v, sf ).

The above definition is under the assumption that the vertex com-

putation is deterministic with respect to message ordering, which

is the case in real-world graph applications. The correctness of our

recovery algorithm is based on two properties of Algorithm 1.

Lemma 1. Algorithm 1 has the following properties:

(1) A vertex performs computation in superstep i iff the vertex status

has not been updated to the one achieved at the end of superstep i

during normal execution, ∀i ∈ [c+ 1, sf ].
(2) Vertex v sends messages to u in superstep i iff u will perform a

computation in superstep i+ 1, ∀i ∈ [c+ 1, sf ].

Lemma 1 holds for the recovery program triggered by any fail-

ure. In essence, Lemma 1 guarantees: i) the input (vertex value and

received messages) of a vertex computation in any superstep during

recomputation is exactly the same as that during normal execution;

ii) for failure F (Nf , sf), when our recovery algorithm finishes suc-

cessfully, each vertex completes superstep sf and receives the same
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Algorithm 2: CostSensitiveReassign

Input : S, state after the failure occurs
Pf , failed partitions
I , statistics
N , a set of compute nodes

Output: φr: reassignment
1 φr ←RandomAssign(Pf,N);
2 Tlow ←ComputeCost(φr, S, I);
3 while true do

4 φr
′ ← φr; P ← Pf ; i← 0;

5 while P 6= ∅ do
6 i← i+ 1;

7 Li ←NextChange(φr
′,P, S,I);

8 foreach P ∈ Li.φ.Keys() do

9 φr
′(P )← Li.φ(P );

10 P ← P − {P};

11 l← argmini Li.T ime;
12 if Ll.T ime < Tlow then
13 for j = 1 to l do
14 foreach P ∈ Lj .φ.Keys() do
15 φr(P )← Lj .φ(P );

16 Tlow ← Ll.T ime;

17 else
18 break;

set of messages as it does at the end of superstep sf during normal

execution. These properties ensure the correctness of our approach.

Furthermore, our recovery algorithm is complete in that the re-

covery logic is independent of high-level applications. That is, any

node failure can be correctly recovered using our algorithm.

Theorem 1. Our partition-based recovery algorithm is correct and

complete.

4. REASSIGNMENT GENERATION
In this section, we present how to generate a reassignment for

a failure. Consider a failure F (Nf , sf). The reassignment for F
is critical to the overall recovery performance, i.e., the time span

of recovery. In particular, it decides the computation and com-

munication cost during recomputation. Our objective is to find a

reassignment that minimizes the recovery time Γ(F ).
Given a reassignment for F , the calculation of Γ(F ) is compli-

cated by the fact that Γ(F ) depends not only on the reassignment

for F , but also on the cascading failures for F and the correspond-

ing reassignments. However, the knowledge of cascading failures

can hardly be obtained beforehand since F and its cascading fail-

ures do not arrive as a batch but come sequentially. Hence, we

seek an online reassignment generation algorithm that can react in

response to any failure, without knowledge of future failures.

Our main insight is that when a failure (either F or its cascad-

ing failure) occurs, we prefer a reassignment that can benefit the

remaining recovery process for F by taking into account all the

cascading failures that have already occurred. More specifically,

we collect the state S after the failure occurs and measure the min-

imum time Tlow required to transform from S to S∗
F , i.e., the time

of performing recomputation from superstep c+1 to sf without fur-

ther cascading failures. We then aim to produce a reassignment that

minimizes Tlow. Essentially, S encapsulates all the useful informa-

tion about previous failures and the corresponding reassignments

performed, and Tlow provides a lower bound of remaining recov-

ery time for F . In what follows, we introduce how to compute Tlow

and then provide our cost-driven reassignment algorithm.

Algorithm 3: NextChange

Input : φr, reassignment P , a set of partitions
I , statistics N , a set of compute nodes

Output: L: exchange
1 φ← ∅; Li.T ime← +∞;
2 foreach P ∈ P do
3 foreach P ′ ∈ P − {P} do
4 φr

′ ← φr;

5 Swap φr
′(P ) and φr

′(P ′);

6 t′ ←ComputeCost(φr
′, S,I);

7 if Li.T ime > t′ then
8 Li.φ← {(P, φr(P ′)), (P ′, φr(P ))};
9 Li.T ime← t′;

10 foreach N ∈ N − {φr(P )} do

11 φr
′ ← φr; φr

′(P )← N ;

12 t′ ←ComputeCost(φr
′, S,I);

13 if Li.T ime > t′ then
14 Li.φ← {(P,N)};
15 Li.T ime← t′;

4.1 Estimation of Tlow

For any failure, Tlow is determined by the total amount of com-

putation cost and network communication cost required during re-

computation, which is formally defined as follows.

Tlow =

sf∑

i=c+1

(Tp [i] +Tm [i]) (3)

where Tp [i] and Tm [i] denote the time for vertex computation and

that for inter-node message passing required in superstep i during

recomputation, respectively.

Equation 3 ignores the downtime period for replacing failed nodes

and synchronization time because they are almost invariant w.r.t.

the recovery methods discussed in this paper. We also assume the

cost of intra-node message passing is negligible compared with

network communication cost incurred by inter-node messages.

We now focus on how to compute Tp [i] and Tm [i] in Equa-

tion 3. Let Si and φpi denote the state and the partition-node map-

ping in the beginning of superstep i (during recomputation), respec-

tively. We find that Tp [i] and Tm [i] can be computed based on Si

and φpi. Therefore, we first describe how to compute Si, φpi, and

then define Tp [i] and Tm [i] based on Si, φpi.

Compute Si, φpi. For i = c + 1, Sc+1 is the state right after the

failure occurs. Let ϕ be the vertex-partition mapping, φp be the

partition-node mapping before the failure occurs, φr be the reas-

signment for the failure and Pf be the set of failed partitions.

φpc+1(v) =

{

φr(v) If ϕ(v) ∈ Pf

φp(v) Otherwise
(4)

For any i ∈ (c+ 1, sf ], we have:

φpi = φpc+1, Si(v) =

{

Sc+1(v) If Sc+1(v) ≥ i

i− 1 Otherwise
(5)

ComputeTp [i] ,Tm [i]. We now formally define Tp [i] and Tm [i].
According to the computation model in Section 2.1, computation

time required in a superstep is determined by the slowest node, i.e.,

maximum computation time among all the nodes. Let A(i) be the

set of vertices that perform computation during the re-execution of

superstep i. Let τ (v, i) denote the computation time of v in the

normal execution of superstep i.

Tp [i] = max
N∈N

∑

τ(v,i)

{v ∈ A(i) | φpi(ϕ(v)) = N} (6)
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Figure 5: Example of Modifications

Due to simplicity, we assume computations for vertices in one node

are performed sequentially. A more accurate estimation for Tp [i]
can be applied if the computation within a node can be parallelized

using machines with multithreaded and multicore CPUs.

To compute Tm [i], we adopt the Hockney’s model [11], which

estimates network communication time by the total size of inter-

node messages divided by network bandwidth. Let M(i) be the

set of messages forwarded when re-executing superstep i. Let m.u,

m.v and µ(m) be the source vertex, destination vertex and size of

message m, respectively. Suppose the network bandwidth is B.

Tm [i] =
∑

µ(m)/B

{m ∈ M(i) | φpi(ϕ(m.u))) 6= φpi(ϕ(m.v))} (7)

Note thatA(i), τ (v, i),M(i) and µ(m) in Equation 6 and 7 can

only be obtained during the runtime execution of the application. A

perfect knowledge of these values requires a detailed bookkeeping

of graph status in every superstep, which incurs high maintenance

cost. Therefore, we refer to statistics (See Section 3) for approx-

imation. Specifically, we can learn from Si, φpi whether a par-

tition will perform computation and forward messages to another

partition during the re-execution of superstep i, and based on the

statistics, we know the computation cost and communication cost

among these partitions in superstep c. We then approximate the

costs in superstep i by those in superstep c.

Example 5. Consider F ({N1}, 12) in Example 2 and φr in Fig-

ure 5(a). Let c1 and c2 be the time for each vertex computation

and that for sending an inter-node message, respectively. To com-

pute Tlow under φr, we calculate the re-execution time of superstep

11, 12 without further cascading failures. In both supersteps, com-

putation time is 4c1 caused by P1, P2 in N1. Communication time

in superstep 11 is 5c2 caused by 5 inter-node messages: 1 from P2

to P1, 4 from P4 toP2, P3, and that in superstep 12 is 6c2 following

the 6 cross-node edges. Hence, Tlow under φr is 8c1 + 11c2.

Theorem 2. Given a failure, finding a reassignment φr for it that

minimizes Tlow in Equation 3 is NP-hard.

Theorem 2 can be proven by reducing the graph partitioning

problem to the problem of finding reassignment with minimized

Tlow. We omit proof due to space constraint.

4.2 Cost­Sensitive Reassignment Algorithm
Due to the hardness result in Theorem 2, we develop a cost-

sensitive reassignment algorithm. Before presenting our algorithm,

we shall highlight the differences between our problem and tra-

ditional graph partitioning problems. First and foremost, the tra-

ditional graph partitioning problems focus on partitioning a static

graph into k components with the objective of minimizing the num-

ber of cross-component edges. In our case, we try to minimize the

remaining recovery time Tlow. Tlow is independent of the original

graph structure but relies on the vertex states and message-passing

during the execution period. Second, graph partitioning outputs k

components where k is predefined. On the contrary, our reassign-

ment is required to dynamically allocate the failed partitions among

the healthy nodes without the knowledge of k. Further, besides the

partitioning, we must know the node to which a failed partition

will be reassigned. Third, traditional partitioning always requires k
components to have roughly equal size, while we allow unbalanced

reassignment, i.e., assign more partitions to one node but fewer to

another, if a smaller value of Tlow can be achieved.

Algorithm 2 outlines our reassignment algorithm. We first gen-

erate a reassignment φr by randomly assigning partitions in Pf

among compute nodes N , and then calculate Tlow under φr (line

1-2). We next make a copy of φr as φr
′ and improve φr

′ itera-

tively (line 3-18). In the i-th iteration, the algorithm chooses some

partitions and modifies their reassignments (line 7-9). The modifi-

cation information is stored in Li. Li is in the form of (φ, T ime),
where φ is a partition-node mapping recording which partition is

modified to be reassigned to which node, and T ime is Tlow under

the modified reassignment. The selected partitions are removed for

further consideration (line 10). The iteration terminates when no

more failed partitions are left. After that, we check list L and find l

such that Ll.T ime is minimal (line 11), i.e.,

l ← argmin
i
Li.T ime

If Ll.T ime is smaller than Tlow achieved by the initial reassign-

ment φr, we update φr by sequentially applying all the modifica-

tions in L1, · · · ,Ll (line 12-16), and start another pass of itera-

tions. Otherwise, the algorithm outputs φr as the result.

Algorithm 3 describes how to generate modification Li (line 7 in

Algorithm 2) in the i-th iteration. We focus on two types of modi-

fications: i) exchanging the reassignments between two partitions;

ii) changing the reassignment for one partition. Given a reassign-

ment φr, NEXTCHANGE iterates over all the partitions (line 2) and

for each partition P , it enumerates all of the possible modifica-

tions, i.e., exchanging the reassignment of P with another parti-

tion (line 3-9) as well as assigning P to another node instead of

φr(P ) (line 10-15). NEXTCHANGE computes the corresponding

Tlow achieved by each modification and chooses the one with min-

imized value of Tlow as the modification Li.

Example 6. Continuing from Example 5, suppose c1
c2

= 1.1. Fig-

ure 5(a) shows the initial reassignment with Tlow = 8c1 + 11c2.

Figure 5(a) provides enumerated modifications and their Tlow in

the first pass. In iteration 1, assigning P2 to N2 achieves minimum

Tlow: 8c1 +6c2. In iteration 2, we only consider modifications for

P1, P3 as P1 has been considered. Exchanging reassignments for

P1, P3 produces Tlow of 8c1 + 4c2. After that, all the partitions

have been considered. We apply the first two modifications to the

initial reassignment because the minimal Tlow (i.e., 8c1 + 4c2) is

achieved after the second modification.

Figure 5(c) shows enumerated modifications and their Tlow in

pass 2. The minimal Tlow (i.e., 12c1) in three iterations is achieved

after the first modification, which is larger than 8c1 + 4c2. Hence,
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Figure 6: Processing a Superstep in Giraph

the algorithm terminates and reports the reassignment produced by

pass 1, i.e., assigning P1 to N1 and P2, P3 to N2.

5. IMPLEMENTATION
We implement our partition-based failure recovery method on

Apache Giraph [1], an open-source implementation of Pregel. It is

worth mentioning that our proposed recovery method can be in-

tegrated to other distributed graph processing platforms such as

Hama [2], in a similar way.

Giraph overview. Giraph distributes a graph processing job to a set

of workers. One worker is selected as the master that coordinates

the other slave workers, which perform vertex computations. One

of the slaves acts as zookeeper to maintain various statuses shared

among the master and slaves, e.g., notifying slaves of partitions as-

signed by the master, doing synchronization after accomplishing a

superstep. Figure 6 shows the processing logic of workers in one

superstep. Initially, the master generates partition assignment indi-

cating which partition is processed by which slave, and writes the

partition-to-slave mapping into zookeeper. Slaves fetch the map-

ping from zookeeper and exchange partitions along with their re-

ceiving messages based on the mapping. They then check whether

the current superstep is a checkpointing superstep. If so, each slave

saves the status of its partitions to a stable storage. After that, ev-

ery slave performs computation for the vertices residing in it, sends

messages and collects messages sent to its vertices. Finally, the

master synchronizes the completion of the superstep.

Failure recovery. Node failures are detected by the master at the

end of each superstep, before synchronization. The master checks

the healthy status registered periodically by every slave and consid-

ers a slave as failed if it has not registered its status over a specified

interval. Giraph adopts checkpoint-based recovery mechanism. We

refer to the first superstep performed upon a failure as restart super-

step. In the restart superstep, after the master generates the recovery

plan and writes it to the zookeeper, slaves will load failed partitions

that are assigned to them from the latest checkpoint and start re-

computation. Recovery details are omitted to avoid redundancy.

Major APIs. To support partition-based failure recovery, we in-

troduce several APIs to Giraph, as shown in Figure 7. We uti-

lize PartitionOwner class to maintain ownership of each par-

tition. setRestartSuperstep() sets the next superstep when

a partition needs to perform computation; setWorkerInfo() and

setPreviousWorkerInfo() set information (e.g., IP address) for

current and previous slaves in which a partition resides, respec-

tively. To shuffle a partition from slave 1 to slave 2, we can simply

set the previous, current workers to slave 1 and 2, respectively;

the workers can retrieve this information via the three interfaces:

getRestartSuperstep(), getPreviousWorkerInfo() and

getWorkerInfo(). To generate the ownership of every partition,

we introduce a new class FailureMasterPartitioner. This

class will be initialized in the beginning of each superstep, with

two major functions: createInitialPartitionOwners() gen-

erates reassignment for newly failed partitions and retains original

ownership for healthy ones. genChangedPartitionOwners() is

applied to exchange failed partitions after recovery finishes.

Our extensions. As illustration, we consider a failure (can be a

PartitionOwner() //metadata about ownership of a partition

void setRestartSuperstep(long superstep)

long getRestartSuperstep()

void setPreviousWorkerInfo(WorkerInfo workerInfo)

void getPreviousWorkerInfo()

void setWorkerInfo(WorkerInfo workerInfo)

void getWorkerInfo(WorkerInfo workerInfo)

FailureMasterPartitioner<I,V,E,M> //generate partition assignment

Collection<PartitionOwner> createInitialPartitionOwners

(Collection<WorkerInfo>, int max) //for restart

Collection<PartitionOwner> genChangedPartitionOwners

(Collection<PartitionStats>, Collection<WorkerInfo>, 

int max, long superstep)

FailureMasterPartitioning //generate reassignment for failed partitions

void doCostSensitivePartitioning();

Figure 7: Major APIs

cascading failure) that occurs in executing superstep sf and latest

checkpointing superstep is c+ 1. We extend Giraph mainly in the

following three aspects.

Partition assignment. This is performed by the master in the

beginning of each superstep.

(1) During superstep 1 or the restart superstep, the master invokes

createInitialPartitionOwners() to generate a partition as-

signment and set the current worker for each partition accordingly.

In superstep 1, we set the previous worker for a partition to be the

same as its current worker and the restart superstep for each par-

tition to 1. In the restart superstep, we set the previous worker

for each partition to be the one before failure occurs. For newly

failed partitions, we set c+ 1 as their restart supersteps; for the

other partitions, their restart supersteps are set to be one after the

last superstep in which their computation are performed.

(2) In the other supersteps, genChangedPartitionOwners() is

invoked by the master to dynamically reassign partitions among the

slaves. This is achieved by setting the previous worker of a partition

as its current one and modifying its current worker to the new one.

Loading partitions. After the master computes the partition as-

signment, it writes the partition-to-slave mapping to the zookeeper.

Since all slaves are listening to the changes of this mapping in-

formation, every slave can fetch and parse this mapping and then

load the corresponding failed partitions from the latest checkpoint

if necessary. Note that in the checkpoint, partitions residing in the

same slave are stored in the same file named with the slave host

name, and within each file, there is a pointer to indicate which off-

set a partition starts. In this way, a slave can quickly load a partition

using this implicit two-level index.

Performing computation. For recomputation, every slave invokes

the function processGraphPartitions() to execute the vertex

compute function, and invokes sendMessageRequest() to for-

ward messages. During recovery, we adjust these two functions to

avoid unnecessary computation and communication, as follows.

(1) processGraphPartitions() iterates over the partitions and

check whether PartitionOwner.getRestartSuperstep() is

less than the current superstep. If so, the slave loops over all the

vertices residing in the partition and perform computation by in-

voking Vertex.Compute();

(2) During the computation from superstep c+1 to sf−1, a message

is omitted if it is sent to a vertex residing in the partition whose

restart superstep is less than the current superstep;

(3) At the end of each superstep, every slave loads its locally logged

messages. For supersteps in [c + 1, sf − 1], only messages to the

partitions whose restart supersteps are less than the current super-

step are forwarded. For superstep sf , all the messages are sent via

sendMessageRequest() to the corresponding slaves.

6. EXPERIMENTAL STUDIES
We compare our proposed recovery method with the checkpoint-

based method on top of Giraph graph processing engine. We use
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Figure 8: k-means
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Figure 9: Semi-clustering

the latest version-1.0.0 of Giraph that is available in [1].

6.1 Experiment Setup
The experimental study was conducted on our in-house clus-

ter. The cluster consists of 72 compute nodes, each of which is

equipped with one Intel X3430 2.4GHz processor, 8GB of mem-

ory, two 500GB SATA hard disks. All the nodes are hosted on two

racks. The nodes within one rack are connected via 1 Gbps switch

and the two racks are connected via a 10 Gbps cluster switch. On

each compute node, we installed CentOS 5.5 operating system,

Java 1.6.0 with a 64-bit server VM and Hadoop 0.20.203.03 . Gi-

raph runs as a MapReduce job on top of Hadoop, hence we made

the following changes to the default Hadoop configurations: (1) the

size of virtual memory for each task was set to 4GB; (2) each node

was configured to run one map task. By default, we chose 42 nodes

out of the 72 nodes for the experiments and among them, one node

acted as the master running Hadoop’s NameNode and JobTracker

daemons while the other 41 nodes ran TaskTracker daemons and

Giraph jobs. Among the 41 nodes that ran Giraph jobs, one node

acted as the master and zookeeper, and the others were slaves.

6.2 Benchmark Tasks and Datasets
We study the failure recovery over three benchmark tasks: k-

means, semi-clustering [20] and PageRank.

• k-means. We implement k-means in Giraph4. In our experi-

ments, we set k = 100.

• Semi-clustering. A semi-cluster in a social graph consists of a

group of people who interact frequently with each other and less

frequently with others. We port the implementation in Hama [2]

into Giraph. We use the same parameter values as in Hama, i.e.,

each cluster contains at most 100 vertices, a vertex is involved in at

most 10 clusters, and the boundary edge score factor is set to 0.2.

• PageRank. The PageRank algorithm is contained in the Giraph

package and we simply use it to run PageRank tasks.

Without loss of generality, we run all the tasks for 20 supersteps,

and perform a checkpoint at the beginning of superstep 11. For all

experiments, the results are averaged over ten runs.

We evaluate benchmark tasks over one vector dataset and two

real-life social network graphs (Table 2 provides dataset details and

the two graph datasets are downloaded from the website5).

3
http://hadoop.apache.org/

4
https://github.com/tmalaska/Giraph.KMeans.Example/

5
http://snap.stanford.edu/data/index.html

Table 2: Dataset Description
Dataset Data Size #Vertices #Edges #Partitions

Forest 2.7G 58,101,200 0 160

LiveJournal 1.0G 3,997,962 34,681,189 160

Friendster 31.16G 65,608,366 1,806,067,135 160

• Forest. Forest dataset6 predicts forest cover type from carto-

graphic variables. It originally contains 580K objects, each of which

is associated with 10 integer attributes. To evaluate the perfor-

mance on large datasets, we increase the size of Forest to 58,101,200

while maintaining the same distribution of values over each dimen-

sion using the data generator from [19]. We use this dataset to

evaluate the execution of k-means tasks.

• LiveJournal. LiveJournal is an online social networking and

journaling service that enables users to post blogs, journals, and

dairies. It contains more than 4 million vertices (users) and about

70 million directed edges (friendships between users). We use this

dataset to evaluate the execution of semi-clustering tasks.

• Friendster. Friendster is an online social networking and gaming

service. It contains more than 60 millions vertices and 1 billion

edges. We use it to evaluate the execution of PageRank tasks.

We compare our proposed partition-based recovery method (PBR)

with the checkpoint-based recovery method (CBR) over two met-

rics: recovery time and communication cost.

6.3 k­means
We first study the overhead of logging outgoing messages at the

end of each superstep in PBR. Figure 8(a) shows the running time.

PBR takes almost the same time as CBR. The reason is that in k-

means tasks, there does not exist any outgoing messages among

different vertices, and in this case, PBR performs exactly the same

as CBR during normal execution. Another interesting observation

is that the checkpointing superstep 10 does not incur higher running

time compared with other supersteps. This is because compared

with computing the new belonging cluster for each observation, the

time of doing checkpointing is negligible.

We then evaluate the performance of recovery methods for single

node failures by varying the failed superstep from 11 to 19. Figure

8(b) plots the results. The recovery time of both CBR and PBR in-

creases linearly when the failed superstep varies. Since there are no

messages passing among different workers, computing the new be-

longing clusters for failed partitions can be accelerated by using all

6
http://archive.ics.uci.edu/ml/datasets/Covertype
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Figure 10: Communication Cost of Semi-clustering

available workers, i.e., recomputation is parallelized over 40 work-

ers for recovery. We find that PBR outperforms CBR by a factor

of 12.4 to 25.7 and there is an obvious gain when the failed super-

step increases. The speedup is less than 40x due to the overhead of

loading the checkpoint in the beginning of a recovery.

Next, we investigate the performance of recovery methods for

multiple node failures. The number of failed nodes is varied from

1 to 5 and the failed superstep is set to 15. Figure 8(c) plots the re-

sults. When the number of failed nodes increases, the recovery time

increases linearly for PBR while that remains constant for CBR. No

matter how many nodes fail, CBR will redo all computation from

the latest checkpoint, while PBR recomputes the new belonging

clusters for observations in the failed nodes and hence the recov-

ery time becomes longer for a larger number of failed nodes. On

average, PBR outperforms CBR by a factor of 6.8 to 23.9.

Finally, we focus on cascading failure by setting the first failed

superstep to 19 and varying the second failed superstep from 11 to

18. Figure 8(d) plots the results. When the second failed superstep

increases, the recovery time increases linearly for both CBR and

PBR. On average, PBR can reduce recovery time by a factor of

23.8 to 26.8 compared with CBR.

6.4 Semi­clustering
Figure 9(a) plots the running time of each superstep for semi-

clustering. PBR takes slightly longer time than CBR during nor-

mal execution. This is because compared with the computation

and communication costs, the overhead of logging outgoing mes-

sages to local disks is relatively insignificant. Moreover, in semi-

clustering, the size of each message from a vertex to its neighbors

increases linearly with the superstep. Hence, both CBR and PBR

runs slower in larger supersteps. In superstep 10, there is an obvi-

ous increment in the running time due to performing a checkpoint.

We evaluate the performance of recovery methods for single node

failures, multiple node failures and cascading failures using the

same settings as k-means. Figure 9(b), 9(c), 9(d) show the re-

spective results. Basically, the trends of the running time of PBR

and CBR in semi-clustering follows those in k-means. Specifically,

PBR outperforms CBR by a factor of 9.0 to 15.3 for single node

failures, by a factor of 13.1 to 5.8 for multiple node failures, and by

a factor of 14.3 to 16.6 for cascading failures.

Besides the benefit of parallelizing computation, we also show

the communication cost incurred by PBR and CBR in Figure 10.

Since messages sent to the vertices residing in the healthy nodes

can be omitted in PBR, we observe that in multiple node failure,

PBR incurs 6.5 to 37.9 times less communication cost than CBR.

For cascading failures, PBR can reduce communication cost by a

factor of 37.1 compared with CBR.

6.5 PageRank
To study the logging overhead for PageRank tasks, we report

the running time of every superstep in Figure 11(a). Compared

with k-means and semi-clustering, PBR takes slightly more time

than CBR in PageRank. This is because PageRank is evaluated

over the Friendster dataset which has a power-law link distribution

Table 3: Parameter Ranges for Simulation Study
Parameter Description Range

n number of failed partitions 20, 40, 50

m number of healthy nodes 20, 40, 50

k number of partitions (or healthy nodes)

with high communication cost

2, 4, 8

γ comp-comm-ratio 0.1, 1, 10

and each superstep involves a huge number of forwarding messages

that should be logged locally via disk I/O. However, the overhead

is still negligible, only 3% increase in running time. Due to doing

checkpointing, there is an obvious increment of running time in su-

perstep 10. In each superstep, the worker basically does the same

task and hence the running time of each superstep almost remains

the same. We also evaluate the performance of recovery methods

for single node failures, multiple node failures and cascading fail-

ures. Figure 11(b), 11(c), 11(d) provide the recovery time, respec-

tively. Figure 12 shows the corresponding communication cost.

The performance of PBR and CBR follow the same trends as those

in semi-clustering and k-means tasks. This further verifies the ef-

fectiveness of PBR, which parallelizes computation and eliminates

unnecessary computation and communication cost.

6.6 Simulation Study
We perform a simulation study to evaluate the effectiveness and

efficiency of our cost-sensitive reassignment algorithm COSTSEN

in partition-based recovery. As a comparison, we consider a ran-

dom approach RANDOM by balancing computation among the nodes.

Data preparation. We investigate the effect of the following pa-

rameters that potentially affect the performance of the reassignment

algorithms:

• n: the number of failed partitions

•m: the number of healthy compute nodes

• computation cost per failed partition during recovery

• communication cost between every two failed partitions during

recovery

• communication cost between failed partitions and healthy com-

pute nodes during recovery

We generate communication cost by simulating two categories of

graph partitioning, random-partitioning and well-partitioning. In

random-partitioning, there is no obvious difference in the connec-

tions of two partitions lying in the same node or across two nodes;

in well-partitioning, the number of edges connecting two partitions

within the same node is much larger than that across two nodes. For

simulation, we generate communication cost using two distribu-

tions uniformly-distributed and well-distributed corresponding to

random-partitioning and well-partitioning, as follows.

1) In uniformly-distributed, the communication cost between two

failed partitions and that between a healthy node and a failed parti-

tion, is uniformly drawn from the range [1, low].
2) In well-distributed, for each failed partition, we randomly se-

lect k failed partitions. The communication cost from the parti-

tion to each of the selected ones is uniformly drawn from range

[1, high], and that from the partition to any other failed partition

is uniformly drawn from range [1, low]. The communication cost

between a partition and healthy node is generated in the same way.

By default, we set p, low, high to 0.6, 100, 40000, respectively.

We generate comparable computation cost for each failed parti-

tion based a comp-comm-ratio, γ. Let SP be the total communica-

tion cost from healthy nodes to a failed partition P . We use γ to

adjust the ratio between the computation cost of P and SP . The

computation cost of P is randomly drawn from the range [1, γSP ].
A larger γ implies that the job is more computation-intensive. Ta-

ble 3 summarizes the ranges of our tuning parameters. Unless oth-

erwise specified, we use the underlined default values.
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Figure 11: PageRank
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Figure 12: Communication Cost of PageRank

Measure. We measure the performance of reassignment algorithms

via five metrics: maximum computation cost (CompCost), total

inter-node communication cost (CommCost), sum of CompCost

and CommCost (TotalCost), running time and the number of nodes

to which failed partitions are reassigned. All the costs are measured

in seconds by default.

Effects of comp-comm-ratio. Table 4 shows the results of COST-

SEN and RANDOM by varying γ in uniformly-distributed scenario.

On average, COSTSEN produces reassignments with lower Total-

Cost and CommCost than RANDOM over all the ratios. For γ =
0.1, COSTSEN outperforms RANDOM with 2x lower TotalCost and

CommCost. As γ increases, the advantage of COSTSEN in Total-

Cost and CommCost becomes less significant. The reason is that

a larger γ makes the job more computation-intensive; this requires

more nodes to parallelize the computation, while CommCost can

hardly be reduced due to the uniform distribution. For smaller γ
(e.g., 0.1), COSTSEN assigns failed partitions to a small number

of nodes (< 5) due to insignificant CompCost, hence it reports re-

assignments with higher CompCost than RANDOM. For larger γ
(e.g., 10), COSTSEN performs similarly as RANDOM in terms of

the three costs, but it requires 2x fewer nodes for recovery. This

saving is desirable in practice. We observe similar results for the

well-distributed scenario and omit the results to avoid duplication.

Effects of High Communication Partition (Healthy Node) Num-

ber. Table 5 shows the results of both methods when we vary the

number of partitions (nodes) with high communication cost (k).

For all values of k, COSTSEN outperforms RANDOM with 2x lower

TotalCost and CommCost. COSTSEN produces reassignments with

higher CompCost which is relatively insignificant compared with

CommCost. Furthermore, COSTSEN always involves fewer nodes

for recovery. For k = 8, it uses 14x fewer nodes than RANDOM.

Effects of the number of failed partitions. Table 6 provides the

results by varying the number of failed partitions (n). For each

n, COSTSEN outperforms RANDOM by 2.5x lower TotalCost and

CommCost. Again, the reassignments reported by COSTSEN re-

quire higher CompCost, which is much smaller than CommCost.

Furthermore, COSTSEN uses 3x fewer nodes for recovery. Fig-

ure 13(a) shows the running time of COSTSEN. It requires less

than 250ms to generate reassignments. The running time increases

quadratically with the number of failed partitions.

Effects of the number of healthy nodes. Table 7 provides the

results by varying the number of healthy nodes (m). COSTSEN

produces reassignments with 3x lower TotalCost and CommCost

over all values of m. Furthermore, it employs fewer healthy nodes
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Table 4: Effects of Comp-comm-ratio γ (uniformly-distributed)
γ 0.1 1 10

RANDOM COSTSEN RANDOM COSTSEN RANDOM COSTSEN

CompCost 0.4 8.2 3.9 5.8 38.9 38.9

CommCost 152.6 75.2 152.4 143.5 152.6 147.1

TotalCost 153.0 83.4 156.3 149.3 191.5 186.0

Used nodes 40 1 40 19.9 40 24.1

Table 5: Effects of the Number of Partitions (or Healthy Nodes) with

High Communication Cost k (well-distributed)
k 2 4 8

RANDOM COSTSEN RANDOM COSTSEN RANDOM COSTSEN

CompCost 3.9 17.4 3.9 46.0 3.8 76.7

CommCost 1603.5 690.5 2830.1 1422.5 5190.9 2558.8

TotalCost 1607.4 707.9 2834.0 1468.5 5194.7 2635.5

Used nodes 40 11.75 40 7.63 40 2.79

for recovery. For larger m (e.g., 40, 50), the number of nodes in-

volved in the reassignments from COSTSEN is 3x fewer than RAN-

DOM. Figure 13(b) shows the running time of COSTSEN. The run-

ning time increases linearly with the number of healthy nodes. For

m = 50, COSTSEN generates reassignments over 40 nodes within

250ms.

Summary. Our simulation study show that the cost-sensitive re-

assigning algorithm achieves 2x speedup in our partition-based re-

covery framework compared with random assignment. It also out-

performs random approach by wisely choosing a smaller number of

compute nodes to handle failed partitions. Furthermore, our reas-

signing algorithm is efficient; the running time grows quadratically

with the number of failed partitions and linearly with the number

of healthy nodes.

7. RELATED WORK
Designing efficient failure recovery methods has long been a

goal of distributed systems. As our proposed approach acceler-

ates the failure recovery by parallelizing the re-execution of failed

graph partitions, we split the discussion on the existing work on

failure recovery in distributed graph processing systems into two

categories: (i) methods for accelerating the failure recovery and (ii)

graph partitioning methods.

Accelerating failure recovery. Failure recovery approaches are

typically split into three categories: checkpoint-based, log-based

and hybrid approaches [9]. Most popular distributed graph process-

ing systems such as Giraph [1], GraphLab [18], PowerGraph [10],

GPS [22], Mizan [14] adopt checkpoint-based recovery. Pregel [20]

proposes confined recovery which is a hybrid mechanism of the

checkpoint-based and log-based recovery. Specifically, only the
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Table 6: Effects of the Number of Partitions n (well-distributed)
n 20 40 50

RANDOM COSTSEN RANDOM COSTSEN RANDOM COSTSEN

CompCost 3.7 14.7 3.8 17.8 4.6 18.8

CommCost 775.3 291.9 1605.2 689.0 2005.0 876.9

TotalCost 779.0 306.6 1609.0 706.8 2009.6 895.7

Used nodes 20 7.05 40 11.69 40 15.19

Table 7: Effects of the Number of Healthy Nodes m (well-distributed)
m 20 40 50

RANDOM COSTSEN RANDOM COSTSEN RANDOM COSTSEN

CompCost 5.9 20.5 3.9 15.6 3.8 16.5

CommCost 1463.3 572.1 1582.0 686.8 1617.9 695.8

TotalCost 1469.2 592.6 1585.9 702.4 1621.7 712.3

Used nodes 20 10.21 40 12.27 50 12.97

newly-added node that substitutes the failed one has to rollback and

repeats the computations from the latest checkpoint. GraphX [26]

adopts log (called lineage) based recovery, and utilizes resilient

distributed datasets (RDD) to speedup failure recovery. However,

when a node fails, graph data lying in this node still need to be re-

covered. Checkpointing and logging operations are the backbones

of recovery methods [5, 6, 7]. Many works focused on acceler-

ating checkpoint-based or the log-based recovery [9]. Location

and replication independent recovery proposed by Bratsberg et al.

employed replicas for recovery [8]. The algorithm partitions the

data into fragments and replicates fragments among multiple nodes

which can takeover in parallel upon failures. However, the recov-

ery task for the failed node is still performed in a centralized man-

ner after the node finishes internal recovery. Instead, we focus on

accelerating the task of recovering by parallelizing the computa-

tions required to recompute the lost data. Another recovery method

that presents similarities with ours is present in RAMCloud [21].

RAMCloud backs up the data across many distributed nodes, and

during recovery, it reconstructs in parallel the lost data. However,

as RAMCloud is a distributed storage, it does not need to track the

dependencies among the scattered data. In contrast, in distributed

processing systems, understanding how the program dependencies

affect both the communication and the computation time is of ut-

most importance [4].

Graph partitioning. METIS [13], which performs offline par-

titioning of a distributed unstructured graph, is most relevant to

our approach for partitioning the failed subgraph. Several exten-

sions have been proposed such as for power-law graphs [3], multi-

threaded graph partitioning [15] and dynamic multi-constraint graph

partitioning [23]. In practice, it has been adopted in other dis-

tributed graph processing systems such as PowerGraph. However,

METIS does not partition based on a cost model that includes both

communication and computation.

8. CONCLUSION
This paper presents a novel partition-based recovery method to

parallelize failure recovery processing. Different from traditional

checkpoint-based recovery, our recovery method distributes the re-

covery tasks to multiple compute nodes such that the recovery pro-

cessing can be executed concurrently. Because partition-based fail-

ure recovery problem is NP-Hard, we use a communication and

computation cost model to split the recovery among the compute

nodes. We implement our recovery method on the widely used Gi-

raph system and observe that our proposed parallel failure recovery

method outperforms existing checkpoint-based recovery methods

by up to 30 times when using 40 compute nodes.
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