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ABSTRACT

Emerging large-scale monitoring applications rely on continuous

tracking of complex data-analysis queries over collections of mas-

sive, physically-distributed data streams. Thus, in addition to the

space- and time-efficiency requirements of conventional stream pro-

cessing (at each remote monitor site), effective solutions also need

to guarantee communication efficiency (over the underlying com-

munication network). The complexity of the monitored query adds

to the difficulty of the problem — this is especially true for non-

linear queries (e.g., joins), where no obvious solutions exist for

distributing the monitored condition across sites. The recently pro-

posed geometric method, based on the notion of covering spheres,

offers a generic methodology for splitting an arbitrary (non-linear)

global condition into a collection of local site constraints, and has

been applied to massive distributed stream-monitoring tasks, achiev-

ing state-of-the-art performance. In this paper, we present a far

more general geometric approach, based on the convex decomposi-

tion of an appropriate subset of the domain of the monitoring query,

and formally prove that it is always guaranteed to perform at least

as good as the covering spheres method. We analyze our approach

and demonstrate its effectiveness for the important case of sketch-

based approximate tracking for norm, range-aggregate, and join-

aggregate queries, which have numerous applications in streaming

data analysis. Experimental results on real-life data streams verify

the superiority of our approach in practical settings, showing that it

substantially outperforms the covering spheres method.

1. INTRODUCTION
A task of increasing importance is the online monitoring of queries

over continuous data streams. In a growing number of applica-

tions, such as content distribution networks, collaborating mobile

devices, and IP network monitoring tasks, a large amount of stream-

ing transient data is sequentially produced. Typically, massive data

sizes and rapid transmission rates make it infeasible to store and

index all the data for future processing. Thus, algorithms that ac-

cess each data item only once, and process it in a short amount of

time, are desirable. Furthermore, the amount of memory used by

the algorithm is required to be sub-linear in the size of the input
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stream(s). Algorithms adhering to these strict requirements are of-

ten referred to as streaming algorithms. A fundamental query task

in this setting is that of monitoring “threshold crossings”: Given a

function f() and a threshold T , the query is defined by “is f(v) ≤
T ?”, where v is a (large) dynamic vector that captures the current

state (e.g., frequency distribution) of the streaming data. This query

model has been used in numerous applications [13], either directly

or as the main building block for other queries such as top-k and

“heavy-hitter” items, quantiles, and so on [26]. Furthermore, it can

be naturally extended to the more general problem of approximate

function monitoring, where the goal is to track the value of a func-

tion f(v) to within user-prescribed error bounds [11]. Given the

streaming nature of the data, we are, of course, interested in con-

tinuous (standing) queries; that is, the query is “always there” and

an alert must be issued whenever f(v) > T .

The difficulty in processing high-volume streams is compounded

by the fact that in many real-life situations, local streams are gener-

ated at physically distributed nodes, and we are interested in mon-

itoring a function over the global union of the streams, while min-

imizing communication across the network. In other words, each

node holds a dynamic local data vector, the global streaming vec-

tor v is defined as the average (or, sum) of these local vectors, and

the query is defined using the function value f(v). Clearly, the

naive solution of aggregating the local streams to a central location

and processing them there is infeasible, as it incurs a huge com-

munication overhead. It is therefore desirable to map the global,

network-wide query to local queries/constraints, which can be in-

dependently checked at the nodes. To ensure correctness, these lo-

cal queries should be “safe”, meaning that as long as they all hold

(no “local violations”), the global query must also hold.

Prior Work. Earlier work on monitoring distributed streams via

local constraints addressed the simpler cases of thresholding linear

functions [17, 16], top-k monitoring [4], and ratio queries [14]. In

[21] local conditions were placed on one-dimensional variables for

monitoring the value of a polynomial. In [15], perturbative anal-

ysis of eigenvalues was applied to determine local conditions on

data volume matrices at the nodes of a distributed system, in order

to monitor system health. Monitoring entropy and related func-

tions was studied in [3], and a theoretical study of the monitoring

problem is provided in [9]. Decision trees over a large distributed

network were handled in [5]. In [25] an algorithm is provided for

determining whether the norm of the average vector in a distributed

system is below a certain threshold. Other work also addressed dis-

tributed monitoring of monotonic functions [20], and state monitor-

ing via local constraints [19]. A major breakthrough for streaming

algorithms was the introduction of sketches [2], which constitute ef-

ficient data-summarization tools allowing the small-space approx-

imation of inner product and norm queries with pre-set bounds on
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the error magnitude and probability. In [8] sketches were employed

for communication-efficient, approximate monitoring of join ag-

gregates over distributed streams.

All these earlier papers focus solely on a specific class of distributed-

monitoring queries, resulting in special-purpose techniques appli-

cable only to the type of queries at hand. Recently, [22, 23] have

proposed a general, geometric monitoring approach for efficiently

tracking the value of a general function/query over distributed data

relative to a given threshold. Their solution relies on an interest-

ing geometric argument, that employs the methodology of Cover-

ing Spheres (CS) for breaking up a global threshold condition on

a function into “safe” local conditions that can be checked locally

at each site. Followup work [18] has proposed various extensions

to the CS method (e.g., using ellipsoids rather than spheres), and

has introduced a more general notion of Safe Zones (SZs) for dis-

tributed monitoring. The CS method has very recently been applied

to the problem of efficient outlier detection in sensor networks [7],

as well as for sketch-based approximate monitoring of norm, range-

aggregate, and join-aggregate queries over distributed streams [11],

achieving the current state-of-the-art results in both settings. CS

was also applied in a predictive model [12] and to monitoring sys-

tem health [10].

Our Contributions. In this paper, we propose a novel method for

monitoring over distributed streams, which is also rooted in geom-

etry. We first lay its theoretical basis and prove that it always per-

forms at least as good as the CS method, meaning that if CS does

not experience a local violation, neither does the proposed algo-

rithm. Then, we apply it to the above-mentioned queries, achieving

a substantial improvement over the state-of-the-art. Our contribu-

tions can be summarized as follows.

• We introduce a novel method based on the Convex Decomposi-

tion (CD) of an appropriate subset of the query domain for mon-

itoring threshold-crossing queries over distributed streams. Our

CD method is provably better (in a sense to be made precise later)

than the covering spheres method. A notable difference is that CD

works by identifying convex subsets of the inadmissible region, as

opposed to previous work which sought a convex subset of the ad-

missible region.

• We detail the application of our CD methodology to the impor-

tant tasks of sketch-based approximate monitoring for norm, range-

aggregate, and join-aggregate queries. Once again, our analysis

clearly demonstrates the effectiveness of CD compared to the state-

of-the-art CS techniques for these problems [11]. We chose to ap-

ply the CD method to these functions due to their great practical

importance, and also due to their complex nature (they are not lin-

ear, monotonic of convex), which defies most monitoring methods.

Also, it allowed us to “head on” compare performance with the

state-of-the-art.

• We carry out an experimental evaluation with real-life data streams

that verifies the superiority of our CD method in practical settings,

showing that it substantially outperforms the CS technique.

2. PRELIMINARIES
Problem Setup. We consider a distributed-computing environ-

ment, comprising a collection of m remote nodes and a designated

coordinator node. Streams of data updates arrive continuously at

remote nodes, while the coordinator is responsible for continuously

tracking user queries posed over the union of remotely-observed

streams (across all nodes). Each remote node j ∈ {1, . . . , m} ob-

serves a local update stream that incrementally render a dynamic

local statistics vector vj capturing the current local state (e.g., fre-

quency distribution) of the observed stream(s) at node j. As an

example, in the case of IP routers monitoring the number of TCP

and UDP packets exchanged between source and destination IP ad-

dresses, the local statistics vector vj has 2 × 264 entries capturing

the up-to-date frequencies for specific (source, destination) pairs

observed in TCP and UDP packets routed through router j. (For

instance, the first (last) 264 entries of vj could be used for TCP (re-

spectively, UDP) packet frequencies.) We define the global statis-

tics vector v of our distributed stream(s) as the average of the local

statistics vectors {vj}; that is, v = v1+...+vm
m

.

We are interested in effectively tracking user queries over the

global statistics vector at the coordinator. More specifically, our fo-

cus is on the fundamental problem of monitoring distributed threshold-

crossing queries; that is, determine whether f(v) ≤ T , for a given

(general) function f() over the global statistics vector and a fixed

threshold T . Threshold-crossing queries form a key building block

for several classes of distributed stream monitoring queries (e.g.,

top-k, heavy-hitters, quantiles) [26], and the more general problem

of distributed approximate function tracking [11].

Convexity. Convex sets are closed under averaging, and the global

statistics vector is defined as the average of the local vectors. There-

fore, convexity plays a crucial role in the proposed CD method. We

remind of some relevant definitions:

• A convex combination of vectors {vi} is a vector of the form
∑

i λivi, where λi are scalars satisfying λi ≥ 0,
∑

i λi = 1.

• The convex hull of vectors {vi} is the set consisting of all the

convex combinations of {vi}.

• A set is convex if it equals its convex hull.

For example, the convex hull of a finite set of points in the plane

is the smallest (w.r.t inclusion) convex polygon which contains the

points. We note here that both CS and CD methods can handle

the case in which the global statistics vector is not necessarily the

average, but any convex combination, of the local vectors.

The Covering Spheres (CS) Method. We now describe some ba-

sic notions of the CS method, which will be used as a baseline to

compare with the CD method; along the way, we will also intro-

duce some definitions which will be used in Section 3.

As observed by Sharfman et al. [22, 23], it is generally impossi-

ble to relate the locally-observed values of f(vj) to the global value

f(v); instead, their key idea is to employ geometric arguments to

monitor the domain (rather than the range) of the monitored func-

tion f(). More formally, given the threshold query f(v) ≤ T ,

define the set A , {v|f(v) ≤ T} as the query’s admissible re-

gion. Clearly, the condition f(v) ≤ T is equivalent to the condition

v ∈ A, and this geometric condition is the one being monitored.

Running example – lower bound of norm. Assume that the con-

dition being monitored is over a function of two variables x, y, and

is defined by x2 + y2 ≥ 1. Then A is the complement of the unit

disk in the plane R2.

Assume that at some point in time, each node j has informed the

coordinator of some initial/prior state of its local vector vinit
j ; thus,

the coordinator has an estimated global vector p ,
∑m

j=1 v
init
j /m,

also referred to as the reference point. Clearly, the updates arriving

at nodes can cause the local vectors vj to drift too far from their

previously reported values vinit
j , possibly leading to a violation of

the T threshold. Let dj , vj − vinit
j denote the local drift vector
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(due to updates) at node j. We can then express the current global

statistics vector v in terms of the drift vectors as follows:

v =

∑m
j=1(v

init
j + dj)

m
= p+

∑m
j=1 dj

m
=

∑m
j=1(p+ dj)

m
.

That is, the current global vector is the average of the (translated)

drift vectors p + dj , j = 1, . . . ,m, and, thus, guaranteed to lie

somewhere within the convex hull of the drift vectors around p.

Thus, as long as the convex hull does not overlap the inadmissible

region A = {v : f(v) > T}, we can guarantee that the threshold

has not been violated (i.e., f(v) ≤ T ).

The problem, of course, is that the dj’s are spread across the sites

and, thus, the above condition on the convex hull cannot be checked

locally. This global condition can be transformed into local geo-

metric constraints with the help of the bounding lemma (formally

shown in [23]) which states that, in any dimensionality, the convex

hull of a set of points xi is contained in the union of spheres whose

diameters are the segments xi, x, for any point x.

Figure 1: The bounding lemma: The union of the spheres with

diameters p, p+ dj contains the convex hull of {p+ dj}.

Thus, since the global statistics vector v lies inside the convex

hull of the vectors p+dj , j = 1, . . .m and the union of the spheres

with diameters p, p+ dj completely covers this convex hull (Fig.

1), the problem of monitoring v has been effectively reduced to the

local problem of each remote node monitoring the sphere around

its local drift vector: If at some point a node’s local sphere steps

into the inadmissible region A, then we have a local violation, and

the node communicates its local drift dj to the coordinator. The

coordinator then initiates a synchronization process that typically

tries to resolve the local violation by “balancing out” the violating

drift with data from other nodes [22, 23].

Geometric Monitoring using Convex Safe Zones. In followup

work, Keren et al. [18] propose a simple, generic geometric mon-

itoring strategy that can be formally shown to encompass the CS

method as a special case. Briefly, their strategy relies on defin-

ing a certain convex subset C of the admissible region A (i.e., a

convex admissible subset), which is then used to define Safe Zones

(SZs) for the (translated) local drift vectors: Node j simply monitors

the condition p + dj ∈ C. The correctness of this generic moni-

toring scheme follows directly from the convexity of C, and our

earlier observation that the global statistics vector v always lies in

the convex hull of p + dj , j = 1, . . . ,m: If p + dj ∈ C for all

nodes j then, by convexity, this convex hull (and, therefore v) lies

completely within C and, therefore, the admissible region (since

C ⊆ A). (Note that the convexity of C plays a crucial role in the

above correctness argument.) Fig. 2 depicts some of the key con-

cepts in geometric monitoring using a convex admissible subset C.

Note that, while the convexity of C is needed for the correct-

ness of the monitoring scheme, it is clear that the size of C plays

Figure 2: Geometric monitoring using a convex admissible sub-

set C for three nodes. The reference point, p, is the average

of the three initial data vectors at the nodes, vinit
j , marked by

circles (note that the average of the initial vectors has to be

in C, but not the individual vinit
i ). The current values of the

data vectors at the nodes, vj , based on the local drift vectors dj .

Node j continually checks whether the vector p + dj (marked

by diamonds) is inside C; as long as this local condition holds

v ∈ C ⊆ A and no action is needed.

a critical role in its efficiency: Obviously, a larger C implies fewer

local violations and, thus, smaller communication/synchronization

overheads. This, in turn, implies a fairly obvious dominance rela-

tionship over geometric distributed monitoring schemes: Given two

geometric algorithms A1 and A2 (for the same distributed monitor-

ing problem) that use the convex admissible subsets C1 and C2 (re-

spectively), algorithm A1 is provably superior to A2 if C2 ⊂ C1.

Note that, in the simple case of linear functions f(), the admissible

region A itself is convex, and therefore one can choose C = A.

However, for more complicated, non-linear functions, as the ones

treated here, A is non-convex and quite complex. Thus, finding

a “large” convex subset of A is a crucial component of geometric

monitoring, and a main focal point of our work.1

Interestingly, the CS method can also be cast in terms of a con-

vex admissible subset (denoted by CS) that is implicitly defined as

follows:

DEFINITION 1. The convex admissible subset CS defined by

the CS method (with reference point p) is the set of all points q
for which the sphere with diameter p, q is contained in A.

In our running example, where A is the complement of the unit

disk, the condition for a point q to be in CS is that the disk whose

diameter is the segment pq does not intersect the unit disk – see

Fig. 3:

Since the disk’s center is at (p+q)/2 and its radius is ‖p−q‖/2,

the condition can be written as

‖p+ q‖/2 ≥ 1 + ‖p− q‖/2 (1)

After some simple manipulations, this condition can be expressed

as a quartic (i.e. fourth-degree) inequality in q’s coordinates, hence

the safe-zone’s boundary is a quartic curve.

As discussed in [18], CS can be defined in a more direct manner

using half-space intersections. Consider a simple case, in which the

admissible region A equals the entire plane except for one point r

1Since C is tested for containment of p + dj , its choice should
depend both on A and p; intuitively, it should be both “large” and
p should be far from its boundary.
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Figure 3: An example of the construction of CS , the convex ad-

missible subset used in the CS method, for the running example

in which A is the complement of a disk. CS (in grey) comprises

all points q such that the sphere with diameter p, q is contained

in A. Thus, q1 ∈ CS but q2 /∈ CS .

Figure 4: The set CS for reference point p when A = {r} is

exactly the half-space depicted in gray: A sphere with diame-

ter p, q does not contain r if and only if q is in the half-space

supported by L (This holds for any dimensionality.)

Figure 5: The construct H(u, v). Note that 〈r1 − v, u− v〉 > 0
and 〈r2 − v, u− v〉 < 0.

(e.g., if we are monitoring the condition ||v − r||2 > 0). It is

easy to see that in this case, CS is the half-space depicted in Fig. 4.

For notational convenience, given two vectors u, v, define H(u, v)
to be the half-space supported2 by the hyperplane perpendicular to

the segment u, v, passing through v and containing u. Thus, in

Fig. 4, CS = H(p, r). Note that the construct is not symmetric,

i.e., H(u, v) 6= H(v, u); furthermore, H(u, v) = {x|∠(xvu) ≤
90◦} = {x|〈x − v, u − v〉 ≥ 0}, where 〈x, y〉 = ∑

xiyi denotes

the inner product of vectors x and y (Fig. 5).

In the case of general A, in order to obtain CS , every point in A
has to be excluded in a similar manner. This leads to the following

geometric characterization of CS .

THEOREM 1. ([18]). CS =
⋂

r∈A

H(p, r). That is, CS equals

2A half-space will be said to be supported by its boundary, which
is of dimension smaller by 1 than that of the ambient space.

the intersection of the half-spaces H(p, r) for all r in the inadmis-

sible region A.

An easy corollary shows that it is, in fact, sufficient to just intersect

the half-spaces H(p, r) for all r at the boundary of A (denoted

by ∂A); that is, CS = ∩r∈∂AH(p, r).3 To recap, the construction

of CS can be viewed as follows: every point r in the boundary of

A is “separated from p” by the hyperplane passing through r and

which is perpendicular to the segment p, r. In Fig. 6 this process

is depicted for two points r1, r2, with the “separating hyperplanes”

denoted by S(r1), S(r2). CS is equal to the intersection of all such

half-spaces H(p, r). Convexity of CS follows since the individual

half-spaces are convex, and the intersection of any family of convex

sets is also convex.

Figure 6: An equivalent construction of CS by intersecting

half-spaces, depicted for two points, r1, r2 on A’s boundary.

CS is obtained by intersecting all such half-spaces.

The key to obtaining a better set, which contains CS , is to in-

tersect less half-spaces, thus obtaining a larger set. The method

to achieve this, which is next described, also relies heavily on the

notion of convexity.

3. THE CONVEX DECOMPOSITION (CD)

METHOD
The CS method generally achieves good results and is generic,

i.e., it can be applied to any function defined over the average of the

local vectors at the nodes. The question that naturally arises has to

do with the performance of the CS method and the SZs defined by

its convex admissible subset CS : In this section, we demonstrate

how CS can be drastically improved in some cases, by intersect-

ing much fewer half-spaces (Theorem 1) in order to obtain a larger

convex admissible subset. For instance, when A is convex, the pro-

cess can be improved by separating A from p by a single hyper-

plane, yielding a convex subset of A which contains CS , and is

also simpler to define4. This provides the motivation for first con-

sidering the case of convex A; then, we consider the more general

case when A is a union of convex sets.

Let us start with a simple case – our running example (Section

2), where A is the unit disk. CS is constructed according to the

method described in Theorem 1, depicted in Fig. 7 for p = (a, 0).
Three of the half-planes whose intersection equals CS are shown –

H(p, ri), i = 1, 2, 3. Note that r1 is on the x-axis. Evidently, while

3It is not difficult to see that, for any r′ ∈ A − ∂A there exists an

r ∈ ∂A (essentially the point where p, r′ intersects the boundary)
such that H(p, r) ⊆ H(p, r′).
4There is an interesting geometric duality here – it is easy to define

C when either A or A is convex.
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Figure 7: Construction of CS for the running example (A is the

unit disk). Three of the half-spaces whose intersection equals

CS are depicted.

the set CS is correct, it can be improved. This follows since the

half-plane H(p, r1) of Fig. 7 strictly contains it, and also satisfies

the necessary convexity property.

Why does this happen? The answer in this simple case is clear

from Fig. 7: after separating r1 from p, the entire set A is separated

from p, and there is therefore no need to intersect with H(p, r2),
H(p, r3) etc. Further, intersecting with these half-spaces obviously

reduces the quality of the resulting C, as it yields a set strictly con-

tained in H(p, r1).
This simple observation can easily be extended to the case where

A is any convex set, with the point r1 in Fig. 7 replaced by the

point in A which is closest to p (denoted A(p)). We remind of the

following well-known theorem:

THEOREM 2. For any convex and closed set S and a point

p such that p /∈ S, there is a unique point in S, hereafter de-

noted SC(p), such that ||SC(p) − p|| = inf
s∈S

||s − p||, that is,

the minimal distance from S to p is obtained at SC(p)5. Further,

H(p, SC(p)) ∩ S = ∅.

We naturally extend our half-space construct H(p, r) to H(p, S) ,
H(p, SC(p)), valid for a convex set S such that p /∈ S. Clearly, if

A is convex, then H(p,A) contains CS , since CS is the intersection

of all half-spaces H(p, r), r ∈ A, and H(p,A) is just one of these

half-spaces.

The advantage of using H(p,A) instead of CS is clear: not only

does H(p,A) contain CS , it is also simpler to define and to apply

during query monitoring, since it is trivial to check whether a point

belongs to a half-space (e.g., using the condition on the vector inner

product, see Fig. 5).

It is, of course, desirable that the boundary of C be far from p;

else, small drift vectors may cause a violation. The distance of p
from the boundary of any convex admissible subset C is naturally

defined as the minimum distance of p from any boundary point of

C, and this is clearly upper-bounded by ||p − A
C
(p)||. In that

sense, the above construct satisfies a certain optimality criterion –

it is maximal with respect to all C’s which attain this distance upper

bound. This is formalized in the following theorem (proof deferred

to the full paper).

5There is a lot of work on efficiently computing SC(p), e.g., [6].

THEOREM 3. Let C be any convex set such that C ⊆ A, p ∈
C, and dist(p, ∂C) = ||p − A

C
(p)|| (∂C is the boundary of C).

Then, C ⊆ H(p,A).

So far, we have shown how to improve over CS when A is con-

vex. We next turn to the more general case.

3.1 The Case A = Union of Convex Sets
Assume that A is not convex, but that it can be represented as

A =

N
⋃

i=1

Si, for convex sets Si (Si need not be disjoint). We

call such a representation a convex decomposition (CD) of A. Fol-

lowing as in the case in which A is convex, we may define C

by

N
⋂

i=1

H(p, Si). This choice of C is correct (it is convex and

C
⋂

A = ∅). Further, just as in the simpler case in which A is

convex, it is clear that the C thus constructed contains CS , since

C is equal to the intersection of a subset of the half-spaces whose

intersection defines CS (recall that CS equals the intersection of all

H(p, r) for r ∈ A, and the C defined using the convex decompo-

sition of A is defined by intersecting only H(p, Si), a smaller set).

We note that exactly the same construction can be applied if the

convex decomposition contains an infinite number of sets (the case

of join aggregates in Section 7 is such an example).

However, this construction can sometimes be improved. For

example, assume that for some i, j, H(p, Si) ∩ Sj = ∅. Then

H(p, Si) already separates Sj from p, and there is no need to in-

tersect with H(p, Sj); see Fig. 8. Note that this was also the case

with our running example (Fig. 7 and discussion therein).

Figure 8: If A is the union of the two convex sets, S1 and S2,

and H(p, S1) separates p from S2, there is no need to intersect

with H(p, S2), and C can be defined as H(p, S1).

To avoid cases as in Fig. 8, we propose the following definition:

DEFINITION 2. A =

N
⋃

i=1

Si is called non-redundant with re-

spect to reference point p if, for all 1 ≤ i ≤ N ,

Si

⋂





⋂

j 6=i

H(p, Sj)



 6= ∅; otherwise, it is called redundant.

In other words, a cover of A by convex subsets Si is non-redundant

if no Si is separated from p by the separating half-spaces of the

other Sj , j 6= i. Note that this definition is with respect to a refer-

ence point p, and a cover which is non-redundant for one reference

point can be redundant for a different reference point.

CD as a Generalization of CS. From Theorem 1, it immediately

follows that CS is a special case of CD when the convex cover of
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A is the trivial one, which consists of all the singletons compris-

ing it; typically, this cover is highly redundant, which allows for a

potentially dramatic improvement of CD over CS.

4. THE MONITORED FUNCTIONS
In this section, we discuss the specific monitoring functions in-

volved in effectively tracking approximate norm and range-aggregate

queries over distributed streams. (The more complex case of join

aggregates is discussed in Section 7.) Given the global frequency

distribution vector v, the function f(v) = 〈v, v〉 = ||v||2 =
∑

v2i
denotes a (squared) L2-norm query (also known as the “self-join

size”) of v – it can be used to derive important statistical infor-

mation about the distribution, such as its variance and degree of

skew. A range query f(v) = 〈v, v0〉 counts the total appearances

of some of the items by computing the inner-product of the global

frequency vector v with a (constant) vector v0 consisting of 1’s

at the locations corresponding to these items, and 0’s elsewhere.

Such inner-product operations (with constant vectors) can also be

used to compute v’s coefficients in some orthonormal basis, such

as discrete cosine or wavelets.

The ability to express many important queries (e.g., heavy-hitters

and data skew [2]) over the global frequency distribution by its

inner-product with some fixed vector, or by its norm, has led to a

great deal of research on memory and communication efficient al-

gorithms for computing or approximating inner products and norms

in a dynamic setting. A major breakthrough was the introduction

of sketches [2], which constitute efficient data-summarization tools

that allow to approximate the sought functions with pre-set bounds

on the error magnitude and probability. A brief survey of the AMS

sketches we apply here is provided in Section 4.1. Note that the

monitoring is performed not on the original data, but on its sketch

(i.e., in sketch space). Applying sketches reduces data volume.

However, while range and norm functions are respectively linear

and quadratic in the original data, their approximations in sketch

space are quite more complicated. We next describe these approx-

imations, and then show how to apply the CD method to monitor

them.

4.1 Approximation by Sketches
The sketches applied here are defined by a k × l collection of

four-wise independent random vectors, denoted rij , of the same

length as v and v0, and whose components are uniformly distributed

in {−1,+1}. These vectors are generated on the fly, and need not

be stored6. ||v||2 is then approximated as follows:

1. Construct a k × l matrix M (i.e. k rows, l columns), Mij =
〈v, rij〉2 (the inner products are also computed on the fly).

2. The approximate value of ||v||2 is defined as medi ||Mi||2,

where med is the median and Mi the i-th row of M .

In [2] it is proved that with probability 1 − δ, this estimate ap-

proximates ||v||2 by a relative error smaller than ǫ, where k =
O
(

log
(

1
δ

))

and l = O
(

1
ǫ2

)

(that is, with probability 1 − δ, the

approximation to ||v||2 falls within ǫ||v||2 of the actual value).

Estimating the inner product with v0 proceeds similarly, with

Mij = 〈v0, rij〉〈v, rij〉. Then, the inner product of v and v0 is

approximated by the median of the sums of M ’s rows. Similar

approximation guarantees hold as for the case of norm queries, with

the error relative to ||v|| · ||v0||.
Since sketching is applied prior to computing the queried func-

tions, the monitoring is applied not on the frequency distribution

6Please see [2] for details; here we focus on the functional form of
the sketches and the monitoring thereof.

vectors, but on the sketch matrices M . We denote the functions in

sketch space as

fI(M) = medi

∑

j

Mij (range query function) (2)

fN (M) = medi ||Mi||2 (norm query function) (3)

with a slight abuse of notation, we will also apply fI to a vector,

defining it as the median of its coordinates.

The distributed setting for fI(), fN () is identical to the one de-

fined in Section 2; see Fig. 9. Since the sketches are linear, the

Figure 9: Computing fN in the distributed setting. Ni are the

distinct nodes, each of which holds a matrix. The matrices in

the distinct nodes are first averaged, then the norm squared of

each row in the average matrix is computed, and then a median

is taken over the resulting values. For fI the process is sim-

ilar, with the norm squared operation replaced with an inner

product with a fixed vector v0.

global function is computed by averaging the local sketch matrices

and applying a function on the average matrix. The introduction of

sketches, while very useful for reducing data size, comes at a price:

due to the application of the median operator, the functions fI , fN
are quite more complicated than the inner product and norm func-

tions – most notably, they are non-convex, hence the simple method

which is applicable when A or A is convex (Section 3) cannot be

used. Therefore, we apply the more general CD method, introduced

in Section 3.1.

5. CD MONITORING IN SKETCH SPACE
Next we apply the CD method to fI and fN . Recall (Section 3.1)

that, given a function f with an admissible region A, the first step

is the representation of A as a (preferably non-redundant) union of

convex sets. We now proceed to achieve this for our two sketch

estimator functions.

5.1 fI for vectors: median of components
Recall that for a matrix M , fI(M) = medi Mi, where Mi

equals the sum of entries of M ’s i-th row. We can therefore view

{Mi}ki=1 as a vector of length k, where k is the number of matrix

rows, and fI as the median of its components. We proceed to first

solve the problem for this vectorial version of fI .

We assume, without loss of generality, that we monitor the con-

dition fI(M) > 0. If the condition is fI(M) < 0, simply re-

verse all coordinates, solve for fI(M) > 0, and reverse the coor-

dinates again. To monitor fI(M) > b for some constant b 6= 0,
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switch to a new set of variables by subtracting b from the original

ones, solve, and change back by adding b. Since the general case

is somewhat technically involved, we start with k = 3. So, we

are dealing with vectors (x1, x2, x3), and the monitored query is

med{x1, x2, x3} > 0. (The general case is treated later in this

section.)

We first note that A is non-convex. For example, it contains

the vectors (−11, 1, 1), (1,−11, 1), (1, 1,−11), but the average of

these vectors is (−3,−3,−3), which is not in A. Similarly, A is

non-convex (note that A = {−v|v ∈ A}). We next show that a

non-redundant cover of A with three convex sets is provided by

A = S1 ∪ S2 ∪ S3

S1 = {(x1, x2, x3)|x2, x3 ≤ 0}, (4)

S2 = {(x1, x2, x3)|x1, x3 ≤ 0},
S3 = {(x1, x2, x3)|x1, x2 ≤ 0}

Since for a point to be in A it has to have at least two negative

coordinates, it is clear that S1, S2, S3 indeed cover A. Clearly

S1, S2, S3 are convex. We next compute the separating hyper-

planes H(p, Si). Denote p = (p1, p2, p3) and assume for the while

that all pi’s are > 0. It is trivial to verify that r1, the point in S1

closest to p, is r1 = (p1, 0, 0). Therefore, the half-space H(p, S1)
separating p from S1 is defined by

H(p, S1) = {x|〈p− r1, x− r1〉 > 0},
or {x|p2x2 + p3x3 > 0}, for x = (x1, x2, x3)

H(p, S2) and H(p, S3) are similarly defined.

LEMMA 1. S1, S2, S3 are a non-redundant cover of A.

PROOF. Let us show that S1 ∩ H(p, S2) ∩ H(p, S3) 6= ∅ (the

other cases follow similarly). Recall that H(p, S2) = {x|p1x1 +
p3x3 > 0}, H(p, S3) = {x|p1x1 + p2x2 > 0}, and S1 =
{(x1, x2, x3)|x2, x3 ≤ 0}. Since we assumed pi > 0, it fol-

lows that (p1, 0, 0) ∈ S1 ∩H(p, S2) ∩H(p, S3), hence it is non-

empty.

Since the cover is non-redundant, we define C to be the intersection

of H(p, Si), i = 1, 2, 3, i.e.

C = {(x1, x2, x3)|p1x1 + p2x2 > 0, (5)

p1x1 + p3x3 > 0, p2x2 + p3x3 > 0}
In order to visually demonstrate the advantage of the CD method

over CS, Figure 10 depicts the sets C defined by both methods for

dimension 3, with the reference point p = (1, 0.2, 0.1). Both the

three-dimensional sets and a cross-section are depicted. The CD

method clearly yields larger sets.

Generalization to Higher Dimensionality. For higher dimensions,

the partitioning of A to convex sets Si, as well as the construction

of H(p, Si), proceeds similarly as in dimension 3. Assume the

dimension is 2N + 1, and again, assume without loss of general-

ity that we are monitoring the condition fI(v) > 0. Assume, for

the time being, that all p’s coordinates are > 0; continuing as for

dimension 3, it is easy to verify that the following defines a non-

redundant cover of A: there are
(

2N+1
N+1

)

Si’s in the cover, each

defined by setting one of the subsets of coordinates {1, 2, ...2N +
1} of size N + 1 to be negative. If the subset of coordinates is

{i1, i2...iN+1}, the corresponding half-space separating p from Si

is defined by

j=N+1
∑

j=1

pijxij > 0. C is then defined as the inter-

section of all these half-spaces. The non-redundancy of the cover

follows exactly as in the case of three dimensions.

Figure 10: Comparison of C for CD vs. CS, for fI in three

dimensions, with p = (1, 0.2, 0.1). Top left: the sets C in three

dimensions. The CS set is bound by the green surface, and the

CD one is bound by the three blue hyperplanes. p is the small

dark sphere. Top right: cross-section at height z = 1 through

both sets.

Recall that during the monitoring process, every node has to con-

tinually check whether x = p + d ∈ C, where p is the reference

point and d the node’s drift vector (Section 2). While the number of

inequalities defining C is exponential in N , there is a simple way

to reduce the complexity to O(N): it suffices to sum the small-

est N + 1 values from the 2N + 1 values pixi. Trivially, all the

inequalities hold iff the sum of these values is > 0.

The Case of Negative pi’s. So far, we have assumed that all of

p’s coordinates are > 0. A slight modification is required when

that is not the case. To avoid drowning in indices, we start with a

special case, which suffices to explain the general one. Assume the

dimension is 5, and we have p1 ≤ 0, p2, p3, p4, p5 > 0. Suppose

we wish to separate S = {x1, x2, x3 ≤ 0} from p. This proceeds

almost exactly as before, but now the closest point to p in S is

(p1, 0, 0, p4, p5) (note that the first coordinate is p1, and not 0),

and the equation of the respective half-space is not p1x1 + p2x2 +
p3x3 > 0, but p2x2+p3x3 > 0; the same happens whenever x1 is

one of the variables defining S. If, for example, S = {x2, x3, x4 ≤
0}, then the intersection of S with the half-space p2x2 + p3x3 > 0
is empty, hence the cover will be redundant. Therefore, only the

Si’s whose definition involves x1 should be considered.

The general case follows exactly along these lines: if l of p’s

coordinates are negative for some l < N + 1, an analysis similar

to the one above yields that the set C is defined as before, for all

inequalities ranging over the subsets of size N +1− l of the set of

indices with positive coordinates.

For example, if N = 3 and p1, p2 ≤ 0, p3, p4, p5, p6, p7 > 0
(recall we have 2N + 1 coordinates), then l = 2 and the inequal-

ities defining C range over all subsets of size N + 1 − l = 2 of

{3, 4, 5, 6, 7}, i.e. p3x3+p4x4 > 0 etc. Intuitively this is because,

since we already have two negative coordinates, we can allow only

one more amongst {p3, p4, p5, p6, p7}; and since the inequalities

range over all subsets of size 2, they indeed exclude the possibility

of two negative coordinates.

5.2 Monitoring fI for Matrices
So far we dealt with the vectorial version of fI , and constructed

a convex subset of vectors, denote it Cvector, such that v ∈ Cvector →
fI(v) > 0, where fI is defined as the median of the vector’s com-

ponents. Since the goal is to monitor the matrix version of fI ,

which is defined as the median of the sums of the rows of the ma-

trix, we need to define a convex subset Cmatrix of matrices such that

M ∈ Cmatrix → fI(M) > 0. This set is defined as follows: de-
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fine a “collapsing function” g : Rk×l → Rk from k × l matrices

to vectors of length k, by mapping each matrix M to the vector

whose i-th component is the sum of M ’s i-th row. Cmatrix is then

defined as g−1(Cvector). Practically, this just means that in order

to test whether a matrix M ∈ Cmatrix, it suffices to test whether

g(M) ∈ Cvector (as described earlier). It still remains to prove that

Cmatrix is convex: this follows from the fact that g() is linear, and

the inverse image of a convex set under a linear function is always

convex. The case for fN is more complicated; we proceed to study

it next.

5.3 Monitoring fN for Matrices
Recall that fN is computed for a matrix M by constructing a

vector whose i-th coordinate is the norm squared of M ’s i-th row,

and then computing the median of this vector’s coordinates. That

is, we are no longer dealing with the median of linear functions,

but quadratic ones. To emphasize the difference between the two

cases, let us look first at an auxiliary function which is similar but

somewhat simpler – the vectorial version of fN , defined as the me-

dian of the squared coordinates of an input vector (we still denote

it fN ): fN (x1, ...xn) = med{x2
1, ...x

2
n}. Let us start with the up-

per bound case: following the definition of the safe zone by linear

inequalities, which was developed in Section 5.1, the safe zone for

fN () is defined by the intersection of sets defined by inequalities

of the form
∑

i pix
2
i ≤ T , where the pi’s are ≥ 0 and T a positive

threshold. Note that each such set is convex (it is just an ellipsoid),

and since the intersection of any family of convex sets is convex,

the safe zone thus defined is also convex.

However, the case for the lower bound is different: while sets

defined by linear inequalities are always convex, a set of the form
∑

i pix
2
i ≥ T is not convex (it is the complement of an ellipsoid).

Note that this is the same problem discussed in Section 3: the ad-

missible region, being the complement of a convex quadratic set,

is non-convex. However, this problem can be remedied exactly as

in Section 3, by separating the convex quadratic from the reference

point with a hyperplane.

Let us now return to the matrix version of fN (M) (Eq. 3). Sup-

pose we wish to monitor the upper bound condition, fN () < b
for some constant b. As for the vectorial version of fN (), di-

rectly substituting the norms squared of the rows into the inequal-

ities defining Cvector (Section 5.1), yields inequalities of the form
∑

s∈S

ps||Ms||2 < b for some subset of row indices S, and where

the ps are the norms squared of the rows of the reference point

(matrix), hence are positive. Exactly as for the vectorial version of

fN (), the set satisfying all these inequalities is convex (recall that

the norm squared of a row is just a sum of the squares of the row’s

elements, hence the individual inequalities still define ellipsoids in

matrix space).

To handle the lower bound case, we proceed as follows: the ad-

missible region A is defined as the set of matrices M such that

medi ||Mi||2 > b, where Mi is M ’s i-th row. As for the case of

vectors, A can be described as the following union of convex sets:

if there are 2N + 1 rows, let {i1, i2...iN+1} range over all subsets

of indices of size N + 1, and for each such subset define the set

S(i1, i2...iN+1) , {M | ||Mi1 ||2, ||Mi2 ||2...||MiN+1
||2 ≤ b}.

These sets are convex and obviously their union covers A. It re-

mains to construct the hyperplanes separating p from each such

set; this requires finding the closest matrix to p in the set. This

matrix, denoted as before S(p), is constructed as follows: if S(p)j
(pj) denotes the j-th row of S(p) (respectively, p), then

• If j /∈ {i1, i2...iN+1}, S(p)j = pj .

• If j ∈ {i1, i2...iN+1} and ||pj ||2 ≤ b, S(p)j = pj .

• If j ∈ {i1, i2...iN+1} and ||pj ||2 > b, S(p)j =
√
b

pj
||pj ||

.

This follows since if ||v||2 > B, the vector whose norm squared is

B and is closest to v is
√
B v

||v||
.

As before, S(i1, i2...iN+1) can be separated from p by a hy-

perplane perpendicular to the segment p, S(p), and the intersection

of the respective half-spaces defines a convex subset of matrices M
for which fI(M) > b (again, this can be viewed as a generalization

of monitoring the condition ||v||2 > b for a single vector, discussed

in the beginning of Section 3).

Finally, we note that the same method used to expedite the testing

of the condition v ∈ Cvector, for a vector v (Section 5.1) can be

applied to the test whether a matrix belongs to Cmatrix.

6. EXPERIMENTAL STUDY
The goal of our experiments is to quantify the effect of the im-

proved safe zones obtained by the CD method on distributed stream

monitoring performance. We tested the CD method on two real data

sets for self-join queries (i.e., computing the size of the self-join of

the stream, which is simply the squared norm of the frequency vec-

tor), and compared it to the CS method. We also compared CD to

the method of error vectors, as applied in [11] which, to the best of

our knowledge, presents the state-of-the-art results in monitoring

self-join queries over distributed streams. We examined the sliding

window scenario, in which one is interested in the records received

within a certain period; for example, one may wish to monitor only

over records that are less than 5 minutes old. Every record then has

an expiration time, and whenever it expires the corresponding fre-

quency count is decreased by one. Hence, the value of the norm in

this scenario is fluctuating over time; see Fig. 11, which compares

the value of the norm squared for sliding window with that of the

append only stream (in which records are only added to the stream,

hence the norm function increases monotonically). We note that the

sliding window case corresponds to the turnstile model, in which

the data vector’s entries can both increase and decrease; in [11] only

windows with a fixed starting point were used, which corresponds

to the cash-register case (entries can only increase). We show that

CD greatly outperforms the method in [11] for the sliding window

case.
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Figure 11: Norm-squared value over time for sliding and

append-only windows, normalized by the average value for

both cases. The advantage of CD over previous work ([11, 8]) is

especially noticeable for the more general, and difficult, sliding

window scenario.
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Performance Metrics. The metrics used to evaluate CS and CD

were the overall communication cost, measured as the total num-

ber of bytes comprising the data sent over the network, as well as

the number of messages sent. The rationale for using two metrics

is that typically there is a constant cost associated with every com-

munication operation, which is independent of its net size (e.g. the

size of a header, or the cost of opening a channel); hence, for ex-

ample, sending 10 messages 5000 bytes each is cheaper than send-

ing 100 messages 500 bytes each. Since the exact cost is usually

some network-specific combination of the overall communication

size and the number of messages, we provide both. We also present

results for the combined cost for some typical parameters.

Violation Recovery. Whenever a local violation occurs (i.e. a lo-

cal vector wanders outside its safe-zone), the corresponding node

notifies the coordinator. The coordinator then attempts to resolve

the local violation by searching for a subset of nodes (which con-

tain the violating node), whose local vectors “balance” each other,

that is, p+ davg ∈ C, where davg is the average of the subset’s drift

vectors. Following [23], we applied the recovery scheme in which

the coordinator gradually gathers local vectors until it manages to

balance the violating ones.

Experimental Setting and Results. We implemented and com-

pared the CD and CS methods on two data sets, which were also

used in [11, 8]: “Wcup”, which contains access logs to the soc-

cer World Cup 1998 website7, and “Cdad”, which contains SNMP

requests of network users, such as number of packets and bytes

from/to each user’s machine.8 The data were collected from a cor-

porate research center (IBM Watson) over several weeks. The pa-

rameters defining each run were the number of nodes (4 to 20), and

ǫ and δ, which determine the accuracy and probabilistic guarantee

level of the sketch, as well as its size (Section 4.1). The moni-

tored function was fN , and a threshold crossing is defined by a

relative deviation of no more than θ from the current value. The fre-

quency vectors were calculated for the feature “objectID” in Wcup

and “shortRet” in Cdad.

From each dataset, we simulated a distributed streaming setup

for between 4 and 20 nodes, by hashing the site field from the orig-

inal data (the original Wcup data had 26 sites and Cdad had 174).

We fixed sketch accuracy to δ = 2−11 and ǫ = 0.05, and ran tests

for different values of node numbers and θ.

Figs. 12,13 summarize the results. Performance is measured rel-

ative to the CS method. The results indicate a substantial improve-

ment over CS, especially for the number of messages metric and

for small values of θ, which correspond to a “tighter” monitoring

problem, in which the monitored value is restricted to a narrower

range.

Fig. 14 depicts a combined measure of both communication size

and number of messages. We used the following typical assump-

tions: the protocol is TCP over ethernet, where packet payload is

1460 bytes and the headers (TCP+ETH) total 40 bytes. We also

assume that the coordinator applies a broadcast channel. For these

assumptions, the combined cost was dominated by the per-message

overhead and not by the data size, and the advantage of CD over CS

is clear.

Absolute Traffic and Scalability. In addition to the relative per-

formance of CD vs. CS, we include next the absolute traffic. In Fig.

15, the ratio of the total traffic vs. the total stream size is provided,

for 20 to 100 nodes. We differentiate between total and “upstream”

7available at http://tinyurl.com/23ftxrl
8available at http://tinyurl.com/phdezz7
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Figure 12: Scaled message and data cost, θ = 0.04, varying

number of nodes.
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Figure 13: Scaled message and data cost, 16 nodes, varying θ.

traffic, the latter including only messages from the nodes to the

coordinator, since often (e.g. in sensor networks) the “upstream”

traffic is crucial to minimize, (e.g., it exhausts a sensor’s power

supply). It is evident that CD scales much better with the number

of nodes, for both measures. These results for CS are consistent

with those in [11], in which it was noted that, for over 10 nodes,

the overall traffic for CS increases above the stream size9.

6.1 CPU Cost

9In [11] only the overall traffic is provided; here we use the com-
bined measure, which adds overhead for every message.
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Figure 14: Combined cost, θ = 0.04, varying number of nodes.
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Figure 15: Combined cost, θ = 0.04, varying number of nodes,

for CD and CS. Both total and “up” traffic are presented.

The CPU time required to process a given stream of length L,

for both CD and CS, depends on three factors:

• The time is takes a single node to test the local condition for

safe-zone containment (denoted Ts).

• The number of violations (Nv).

• The average size of the subset of nodes required to resolve a

violation (Vr).

The overall processing time, Ot, is then LTs + NvVrTs. In our

experiments, CD improved over CS in all these parameters; results

for 12 nodes are provided in Table 1.

Improvement Ts Vr Ot

ratio (CS to CD) 3.1 3.7 5.1

Table 1: average CPU cost, CS vs. CD.

The absolute running times were as follows: for a stream of

length 2M, and sketch size 1600×11, overall time was about 2.1K

seconds for CD (15K violating rounds) and 9.8K (74K violating

rounds) for CS.

In Fig. 16 the average improvement factor in running times for

violation recovery (which equals VrTs) is plotted for an increasing

number of nodes.

Dependence on the sketch parameters. Recall (Section 4.1) that

the sketch parameters ǫ (respectively δ) determine the number of

sketch columns (respectively rows). CPU cost was proportional to

the sketch size (rows times columns)10. While the improvement

factor (in communication reduction) of CD over CS did not depend

on the number of sketch columns, it generally modestly increased

with the number of sketch rows (Fig. 17).

10For CD vs. CS CPU cost, please see first part of this sub-section.
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Figure 16: Comparison of CPU time, CS vs. CD.
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Figure 17: Dependence on the number of sketch rows.

6.2 Comparison to the Error Vectors method
Another approach for lowering the communication cost of mon-

itoring function fN () (Section 4) was proposed in [11], which we

refer to as the error vectors method. The idea is to reduce com-

munication (when a local violation occurs at node i) by sending

not the node’s drift matrix di, but only the (much smaller) vector

consisting of the norms of di’s rows. If M is the reference matrix,

then it follows from the triangle inequality that fN (M +
∑

i di) ≤
medk(||Mk||+

∑

i ||(di)k||)2 (where Mk resp. (di)k denotes the

k-th row of M resp. di). Thus monitoring an upper bound for fN ()
can be replaced by monitoring medk(||Mk||+

∑

i ||(di)k||)2.

The error vector technique can easily be combined with the much

improved safe zones derived by CD. However, since the error vec-

tors method approximates ||∑i(di)k|| by its upper bound
∑

i ||(di)k||,
the tightness of this approximation is crucial to its success.

We remind that in [11] only the cash register model was assessed

experimentally, where distributed streams are append-only. Fig. 18

contrasts three methods on append-only streams: CD, EV-CS (the

technique of [11]) and EV-CD (combining error vectors with our

CD safe zones). As can be seen, for the cash register workload,

both CD and EV-CD consistently outperform EV-CS (and CS), al-

beit by a modest factor.

Next, we experimentally evaluate our methods on streams with a

sliding window, which follow the so-called turnstile model, where

streams may have both insertions and deletions. The communi-

cation costs, both in terms of messages and in terms of data size,

are depicted in Fig. 19. Here it can be seen that the error vec-

tor technique increases the number of messages of the monitoring

task by up to two orders of magnitude, for sliding window streams.

Thus, despite these messages being much smaller for the error vec-

tor case, the amount of data transmitted increases significantly; The

pure CD method clearly our-performs all other methods, both in

terms of bytes sent and in terms of number of messages.

To explain this massive increase in the number of messages, we

empirically assess the quality of the approximation of ||∑i(di)k||

554



����

����

����

���

����

����

�� �� ��

�
��
�
��
��
��
	

��
��
�

	
��
�����	��
�

������������	��
���������
�����

� ������������	��
	��

��


����


����

Figure 18: Total data sent in the cash register case: compari-

son of CS to CD, with the error vectors approach (“EV”) and

without. The results are w.r.t the basic CS algorithms (without

EV).
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Figure 19: Number of messages (top) and total data sent (bot-

tom) in the turnstile case: comparison of CS to CD, with the

error vectors approach (“EV”) and without. Note that top fig-

ure is in logarithmic scale. The advantage of CD in this case is

very clear.

by
∑

i ||(di)k||, both for the cash register and the turnstile model.

The results are depicted in Fig. 20. It can be seen that, for the

cash register model, the approximation applied by the error vectors

method is reasonably tight (larger by about 15% than the actual

value on average); by contrast, for the turnstile model, it is larger

than the actual value by a factor close to 350%. Thus in this case,

the bound applied in the error vectors method provides a poor ap-

proximation to the original drift matrices, and this causes numerous

false alarms to be sent, resulting in a large communication over-

head.

Note that our experimental results are backed by a theoretical

argument (which is too lengthy to include here, but will appear in

the full paper), predicting that, asymptotically, the ratio of the error

vectors bound to the actual value is on average equal to
√

4/3 for
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Figure 20: The empirical distribution of the ratio of the upper

bound used in the “error vectors” approach to the actual value,

turnstile model (top) and cash register model (bottom). Data is

from Cdad (Section 6), 20 nodes.

the cash-register case, and to
√
m for the turnstile model, where m

is the number of nodes. This reaffirms that the error vectors method

will not perform as well as CD for the turnstile model.

7. EXTENSIONS: JOIN AGGREGATES
A more general problem than monitoring norms and range queries

is that of monitoring the inner product of two dynamic vectors (of-

ten referred to as the join). The join can also be approximated

with AMS sketches. Typical applications include estimating the

join size [24] and the estimation of the correlation between two

vectorial quantities, e.g., frequency distributions; for example, one

may be interested in the correlation between the purchase data in

two different retail stores.

In order to define a convex decomposition (CD) for the join op-

eration, note that 〈x, y〉, the inner product of two vectors x, y,

is equal to
‖x+y‖2−‖x−y‖2

4
(this is an extension of the identity

ab = (a+b)2−(a−b)2

4
for scalars a, b.) By applying a rotation to

align the axes with x−y, x+y, then (since rotation does not change

the norm) it follows that monitoring 〈x, y〉 is equivalent to moni-

toring ‖x‖2−‖y‖2. Let us look at the condition ‖x‖2−‖y‖2 ≤ T ,

and assume T > 0 (other cases are similarly treated). The set of

all x, y satisfying this inequality is called a hyperboloid (see Fig.

21). A convex decomposition of the hyperboloid can be defined as

follows: for a fixed y, note that the set {x| ‖x‖2 ≤ ‖y‖2 + T}
is convex, since it is just a sphere with radius

√

‖y‖2 + T . Thus

ranging over y defines a CD, each set of which is a “slice” through

the hyperboloid (we note here, without proof, that it is impossible

to find a finite CD of the hyperboloid). In Fig. 21, a hyperboloid

and a “slice” through it are depicted in three dimensions.
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It remains to show how to quickly determine safe zone contain-

ment. Due to lack of space, this technical discussion cannot be

included here; we refer to an extended version of this paper, with

an appendix which details the solution [1].

Figure 21: The hyperboloid defined by x2 + y2 − z2 = 1, and a

“slice” parallel to the X−Y plane. Note that, while the hyper-

boloid is not convex, every such slice is convex; this holds in any

dimension. The CD is defined by the union of all such slices.

In Fig. 22, the communication overhead for monitoring the join

with the CS and CD methods is compared. As in [11], two streams

were created by splitting the records (the Wcup dataset was split

on the clientID attribute, and Cdad was split on the site attribute).

While the improvement factor of CD over CS is larger for the Wcup

data, it increases for both data sets as the number of nodes in-

creases.
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Figure 22: Combined message cost for monitoring the join, CS

vs. CD.

8. CONCLUSIONS
We presented a monitoring algorithm for a distributed stream

system, which is based on a convex decomposition (CD) of a sub-

set of the queried function’s domain, and proved that it always

improves on the covering spheres (CS) method. To apply CD, a

non-redundant convex decomposition should be first constructed.

We showed how to achieve this for an important family of queries,

namely range and norm queries over distributed streams, for the

general case in which both negative and positive updates of the

frequency counts are allowed. Experiments yielded substantial im-

provement over the state-of-the-art. Future research will concen-

trate on applying CD to other functions and scenarios.
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