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ABSTRACT
Subgraph Isomorphism is a fundamental problem in graph
data processing. Most existing subgraph isomorphism algo-
rithms are based on a backtracking framework which com-
putes the solutions by incrementally matching all query ver-
tices to candidate data vertices. However, we observe that
extensive duplicate computation exists in these algorithms,
and such duplicate computation can be avoided by exploit-
ing relationships between data vertices. Motivated by this,
we propose a novel approach, BoostIso, to reduce duplicate
computation. Our extensive experiments with real datasets
show that, after integrating our approach, most existing
subgraph isomorphism algorithms can be speeded up sig-
nificantly, especially for some graphs with intensive vertex
relationships, where the improvement can be up to several
orders of magnitude.
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1. INTRODUCTION
The importance of graph data has long been recognized

by industry as well as the research community. A funda-
mental processing requirement for graph data applications
is subgraph isomorphism search. That is, in a given data
graph, retrieve all subgraphs which are isomorphic to the
query graph.

As well known, subgraph isomorphism is a NP-Complete
problem [5], and extensive work has been done in trying to
solve it in reasonable time for real datasets. Most subgraph
isomorphism algorithms are based on a backtracking method
which computes the solutions by incrementally enumerating
and verifying candidates for all vertices in a query graph [9].
A variety of techniques has been proposed to accelerate the
matching process, such as matching order selection, efficient
pruning rules and pattern-at-a-time matching strategies (see
Section 2 for a brief survey of these techniques). However,
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we observe that all existing algorithms suffer from extensive
duplicate computation that could have been avoided by ex-
ploiting the relationships between vertices in the data graph,
as shown in the following examples.
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Figure 1: Example Query Graphs and Data Graphs

Example 1. Consider the query graph Gq and the data
graph G in Figure 1. Assume the matching order is u1-
u2-u3-u4. Each query vertex u in Gq has a candidate list
C(u) which contains the data vertices having the same la-
bel as u. Then we have C(u1) = {v1, v2, v3}. In the back-
tracking process, v1, v2, v3 will be checked one by one to see
whether they can match u1. For each of them, there are
|C(u2)|×|C(u3)|×|C(u4)| combinations to be verified. How-
ever, observe that the set of neighbors of both v1 and v3 are
subsets of that of v2. Therefore, if v2 is first computed and
fails to match u1, then v1 and v3 can be known not to be
able match u1 immediately, without further computation.

The above example shows that, if the candidate vertices in
C(u) are checked in an appropriate order, then some dupli-
cate computation may be avoided. Note that some previous
algorithms considered the ordering of query vertices, but to
the best of our knowledge, they did not consider the ordering
of candidate vertices in the data graph.

Example 2. Consider the query graph Gq in Figure 1 (a)
and the data graph G′ in Figure 1 (d). In G′, v1 and v2 share
exactly the same set of neighbors. If there is any embedding
f involving v1, we may get another embedding simply by
replacing v1 with v2 in f , and vice versa. For instance,
from the embedding {(u1, v1), (u2, v3), (u3, v5), (u4, v6)}, we
can obtain another embedding {(u1, v2), (u2, v3), (u3, v5),
(u4, v6)} by replacing v1 with v2.

Example 2 shows that, if data vertices have the same
neighbourhood structure, then they can be regarded as “equiv-
alent” in that if one can be matched to a query vertex, so
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can the others. Thus we only need to verify one of them,
instead of all of them.

Example 3. Consider the query graph Gq′ in Figure 1(b)
and the data graph G in Figure 1(c). Although data vertices
v7 and v1006 do not have identical neighbour set, their B-
labeled neighbours are identical. Notice that the query vertex
u3 has only a B-labeled neighbour. Therefore, if v7 can be
matched to u3, then v1006 can also be matched to u3, and
vice versa.

Example 3 shows that, even if two vertices in the data
graph do not share the same set of neighbours, they may
still be regarded as “equivalent” with respect to a specific
query vertex when searching for isomorphic subgraphs.

The above examples motivate us to identify useful rela-
tionships between data vertices and develop techniques to
exploit such relationships in speeding up subgraph isomor-
phism search. We find that the vertex relationships are
abundant in many real graphs, such as protein networks,
collaboration networks and social networks. For instance, in
Human (a protein interaction network), more than 53% of
data vertices hold equivalent relationships and among those
that are not equivalent, 56.8% hold containment relation-
ships. In Youtube (a social network), more than 37% of data
vertices can be reduced by equivalent relationships and a
further 42% of data vertices hold containment relationships.

Contributions. We make the following contributions:

1. We define four types of relationships between vertices
in the data graph, namely syntactic containment, syn-
tactic equivalence, query-dependent containment and
query-dependent equivalence. We show some interest-
ing properties of such relationships.

2. We show how the original data graph can be trans-
formed into an adapted hypergraph Gsh based on the
first two types of relationships identified above, and
how Gsh can be used to speed-up subgraph isomor-
phism search. Gsh can be built off-line, and used for
any query graph.

3. To further reduce duplicate computation using the last
two types of relationships, we propose BoostIso, an ap-
proach that uses on-line Dynamic Relationship Tables
with respect to each specific query graph, as well as
Gsh. BoostIso can be integrated into the generic sub-
graph isomorphism framework and used by all back-
tracking algorithms.

4. We conduct extensive experiments to show the vertex
relationships in realistic scenarios. Also by implement-
ing five subgraph isomorphism algorithms with the in-
tegration of our approach, we show that most existing
subgraph isomorphism algorithms can be significantly
speeded-up, especially for some datasets with inten-
sive vertex relationships, where the improvement can
be up to several orders of magnitude.

Paper Organization. Section 2 discusses related work.
Section 3 gives the preliminaries. Section 4 defines the four
types of relationships between data vertices. Section 5 pro-
poses the algorithm to transform the data graph into an
adapted graph Gsh. Our new approach BoostIso is presented
in Section 6. Section 7 presents the experiments. Section 8
concludes the pager.

2. RELATED WORK
Existing Subgraph Isomorphism Algorithms. Sub-
graph isomorphism has been investigated for many years.
Existing algorithms can be divided into two classes: (1)
Given a graph database consisting of many small data graphs,
retrieve all the data graphs containing a given query graph.
(2) Given a query graph, find all embeddings in a single
large graph. Our work belongs to the second class. Existing
algorithms falling into this class include Ullmann [15], VF2
[3], QuickSI [12], GraphQL [7], SPath [17], STW [13] and
TurboIso [6]. Most of them follow a backtracking frame-
work. The techniques used to accelerate the matching pro-
cess are matching order optimization, efficient pruning rules
and pattern-at-a-time strategies, as briefly surveyed below.

Matching Order Optimization. The Ullmann algorithm [15]
does not define the matching order of the query vertices.
VF2 [3] starts with a random vertex and selects the next
vertex which is connected with the already matched query
vertices. By utilizing global statistics of vertex label fre-
quencies, QuickSI [12] proposes a matching order which ac-
cesses query vertices having infrequent vertex labels as early
as possible. In contrast to QuickSI’s global matching order
selection, TurboIso [6] divides the candidates into separate
candidate regions and computes the matching order locally
and separately for each candidate region. Both STW [13]
and TurboIso [6] give higher priority to query vertices with
higher degree and infrequent labels.

Efficient Pruning Rules. The Ullmann algorithm [15] only
prunes out the candidate vertices having a smaller degree
than the query vertex. While VF2 [3] proposes a set of feasi-
bility rules to prune out unpromising candidates, namely, 1-
look-ahead and 2-look-ahead rules. SPath [17] uses a neigh-
bourhood signature to index the neighbourhood information
of each data vertex, and then prunes out false candidates
whose candidate signature does not contain that of the corre-
sponding query vertex. GraphQL [7] uses a pseudo subgraph
isomorphism test. TurboIso [6] exploits a neighborhood label
filter to prune out unpromising data vertices.

Pattern-At-A-Time Strategies. Instead of the traditional vertex-
at-a-time fashion, SPath [17] proposes an approach which
matches a graph pattern at a time. The graph pattern used
in SPath is path. TurboIso [6] rewrites the query graph into
a NEC tree, which matches the query vertices having the
same neighbourhood structure at the same time.

Different from these previous techniques, our method fo-
cuses on (1) reducing the search space by grouping “equiv-
alent” vertices together, and (2) optimizing the candidate
vertex matching order to avoid duplicate computation. Our
approach is not a single algorithm, it is an approach that
can be integrated into all existing backtracking algorithms.

Graph Summary and Graph Compression. The group-
ing of data vertices into hypernodes in our approach bears
some similarity to structural summaries [10, 8, 2], graph
summarization [11, 14], and query-preserving graph com-
pression [4]. Structural summaries are designed for path
expressions, hence they group vertices sharing the same set
of incoming label paths into a hypernode. The graph sum-
marization proposed in [11] is in effect a compression tech-
nique that aims at saving storage space. It consists of two
parts: a graph summary and a set of edge corrections. The
summary part groups nodes with similar neighbors into a
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hypernode, while the edge corrections are used to ensure
accuracy during decompression. A second type of graph
summarization aims at reducing the size of a large graph
to help users understand the characteristics of the graph.
These techniques group vertices into hypernodes based on
a variety of statistics, such as node attributes values [16],
degree distribution, or user-specified node attributes [14].
More closely related to our work is [4], which proposes a
framework for query-preserving graph compression as well as
two compression methods that preserve reachability queries
and pattern matching queries (based on bounded simula-
tion) respectively. Both methods are based on equivalence
relations defined over the vertices of the original graph G,
and compress G by merging vertices in the same equiva-
lent class into a single node. Part of our adapted graph is
based on a similar idea, that is, we combine vertices that
are “equivalent” for subgraph isomorphism queries into a
hypernode, and like the compressed graphs for reachability
and for bounded simulation, our adapted graph can be di-
rectly queried for subgraph isomorphism search. However,
our adapted graph goes beyond grouping nodes into hyper-
nodes. It also includes edges that represent “containment”
relationships for subgraph isomorphism, which can be uti-
lized to effectively optimize the candidate vertex matching
order. Moreover, besides the adapted graph constructed of-
fline, we provide a method to further speed-up query pro-
cessing on-the-fly by utilizing query-dependent equivalence
and query-dependent containment relationships among data
vertices, which proves to be highly effective in our experi-
ments. These, to the best of our knowledge, have not been
studied in previous work.

3. PRELIMINARIES
In this section, we review some fundamental concepts and

the backtracking framework widely used to compute sub-
graph isomorphism.

Data Graph and Query Graph. A data graph is an
undirected, vertex-labeled graph denoted as G = (V , E,
Σ, L), where (1) V is the set of vertices; (2) E is a set of
undirected edges; (3) Σ is a set of vertex labels; (4) L is a
function that associates each vertex v in V with a label L(v)
∈ Σ.

A query graph is an undirected, vertex-labeled graph de-
noted as Gq = (Vq, Eq, Σq, Lq), where Vq, Eq, Σq, Lq have
the same meaning as V , E, Σ, L of data graph G. In most
cases, the query graph is much smaller than the data graph.

We assume the query graph and data graph are both con-
nected, and will use data vertices (resp. query vertices) to
refer to the vertices in the data graph (resp. query graph).
In this paper, we only study undirected graph with vertex
labels, but our approach can be applied to directed graphs
as well.

Subgraph Isomorphism. Given a query graph Gq = (Vq,
Eq, Σq, Lq) and a data graph G = (V , E, Σ, L), a subgraph
isomorphism is an injective function f : Vq → V such that:

(1) Lq(u) = L(f(u)) for any vertex u ∈ Vq;

(2) For each edge (ui, uj) ∈ Eq, there exists an edge
(f(ui), f(uj)) ∈ E.

f is also called an embedding. Note that f can be represented
as a set of vertex pairs (u, v) in which u ∈ Vq is mapped to
v ∈ V (We also say v is matched to u).

The Generic Framework Most subgraph isomorphism al-
gorithms are based on a backtracking strategy which incre-
mentally finds partial solutions by adding join-able candi-
date vertices. A recent survey [9] presents a generic frame-
work for subgraph isomorphism search, which is shown in
Algorithm 1.

Algorithm 1: GenericFramework

Input: Data graph G and query graph Gq

Output: All embeddings of Gq in G
1 f ← ∅
2 for each u ∈ Vq do
3 C(u)←initializeCandidates(Gq, G, u)

if C(u) = ∅ then
return

6 subgraphSearch(Gq, G, f)
Subroutine subgraphSearch(Gq, G, f)

1 if |f | = |Vq| then
2 report f
3 else
4 u← nextQueryVertex ()
5 refineCandidates(f, u, C(u))
6 for each v ∈ C(u) and v is not matched do
7 if isJoinable(f, v,G,Gq) then
8 updateState(f, u, v,G,Gq)
9 subgraphSearch(Gq, G, f)

10 restoreState(f, u, v,G,Gq)

In Algorithm 1, the inputs are a query graph and a data
graph, the outputs are all the embeddings. Each embedding
is represented by a list f which comprises pairs of a query
vertex and a corresponding data vertex. initializeCandidates
is to find a set of candidate vertices C(u) for each query ver-
tex u. If any C(u) is empty, the algorithms terminates imme-
diately. In each recursive call of subgraphSearch, once the
size of f equals to the number of query vertices, a solution
is found and reported. nextQueryVertex returns the next
query vertex to match according to the query vertex match-
ing order. Pruning rules are implemented in refineCandi-
dates to filter unpromising candidates. isJoinable is the fi-
nal verification to determine whether the candidate vertex
can be added to the partial solution. updateState adds the
newly matched pair (u, v) into f while restoreState restores
the partial embedding state by removing (u, v) from f .

4. RELATIONSHIPS BETWEEN DATA VER-
TICES

In this section, we identify four types of relationships be-
tween the vertices of a data graph and show some useful
properties of these relationships.

4.1 Syntactic Containment

Definition 1. Given a data graph G and a pair of ver-
tices vi, vj in G, we say vi syntactically contains (or sim-
ply S-contains) vj, denoted vi � vj, if L(vi) = L(vj) and
Adj(vj)−{vi} ⊆ Adj(vi)−{vj}, where Adj(vi) is the neigh-
bour set of vi and Adj(vj) is the neighbor set of vj.

The above definition defines a binary relation among the
vertices of G. If vi � vj , then vi and vj have the same label,
and the neighbour set (excluding vi) of vj is a subset of the
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neighbour set (excluding vj) of vi. Hereafter, we refer to
syntactic containment relation as SC relation for short.

Example 4. In the data graph G in Figure 1(c), L(v1) =
L(v2) = L(v3). Also Adj(v1) = {v4, v5}, Adj(v2) = {v4, v5, v6}
and Adj(v3) = {v5, v6}. Because Adj(v1)−{v2} ⊆ Adj(v2)−
{v1} and Adj(v3)−{v2} ⊆ Adj(v2)−{v3}, we have v2 � v1

and v2 � v3.

The SC relation is transitive, as shown in the proposition
below.

Proposition 1. For any three nodes vi, vj and vk in G,
if vi � vj and vj � vk, then vi � vk.

Proof. By definition, if vi � vj and vj � vk, we have
Adj(vj) − {vi} ⊆ Adj(vi) − {vj} and Adj(vk) − {vj} ⊆
Adj(vj)− {vk}. Combining these two formulas we get

Adj(vk)− {vi} − {vj} ⊆ Adj(vi)− {vk} − {vj} (1)

There are three cases: (a) vj /∈ Adj(vk), (b) vj ∈ Adj(vk)
and vj ∈ Adj(vi), (c) vj ∈ Adj(vk) and vj /∈ Adj(vi). In
the first two cases, we can easily infer Adj(vk) − {vi} ⊆
Adj(vi) − {vk} from formula (1). That is, vi � vk. Next
we show the third case is not possible. This is because in
this case vi /∈ Adj(vj), and vk ∈ Adj(vj). Thus if vi ∈
Adj(vk), then Adj(vk)−{vj} * Adj(vj)−{vk}, contradicting
vj � vk; and if vi /∈ Adj(vk), then vk /∈ Adj(vi), hence
Adj(vj)− {vi} * Adj(vi)− {vj}, contradicting vi � vj .

Since we assume the data graph is connected, for any two
vertices vi, vj in V , if vi � vj , then either vi is a neighbour
of vj , or vi and vj share at least one common neighbour.
Therefore, we have

Proposition 2. Any two data vertices satisfying the SC

relation is 1-step reachable or 2-step reachable from each
other. That is, there is a 1-edge or 2-edge path between
them.

The next proposition indicates how the SC relation can be
used in subgraph isomorphism search. Intuitively, if vi � vj ,
then replacing vj with vi (assuming vi is unused) in any
embedding will result a new embedding.

Proposition 3. Given a pair of vertices vi, vj in data
graph G, if vi � vj, then for any embedding f of any query
graph Gq in G, where f maps query vertex u to vj, and maps
no query vertex to vi, f ′ = f − {(u, vj)} + {(u, vi)} is also
an embedding of Gq in G.

Proof. We only need to show that f ′ maps every edge
incident on u in the query graph to an edge in the data
graph G. Suppose (u, u′) is an edge in the query graph.
Since f is an embedding, (f(u), f(u′)) is an edge in G, that
is, (vj , f(u′)) is an edge in G. Since vi � vj , we know there
is an edge (vi, f(u′)) in G (note that f(u′) 6= vi because we
assume vi is not used in f). Since f ′(u) = vi, and f ′(u′) =
f(u′), we know (f ′(u), f ′(u′)) is an edge in G.

From the above proposition, it is also clear that if vi � vj
and vi is pruned in the matching process, then vj can also
be safely pruned. This is because if vi cannot be matched to
a query vertex by some embedding, then vj cannot either.

Example 5. Consider the data graph G in Figure 1(c),
we have v2 � v1 and v2 � v3. For query graph Gq, v2 fails
to match to query vertex u1, thus we know immediately that
v1 and v3 cannot be matched to u1.

4.2 Syntactic Equivalence

Definition 2. Given a data graph G and any pair of ver-
tices vi, vj in G, we say vi is syntactically equivalent (or
simply S-equivalent) to vj, denoted vi ' vj, if L(vi) = L(vj)
and Adj(vj)− {vi} = Adj(vi)− {vj}.

Example 6. Consider data graph G′ in Figure 1(d). v1

and v2 share the same label and the same set of neighbors.
Thus we have v1 ' v2.

Clearly, syntactic equivalence is two-way syntactic con-
tainment. It defines a relation among the vertices of G which
is reflexive, symmetric and transitive (The transitivity is ev-
ident from Proposition 1). Thus the syntactic equivalence
relation is a class. Hereafter, we refer to syntactic equiva-
lence relation as SE relation for short.

From Proposition 3, we know that if two data vertices
vi, vj satisfy the SE relation, then if there is an embedding f
that maps a query vertex to vi, there is also an embedding
that maps the query vertex to vj (if vj is not used in f), while
the two embeddings are identical on other query vertices. If
an embedding f maps u1 to vi, and u2 to vj , then swapping
the images of u1 and u2 will result in another embedding.

4.3 Query-Dependent Containment
Before we give the definition of query-dependent contain-

ment, let us first define query-dependent neighbors.

Definition 3. Given a query graph Gq, vertex u ∈ Vq,
a data graph G, and vertex v ∈ V , where L(v) = Lq(u),
the set of query-dependent neighbors of v w.r.t u, denoted
QDN(Gq, u, v), is the set of data vertices

{
vi|vi ∈ Adj(v), L(vi) ∈

{Lq(ui)|ui ∈ Adj(u)}
}
.

Intuitively, QDN(Gq, u, v) is a subset of a v’s neighbors
with the requirement that the labels of these neighbours
must appear as labels of u’s neighbours in the query graph.

Example 7. Consider the query graph Gq in Figure 2(a)
and the data graph G in Figure 2(c). QDN(Gq, u1, v4) =
{v9, v11, v13, v14}. But for query graph Gq′ in Figure 2(b),
u1 has no neighbor with label D, any data vertices with label
D will be ignored. Thus we have QDN(Gq′ , u1, v4) = {v9,
v13, v14}.

We can now define query-dependent containment.

Definition 4. Given a query vertex u in Gq, and two
data vertices vi, vj in G, we say vi query-dependently con-
tains (or simply QD-contains) vj with respect to u and Gq,
denoted vi �(Gq,u) vj, if L(vi) = L(vj) and QDN(Gq, u, vj)−
{vi} ⊆ QDN(Gq, u, vi)− {vj}.

Hereafter, we refer to query-dependent containment rela-
tion as QDC relation for short. The essential difference be-
tween QDC and SC is that latter is not related to any query
graph, but the former is defined with respect to a specific
query vertex of a query graph. It is easy to verify that, if
vi � vj holds, then vi �(Gq,u) vj holds for any query vertex
u of any query graph Gq.

Example 8. Consider the vertices v3 and v4 of data graph
G in Figure 2(c) and vertex u1 of query graph Gq′ in Fig-
ure 2(b). We have QDN(Gq′ , u1, v3)={v9, v10, v13, v14} and
QDN(Gq′ , u1, v4)={v9, h13, h14}. Hence QDN(Gq′ , u1, v3)
⊂ QDN(Gq′ , u1, v4). Therefore, we have v3 �(Gq,u1) v4.
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Figure 2: A Running Example

Similar to SC, QDC is transitive, and it can be utilized in
searching for isomorphic subgraphs.

Proposition 4. Given data vertices vi, vj in G and a
query vertex u in Gq, if vi �(Gq,u) vj, then for each em-
bedding f of Gq in G that maps u to vj but no query vertex
to vi, f

′ = f − {(u, vj)}+ {(u, vi)} is also an embedding of
Gq in G.

The proof of Proposition 4 is similar to that of Proposi-
tion 3. Hence it is omitted.

4.4 Query-Dependent Equivalence

Definition 5. Given a query vertex u in Gq and two
data vertices vi, vj in G, we say vi is query-dependently
equivalent (or simply QD-equivalent) to vj with respect to
u and Gq, denoted vi '(Gq,u) vj, if L(vi) = L(vj) and
QDN(Gq, u, vj)− {vi} = QDN(Gq, u, vi)− {vj}.

Clearly, query-dependent equivalence is two-way query-
dependent containment. Using Proposition 4, we can infer
that if vi '(Gq,u) vj , then for any embedding f : Gq → G

that maps u to vi but no query vertex to vj , f
′ = f − {(u,

vj)}+ {(u, vi)} is also an embedding, and vice versa.
Hereafter, if vi �(Gq,u) vj but not vi '(Gq,u) vj , then

we say vi strictly QD-contains vj w.r.t u and Gq, and will
denote it by vi �(Gq,u) vj . We refer to query-dependent
equivalence relation as QDE relation for short.

5. GRAPH ADAPTATION
In this section, we present an algorithm to transform the

data graph into an adapted hypergraph (or simply adapted
graph) which is able to answer subgraph isomorphism more
efficiently. We call this process graph adaptation.

5.1 Adapted Graph for Subgraph Isomorphism
We need to define syntactic equivalence class first.

Definition 6. Given a data graph G, the syntactic equiv-
alence class of a data vertex v in G, denoted SEC(v), is a
set of data vertices which are S-equivalent to v.

As mentioned earlier, the syntactic equivalence relation is
a class. Therefore, any pair of vertices in the same syntactic
equivalence class are S-equivalent.

The next proposition is important.

Proposition 5. Data vertices in the same syntactic equiv-
alence class either form a clique (i.e., they are pairwise ad-
jacent), or are pairwise non-adjacent.

Proof. It suffices to prove that, for any three distinct
data vertices vi, vj , and vk in the same syntactic equivalent
class, if vi, vj are adjacent, then vj , vk are also adjacent.
Since vi ' vk, by definition, Adj(vi) − {vk} = Adj(vk) −
{vi}. Therefore, if vi and vj are adjacent, that is, vj is in
Adj(vi), then vj is also in Adj(vk), hence vj and vk are also
adjacent.

Proposition 5 implies that the data vertices in the same
SEC(v) are either all 1-step reachable from each other (when
they form a clique) or all 2-step reachable from each other
(when they are not adjacent to each other but share the
same set of neighbours).

Definition 7 (Adapted hypergraph). Given a data
graph G = (V , E, Σ, L), the adapted hypergraph of G is a
graph Gsh = (Vsh, Ese, Esc, Σsh, Lsh), such that

(a) Vsh = {h|h = SEC(v), v ∈ V } is the set of hypernodes.

(b) Ese is a set of undirected edges such that, an edge
between h and h′ exists iff (vi, vj) ∈ E, where h =
SEC(vi) and h′ = SEC(vj).

(c) Esc is the smallest set of directed edges such that a
path from h to h′ exists iff h � h′.

(d) Σsh = Σ.

(e) For each h ∈ Vsh, Lsh(h) = L(v) where h = SEC(v).

Remark The hypergraph Gsh captures the structure of the
original data graph as well as the SE and SC relationships
between the data vertices.

1. Each hypernode groups all the S-equivalent data ver-
tices together, thus two data vertices are S-equivalent
if and only if they are in the same hypernode.

2. Ese is a set of undirected edges that capture the struc-
ture of the original graph. Observe that if there is an
edge between v1 ∈ h1 and v2 ∈ h2, then there is an
edge between every pair of vertices vi, vj where vi ∈ h1

and vj ∈ h2.

3. Esc is a set of directed edges that capture SC relations
among the hypernodes. Observe that for any two hy-
pernodes h1 and h2, h1 � h2 if and only if v1 � v2 for
every pair of vertices where v1 ∈ h1 and v2 ∈ h2. It
is worth noting that Esc is a minimal set of directed
edges such that if hi � hj , there is a path from hi to
hj . This requirement is to reduce the size of Gsh.
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4. The hypergraph can be divided into two parts: the
SE graph and the SC graph. The SE graph consists of
the hypernodes and the undirected edges, while the
SC graph consists of the hypernodes and the directed
edges. Note that these two parts share the same set of
hypernodes.

Example 9. Consider the data graph in Figure 2(c). We
show the adapted hypergraph Gsh in two parts: SE graph in
Figure 2(d) and SC graph in Figure 2(e). In Figure 2(e)
we omit the hypernodes that are not incident on the directed
edges.

Definition 8 (Hyperembedding). Given a query graph
Gq and the adapted hypergraph Gsh, a hyperembedding of
Gq in Gsh is a mapping fh: Vq → Vsh, such that

(1) Lsh(fh(u)) = Lq(u) for all u ∈ Vq.

(2) For each edge (ui, uj) ∈ Eq, if fh(ui) 6= fh(uj), there
exists an edge (fh(ui), fh(uj)) ∈ Ese.

(3) For each edge (ui, uj) ∈ Eq, if fh(ui) = fh(uj), all the
data vertices in fh(ui) form a clique.

(4) For each h ∈ Vsh, h can be matched to up to |SEC(v)|
vertices of Vq, where h = SEC(v) and |SEC(v)| is the
number of data vertices in SEC(v).

The following theorem shows the relationship between hy-
perembeddings and subgraph isomorphism.

Theorem 6. Suppose Gsh is the adapted hypergraph of
data graph G, and Gq is any query graph.

(1) Let fh be a hyperembedding of Gq in Gsh. Let f :
Vq → V map every node u ∈ Vq to a data vertex v ∈
fh(u) such that v has not been matched to other query
vertices by f . Then f is an embedding of Gq in G.

(2) Every embedding of Gq in G can be obtained from a hy-
perembedding of Gq in Gsh, in the way described above.

Proof. (1) First, we note that f is a valid injective func-
tion: it maps different nodes in Vq to different nodes in V ,
and since fh maps no more than |h| query vertices to h, we
have enough data vertices in h to be matched to query ver-
tices which are mapped to h by fh. Second, for every u ∈ Vq,
we have L(f(u)) = Lh(fh(u)) = Lq(u). Third, for every
edge (u, u′) ∈ Eq, either there is an edge (fh(u), fh(u′)) in
Gsh or fh(u) = fh(u′) and fh(u) is a clique. In both cases,
there is an edge (f(u), f(u′)) in G. Therefore, f is an em-
bedding of Gq in G.

(2) Let f be an embedding of Gq in G. Construct a map-
ping fh : Vq → Vsh as follows: ∀u ∈ Vq, let fh map u to
the hypernode representing SEC(f(u)). It is easy to verify
that fh is a hyperembedding of Gq in Gsh, and f can be ob-
tained from fh by choosing f(u) ∈ SEC(f(u)) as the image,
for any u ∈ Vq.

A backtracking algorithm slightly modified from Algo-
rithm 1 can be used to find all hyperembedings, as we will
discuss later in Section 6.

Algorithm 2: Compute Adapted Graph

Input: Data graph G= (V,E,Σ, L)
Output: Adapted graph

Gsh = (Vsh, Ese, Esc,Σsh, Lsh)
1 Σsh ← Σ
2 for each v ∈ V do
3 if v is not visited then
4 mark v as visited, create hypernode h
5 h.isClique← false, set Lsh(h) = L(v)
6 Vsh ← Vsh ∪ {h}
7 for each v′ ∈ 1-step(v) and L(v′) = L(v) do
8 if v ' v′ then
9 h.isClique← true

10 add v′ to h and mark v′ as visited

11 if h.isClique is false then
12 for each v′ ∈ 2-step(v) and L(v′) = L(v) do
13 if v ' v′ then
14 add v′ to h and mark v′ as visited

15 for each edge (v, v′) ∈ E do
16 if v ∈ h, v′ ∈ h′ and h 6= h′ then
17 Ese ← Ese ∪ {(h, h′)}
18 for each h ∈ Vsh do
19 R(h)← {h′|h′ ∈ adj(h) ∪ 2-step(h),
20 Lsh(h) = Lsh(h′)}
21 for each h′ ∈ R(v) do
22 if h � h′ then
23 Esc ← Esc ∪ (h, h′)

24 transitiveReduction(Vsh, Esc)
25 return Gsh = (Vsh, Ese, Esc,Σsh, Lsh)

5.2 Building Adapted Graph
We give an algorithm, shown in Algorithm 2, for trans-

forming the original graph G into Gsh.
Algorithm 2 first assigns Σ to Σsh (Line 1) as Gsh shares

the same label set with the original graph. Then for each un-
visited data vertex v ∈ V , it marks v as visited and creates a
new hypernode h (Lines 2∼4). It initializes h by setting its
isCliques as false and its label as that of v (Line 5). Then it
puts v into h (Line 6). The flag isClique is used to indicate
whether h’s data vertices form a clique or only share the
same set of neighbours but not adjacent to each other. The
algorithm first iterates through all the neighbours of v and
finds all data vertices belonging to SEC(v) (Lines 7∼10). If
some S-equivalent vertices are found in its neighbours, then
there is no need to iterate through 2-step(v). Otherwise
the algorithm will try to find S-equivalent vertices in 2-step
reachability of v (Lines 11∼14). Once all the hypernodes
are obtained, the edges between hypernodes will be added
if there exists an edge between the data vertices in the cor-
responding hypernodes (Lines 15∼17). After the SE graph
is built, based on the SE graph, for each hypernode h ∈ Vsh,
the algorithm visits each node h′ in h’s neighbour set or in
h’s neighbour’s neighbour sets that have the same label as
h (Lines 18∼22). If h � h′, then an directed edge (h, h′) is
added to Esc (Line 22). After all the SC edges are found,
a transitive reduction is executed to minimize the number
of the SC edges. Transitive reduction has been well studied,
and we utilize an transitive reduction algorithm based on
the idea given in [1].

Example 10. Consider the data graph G in Figure 2(c).
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Algorithm 2 first finds S-equivalent vertices for each vertex of
each label. v1 is the first to be visited, h1 is created with label
A and v1 is put into h1. As v1 has no S-equivalent vertices
in its neighbours, then its 2-step reachable vertices having
label A, v2, v3, v3, v4, will be visited. Only v2 ' v1, thus v2

is marked as visited and added into h1. Because v1, v2 are
not a clique, h1.isClique = false. The same process goes
on with v6 and v7 being grouped into h5 and h5.isClique =
true. After all the hypernodes are created, edges between
hypernodes will be added. Because v1 ∈ h1, v9 ∈ h7 and
(v1, v9) ∈ V , we add (h1, h7) to Ese. Once the SE graph
is created (Figure 2(d)), SC graph will be built. We have
Adj(h1) − h2 ⊆ Adj(h2) − h1, h2 � h1, thus (h2, h1) is
added to Esc. Because h2 � h5 � h6, the SC edge between
h2 and h6 is removed by the transitive reduction. The final
SC graph is shown in Figure 2(e).

Complexity. For a vertex v ∈ V , we use 2-step-SL(v) to
denote the set of vertices that are reachable from v within
1 or 2 steps and have the same label as v. In Algorithm 2,
to find the hypernodes (Lines 2∼14), for each vertex v, we
may have to visit all of its neighbours and 2-step reachable
vertices. For each pair of vertices v1, v2, it takes d1 + d2 to
find their SE relationship where di is the degree of vi (We
note the neighbours are ordered by vertex ID). Therefore,
computing the hypernodes takes O(|V | × N × d) where d
is the maximal vertex degree in G and N is the maximal
value of |2-step-SL(v)| for all v ∈ V . Computing the SE

edges (Lines 15∼17) takes O(|E|). Computing the SC edges
(Lines 18∼22) takes no more than O(|V | × N × d). In ad-
dition, the complexity of transitive reduction is O(n3) for
a graph of n vertices [1]. Since the transitive reduction is
only carried out on hypernodes with the same label, line
23 takes O(Σl∈ΣNl

3) where Nl is the number of nodes with
label l. Therefore, the overall complexity for constructing
Gsh is O(|V | ×N × d + |E|+ Σl∈ΣNl

3).

6. BOOSTISO
We present our approach for subgraph isomorphism search

in this section. We refer to our approach as BoostIso.
In BoostIso, we search for hyperembeddings directly over

Gsh and then expand these hyperembeddings into embed-
dings. To reduce duplicate computation, we exploit QDC and
QDE relations as well as the SC and SE relations. For clarity,
we first present the revised algorithm for computing hyper-
embeddings when QDC and QDE relations are not considered.
Then we discuss how to integrate the QDC and QDE relation-
ships into the revised algorithm.

The data structures used are: (1) Two in-memory ad-
jacency lists to store the two parts of the adapted graph.
One is to store the SE graph, the other is to store the SC

graph. For each hypernode h, we first group its neighbours
by hypernode labels and then sort them in ascending order
according to hypernode ID in each group. This enables us to
compute the QDC and QDE relationships more efficiently. (2)
An inverted vertex label list for the SE graph to efficiently
access all hypernodes with a specific label.

6.1 Finding Hyperembeddings in GGGsh

Our approach for finding the hyperembeddings follows the
same framework as described in Algorithm 1 with the fol-
lowing modifications. (1) The isJoinable function is revised
to allow multiple query vertices to be mapped to the same

hypernode in Gsh. (2) To make use of the SC relationships
captured by the directed edges, we use a dynamic candidate
loading strategy, that is, in initializeCandidates, we initial-
ize C(u) with the hypernodes labeled with Lq(u) and having
no SC-Parents (SC-Parents of hypernode h refers to the hy-
pernodes that have a directed edge to h). Then we upload
a candidate h′ ∈ C(u) for testing only when its SC-parents
(namely those nodes that have a directed edge to h′) have all
been found to be able to match to u. (3) A boolean return
value is added to the subroutine subgraphSearch to facili-
tate the implementation of the dynamic candidate loading
strategy.

The revised isJoinable function and the process for dy-
namic candidate loading are presented in detail below. Note
that the algorithms in this section do not consider the QDC

and QDE relations. The revised subgraphSearch will be pre-
sented in Section 6.3.

6.1.1 The Revised isJoinable Function

Algorithm 3: Revised isJoinable

Input: Gsh, Gq, f , h and u
Output: true if (u, h) can be added to f , false

otherwise
1 for each ui ∈ Vq do
2 if ui is mapped by f then
3 if f(ui) 6= h then
4 if (ui, u) ∈ Eq and (f(ui), h) /∈ Esh then
5 return false

6 else
7 if (ui, u) ∈ Eq and h.isClique is false

then
8 return false

9 if usedT imes(h) ≥ |h| then
10 return false

11 return true

The revised isJoinable function is shown in Algorithm 3.
It takes Gq, Gsh, a partial hyperembedding f , a hypernode
h and a query vertex u as input, and checks whether (u, h)
can be added to f . Lines 1 to 5 are the usual checking which
ensures that the edge between u and each matched adjacent
vertex ui of u has a corresponding edge (f(ui), h) ∈ Esh. If
(ui, u) is an edge in G and ui is already mapped to h, then
h must be a clique (Lines 6∼8); and if any ui is mapped to
h already, then the number of times h is used in the partial
hyperembedding f (denoted usedT imes(h)) must be less
than the number of data vertices in h (Lines 9,10). The
correctness of the revised function follows directly from the
definition of a hyperembedding.

6.1.2 Dynamic Candidate Loading
Algorithm 4 outlines the dynamic candidate loading pro-

cess. It uses a candidate h which is known to match u in
at least one hyperembedding and the candidate list C(u) as
input. ump(hi) is used to track the number of unmatched
SC-Parents of hi. For each SC-Child hi of h, the algorithm
first initializes ump(hi) as the number of its SC-Parents if
ump(hi) is not defined yet (Lines 1∼4). Then, it decreases
ump(hi) by 1 (Line 5). If ump(hi) is decreased to 0, hi will
be added to the candidate list (Lines 6,7).
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Algorithm 4: DynamicCL

Input: C(u) and hypernode h matchable to u
Output: updated C(u)

1 Ch(h)← SC-Children(h)
2 for each hi ∈ Ch(h) do
3 if ump(hi) does not exist then
4 ump(hi)← SCGraphIndegree(hi)
5 ump(hi)← ump(hi)− 1
6 if ump(hi) is 0 then
7 add hi to C(u)

Remark. Recall that in Algorithm 1, after C(u) is initial-
ized and refined, previous algorithms verify all the candi-
dates in C(u) one by one in sequential order. In contrast,
the dynamic candidate loading in BoostIso allows us to dy-
namically load the candidate list based on the SC relation-
ship, so that the candidates which are S-contained by other
hypernodes will always be tested later than its SC-Parents.
If any one of its SC-Parents fails to match u, then they will
not be loaded and will not be tested.

Example 11. Consider the query graph Gq in Figure 2(a)
and the hypergraph Gsh in Figure 2(d),(e). Assume the
matching order is u1-u2-u3-u4. C(u1) is initialized with
{h2, h3, h4} in initializeCandidates. As h2 cannot be matched
to u1 in any embedding, h2’s SC-Children h1, h5 and h6 will
not be loaded and will not be tested. For query graph Gq′ in
Figure 2(b), all h2, h3, h4 can match u1, h1 and h5 will be
dynamically added into C(u1) and will be verified.

6.2 Utilizing QDC and QDE Relationships
Since QDC and QDE relationships are relative to specific

query vertices, we must find these relationships on-line. Boost-
Iso builds a dynamic relationship table(DRT ) to store these
relationships for each query vertex. In this section, we will
first present an algorithm for generating DRTs and then
discuss how to integrate the information in the DRTs when
searching for subgraph isomorphisms.

6.2.1 Building DRT
For each query vertex u, we build a DRT, denoted DRT (u),

which captures the QDC and QDE relations w.r.t u. As shown
in Table 1, DRT(u) is a table in which each tuple consists
of four columns with the hypernode as the index. For the
tuple indexed by hi, the second column, QDC-Children, con-
tains the hypernodes strictly QD-contained by hi and which
are indexed in the table (i.e., which appear in the first col-
umn), that is, {h|hi �(Gq,u) h, h is indexed}. The third
column, NumOfQDC-Parents, contains the number of hyper-
nodes indexed in the table that strictly QD-contain hi w.r.t
u. The fourth column, QDE-List, contains the hypernodes
QD-equivalent to hi, that is, {h|hi '(Gq,u) h}.

Table 1: DRT for (Gq′ , u1) and Gsh in Figure 2

Node QDC-Children NumOfQDC-Parent QDE-List
h2 {h3, h4} 0 ∅
h3 ∅ 1 {h4}

As the time consumed by building DRT s will be added
to the total time of answering the query, we want to mini-
mize the number of hypernodes indexed in the DRT , while

still capture some important QDC and QDE relationships. To
this end, we apply two filters to select the hypernodes to
be indexed. For each query vertex u we have a candidate
list C(u). (1) In the SE graph, we first apply a neighbor-
hood label frequency filter (NLF filter) [6] to remove un-
promising candidates from C(u). For each distinct label
l of u’s neighbors, NLF filter excludes the candidate v if
|adj(v, l)| ≤ |adj(u, l)| where |adj(v, l)| is the number of v’s
neighbors with label l. (2) We remove the hypernodes whose
SC graph in-degree is not 0. That is, we only consider the hy-
pernodes not S-contained by any other hypernodes. Then,
we build the DRT over the filtered candidate list. The sec-
ond filter makes it possible to miss some QDC and QDE rela-
tionships. However, the trade-off is that we will spend less
time building the DRTs . Note that we do not index hy-
pernodes which are listed in the QDE-List of another indexed
hypernode.

Example 12. Consider the query graph Gq′ and the hy-
pergraph Gsh in Figure 2. For query vertex u1, h1 will be
filtered by the NLF filter, h5 and h6 will be filtered as they
are S-contained by other hypernodes. Thus, only h2, h3, h4

are left for the DRT . As h3 '(Gq′ ,u1) h4, we put h4 into

the QDE-List of h3 and only index h3. The final DRT for u1

is shown in Table 1.

Algorithm 5: buildDRT

Input: A filtered candidate list C(u)
Output: DRT (u), the DRT for u

1 for each h ∈ C(u) do
2 for each hi ∈ C(u) and hi is after h in C(u) do
3 if h '(Gq,u) hi then
4 add hi to h tuple’s QDE-List
5 remove hi from DRT and C(u)

6 for each h ∈ C(u) do
7 for each hi ∈ C(u) and hi is after h in C(u) do
8 if h �(Gq,u) hi then
9 add hi to h’s QDC-Children

10 increase hi’s NumOfQDC-Parent by 1

11 else if hi �(Gq,u) h then
12 add h to hi’s QDC-Children
13 increase h’s NumOfQDC-Parent by 1

14 return dynamic relationship table

Algorithm 5 presents the method to compute the DRT .
For the candidate list C(u), it compares every pair of ver-
tices, and finds the QDE-List for each candidate hi. Those
nodes that are in the QDE-List of an indexed hypernode will
be removed from C(u) as they do not need to be indexed
(Lines 1∼ 5). Then it scans each pair of the remaining hy-
pernodes in C(u) again and then updates the corresponding
tuple of DRT according to the relationship (Lines 6∼13).

6.2.2 Integrating DRT into Hyperembedding Search
To exploit the QDC and QDE relationships captured in the

DRTs, we need to slightly modify the search process. Specif-
ically,

• In initializeCandidates, we first build the DRTs for
each filtered candidate list C(u) and then initialize
C(u) with those hypernodes indexed in DRT (u) whose
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NumOfQDC-Parents is 0. That is, we start with (a
subset of) those hypernodes which are not strictly S-
contained or QD-contained by other hypernodes.

• In isJoinable, we need to change Line 9 to usedT imes(h)
≥ |h|+ Σhi∈QDE−List(h)|hi|, that is, we ensure that the
number of times h is used in the partial hyperembed-
ding is less than the total number of data vertices in
h or in the hypernodes QD-equivalent to h.

• In DynamicCL, we need to put both the SC-Children
and QDC-Children into Ch(h). Also, h may have QDE

hypernodes which contain SC-Children. That is, we
need to modify Line 1 to Ch(h) ←SC-Children(h)
∪
⋃

h′∈QDE-List(h) SC-Children(h′) ∪ QDC-Children(h).

Besides, the initial value of ump(hi) should be changed
to SCGraphInDegree(h) + NumOfQDC-Parents(h) in
Line 4.

6.3 Putting It All Together

Algorithm 6: Revised SubgraphSearch

Input: Adapted graph Gsh of G and query graph Gq

where Vq = (u1 · · ·un)
Output: All embeddings of Gq in G
subgraphSearch(Gq, Gsh, f)

1 flag ← false

2 if |f | = |Vq| then
3 finalEG(Gq, Gsh, DRT , f)
4 dynamicCL(C(un), f(un))
5 return true

else
7 u ← nextQueryVertex ()
8 refineCandidates(f, u, C(u))
9 for each h ∈ C(u) do

10 if isJoinable(f, h,Gsh, Gq) then
11 updateState(f, u, h,Gsh, Gq)
12 if subgraphSearch(Gq, Gsh, f)=true

then
13 flag ← true

14 restoreState(f, u, h,Gsh, Gq)

15 if flag = true then
16 u′ ← previousQueryV ertex(u)
17 dynamicCL(C(u′), f(u′))

18 resetCL(C(u))
19 return flag

Subroutine finalEG(Gq, Gsh, DRT, f)
1 for each u ∈ Vq do
2 Ru ← {v|v ∈ f(u)}∪

{v|v ∈ h, h ∈ QDE-List(f(u))}
3 enumberateEmbeddings(Ru1 · · ·Run)

We are now ready to present the revised framework for
subgraph isomorphism search. Algorithm 6 outlines the
revised subgraphSearch subroutine with full integration of
BoostIso. In Algorithm 6, a local variable flag is used to
indicate whether the current partial embedding can lead to
any successful embedding. Different from Algorithm 1 which
simply reports the embedding once it finds one, Algorithm
6 generates all the final embeddings of Gq from f once a hy-
perembedding f is found, as shown in finalEG (Lines 2,3).
The subroutine for generating the final embeddings is shown

at the bottom of the Algorithm and is self-descriptive (Note
that if QDE and QDC relations are not considered, then Line
2 of finalEG should be changed to Ru ← {v|v ∈ f(u)}).
Each time a hyperembedding f is found, we also update the
C(un) for the last mapped query vertex un and return a true
value to notify a hyperembedding is found (Lines 4,5). Once
the recursive call for u ends, we update the candidate list of
u’s previous query vertex u′ according to the query vertex
matching order (Lines 15∼17). After all the combinations
containing the current partial embedding are verified, C(u)
will be reset to its initial state as in initializeCandidates and
flag will be returned (Lines 18,19).

Example 13. Consider the query graph Gq′ in Figure 2(b)
and the adapted graph Gsh in Figure 2(d),(e). The DRT for
vertex u1 is given in Table 1. The revised matching process
is shown in Figure 3 where each straight arrow line repre-
sents dynamic candidate loading and each curved arrow line
represents a returned value, being false if there is a X mark
in the middle. C(u1) is initialized with {h2}, while C(u2)
and C(u3) are initialized with {h7, h11} and {h12} respec-
tively. After (u3, h12) is added into the partial embedding
{(u1, h2), (u2, h7)}, h8 will be loaded into C(u3) and a true
value will be returned. Once all the candidates of C(u2) are
verified, the process backtracks to h2 with a true value re-
turned. Because h2 is successfully matched to u1 in some
hyperembeddings, h3 will be loaded into C(u1) and will be
tested. This process goes on until all the final embeddings
are found.

u1

u3

u2 h7 h11

h12 h8 h12 h8

h3

h7 h11

h12 h8 h12 h8

h1

h7 .....

X

X

dynamic loadh2

X

Figure 3: Example of revised subgraph search

7. EXPERIMENTS
This section presents our experiments. The purpose of the

experiments is to evaluate (1) the size of the adapted graph
and time to build them for real data sets, as well as the per-
centage of vertices having SC, SE, QDC and QDE relationships
in realistic scenarios, and (2) the performance improvement
of backtracking algorithms after integrating our approach.

7.1 Experimental Setup
Implementation and Running Environment. We im-
plemented Algorithm 2 for computing adapted graphs. We
used five backtracking algorithms to evaluate the perfor-
mance of our approach: Ullmann [15], VF2 [3], QuickSI [12],
TurboIso [6] and GQL (r=2) [7]. Ullmann is the first and
canonical backtracking algorithm, QuickSI and GQL had
the best overall performance among those compared in [9],
and TurboIso is the state-of-the-art which outperforms all
others, as reported in [6]. For each of these algorithms, we
implemented the original version (denoted by their original
name), a version that incorporates only the SC and SE re-
lations (denoted by -SH), and a version that integrates the
DRT as well (denoted by -Boosted). All of the algorithms
were implemented in C++ with VC++ 2010 as our com-
piler. All the experiments were carried out under 64-bit
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Windows 7 on a machine with an Intel 3GHz CPU and 4GB
memory.

Datasets. We used six real datasets in our experiments:
Human, Youtube, Yeast, Email, Wordnet and DBLP. Hu-
man and Yeast were used in [6][9], Wordnet was used in [13].
We obtained the Youtube, Email and DBLP datasets from
Stanford Large Network Dataset Collection 1. As no label
information is available for Email, we randomly assigned a
label for each vertex from a label set of 130. The profiles of
the datasets are given in Table 2.

Table 2: Profiles of datasets

Dataset(G) |V | |E| |Σ| Avg. degree

Human 4675 86282 90 36.82
Youtube 1.1M 2.9M 1 5.26

Yeast 3112 12915 184 8.05
Email 36692 183831 130 10.01

Wordnet 82670 133445 5 3.28
DBLP 317080 1.04M 1 6.62

Query Sets. We generated all the query graphs by ran-
domly selecting connected subgraphs of the data graphs.
This will ensure every query has at least one embedding in
the data graph. The query graph size (number of edges)
ranges from 1 to 10. Each query set contains ten query
files and each query file contains 1000 query graphs with
the same number of edges.

7.2 GGGsh Statistics
Measurements. Given data graph G = {V,E,Σ, L} and
its adapted graph Gsh = {Vsh, Ese, Esc,Σ, Lsh}, we use
Rsh = |Gsh|/|G| to measure the size of Gsh over G where
|Gsh|=|Vsh|+|Ese|+|Esc| and G = |V |+ |E|. We use Rse =
|Vsh|/|V | to measure the vertex compression ratio by the SE

relationships, and Rsc = |V ′sh|/|Vsh| to measure the percent-
age of hypernodes that are not S-contained by other hyper-
nodes, where V ′sh is the set of hypernodes whose SC indegree
is 0. To roughly estimate the frequency of QDE and QDC re-
lationships between hypernodes, we randomly select 5 labels
from the label set of Gsh when testing the relationships be-
tween a pair of hypernodes, so that neighbours with a label
different from the 5 selected ones will be ignored. We de-
fine Rqde = |Vh|/|Vsh| where Vh is the set of hypernodes left
after merging QDE hypenodes, and define Rqdc = |V ′′h |/|V ′h|
where V ′h is the set of nodes in Vh whose SC indegree is 0,
and V ′′h is the set of nodes in Vh whose QDC indegree is 0.

Statistics for Real Datasets. As shown in Table 3,
the adapted graphs for Human is smaller than the original
data graph. For Human, the data vertices are reduced to
46.9% by SE relationships, and it can be further reduced by
another 54.5% when QDE is taken into consideration. Ad-
ditionally, 56.8% of hypernodes for Human are S-contained
by other hypernodes, and another 36.1% of hypernodes are
QD-contained by other hypernodes whose SC indegree is 0.
Because Youtube and DBLP have only one label, we did
not compute their Rqde and Rqdc. It is worth noting that
Human and DBLP have a low ratio of Rsc, which could
give the subgraph matching process a highly optimized can-
didate vertex matching order. For the other datasets, the

1http://snap.stanford.edu/data/

size of the adapted graph is slightly larger than that of the
original graph because of the edge set Esc. However, the
vertex compression ration of Youtube and Wordnet reached
62.6% and 68% respectively, and for Yeast and Email, after
integrating the QDE relationships, the number of hypernodes
can be further reduced significantly.

Table 3: Statistics of Gsh

Dataset T (s) Rsh Rse Rsc Rqde Rqdc

Human 13.2 0.23 46.9% 43.2% 45.5% 63.9%
Youtube 612 1.1 62.6% 58.0% - -

Yeast 3.7 1.07 95% 79.5% 59.7% 91.1%
Email 78.1 1.06 93% 91 % 64.3% 80.8%

Wordnet 93 1.01 68% 49 % 97% 70.9%
DBLP 227 1.13 74.3% 38.5% - -

Effect of Label Set Size. To evaluate the effect of label
set size on the frequency of the four types of relationships,
we used the Human and Email datasets to generate 22 new
datasets by randomly re-assigning a label for each vertex
from a label set of size 1, 10, 20, . . ., and 100 respectively.

As we can see in Figure 4, both Rse and Rsc show an
increasing trend when we increase the size of the label set.
However, the ratios of query-dependent relationships keep
steady, with only a slight increment for QDC. This is because
the query dependent relationships ignore all the labels not
related to the query graph, thus they are little affected by
the number of labels of the data graph.
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Figure 4: Relationship ratios with varying number of labels

7.3 Building Time and Scalability
The first column of Table 3 shows the time for building

the adapted graph. As can be seen, all of the adapted graphs
were built in a very short time for the real data sets.

To test the scalability for building time, we generated five
synthetic datasets using the graph generator given by GQL.
The number of vertices ranges from 0.1M to 2M with edges
ranging from 1 million to 20 million. The average degree is
20. The number of labels is 100. Table 4 shows the building
time for each synthetic dataset. All the datasets can be built
in a reasonable time with less than 20 minutes for the largest
dataset. As we increase the number of vertices, the building
time nearly follows a linear trend (note that the average
degree keeps steady, so the building time largely depend on
|V |). This shows the good scalability in terms of time cost
for building the adapted graph.

7.4 Efficiency of Query Processing
Measurements. As in [6][9], we measured the performance
of an algorithm in two aspects: time elapsed and number of
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Table 4: The Time for Building Gsh

Vertex number 0.1M 0.5M 1M 1.5M 2M
T (min) 0.5 3 7.3 11.7 19.28

recursive calls. All the algorithms terminated once 1000
embeddings were found for a single query. Because of page
limits, we only presented the average number of recursive
calls of the ten query sets.
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Figure 5: Experiment results over Human

Experiments on Human. Human is a graph with a large
average degree where each query vertex has a large num-
ber of candidate vertices. As shown in Figure 5(a)∼(e),
Ullmann, VF2, QuickSI, and GQL show an exponential in-
crease as the query size increases. Especially for large queries,
these algorithms take more than 105(msec) to compute one
single query. With the integration of BoostIso, all of Ull-
mannBoosted, VF2Boosted, QuickSIBoosted and GQLBoosted
behave much better. All of the queries can be answered
within 102(msec). The overall improvement is 3 orders of
magnitude. TurboIso is the most state-of-the-art subgraph
isomorphism algorithm, which shows steady but less dras-
tic increment with the growth in query size. However, with
the integration of our approach, it achieves a much better
performance. For small queries, the improvement by Tur-
boIsoBoosted is not significant while for large queries, the
performance can be 19 times faster. Even without the con-
sideration of QDE and QDC, all SH-algorithms have significant
improvements in overall performance because Human has a
large number of SE vertices.

As shown in Figure 5(f), the average number of recur-
sive calls of Boosted algorithms are significantly less than
the original algorithms by up to 4 orders of magnitude.
Compared with TurboIso, TurboIsoBoosted has a decre-
ment from 3914 to 112 on average. Again, both the SH-
algorithms and the Boosted-algorithms perform much bet-
ter than the original algorithms, and the Boosted-algorithms
perform better than the SH-algorithms.

Experiments on Yeast. Yeast is a sparse graph with a
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Figure 6: Experiment results over Yeast

large number of vertex labels. The time consumed and aver-
age number of recursive calls of all the algorithms are much
less than that for Human. As shown in Figure 6(a)∼(e), as
the query size increases, all the algorithms first experience a
linear and then a very sharp increase in the average elapsed
time, while the growth rates of all Boosted-algorithms are
far lower than that of the original ones. All SH-algorithms
achieved minor improvements, and this could be because
Yeast has very few SE vertices (see Table 2 and Table 3). As
for Ullmann and VF2, the Boosted-algorithms are 10 times
faster on average. For QuickSI, the improvement is about
5 times faster. For GQL, it is about 9 times faster. While
for TurboIso, there are slight improvements when the query
graph has less than 6 edges while it can be 2 times faster
when the query size increases to 10. The figure shows a trend
that with the query graph growing larger, TurboIsoBoosted
has a larger improvement over TurboIso.

In Figure 6(f), for Ullmann and VF2, the avg. recursive
calls of the Boostd-algorithms are more than 10 times less
than that of the original algorithms and the SH-algorithms.
Even for QuickSI, GQL and TurboIso whose original algo-
rithms have achieved a good performance over Yeast, the
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avg. number of recursive calls is reduced by 2896, and 880
and 349 respectively.

Experiments on Wordnet. Wordnet is a much larger
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Figure 7: Experiment results over Wordnet

and sparser graph than Human and Yeast, thus its comput-
ing time is much longer. Also, Wordnet has only 5 labels
which results in a large number of candidates for a query ver-
tex. As shown in Figure 6(a)∼(e), all of the SH algorithms
achieved a performance which is not much worse its Boosted
Algorithms, this is because there are not many QDE and QDC

relationships among the hypernodes. For VF2, QuickSI and
GQL, the SH and Boosted algorithms are 10 times faster
than the original ones on average. For Ullmann, Boosted
Algorithm performs much better than the original and SH
algorithms. This is because Ullmann has not defined any
matching order or pruning rules which leads to big time dif-
ferences even for a small difference of the search space size.
For TurboIso, the SH and Boosted Algorithms are 2 times
faster than the original one on average. The avg. recursive
calls, shown in Figure 7(f), is consistent with the elapsed
time with similar performances for the SH and Boosted algo-
rithms, while both of them are less than that of the original
one.

8. CONCLUSION
In this paper, we presented an approach, BoostIso, for

speeding-up subgraph isomorphism search. Our approach
differs from previous algorithms in that it utilizes the re-
lationships between data vertices, and it can be integrated
into all existing backtracking algorithms. Our extensive ex-
periments with real and synthetic data sets demonstrated

that, with the integration of our approach, most existing
subgraph isomorphism algorithms can be speeded up signif-
icantly.

To apply our approach in practice, efficient maintenance
of the adapted graphs is important. Intuitively, the adapted
graphs can be incrementally maintained efficiently because
a vertex S-contains another only if the two vertices are con-
nected by a 1-edge or 2-edge path. We will discuss this
problem in detail in an extended version of this paper.
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