
Practical Authenticated Pattern Matching
with Optimal Proof Size

Dimitrios Papadopoulos
Boston University

dipapado@cs.bu.edu

Charalampos Papamanthou
University of Maryland

cpap@umd.edu
Roberto Tamassia

Brown University

rt@cs.brown.edu

Nikos Triandopoulos
RSA Laboratories & Boston University

nikolaos.triandopoulos@rsa.com

ABSTRACT
We address the problem of authenticating pattern matching queries
over textual data that is outsourced to an untrusted cloud server. By
employing cryptographic accumulators in a novel optimal integrity-
checking tool built directly over a suffix tree, we design the first
authenticated data structure for verifiable answers to pattern match-
ing queries featuring fast generation of constant-size proofs. We
present two main applications of our new construction to authen-
ticate: (i) pattern matching queries over text documents, and (ii)
exact path queries over XML documents. Answers to queries are
verified by proofs of size at most 500 bytes for text pattern match-
ing, and at most 243 bytes for exact path XML search, indepen-
dently of the document or answer size. By design, our authentica-
tion schemes can also be parallelized to offer extra efficiency during
data outsourcing. We provide a detailed experimental evaluation of
our schemes showing that for both applications the times required
to compute and verify a proof are very small—e.g., it takes less than
10µs to generate a proof for a pattern (mis)match of 102 characters
in a text of 106 characters, once the query has been evaluated.

1. INTRODUCTION
The advent of cloud computing has made data outsourcing com-

mon practice for companies and individuals that benefit from dele-
gating storage and computation to powerful servers. In this setting,
integrity protection is a core security goal. Ensuring that informa-
tion remains intact in the lifetime of an outsourced data set and
that query processing is handled correctly, producing correct and
up-to-date answers, lies at the foundation of secure cloud services.

In this work we design protocols that cryptographically guaran-
tee the correct processing of pattern matching queries. The prob-
lem setting involves an outsourced textual database, a query con-
taining a text pattern, and an answer regarding the presence or ab-
sence of the pattern in the database. In its most basic form, the
database consists of a single text T from an alphabet Σ, where a
query for pattern p, expressed as a string of characters, results in an-
swer “match at i”, if p occurs in T at position i, or in “mismatch”

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 7
Copyright 2015 VLDB Endowment 2150-8097/15/03.

otherwise. More elaborate models for pattern matching involve
queries expressed as regular expressions over Σ or returning multi-
ple occurrences of p, and databases allowing search over multiple
texts or other (semi-)structured data (e.g., XML data). This core
data-processing problem has numerous applications in a wide range
of topics including intrusion detection, spam filtering, web search
engines, molecular biology and natural language processing.

Previous works on authenticated pattern matching include the
schemes by Martel et al. [28] for text pattern matching, and by De-
vanbu et al. [16] and Bertino et al. [10] for XML search. In essence,
these works adopt the same general framework: First, by hierarchi-
cally applying a cryptographic hash function (e.g., SHA-2) over the
underlying database, a short secure description or digest of the data
is computed. Then, the answer to a query is related to this digest via
a proof that provides step-by-step reconstruction and verification
of the entire answer computation. This approach typically leads to
large proofs and, in turn, high verification costs, proportional to the
number of computational steps used to produce the answer. In fact,
for XML search, this approach offers no guarantees for efficient
verification, since certain problem instances require that the proof
includes almost the entire XML document, or a very large part of it,
in order to ensure that no portions of the true (honest) answer were
omitted from the returned (possibly adversely altered) answer.

On the other hand, recent work on verifiable computing (e.g.,
[32, 13, 8]) allows verification of general classes of computation.
Here also, verification is based on cryptographic step-by-step pro-
cessing of the entire computation, expressed by circuits or RAM-
based representations. Although special encoding techniques al-
low for constant-size proofs and low verification costs, this ap-
proach cannot yet provide practical solutions for pattern matching,
as circuit-based schemes inherently require complex encodings of
all database searches, and RAM-based schemes result in very high
proof generation costs. Indeed, costly proof generation comprises
the main bottleneck in all existing such implementations.

Our goal. We wish to design schemes that offer an efficient answer-
verification process for authenticated pattern matching. That is, an-
swer correctness is based on a proof that is succinct, having size
independent of the database size and the query description, and
that can be quickly generated and verified. We emphasize that our
requirement to support pattern matching verification with easy-to-
compute constant-size proofs is in practice a highly desired prop-
erty. First, it contributes to high scalability in query-intensive ap-
plications in settings where the server that provides querying ser-
vice for outsourced databases receives incoming requests by sev-
eral clients at high rates; then obviously, faster proof generation
and transmission of constant-size proofs result in faster response

750

space setup proof size query time verification time assumption
[23] n n m log Σ m log Σ + κ m log Σ + κ collision resistance

this work n n 1 m+ κ m logm+ κ `-strong DH
[10, 16] (any path) n n n, d n, d n, d collision resistance

this work (exact path) n n 1 m m logm+ s `-strong DH

Table 1: Asymptotic complexities of our scheme for text pattern matching and XML exact path queries: n is the size of the document,
m the pattern length, κ the number of occurrences, Σ the alphabet size, s the answer size, and d the number of valid paths.

times and higher throughputs. But it also promotes storage effi-
ciency in data-intensive applications in settings where the proof for
a (mis)match of any pattern query over a database must be persis-
tently retained in storage for a long or even unlimited time duration;
then, minimal-size proofs result in the minimum possible storage
requirements, a very useful feature in big-data environments.

An example of a data-intensive application where pattern match-
ing proofs might be permanently stored, is the problem of securing
the chain of custody in forensic and intrusion detection systems
used by enterprises today. Such systems often apply big-data se-
curity analytics (e.g., [41]) over terabytes of log or network-traffic
data (collected from host machines, firewalls, proxy servers, etc.)
for analysis and detection of impending attacks. Since any data-
analytics tool is only as useful as the quality (and integrity) of its
data, recent works (e.g., [40, 12]) focus on the integrity of the data
consumed by such tools, so that any produced security alert carries
a cryptographic proof of correctness. To support a verifiable chain
of custody,1 these proofs must be retained for long periods of time.
As big-data security analytics grow in sophistication, authenticated
pattern matching queries will be crucial for effective analytics (e.g.,
to match collected log data against known high-risk signatures of
attacks), hence storing only constant-size associated proofs will be
important in the fast-moving area of information-based security.

Contributions. We present the first authentication schemes for pat-
tern matching over textual databases that achieve the desired prop-
erties explained above. Our schemes employ a novel authenticated
version of the suffix tree data structure [18] that can provide pre-
computed (thus, fast to retrieve), constant-size proofs for any basic-
form pattern matching query, at no asymptotic increase of storage.

Our first contribution is the design and implementation of an au-
thentication scheme for pattern matching such that:

• The size of the proof is O(1); specifically, it always contains
at most 10 bilinear group elements (described in Section 2).

• The time to generate the proof that a query pattern of size m
is found in κ occurrences isO(m+κ), and very short in prac-
tice, as it involves no cryptographic operations but only as-
sembling of precomputed parts—e.g., it takes less than 90µs
to respond to a query of size 100 characters: 80µs to simply
find the (mis)match and less than 10µs to assemble the proof.

We extend our scheme to also support regular expressions with a
constant number of wildcards. Our second contribution is the ap-
plication of our main scheme above to the authentication of pat-
tern matching queries over collections of text documents (return-
ing the indices of documents with positive occurrences), and exact
path queries over XML documents. By design, these schemes also
achieve optimal communication overhead: On top of the requested
answer, the server provides only a constant number of bits (modulo
the security parameter)—e.g., for XML search and 128-bit security

1Informally, any security alert—carrying important forensic value—can be
publicly and with non-repudiation verified—thus, carrying also legal value
when brought as evidence to court months, or even years, after the fact.

level, proofs can be made as small as ∼178 bytes. Unlike exist-
ing hash-based authentication schemes [10, 16, 23], our authen-
tication schemes support fully parallelizable set-up: They can be
constructed in O(logn) parallel time on O(n/ logn) processors
in the EREW model, thus maintaining the benefits of known paral-
lel algorithms for (non-authenticated) suffix trees [19, 22]. While
the use of precomputed proofs best matches static text databases,
we also present efficient fully or semi-dynamic extensions of our
schemes. Our last contribution is the implementation of our schemes
for authenticated pattern matching search on text and XML doc-
uments along with an experimental evaluation of our verification
techniques that validates their efficacy and practicality.

Construction overview. Our solution is designed in the model of
authenticated data structures (ADS) [34], which has a prominent
role in the literature due to its generality, expressive power and rele-
vance to practice. An ADS is best described in the following three-
party setting: A data set (the text in our case) that originates at a
trusted owner is outsourced to an untrusted server which is respon-
sible for answering queries coming from clients. Along with an
answer to a query returned by the server, a client is provided with
a proof that can be used to verify, in a cryptographic sense, the an-
swer correctness, using a public key issued by the owner. That is,
subject to some cryptographic hardness assumption, verifying the
proof is a reliable attestation that the answer is correct.

We follow the framework of [35]: Our schemes first define and
encode answer-specific relations that are sufficient for certifying
(unconditionally) that an answer is correct and, then, cryptograph-
ically authenticate these relations using optimal-size proofs. We
achieve this by employing in a novel way the bilinear-map (BM)
accumulator [27],2 over a special encoding of the database with
respect to a suffix tree, used to find the pattern (mis)match. The en-
coding effectively takes advantage of the suffix tree where patterns
in the database share common prefixes, which in turn can be suc-
cinctly represented by an accumulator. For the XML query appli-
cation, we use the same approach, this time over a trie defined over
all possible paths in the document, and we link each path with the
respective XML query answer (i.e., all reachable XML elements).

Related work. Table 1 summarizes our work as compared to [10,
16, 23].3 In [23] a general technique is applied to the suffix tree,
that authenticates every step of the search algorithm, thus obtaining
proof size proportional to the length of the pattern, which is not op-
timal. Moreover, due to the use of sequential hashing, this solution
is inherently not parallelizable. The authors of [16] authenticate
XPath queries over a simplified version of XML documents by re-
lying on the existence of a document type definition (DTD) and
applying cryptographic hashing over a trie of all possible seman-
tically distinct path queries in the XML document. An alternative

2An accumulator [9] is a cryptographic primitive for securely proving set-
inclusion relations optimally via O(1)-size proofs verifiable in O(1) time.
3We note that our ADS schemes operate with any accumulator, not just the
BM accumulator. In fact, using the RSA accumulator [14] reduces verifi-
cation cost to O(m). However, a recent experimental comparison demon-
strates that the BM accumulator is more efficient in practice [37].

751

approach is taken in [10], where similar XML queries are authenti-
cated by applying cryptographic hashing over the XML tree struc-
ture. As discussed above, both these approaches suffer from very
bad worst-case performance, e.g., yielding verification proofs/costs
that are proportional to the size of the XML tree. However, these
works are designed to support general path queries, not only exact,
as our works does. Recently, the authors of [17] presented a pro-
tocol for verifiable pattern matching that achieves security and se-
crecy in a very strong model, hiding the text even from the respond-
ing server. While that work offers security in a much more general
model than ours, it has the downside that the owner that outsourced
the text is actively involved in query responding and that it makes
use of heavy cryptographic primitives, the practicality of which re-
mains to determined. There is a large number of ADS schemes
in the database and cryptography literature for various classes of
queries (e.g., [24, 15, 21]). Also related to our problem is key-
word search authentication, which has been achieved efficiently,
e.g., in [29, 39, 30]. As previously discussed, verifiable computa-
tion systems such as [32, 13] can be used for the verification of pat-
tern matching; although optimized to provide constant-size proofs
these constructions remain far from practical. Finally, parallel algo-
rithms in the context of verifiable computation have only recently
been considered. In [36, 33] parallel algorithms are devised for
constructing a proof for arithmetic-circuit computations.

2. CRYPTOGRAPHIC TOOLS
We review some known cryptographic primitives that we use as

building blocks.

Bilinear-map (BM) accumulator [27]. A BM accumulator suc-
cinctly and securely represents a set of elements from Zp, operat-
ing in the following setting of bilinear groups. Let G be a cyclic
multiplicative group of prime order p, generated by g. Let also
GT be a cyclic multiplicative group with the same order p and
e : G × G → GT be a bilinear pairing (or mapping) such that:
(1) e(P a, Qb) = e(P,Q)ab for all P,Q ∈ G and a, b ∈ Zp (bi-
linearity); (2) e(g, g) 6= 1 (non-degeneracy); (3) e(P,Q) is effi-
ciently computable for all P,Q ∈ G (computability). Let also
(p,G,GT , e, g) be a tuple of public bilinear parameters as above,
selected uniformly at random. The BM accumulator represents any
set A of n elements from Zp by its accumulation value, namely

acc(A) = g
∏

a∈A(s+a) ∈ G ,

i.e., a single element in G, where s ∈ Zp is trapdoor informa-
tion that is kept secret. Note that given values g, gs, . . . , gs

n

(and
without revealing the trapdoor s), acc(A) can be computed in time
O(n logn) with polynomial interpolation using FFT techniques.

The `-strong DH or, here, `-sDH assumption for bilinear groups
is a variant of the well-known computational Diffie-Hellman as-
sumption applied to bilinear groups. The `-sDH assumption was
introduced in [11] and has since been widely used in the crypto-
graphic literature as a standard assumption. Under the `-sDH as-
sumption, the BM accumulator is shown to provide two security
properties: (1) The accumulation function acc(·) is collision resis-
tant [31] (i.e., it is computationally hard to find unequal sets with
equal accumulation values); and (2) It allows for reliable verifica-
tion of subset containment [30] using short, size optimal, compu-
tational proofs; namely, subject to acc(A), the proof for relation
B ⊆ A is defined as the subset witness WB,A = g

∏
a∈A−B(s+a)

(i.e., B ⊆ A can be efficiently validated via checking the equality
e(WB,A, g

∏
b∈B(s+b))

?
= e(acc(A), g) given accumulation value

acc(A), set B and public values g, gs, . . . , gs
`

, where ` is an upper

bound on A’s size n; but it is computationally hard to produce a
fake subset witness that is verifiable when B ⊆ A is false).
Authenticated data structure scheme. We use the model of au-
thenticated data structures (ADS). This model assumes three par-
ties: an owner holding a data structure D who wishes to outsource
it to a server who is, in turn, responsible for answering queries
issued by multiple clients. The owner preprocesses D, produc-
ing some cryptographic authentication information auth(D) and
a succinct digest d of D, and signs d. The server is untrusted, i.e.,
it may modify the returned answer, hence it is required to provide
a proof of the answer, generated using auth(D), and the signed
digest d. A client with access to the public key of the owner can
subsequently check the proof and verify the integrity of the answer.

DEFINITION 1 (ADS [30]). An ADS scheme A is a collec-
tion of four algorithms as follows: (i) {sk, pk} ← genkey(1k)
outputs secret and public keys sk and pk, given the security pa-
rameter k; (ii) {auth(D), d} ← setup(D, sk, pk) computes the
authenticated structure auth(D) and its respective digest d, given
a plain data structure D, the secret and public keys sk, pk; (iii)
{Π(q), α(q)} ← query(q,D, auth(D), pk) returns an answerα(q),
along with a proof Π(q), given a query q on data structure D and
the authenticated data structure auth(D); (iv) {accept, reject} ←
verify(q, α,Π, d, pk) outputs either accept or reject, on input a
query q, an answer α, a proof Π, a digest d and public key pk.

Like a signature scheme, an authenticated data structure scheme
must satisfy correctness and security properties. Namely, (i) as long
as the adversary does not tamper with the data and the algorithms of
the scheme (therefore correct answers are returned), verification al-
gorithms always accept; (ii) a computationally-bounded adversary
cannot persuade a verifier for the validity of an incorrect answer.
Accumulation trees. The accumulation tree is an ADS scheme
introduced in [31] that supports set membership queries. It can
be viewed as an alternative to a Merkle hash tree [24]. The main
differences are that proofs have constant size (instead of logarith-
mic in the set size), internal nodes have larger degrees (making
the trees “flat”), and they rely on different cryptographic primitives
(accumulators versus hash functions). During setup, a parameter
0 < ε ≤ 1 is chosen that dictates the degree of inner nodes. E.g.,
an accumulation tree with ε = 1/2 has 2 levels and each internal
node has degree O(

√
n). Accumulation trees build upon BM ac-

cumulators, storing at each internal node the accumulation value of
its children (appropriately encoded as elements of Zp). As shown
in [31], an accumulation tree AT for a set of n elements can be
built in time O(n) and yields proofs of O(1) group elements, ver-
ifiable with O(1) group operations. If the tree has height 1, proofs
are computed in timeO(1), otherwise in timeO(nε logn). Finally,
insertions to and deletions from the set take O(nε) time.

3. PATTERN MATCHING QUERIES
The problem of pattern matching involves determining whether

a pattern appears within a given text. In its basic form, assuming
an alphabet Σ of size |Σ| = σ, a n-character text T ∈ Σn and
a pattern p ∈ Σm of length m, the problem is expressed as “is
there position 1 < i ≤ n −m + 1 such that T [i + j] = p[j] for
j = 0, . . .m− 1?”, where T [i] is the character at the i-th position
in the text, and likewise for pattern p. If there exists such i, the
answer is “match at i”, otherwise “mismatch”.

Answering pattern matching queries is an arduous task, if done
naively. For instance, to check the occurrence of p in T , one could
sequentially test if p at any position i (i.e., if it is a prefix of some
suffix of T), for all positions in T . Such a successful test would

752

Figure 1: Suffix tree for minimize storing suffixes minimize,
inimize, nimize, imize, mize, ize, ze, e as eight overlapping paths.

imply a match but would require O(n) work. However, with some
preprocessing of O(n) work, one can organize patterns in a suffix
tree [38], reducing the complexity of pattern matching query from
O(n) to O(m). A suffix tree is a data structure storing all the
suffixes of T in a way such that any repeating patterns (common
prefixes) of these suffixes are stored once and in an hierarchical
way, so that every leaf of the suffix tree corresponds to a suffix
of the text T . This allows for (reduced) O(m) search time while
maintaining (linear) O(n) space usage. We provide next a more
detailed description of the suffix tree data structure, represented as
a directed tree G = (V,E, T ,Σ). We refer to the example of
Figure 1 depicting the suffix tree for the word minimize.

Each leaf of G corresponds to a distinct suffix of T , thus G has
exactly n leaves. We denote with S[i] the i-th suffix of T , that is,
S[i] = T [i] . . . T [n], for i = 1, . . . , n. Internal tree nodes store
common prefixes of these n suffixes S[1], S[2], . . . , S[n], where
the leaves themselves store any “remainder” non-overlapping pre-
fixes of T ’s suffixes. If leaf vi corresponds to suffix S[i], then
S[i] is formed by the concatenation of the contents of all nodes in
the root-to-leaf path defined by vi, where the root conventionally
stores the empty string. For instance, in Figure 1, S[4] = imize
and S[6] = ize, respectively associated with the paths defined by
the second and fourth most left leaves, labelled by mize and ze
(having as common parent the node labelled by i).

Additionally, every node v ∈ V stores the following informa-
tion that will be useful in the case of the mismatch: (a) the range
rv = (sv, ev) of v, which corresponds to the start (sv) and end
(ev) position of the string stored in v in the text (we pick an arbi-
trary range if v is associated with multiple ranges); (b) the depth dv
of v, which corresponds to the number of characters from the root
to v, i.e., the number of characters that are contained in the path in
G that consists of the ancestors of v; (c) the sequel Cv of v, which
corresponds to the set of initial characters of the children of v. For
example in Figure 1, for the node v labelled mi, it is sv = 1 and
ev = 2 (or sv = 5 and ev = 6), dv = 0, Cv = {n, z}.
Traversing a suffix tree. Since all matching patterns must be a
prefix of some suffix, the search algorithm beings from the root and
traverses down the tree incrementally matching pattern p with the
node labels, until it reaches some node v where either a mismatch
or a complete match is found. We model this search on suffix tree
G = (V,E, T ,Σ) by algorithm (v, k, t) ← suffixQuery(p,G),
returning: (1) the matching node v, i.e., the node of G at which
the algorithm stopped with a match or mismatch, (2) the matching
index k, sv ≤ k ≤ ev , i.e., the index (with reference to the spe-
cific range (sv, ev)) where the last matching character occurs (for
successful matching searches, k coincides with the index of the last
character of p within v), and (3) the prefix size t ≤ m, i.e., the
length of maximum matching prefix of p (m in case of a match).
Figure 2 shows the relation of variables k and t for both cases.
Characterization of pattern matching queries. The following
lemmas characterize the correct execution of algorithm suffixQuery,
by providing necessary and sufficient conditions for checking the
consistency of a match or mismatch of p in T with the output

(v, k, t) produced by suffixQuery. In the next section, we will
base the security of our construction on proving, in a cryptographic
manner, that these conditions hold for a given query-answer pair.
Namely, the structure of these relations allows us to generate suc-
cinct and efficiently verifiable proofs. In the following we denote
with xy the concatenation of two strings x, y (order is important).

LEMMA 1 (PATTERN MATCH). There is a match of p in T if
and only if there exist two suffixes of T , S[i] and S[j], with i ≤ j,
such that S[i] = pS[j].

LEMMA 2 (PATTERN MISMATCH). There is a mismatch of p
in T if and only if there exist a node v ∈ G, an integer k ∈ [sv, ev]
and an integer t < m such that S[sv − dv] = p1p2 . . . ptS[k + 1]
and pt+1 6= T [k + 1], if k < ev , or pt+1 /∈ cv if k = ev .

With reference to Figure 1, the match of the pattern p = inim,
can be shown by employing the suffixes S[2] = inimize and S[6] =
ize. Note that indeed S[2] = pS[6]. This is a match (as in Lemma 1).
More interestingly, observe the case of mismatch for the string
p = minia. For this input, algorithm suffixQuery returns the node
v labelled by nimize where the mismatch happens, matching in-
dex k = 4 and prefix size t = 4. For node v, we have sv = 3
and ev = 8 and also dv = 2. To demonstrate the mismatch, it
suffices to employ suffixes S[sv − dv] = S[1] = minimize and
S[k + 1] = S[5] = mize as well as symbols pt+1 and T [k + 1].
The concatenation of the prefix mini of p (of size t = 4) with the
suffix S[5] is S[1], and also pt+1 = a 6= T [k + 1] = m. This is a
mismatch (as the first case considered in Lemma 2, since k < ev).
Finally, to demonstrate the mismatch of the string p = mia we pro-
ceed as follows. Algorithm suffixQuery returns the node v labelled
by mi where the mismatch happens, matching index k = 6 and
prefix size t = 2. For node v, we have sv = 5 and ev = 6 (alter-
natively we can also have sv = 1 and ev = 2) and also dv = 0.
It suffices to employ suffixes S[sv − dv] = S[5] = mize and
S[k + 1] = S[7] = ze as well as symbol pt+1 and sequel (set)
cv . Note that indeed the concatenation of the prefix mi of p (of size
t = 2) with the suffix S[7] is S[5], and that also pt+1 = a /∈ cv =
{n, z}. This is a mismatch (as in Lemma 2, since k = ev).

4. MAIN CONSTRUCTION
We now present our main ADS scheme for verifying answers to

pattern matching queries. Our construction is based on building a
suffix tree over the outsourced text and proving in a secure way the
conditions specified in Lemmas 1 and 2 for the cases of match and
mismatch respectively. The main cryptogaphic tool employed is
the BM accumulator, which will be use to authenticate the contents
of a suffix tree in a structured way, allowing the server to prove the
existence of appropriate suffixes in the text and values in the tree
that satisfy the conditions in the two lemmas. Moreover, due to
the properties of the BM accumulator, the produced proofs will be
independent of the size of the text and the pattern, consisting only
of a constant number of bilinear group elements.
Key generation. The text owner first computes public bilinear
parameters pub = (p,G,GT , e, g) for security parameter 1k. He
then picks a random s ∈ Zp and computes g = [g, gs, . . . , gs

`

].
Finally, the key pair is defined as sk = s, pk = (pub, g).
Setup. The setup process is described in pseudo-code in Algo-
rithm 1 and we provide a detailed explanation of each step here.
The owner first computes a suffix accumulation for each suffix in
the text with a linear pass. This value encodes information about
the text contents of the suffix, its starting position and its leading
character. In particular, acc(S[i]) is denoted as acci := acc(Xi1 ∪

753

Figure 2: (Left) Pattern matching in our scheme for pattern p (|p| = m), using suffixes S[i] and S[j], where S[i] = pS[j]. (Right)
Pattern mismatch in our scheme, using suffixes S[i] and S[j], where S[i] = p1p2 . . . ptS[j] and t < m.

Xi2 ∪ Xi3), where (a) Xi1 is the set of position-character pairs
in suffix S[i], i.e., Xi1 = {(pos, i, T [i]), . . . , (pos, n, T [n])} ; (b)
Xi2 is the first character of S[i], i.e., Xi2 = {(first, T [i])}; and (c)
Xi3 is the index of S[i], i.e.,Xi3 = {(index, i)}. Also, for each suf-
fix S[i] he computes a suffix structure accumulation ti = acc(Xi1),
i.e. it contains only the position-character pairs in the suffix and
its use will be discussed when we explain the verification process
of our scheme. Structure accumulations are a very important part
for the security of our construction. Observe that the suffix struc-
ture accumulation ti encompasses only a subset of the information
encompassed in acci. As shown in Section 2, the security of the
BM accumulator makes proving a false subset relation impossible,
hence no efficient adversary can link ti with accj for j 6= i.

Following this, the owner builds a suffix tree G = (V,E, T ,Σ)
over the text and computes a node accumulation for each v ∈ G.
This value encodes all the information regarding this node in G,
i.e., the range of T it encompasses, its depth in the tree and the
leading characters of all its children nodes (taken in consecutive
pairs). More formally, for a node v with values (sv, ev), dv, cv ,
its accumulation is defined as accv := acc(Yv1 ∪ Yv2 ∪ Yv3),
where: (a) Yv1 is the range of v , i.e., Yv1 = {(range, sv, ev)};
(b) Yv2 is the depth of v, i.e., Yv2 = {(depth, dv)}; and (c) Yv3
is the sequel of v defined as the set of consecutive pairs Yv3 =
{(sequel, ci, ci+1)|i = 1, . . . , `−1}where Cv) = {c1, c2, . . . , c`}
is the alphabetic ordering of the first characters of v’s children. He
also computes a node structure accumulator tv = acc(Yv3) (sim-
ilar to what we explained for suffixes). Finally, for each sequel
ci, ci+1, compute a subset witness WP,Y (as defined in Section 2)
where P = {(sequel, cj , cj+1)} and Y = Yv1 ∪ Yv2 ∪ Yv3. This
will serve to prove that the given sequel of characters are leading
characters of consecutive children of v.

Note that, the keywords pos, first, index, range, depth and sequel
are used as descriptors of the value that is accumulated. With-
out loss of generality one can view the elements of sets Xij , Yij ,
j ∈ {1, 2, 3} as distinct k-bit strings (each less than the group’s
prime order p ∈ O(2k)), simply by applying an appropriate de-
terministic encoding scheme r(·). Therefore, when we accumulate
the elements of these sets, we are in fact accumulating their numer-
ical representation under encoding r. This allows us to represent
all accumulated values as distinct elements of Zp, achieving the
necessary domain homogeneity required by the BM accumulator.

At the end of this procedure, each suffix S[i] has its suffix accu-
mulation acci and its suffix structure accumulation ti. Also, each
node v ∈ G is associated with its node accumulation accv , its node
structure accumulation tv and one subset witness WP,C for each
consecutive pair of its children. We denote with V,S the sets of
node and suffix accumulations accv and acci, respectively. As a
final step, the owner builds two accumulation trees AT V ,AT S ,

using the BM accumulator described by the key pair. Let dV , dS
be their respective digests. He sends to the server the text T , as
well as authentication information auth(T) consisting of the suf-
fix tree G, the two accumulation trees AT V ,AT S and all values
acci, accv, ti, tv,WP,C , and publishes pk, dV , dS .

Algorithm 1: setup(T , pk, sk)
1. For suffix i = 1, . . . , n
2. Compute suffix structure accumulation ti
3. Compute suffix accumulation acci
4. Build suffix tree G = (V,E, T ,Σ)
5. For each node v ∈ G
6. Compute node structure accumulation tv
7. Compute node accumulation accv
8. For each consecutive pair of children of v
9. Compute subset witness WP,C
10. Build accumulation treesAT V ,AT S
11. Send T , auth(T) to the server and publish pk, dV , dS

Proof generation. We next describe proof generation for pattern
matching queries, i.e., matches and mismatches. The process varies
greatly for the two cases as can be seen in Algorithm 2 below. The
role of each proof component will become evident when we discuss
the verification process in the next paragraph. In both cases, let
(v, k, t) be the matching node in G, the matching index and the
prefix size returned by algorithm (v, k, t) ← suffixQuery(p,G)
(as described in Section 3 and Figure 2).

Proving a match. In this case the answer is α(q) = “match at i”.
Let p = p1p2 . . . pm be the queried pattern. The server computes
i = sv − dv and j = i + m. By Lemma 1, suffixes S[i] and
S[j] are such that S[i] = pS[j] and i ≤ j. The corresponding in-
dexes are easily computable by traversing the suffix tree for p. The
server returns i, j along with characters T [i], T [j] as well as suffix
structure and suffix accumulations acci, accj , ti, tj . Finally, using
accumulation tree AT S , he computes proofs πi, πj for validating
that acci, accj ∈ S.

Proving a mismatch. In this case the answer to the query q is
α(q) = “mismatch”. Let (sv, ev), dv and cv be the range, depth
and sequel of v. The server computes i = sv − dv and j =
i+ k+ 1 and returns sv, ev, dv, k, t, i, j, T [i], T [j] along with ac-
cumulations accv, acci, accj with proofs πv, πi, πj and structure
accumulation values tv, ti, tj . Finally, if k = ev he also returns
WP,C where P contains sequel c, c′ such that c < pt+1 < c′.

Verification. Here we describe the verification algorithm of our
scheme. Below we provide the pseudo-code in Algorithm 3 and an
intuitive explanation for the role of each component of the proof. In
both cases, the verification serves to check the conditions stated in
Lemmas 1, 2, which suffices to validate that the answer is correct.

754

Algorithm 2: query(q, T , auth(T), pk)
1. Call suffixQuery(p,G) to receive (v, k, t)
2. Set i = sv − dv
3. If t = m Then
4. Set a(q) = “match at i” and j = i+m
5. Lookup acci, accj , ti, tj in auth(T)
6. ComputeAT S proofs πi, πj for acci, accj
7. Set Π(q) = (j, T [i], T [j], acci, accj , ti, tj , πi, πj)
8. Else
9. Set a(q) = “mismatch” and j = i+ k + 1
10. Lookup accv , acci, accj , tv , ti, tj in auth(T)
11. ComputeAT S proofs πi, πj for acci, accj
12. ComputeAT V proof πv for accv
13. Set aux = (sv , ev , dv , i, j, k, t)
14. Set Π(q) = (aux, T [i], T [j], accv , acci, accj , tv , ti, tj , πv , πi, πj)
15. If k = ev Then
16. Traverse the sequels of v to find pair c, c′ s.t. c < pt+1 < c′

17. Let P = {(sequel, c, c′)}
18. Lookup subset witness WP,C
19. Set Π(q) ∪ {P,WP,C}
20. Output a(q),Π(q)

Verifying a match. Recall that, by Lemma 1, it suffices to vali-
date that there exist suffixes S[i], S[j] in the text, such that S[j] =
pS[i]. First the client verifies that acci, accj ∈ Π(q) are indeed
the suffix accumulations of two suffixes of T using proofs πi, πj
(Line 1). Then, it checks that the corresponding structure accu-
mulations are indeed ti, tj (Lines 2-4). It remains to check that
the “difference” between them is p (Lines 6-7), by first computing
the pattern accumulation value gp) for p =

∏m
l=1(s + r(pos, i +

l − 1, pl)). A careful observation shows that this is indeed the
“missing” value between the honestly computed structure accumu-
lations ti, tj . This can be cryptographically checked by a single
bilinear equality testing e(ti, g) = e(tj , g

p). This last step can be
viewed as an accumulator-based alternative to chain-hashing using
a collision-resistant hash function. It follows from the above that,
if all these checks succeed, the conditions of Lemma 1 are met.
Verifying a mismatch. The case of a mismatch is initially similar
to that of a match, however it eventually gets more complicated.
The client begins by verifying the same relations as for the case of
a match for two indices i, j (Lines 1-4). In this case, these posi-
tions correspond to two suffixes S[i], S[j] such that S[j] = p′S[i],
where p′ is a prefix of p, i.e., their difference is a beginning part
of the pattern (Lines 9-10). Unfortunately, this is not enough to
validate the integrity of the answer. For example, a cheating adver-
sary can locate the occurrence of such a prefix of p in the text, and
falsely report its position, ignoring that the entire p appears in T as
well. We therefore need to prove that p′ is the maximal prefix of p
appearing in the text and here is where the properties of the suffix
tree become useful. In particular, if two characters appear consec-
utively within the same node ofG, it must be that every occurrence
of the first one in T is followed by the second one. Hence, if the
server can prove that the part of T corresponding to the final part
of p′ as well as the consequent character, both fall within the same
node and said consequent character is not the one dictated by p, it
must be that p′ truly is the maximal prefix of p ∈ T . This is done
by checking the relation between the node accumulation and the
node structure accumulation of the returned node v (Lines 11-15).

This however does not cover the case where the consequent char-
acter, after p′, falls within the a child node of v (i.e., the part of T
corresponding to p′, ends at the end of the range of v). To accom-
modate for this case, the server needs to prove that the next charac-
ter in p, does not appear as the leading character of any of v’s chil-
dren. Since, all these characters have been alphabetically ordered
and accumulated in consecutive pairs, it suffices to return the corre-

Algorithm 3: verify(q, α(q),Π(q), d, pk)
1. Verify acci, accv with respect to dS , with πi, πj
2. Compute gx for x = (s+ r(first, T [i]))(s+ r(index, i))
3. Compute gy for y = (s+ r(first, T [j]))(s+ r(index, j))
4. Verify that e(ti, gx) = e(acci, g) and e(tj , gy) = e(accj , g)
5. If α(q) = “match at i” Then
6. Compute gp for p =

∏m
l=1(s+ r(pos, i+ l − 1, pl))

7. Verify that e(ti, g) = e(tj , g
p)

8. Else
9. Compute gp for p =

∏t
l=1(s+ r(pos, i+ l − 1, pl))

10. Verify that e(ti, gp) = e(tj , g)
11. Verify that i = sv − dv and sv ≤ k ≤ ev and j = i+ k + 1
12. Verify accv , with respect to dV , with πv
13. Compute gz for z = (s+ r(range, sv , ev))(s+ r(depth, dv))
14. Verify that e(tv , gz) = e(accv , g)
15. If k < ev Then verify that pt+1 6= T [j]
16. Else
17. Verify that c < pt+1 < c′ (alphabetically)
18. Compute gw for w = s+ r(sequel, c, c′)
19. Verify that e(WP,C , gw) = e(accv , g)
20. If any check fails Then output reject, Else accept

sponding pairP that “covers” this consequent character. The valid-
ity of this pair is guaranteed by providing the related pre-computed
witness, the relation of which to node v is tested by checking a
bilinear equality (Lines 17-19).

We can now state our main result (proof is included in the full
version of our paper).

THEOREM 1. The algorithms {genkey, setup, query, verify}
are a correct ADS scheme for pattern matching queries that is se-
cure under the `-sDH assumption.

Complexity analysis. The running time of algorithm setup isO(n).
This follows immediately from the following: (i) the construction
ofG takesO(n) and the produced tree containsO(n) nodes, (ii) all
suffix and suffix structure accumulations can be computed with a
single pass over T , (iii) node and node structure accumulation val-
ues can be computed in time linear to the number of the node’s chil-
dren (using sk); since each node has a unique parent node, all node
accumulations are also computable in time O(n), and (iv) an ac-
cumulation tree over n elements can be constructed in time O(n).
The running time of algorithm query is O(m), because all proof
components in Π(q) are pre-computed (includingAT proofs if the
accumulation trees are of height 1), hence the only costly compo-
nent is the suffix tree traversal which takes O(m). For algorithm
verify the runtime is O(m logm). This holds because verification
of AT proofs can be done with O(1) operations, accumulating a
set ofm elements, with pk alone, takesO(m logm) operations and
only a constant number of checks is made. The proof consists of
a constant number of bilinear group elements (at most ten, corre-
sponding to the case of a mismatch at the end of a node). Finally
the overall storage space for auth(T) is O(n).

Handling wildcards. Our construction can be easily extended to
support pattern matching queries expressed as limited regular ex-
pressions. In particular, it can accommodate queries with patterns
containing a constant number of “wildcards” (e.g., ∗ or ?). To
achieve this we proceed as follows. Partition p into segments as-
sociated with simple patterns, with the wildcards falling between
them. Proceed to run proof generation and verification for each seg-
ment individually. For the mismatch case, it suffices for the server
to demonstrate that just one of these segments does not appear in
T . For the match case, the server proves existence for all segments
and the clients verifies each one separately. He then checks that
the positions of occurrence (expressed as the i, j indices of each

755

segment) are “consistent”, i.e., they fall in the correct order within
the text (or they have the specified distance in case there is a corre-
sponding restriction in the query specification).

Parallel setup. We also show how to derive parallel implementa-
tions for the setup algorithm, assuming O(n/ logn) processors in
the exclusive-read-exclusive-write (EREW) model [19].
BM accumulator setup. Given the trapdoor information s, the accu-
mulation acc(X) of a setX of size n, can be computed inO(logn)
parallel time. This is achieved with an algorithm for summing n
terms in parallel (where sum is replaced with multiplication) [19].
Suffix products. Suffix accumulations can be computed by simply
using a parallel prefix sums algorithm, in O(logn) parallel time.
Accumulation trees. Accumulation trees on a set of n elements, can
also be constructed in parallel. First, partition the elements of the
set in O(n/ logn) buckets of size O(logn) and then compute the
accumulations of the buckets in O(logn) parallel time. Next, for
a fixed ε, build the accumulation tree on top of the B = n/ logn
buckets. Specifically, the accumulations (O(B1−ε) in total) of all
internal nodes (of degree O(Bε)) at a specific level can be com-
puted independently from one another. Therefore, by the parallel
accumulation setup algorithm (presented in the beginning of this
section), the accumulation tree can be computed in O(logBε) =
O(logn) parallel time using O(B1−εBε/ logB) = O(n/ logn)
processors, similarly with a Merkle tree. It follows that setup takes
O(logn) parallel time with O(n/ logn) processors.

5. APPLICATIONS
In this section we discuss two practical applications of our con-

struction. We first show how our scheme can be used to accommo-
date pattern matching queries over a collection of documents and
then explain how our BM authentication technique can be modi-
fied to support a class of queries over semi-structured data, namely
XML documents. Finally, we discuss how our construction can be
extended to efficiently handle modifications in the dataset.

5.1 Search on collection of text documents
We generalize our main construction to handle queries over mul-

tiple documents. By adding some modifications in the suffix tree
authentication mechanism, we build a scheme that supports queries
of the form “return all documents that contain pattern p”. This
enhancement yields a construction that is closer to real-world ap-
plications involving querying a corpus of textual documents.

Let T1, . . . , Tτ be a collection of τ documents, with content from
the same alphabet Σ. Without loss of generality, assume each of
them has length n, and letN be the sum of the lengths of all Ti, i.e.,
N = τn. We assume a data structure that upon input a query q, ex-
pressed as string pattern p from Σ, returns the index set I := {i|p
appears in Ti}, i.e., the indices of all documents that contain the
pattern. Using our construction as a starting point, one straight-
forward solution for authenticating this data structure is to handle
each Ti separately, building and authenticating a corresponding suf-
fix tree. Consequently, in order to prove the integrity of his answer,
the server replies with τ separate proofs of our main construction
(one for each document) which are separately verified by the client.
This approach is clearly not efficient since τ can be very large in
practice; shorter proofs are not possible, since a server can cheat
simply by omitting the answer for some documents and the client
has no way to capture this unless he receives a proof for all of them.

Main idea. We handle all documents as a single document T =
T1 ∗ T2 ∗ . . . ∗ Tτ expressed as their concatenation, where ∗ is a
special character 6∈ Σ marking the end of a document. We define
extended alphabet Σ∗ = Σ ∪ {∗} and build a single authenticated

suffix tree G = (V,E, T ,Σ∗) as in our main construction. Ob-
serve now that the query can be reduced to answering a single pat-
tern matching query for p in T , asking for all its occurrences (as
opposed to our main scheme where we were interested with a sin-
gle occurrence). This can be easily achieved with the following
observation about suffix trees: for a pattern p for which suffixTree
outputs node v ∈ G, the number of occurrences of p ∈ T , is the
number of children of G. For example, in Figure 1, the pattern i
appears three times in the text, and the pattern mi appears twice.

Construction overview. The above relation can be incorporated
in our main construction, by encoding in each node v not a sin-
gle range (sv, ev) but the indices of all these ranges (svu, e

v
u), one

for each child node u of v. In fact, the information will consist
of triples (i, svu, e

v
u) where i is the index of the document Ti within

which sv falls. This can performed in timeO(n) in three steps. Ini-
tially, the owner sets up an efficient dictionary structure with key-
value pairs formed by document indices and corresponding starting
positions. Then he sets up a suffix tree G for T and with a post-
order traversal computes all ranges for each node (with lookups to
the dictionary). He finally runs the setup for our main construction
with the modified node information explained above.

Regarding proof generation and verification, we distinguish be-
tween the two cases. If p does not appear in T , then the proof is
same as in our basic scheme and the same holds for verification4.
For the case of positive response, the server must return a proof
that consists of three parts: (i) a match proof exactly as in our main
construction, with boundaries i, j; (ii) a node accumulation accv
(with its accumulation tree proof and structure accumulation) for
the node v corresponding to p and all its ranges; (iii) the indices of
all documents where p appears. With access to all this information,
the client verifies that p indeed appears in T , it corresponds to v
(because there must exist one range of v that covers position j) and
that the returned indices correspond exactly to all documents con-
taining p. Observe that the special character ∗ makes it impossible
for an adversary to cheat by finding two consecutive documents,
the first of which ends with a prefix of p and the second of which
begins with the corresponding suffix (as long as {∗} 6∈ p).

5.2 Search on XML documents
We now turn our attention to queries over XML documents. We

consider the standard tree-based representation of XML data: An
XML document X consists of n elements e1, . . . , en organized in
a hierarchical structure, via sub-element relations, which, in turn,
imposes a well-defined representation ofX as a treeXT having ele-
ments as nodes and sub-element relations expressed by edges. Each
element has a label that distinguishes its data type, attributes and
corresponding attribute values and actual textual content (which
can be viewed as an additional attribute).5 We also assume that
each element of XT is associated with a unique numerical iden-
tifier stored as an element attribute. Figure 3 provides one such
simplified tree-based representation.

Each node e in XT is defined (or reachable) by a single label
path that is the concatenation of the labels of e’s ancestor nodes
in the order that they must be traversed starting from the root of
XT in order to reach e. In general, many elements may share the
same label path. We abstract away the details of the (often elabo-
rate) querying process of an XML document by considering generic
path queries that return a subset of the elements of XT (in fact,
4The node accumulations must include separately a single range for v (ran-
domly chosen in the case of multiple occurrences) and the collection of all
ranges described above.
5We do not consider reference attributes relating elements to arbitrary
nodes in XT) or processing instructions.

756

bookstore	

name	

name	
 name	

name	

department	
 employee	
 employee	

salary	
 salary	

book	
 book	

0tle	
 author	
 YoP	

XT bookstore	

department	
 name	
 employee	

name	
 salary	
 name	

book	

0tle	
 YoP	
 author	

XL

name	

book	

…

… …

department	

0tle	
 author	
 YoP	

book	

Figure 3: (Left) Tree XT containing all the elements of XML document X . Element attributes can be included as a different type of
node, directly below the corresponding element. (Right) Trie XL containing all the distinct label paths that appear at X .

a forest of subtrees in XT). A path query is generally a regular
expression over the alphabet L of valid labels returning all nodes
reachable by those label paths conforming to the query, along with
the subtrees in XT rooted at these nodes. An exact path query is
related to a label path L of length m, i.e., L ∈ Lm, returning the
subtrees reachable in XT by L. This abstraction fully captures the
basic notion of path query as identified in various XML query lan-
guages, e.g., XPath, XML-QL. As an example a query of the form
\bookstore\department\book will return all the books that ap-
pear in XT as shown in Figure 3 with the corresponding subtree of
each book element (i.e., nodes title, author,YoP).

Main idea. Similar to the case of text pattern matching, our goal
is to identify the relations among the elements of XML document
that are sufficient to succinctly certify the correctness of exact-
path XML queries. Our main approach is to decouple locating the
queried elements from validating their contents. We achieve this
through a direct reduction to our (authenticated) suffix tree con-
struction from the previous section: Given an XML document X
in its tree-like representation XT , we construct a trie XL that stores
all the distinct label paths that appear in XT . Compared to our
main scheme, XL can be viewed as an uncompressed suffix tree
(trie) with the alphabet being the element label space L associ-
ated with X and the “text” over which it is defined being all label
paths in XT . Each node in XL is associated with a valid label
path according to XT and also with the set of elements in XT that
are reachable by this label path, through back pointers. For ex-
ample, the query \bookstore\department\book in Figure 3 will
reach one node in XL which points back to the elements reachable
by the queried path. We define, encode and authenticate three types
of certification relations (corresponding to edges in Figure 3):

1. Subtree contents: This relation maps nodes in XT with the
elements (and their attributes) in XT that belong in the sub-
trees in XT defined by these nodes.

2. Label paths: This relation maps nodes inXL with their corre-
sponding label paths. Here, we make direct use of our results
from Section 4; however, since we no longer have a tree de-
fined over all possible suffixes of a text, suffix accumulations
are no longer relevant (instead, we use node accumulations).

3. Element mappings: This relation maps nodes in XL with the
corresponding elements inXT that are reachable by the same
label path (associated with these nodes).

We next describe how to cryptographically encode the above re-
lations by carefully computing accumulations or hash values over
sets of data objects related to the nodes in XL and XT .

Notation. We denote by eid the identifier, by Ae = {(ai, βi)|i =
1, . . . , |Ae|} the attribute values, by lb(e) the label, and by Ce =
{ci|i = 1, . . . , |Ce|} the children of element e in XT . Also, for
node v ∈ XL, we denote by Lv , lb(v), Cv , and Ev its label path,
label, children set, and respectively the set of elements ei in XT
that are reachable by Lv . Finally, let d be the height of XT .
Subtree labels. Subtree contents in XT are encoded using a spe-
cial type of node-specific values. If h is a cryptographic collision-
resistant hash function, then for any e ∈ XT we let he denote
the hash content of e he = h(eid‖(a1, β1)‖ . . . ‖(a|Ae|, β|Ae|)).
Then, for e ∈ XT we define two different ways for recursively
computing node-specific subtree labels sl(e) that aggregate the hash
labels of all the descendant nodes of e in XT :

1) Hash based: If e is leaf in XT then sl1(e) = he, otherwise
sl1(e) = h(he‖sl1(c1) . . . ‖sl1(c|Ce|));

2) Accumulation based: sl2 = acc(Ze) where if e is leaf then
Ze = he, otherwise Ze = {he,Zc1 , . . . ,Zc|Ce|

};

Node accumulations. Label paths and element mappings in XL
are encoded using node accumulations. We associate with v ∈
XL three sets of data objects: (a) The label path Lv of v; let
Yv1 = {(label, i, li) : i = 1, . . . , |Lv|}; (b) The label sequels
of v is lb(c1), . . . , lb(c|Cv|), the sequence of the alphabetically or-
dered labels of v’s children; let Yv2 = {(sequel, lb(ci), lb(ci+1)) :
i = 1, . . . , |Cv| − 1}; and (c) The XML elements hash is the hash
value of the set Ev of elements of XT that correspond to Lv; let
Yv3 = {(hash, h(sl(e1), . . . , sl(e|Ev|)} (alternatively, this hash
can be computed as the accumulation of values sl(ei) using a BM
accumulator). Then the node accumulation for node v ∈ XL is
defined as acc(Yv1 ∪ Yv2 ∪ Yv3).
Construction overview. Here we discuss the operation of the al-
gorithms of our scheme. A more detailed description can be found
at the full version of our paper. The genkey algorithm is exactly
the same as the one for our main construction (plus generating a
collision resistant hash function if sl1 is chosen for subtree labels).
For setup, the owner first builds XL, the trie containing all distinct
paths appearing in the XT . He then computes subtree labels sl(e)
for each element e ∈ XT in a bottom up way starting from the
leaves and node accumulations accv for each node v ∈ XL. He
also computes for v, two structure accumulations tv, sv , the first of
which contains only information regarding the labels of its children
nodes and the second contains all the node information except for
the label path Lv . Moreover, he computes a subset witness for each
consecutive pair of children of v (ordered alphabetically based on
their label), exactly as in the main scheme. He finally builds a sin-
gle accumulation tree over the set V of node accumulations accv
and sends all components to the server.

757

With respect to query we again distinguish the two cases. If the
queried path L does not appear in XT , proof generation is identical
to the mismatch case of our main construction. The server simply
needs to prove the existence of a prefix of L, and that none of the
children of the node v in XL corresponding to this prefix has the
necessary next label. This is achieved by providing the length of the
prefix, the corresponding accv (with its accumulation proof), the
structure accumulation sv , and the corresponding pair of children
labels with its subset witness. The client, first checks the validity of
accv , then verifies it corresponds to the given prefix of L using the
structure accumulation and, finally checks whether the next label
in L is covered by the given label pair, as well as the fact that it is a
well-formed pair using the given witness. Observe that, in contrast
to our main construction, since XL is uncompressed, the mismatch
will always happen “at the end” of a node.

If L appears in XT , the answer consists of all elements ei in
the document that have label paths corresponding to L as well as
the subtrees of XT that have ei as roots. Note that, since the re-
sult consists of a forest of subtrees, their structure (i.e., the parent-
children relations of elements) is also explicitly part of the answer.
Proof generation proceeds as follows. If v is the node in XL that
corresponds to L, the server only needs to provide accv (with its
accumulation proof) and the structure accumulation tv . The client
first validates that accv is a correct node accumulation and then
checks that it corresponds to L and all provided elements ei using
the structure accumulation tv . To achieve the latter, he first com-
putes subset label sl(ei) for each element in the answerEv and their
hash value η = h(sl(e1), . . . , sl(e|Ev|)). He then computes gx for
x = (s + r(hash, η))

∏|Lv|
i=1 (s + r(label, i, li)) and finally checks

whether e(gx, tv) = e(accv, g). This simultaneously validates that
v corresponds to L and that all elements ofXT (including subtrees)
have been returned. For the latter, observe that sl is a secure cryp-
tographic representation, hence no elements may be omitted.

Parallel setup. Our XML construction also supports parallelizable
setup, in O(logn) parallel time using O(n/ logn) processors.
Label paths. For a node v of a rooted tree T of size n, let xv denote
the information stored at v and path(v) denote the path between v
and the root. Let prefix accumulations of tree T , be computed as
accPv(T) = g

∏
u∈path(v) (s+xu) for v ∈ T . These can be computed

in O(logn) parallel time, by computing a suffix accumulation over
the Euler tour of T (using our approach for text pattern matching),
that is appropriately refined to accumulate (s+xv) modulo p in the
exponent when the tour encounters the left side of v and (s+xv)−1

modulo p when the tour encounters the right side of v.
Subtree labels. If the labels are accumulation-based, they can be
modeled as accSv(T) = g

∏
w∈subtree(v)(s+xw) for v ∈ T , where

subtree(v) is the set of nodes contained in the subtree rooted on
node v. Note that in order to compute accSv(T) for all v ∈ T ,
it suffices to compute the products

∏
w∈subtree(v)(s + xw) for all

v ∈ T . Such a parallel algorithm running in O(logn) parallel time
was originally presented as an application of tree contraction [25].

5.3 Dynamic datasets
So far we have only dealt with the case of static datasets, where

the data owner outsources the data once, with no further changes.
However, in many cases the owner may wish to update the dataset
by inserting or removing data. When this occurs, the owner can of
course run the entire setup process again, but here we investigate
more efficient updates for the two applications presented above.

Collection of text documents. For our scheme we build a single
suffix tree on the collection, hence our update efficiency will cru-
cially depend on this data structure’s behavior. In practice, a single

modification in any of the documents may change the suffix tree
entirely and the best we can do for updates is to re-run setup, in
time O(nτ). One way to accommodate updates more efficiently
is the following. We first split the documents in

√
τ groups, each

with
√
τ documents, and then run our scheme separately for each

group. A given query now decomposes into a separate query for
each group. In this setting, an update –in the form of a document
insertion or removal– will only cause the re-computation of one of
the suffix trees (and the corresponding ADS) in time O(n

√
τ) in-

stead ofO(nτ). On the other hand, this increases the cost for proof
generation/verification and size by a multiplicative

√
τ factor, but

in settings with frequent updates, this trade-off may be favorable.

XML documents. In this setting, we discuss updates in the form
of element insertion or removal from the document, that do not
change the structure of the label trie XL (i.e. they do not introduce
a new label path in the document). Otherwise, we face the same
difficulties as in the previous application. We focus on leaf ele-
ment insertions; in order to insert more than one element (building
a new subtree in XT) the process is repeated accordingly. Updates
of this form can be efficiently handled as follows: First, the new
element’s subtree label is computed and the subtree labels of all its
ancestors in XT are re-computed. Second, the node accumulation
value of the corresponding node v ∈ XL is updated by inserting the
subtree label of the new element in the XML elements hash. Then,
the second structure accumulation and children witnesses for v are
updated, and the accumulation tree is updated accordingly.

Let us now calculate the efficiency of the above process. Com-
puting the subtree labels takes O(d) operations and recomputing
the node and structure accumulations and children witnesses re-
quires O(|Cv|) exponentiations (assuming the XML elements hash
is computed with a BM accumulator). We stress that |Cv| is the
number of distinct labels the siblings of the inserted element have,
and not the number of its XML element siblings; for all practical
purposes |Cv| can be viewed as a constant. Finally, by the prop-
erties of the accumulation tree, the last step can be run in time
O(|XL|ε), where ε ∈ (0, 1] is a chosen parameter. The same holds
for the case of element removal. Hence the overall update cost is
O(d+ |Cv|+ |XL|ε), which is much less than the setup cost.

6. PERFORMANCE EVALUATION
In this section, we present an experimental evaluation of our two

authenticated pattern matching applications from Section 5. All
scheme components were written in C++, by building on a core BM
accumulator implementation [37] developed by Edward Tremel,
as well as using library DCLXVI [2] for bilinear pairings, library
FLINT [3] for modular arithmetic, Crypto++ [1] for implementing
SHA-2, and the pugiXML [4] XML parser. The code was compiled
using g++ version 4.7.3 in C++11 mode. Our goal is to measure
important quantities related to the execution of our scheme: veri-
fication time for the clients, proof generation time for the server,
setup time for the data owner, and the size of the produced proof.

Experimental setup. For our collection of documents application,
we used the Enron e-mail dataset [20] to build collections of e-
mail documents (including headers) with total size varying between
10,000 and 1,000,000 characters. We set the public key size to be
equal to 10% of the text size at all times (this can be seen as an
upper bound on the size of patterns that can be verified). For the
exact path XML application, we experimented with five XML doc-
uments of various sizes from the University of Washington XML
repository [5], as well as a large synthetic XML document gener-
ated using the XMark benchmark tool [6]. A list of the documents
and their sizes can be found in Table 2. Special characters were

758

XML document size (MB) # of elements # of paths setup (sec)
SIGMOD 0.5 11,526 11 0.4
Mondial 1 22,423 33 0.7
NASA 23 476,646 95 8.9
XMark 100 2,840,047 514 35.2
DBLP 127 3,332,130 125 68.9
Protein sequence 683 21,305,818 85 381.5

Table 2: XML documents used for experiments and setup time.

text size setup (sec)
100 1.4
1,000 10.7
10,000 99.6
100,000 976.5
1,000,000 10,455

(a) setup time

proof type proof (KB) optimal (B)
positive 3.4 435
negative 3.4 435
neg. end node 4 500
xml positive 1.2 178
xml negative 1.7 243

(b) proof size

Table 3: Setup cost for text documents and size of proofs.

escaped both in the e-mail documents and the text content within
XML elements. For computing subset labels and XML elements
hashes within trie nodes, we used the hash-based approach with
SHA-2. In both cases we constructed accumulation trees of height
1 for the authentication of suffix and node accumulations. All quan-
tities were measured ten times and the average is reported.

Working with pairings over elliptic curves. As mentioned in Sec-
tion 2 the BM accumulator employs a pairing e defined over two
bilinear groups. For simplicity of presentation, we previously de-
fined e : G × G → GT , i.e., both its inputs come from the same
group (known in the literature as an symmetric pairing). In practice
however, asymmetric pairings of the form e : G1 × G2 → GT ,
where G1,G2 are groups of the same prime order but G1 6= G2,
are significantly faster. The DCLXVI library we use here, makes
use of such a pairing over an elliptic curve of 256 bits, and offering
bit-level security of 128 bits (corresponding to the strong level of
3072-bit RSA signatures according to NIST [7]). Elements of G2

(corresponding to witnesses in our scheme) are defined over an ex-
tension of the field corresponding to elements of G1(resp. accumu-
lations). The former are twice as large as the latter and arithmetic
operations in G2 are roughly 2-3 times slower.

Setup cost. Table 3(a) shows the setup time versus the total length
of the documents and depicts a strong linear relation between them.
This is expected because of the suffix accumulation computations
and the fact that the suffix tree has linearly many nodes. The prac-
tical cost is quite large (e.g., roughly 3 hours for a text of 1,000,000
characters). However, this operation only occurs once when the
outsourcing takes place. For the XML case, Table 2 contains the
necessary setup time for the documents we tested. The time grows
with the size of the document but is quite small in practice, even for
very large documents (e.g., a little above 6 minutes for a document
of size 683MB). This happens because the crucial quantity is the
number of distinct paths in the document (that will form the nodes
of XL), and not the number of elements in the document itself.

Query time. Figures 4(a), (b) and (c) show the server’s overhead
for answer computation and proof generation, for text and XML
pattern matching. For text pattern matching we experimented with
pattern lengths of 10 to 1,000 characters at a text of 1,000,000 char-
acters. To test the query time at the server, we focused on queries
with negative answers and prefix matches finishing at the end of
a node, which is the most demanding scenario (e.g., a pattern that
starts with a letter that does not even appear in the text is answered
by simply looking at the children of the root node of the suffix
tree). To produce such queries, we identified matches at ends of

various nodes, and “built” progressively larger patterns that ended
with them. We plot the overall time for query evaluation and proof
generation versus the size of the found prefix. As can be seen, the
cost is in the order of a few microseconds (µs) at all times. In the
case of XML queries, we present findings both for the positive and
negative case in Figures 4(b) and (c) respectively, for the NASA,
XMark and DBLP datasets (note the different y-axis scales). For
queries with positive answers, we tested on all existing label paths,
whereas for negative ones we inserted a “junk” label at a random
point along a valid path. In the first case the plot is versus the size
of the answer; for the second case where the answer size is zero, we
plotted the times across the x-axis by simply assigning an arbitrary
id (1-742) to each query. The overhead is again very low, less than
1 millisecond for most instances in the positive case and less than
20µs in the negative. This discrepancy occurs because the server
must compile the answer subtrees into a new pugiXML document
(that will be sent to the client) for a positive answer –which does
not entail any cryptographic operations. Finally, in both applica-
tions the plots are quite noisy. This follows because the answer
computation time varies greatly with the topology of the trees (in
both cases) and the size of node contents (for the XML case).
Comparison with query-evaluation time. In both cases the server’s
overhead for proof generation is very low in our scheme since, once
the answer is computed, he simply performs a constant number of
lookups in his local database to find the corresponding accumula-
tions and witnesses. This is highlighted in Figure 4(a) where the
lower data series corresponds to the time it takes to simply evaluate
the query (without any proof of integrity). As can be inferred, the
pure cost for proof generation is less than 10µs at all times. This is
also true for the XML case, but due to the different plot type, it was
not easy to depict in a figure. In essence, in our scheme the server
only performs exactly the same operations as if there was no au-
thentication plus a constant number of memory look-ups, for both
applications which makes it ideal for scenarios where a dedicated
server needs to handle great workload at line-speed.

Verification time. In Figures 4(d),(e) and (f) we demonstrate the
verification cost for clients for the text and XML pattern matching
applications. In the first case the time is measured as a function
of the queried pattern length (or matching prefix in the case of a
negative answer) and in the second as a function of the answer size
(as before, for negative responses we plot versus an arbitrary id).

To test the verification time for our text application, we report
findings for all three possible cases (match, mismatch and mis-
match at end of node). We observe a strong linear correlation be-
tween the verification time and the length of the matched pattern.
This follows because the main component of the verification algo-
rithm is computing the term gz. Observe that verification for the
positive case of a match is slightly faster, which corresponds to our
protocol description. In that case, the client needs to perform op-
erations over accumulations and witnesses related only to suffixes,
without getting involved with suffix tree nodes. On the other hand,
the case where a mismatch occurs at the end of a suffix tree node is
slightly more costly than that of a simple mismatch since the client
needs to also verify a received sequel with a corresponding witness.
The verification overhead remains below 300ms even for arguably
large pattern sizes consisting of up to 1,000 characters.

For XML path matching, we report findings for answer sizes of
up to 50,000 elements. Observe again the strong linear correlation
between the answer size and the verification time, for positive an-
swers. This follows from the fact that the client performs one hash
operation per element in the answer, followed by a constant num-
ber of bilinear pairings. The total overhead is very small, less than
half a second even for large answer sizes. If the answer is negative

759

(a) Text query time vs matched pattern size (b) XML query time vs answer size (positive) (c) XML query time by query id (negative)

(d) Text verif. time vs matched pattern size (e) XML verif. time vs answer size (positive) (f) XML verif. time by query id (negative)

Figure 4: Query (top) and verification (bottom) time for text and XML pattern matching.

(again, note the different y-axis scale) the overhead comes mostly
from the fixed number of pairings and is much smaller.

Proof size and optimizations. With the DCLXVI library, bilin-
ear group elements are represented by their Jacobian coordinates,
i.e., three values per element. As described in [26], each coordi-
nate of an element in G1 is represented by a number of double-
precision floating-point variables. The total representation size is
2304 bits for elements of G1 and 4608 bits for elements of G2.
In our scheme, proofs also contain additional structural informa-
tion (e.g., position of match/mismatch in text, depth of edge, etc.)
which was less than 50 bytes for all tested configurations.

Table 3(b) contains the proof sizes produced by our scheme for
both applications. Recall that these numbers are independent of
dataset, pattern, or answer size. At all times the proof size is be-
low 4Kb and as low as 1.2Kb for positive XML proofs. While
these sizes are very attractive for most applications, further im-
provements (not implemented here) are possible. Elements can be
instead represented by their two affine coordinates (x, y). More-
over, there is no need to transmit y-coordinates as all elements lie
on the curve with equation y2 = x3 + 3, which is part of the public
parameters of the scheme. Given x, the y-coordinate can be in-
ferred by a single bit indicating which square root of x3 + 3 it cor-
responds to. The result of these optimizations can be seen on the
third column of the table. The proof size is as low as 435 bytes for
text pattern matching and 178 bytes for XML path search. On the
other hand, these techniques introduce a small additional overhead
at the client (for computing y and transforming to Jacobian coordi-
nates again). When reduced communication bandwidth is essential
or proof caching occurs, this extra cost may be acceptable.

Discussion and comparison with alternative schemes. The above
results highlight the practicality of our constructions. In particu-
lar for the server, who would have to handle the largest workload,

the fact that all proof components are pre-computed implies only
a small fixed overhead between simply evaluating a query and au-
thenticating the answer with a proof on top of that. Verification
time is also appealing for most real-world scenarios making our
scheme ideal for settings with “thin” clients or even mobile devices.
One component of our scheme that can be improved significantly is
the one-time setup operation; pre-computing all proof components
takes its toll, especially for the text pattern matching application.
Finally, while proofs are arguably very short, they can be further
compressed by the optimization discussed above.

To the best of our knowledge, the only other known construc-
tions to achieve constant-size proofs rely on general verifiable com-
putation schemes. As discussed previously, state-of-the-art imple-
mentations fall under two categories: circuit or RAM-based. For
the former, (e.g., [32]) the proof generation cost is always at least
as large as parsing a circuit that has the entire document as input.
The latter are asymptotically better than the former, but still incur
prohibitive costs for the server. In particular, as shown in [42], per-
forming a BFS over a graph of roughly 9,000 edges takes 270 hours
with [13] and 50 hours with [8] for proof generation. For compari-
son, in our text pattern matching experiment, we tested patterns of
up to 1,000 elements and an alphabet of 256 characters. Assuming
a binary search tree at each node for finding children nodes match-
ing the pattern, this corresponds to 8,000 memory reads in the worst
case, and proof generation took less than 10µs. A different line of
work for authenticated pattern matching is based entirely on crypto-
graphic hashes (e.g, [16, 23, 10]). There is no existing built system
for concrete comparison but, due to the different nature of oper-
ations, we expect these schemes to have faster setup and slightly
better verification time than ours. However, the proofs grow with
the pattern size for text pattern matching, and with the size of the
entire document (in the worst case) for XML queries.

760

7. CONCLUSION
We presented a novel approach for verifying pattern matching

queries on text and XML documents that yields constant-size proofs,
using careful encoding of answer-specific certification relations with
cryptographic accumulators. We demonstrated the practicality of
our schemes by experimenting on real datasets. In this work we
focused on exact pattern matching, leaving for future work the au-
thentication of more general related query types, such as patterns
expressed by regular expressions or pattern matching on graphs.

Acknowledgments
We thank all the anonymous reviewers for their detailed comments
and suggestions. We also thank Edward Tremel for many insightful
discussions in early stages of our work and for making his BM
accumulator code [37] available to us, portions of which we used as
a library. Research supported in part by the U.S. National Science
Foundation under CNS grants 1012798, 1012910, and 1228485.

8. REFERENCES
[1] Crypto++ Library. http://www.cryptopp.com/.
[2] DCLXVI Library. http://cryptojedi.org/.
[3] FLINT Library. http://www.flintlib.org/.
[4] PugiXML. http://pugixml.org/.
[5] University of Washington XML data repository.

http://www.cs.washington.edu/research/
xmldatasets/.

[6] XMark. http://www.xml-benchmark.org/.
[7] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid. NIST

recommendation for key management Part 1: General
(revision 3), July 2012.

[8] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and
M. Virza. Snarks for C: Verifying program executions
succinctly and in zero knowledge. In CRYPTO, 2013.

[9] J. C. Benaloh and M. de Mare. One-way accumulators: A
decentralized alternative to digital sginatures (extended
abstract). In EUROCRYPT, 1993.

[10] E. Bertino, B. Carminati, E. Ferrari, B. Thuraisingham, and
A. Gupta. Selective and authentic third-party distribution of
XML documents. IEEE TKDE, 16(10):1263–1278, 2004.

[11] D. Boneh and X. Boyen. Short signatures without random
oracles and the SDH assumption in bilinear groups. Journal
of Cryptology, 21(2):149–177, 2008.

[12] K. D. Bowers, C. Hart, A. Juels, and N. Triandopoulos.
Pillarbox: Combating next-generation malware with fast
forward-secure logging. In RAID, 2014.

[13] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg,
and M. Walfish. Verifying computations with state. In SOSP,
2013.

[14] J. Camenisch and A. Lysyanskaya. Dynamic accumulators
and application to efficient revocation of anonymous
credentials. In CRYPTO, 2002.

[15] R. Canetti, O. Paneth, D. Papadopoulos, and
N. Triandopoulos. Verifiable set operations over outsourced
databases. In PKC, 2014.

[16] P. Devanbu, M. Gertz, A. Kwong, C. Martel, G. Nuckolls,
and S. Stubblebine. Flexible authentication of XML
documents. Journal of Computer Security, 6:841–864, 2004.

[17] S. Faust, C. Hazay, and D. Venturi. Outsourced pattern
matching. In ICALP, 2013.

[18] M. T. Goodrich and R. Tamassia. Algorithm design -
foundations, analysis and internet examples. Wiley, 2002.

[19] J. JaJa. An Introduction to Parallel Algorithms. Addison
Wesley, 1997.

[20] B. Klimt and Y. Yang. The Enron corpus: A new dataset for
email classification research. In ECML, 2004.

[21] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin.
Authenticated index structures for aggregation queries. ACM
TISSEC, 13(4):32, 2010.

[22] E. Mansour, A. Allam, S. Skiadopoulos, and P. Kalnis. ERA:
Efficient serial and parallel suffix tree construction for very
long strings. PVLDB, 5(1):49–60, 2011.

[23] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong,
and S. G. Stubblebine. A general model for authenticated
data structures. Algorithmica, 39(1):21–41, 2004.

[24] R. Merkle. A certified digital signature. In CRYPTO, 1989.
[25] G. L. Miller and J. H. Reif. Parallel tree contraction, part 2:

Further applications. SICOMP, 20(6):1128–1147, 1991.
[26] M. Naehrig, R. Niederhagen, and P. Schwabe. New software

speed records for cryptographic pairings. In LATINCRYPT,
2010.

[27] L. Nguyen. Accumulators from bilinear pairings and
applications. In CT-RSA, 2005.

[28] R. Ostrovsky, C. Rackoff, and A. Smith. Efficient
consistency proofs for generalized queries on a committed
database. In ICALP, 2004.

[29] H. Pang and K. Mouratidis. Authenticating the query results
of text search engines. PVLDB, 1:126–137, 2008.

[30] C. Papamanthou, R. Tamassia, and N. Triandopoulos.
Optimal verification of operations on dynamic sets. In
CRYPTO, 2011.

[31] C. Papamanthou, R. Tamassia, and N. Triandopoulos.
Authenticated hash tables based on cryptographic
accumulators. Algorithmica, pages 1–49, 2015.

[32] B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio:
Nearly practical verifiable computation. In IEEE Symp. on
Security and Privacy, 2013.

[33] S. Setty, B. Braun, V. Vu, A. J. Blumberg, B. Parno, and
M. Walfish. Resolving the conflict between generality and
plausibility in verified computation. In EuroSys, 2013.

[34] R. Tamassia. Authenticated data structures. In ESA, 2003.
[35] R. Tamassia and N. Triandopoulos. Certification and

authentication of data structures. In AMW, 2010.
[36] J. Thaler, M. Roberts, M. Mitzenmacher, and H. Pfister.

Verifiable computation with massively parallel interactive
proofs. In USENIX HotCloud, 2012.

[37] E. Tremel. Real-world performance of cryptographic
accumulators. Undergraduate Honors Thesis, Brown
University, 2013.

[38] P. Weiner. Linear pattern matching algorithms. In IEEE
SWAT, 1973.

[39] Y. Yang, D. Papadias, S. Papadopoulos, and P. Kalnis.
Authenticated join processing in outsourced databases. In
SIGMOD, 2009.

[40] A. A. Yavuz, P. Ning, and M. K. Reiter. Efficient,
compromise resilient and append-only cryptographic
schemes for secure audit logging. In FC, 2012.

[41] T.-F. Yen, A. Oprea, K. Onarlioglu, T. Leetham, W. K.
Robertson, A. Juels, and E. Kirda. Beehive: Large-scale log
analysis for detecting suspicious activity in enterprise
networks. In ACSAC, 2013.

[42] Y. Zhang, C. Papamanthou, and J. Katz. ALITHEIA:
Towards practical verifiable graph processing. In CCS, 2014.

761

http://www.cryptopp.com/
http://cryptojedi.org/
http://www.flintlib.org/
http://pugixml.org/
http://www.cs.washington.edu/research/xmldatasets/
http://www.cs.washington.edu/research/xmldatasets/
http://www.xml-benchmark.org/

	Introduction
	Cryptographic tools
	Pattern matching queries
	Main construction
	Applications
	Search on collection of text documents
	Search on XML documents
	Dynamic datasets

	Performance evaluation
	Conclusion
	References

