
Robust Local Community Detection: On Free Rider Effect
and Its Elimination

Yubao Wu 1, Ruoming Jin 2, Jing Li 1, Xiang Zhang 1

1Department of Electrical Engineering and Computer Science, Case Western Reserve University
2Department of Computer Science, Kent State University

yubao.wu@case.edu; jin@cs.kent.edu; {jingli, xiang.zhang}@case.edu

ABSTRACT
Given a large network, local community detection aims at
finding the community that contains a set of query nodes
and also maximizes (minimizes) a goodness metric. This
problem has recently drawn intense research interest. Var-
ious goodness metrics have been proposed. However, most
existing metrics tend to include irrelevant subgraphs in the
detected local community. We refer to such irrelevant sub-
graphs as free riders. We systematically study the existing
goodness metrics and provide theoretical explanations on
why they may cause the free rider effect. We further de-
velop a query biased node weighting scheme to reduce the
free rider effect. In particular, each node is weighted by its
proximity to the query node. We define a query biased den-
sity metric to integrate the edge and node weights. The
query biased densest subgraph, which has the largest query
biased density, will shift to the neighborhood of the query
nodes after node weighting. We then formulate the query bi-
ased densest connected subgraph (QDC) problem, study its
complexity, and provide efficient algorithms to solve it. We
perform extensive experiments on a variety of real and syn-
thetic networks to evaluate the effectiveness and efficiency
of the proposed methods.

1. INTRODUCTION
Graph (or network1) is a ubiquitous data structure that

can model many real-world problems. Community detection
is a fundamental problem in network analysis [11]. Tradi-
tional community detection methods aim at finding all com-
munities in the entire network.

With the increasing size of the networks, local community
detection has recently drawn intensive research interest [20,
2, 7, 29, 31]. Given a set of query nodes, the local community
detection problem aims at finding the community near the
query nodes. It has a wide range of applications in analyzing
social networks, collaborative tagging systems, query-logs,
and biological networks [31, 9, 20, 19].

1In this paper, we use network and graph interchangeably.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 7
Copyright 2015 VLDB Endowment 2150-8097/15/03.

Goodness metrics A A∪B A∪C
Classic density 2.50 2.95 2.83
Edge-surplus 15.3 26.5 22.8

Minimum degree 4 4 4

Subg. modularity 2.0 3.6 4.6
Density-isolation –2.6 3.8 1.5

Ext. conductance 0.25 0.14 0.11

Local modularity 0.63 0.70 0.78

Figure 1: Left: a network with 4 communities, the query node
is the purple node in community A; right: goodness values of
different metrics on subgraphs A, A∪B, and A∪C

In local community detection, a goodness metric is usual-
ly used to measure whether a subgraph forms a community.
The existing goodness metrics for local community detec-
tion can be categorized into three classes. The first class
optimizes the internal denseness of a subgraph, i.e., the set
of nodes in a community should be densely connected with
each other. Such metrics include the classic density defini-
tion [29], edge-surplus [36], and minimum degree [31]. The
second class optimizes both the internal denseness and the
external sparseness. That is, the set of nodes in the com-
munity are not only densely connected with each other, but
also sparsely connected with the nodes that are not in the
community. Such metrics include subgraph modularity [23],
density-isolation [22], and external conductance [2]. The
local modularity measures the sharpness of the communi-
ty boundary and belongs to the third class [7]. Using this
metric, the set of nodes in the boundary of the communi-
ty are highly connected to the nodes in the community but
sparsely connected to the nodes outside the community.

Given a goodness metric, the generic local community de-
tection problem aims at finding a subgraph such that: (1)
the subgraph contains the query nodes, and (2) the good-
ness metric is maximized (or minimized). This formulation
has been explicitly adopted in many existing works [31, 9,
24]. Other works can also fit into this form [29, 36, 7, 23,
2]. The local community detection problem has also been
studied as the local clustering problem or the community
search problem in the literature [33, 31].

Most of the existing goodness metrics tend to include ir-
relevant subgraphs in the identified local communities. For
example, Figure 1 shows a network containing four commu-
nities. Suppose that the query node is the purple node in
community A. Intuitively, subgraph A should be the target
local community. Suppose that we use the classic density
definition, which measures the average degree of the nodes
in the subgraph. If we merge subgraphs B or C into A, the

798

(a) Co-author networks (b) Biological networks

Figure 2: Two local communities with free riders identified
from the real-world networks using the classic density defini-
tion. The query nodes are in purple ellipses.

density will increase: the densities of subgraphs A, A∪B, and
A∪C are 2.50, 2.95, and 2.83 respectively. We refer to the
irrelevant subgraphs, such as B and C, as free riders in local
community detection.

Other goodness metrics also cause the free rider effect.
The table on the right in Figure 1 shows the goodness values
for subgraphs A, A∪B, and A∪C for different metrics. For
all these metrics, merging B or C into A will result in better
goodness values. Note that the external conductance tries
to minimize the goodness value instead of maximizing it.

In the example shown in Figure 1, subgraph B is the dens-
est subgraph in the entire network. We refer to such a sub-
graph with the largest goodness value as the global optimal
subgraph. If a goodness metric will include the global op-
timal subgraph in the identified local community, we say
this metric causes the global free rider effect. We refer to a
subgraph whose goodness value is greater than that of any
subgraph of it as a local optimal subgraph. In this figure,
subgraph C is a local dense subgraph, which is irrelevant to
the query node. If a goodness metric will include a local
optimal subgraph in the identified local community, we say
that this metric causes the local free rider effect.

In addition to the running example in Figure 1, Figure 2
shows two examples of free riders from real-world networks.
Figure 2(a) shows the local community identified in the co-
author network extracted from the DBLP dataset. The
query nodes are in purple ellipses. The classic density is
used as the goodness metric. It is clear from this figure
that the lower part is a free rider that should not have been
included in the result. Figure 2(b) shows the local communi-
ty identified in the protein interaction network downloaded
from BioGRID (thebiogrid.org). The query proteins {ELP4,

IKI1} are from the protein complex transcription elongation
factor [13]. The lower part in the figure does not belong to
the complex and clearly is a free rider. Similar results can
be observed when using other metrics listed in the table in
Figure 1.

In this paper, we systematically study the existing good-
ness metrics and provide theoretical explanations on why
they will cause global or local free rider effects. To reduce
the free rider effect, we propose a node weighting scheme
based on random walk. The nodes far away from the query
nodes will have large weights and high penalties to be in-
cluded in the target local community. This query biased
weighting scheme forces the global densest subgraph shift
to the neighborhood of the query nodes. We use the query
biased density as the new metric and formulate the query
biased densest connected subgraph (QDC) problem. Its goal

is to find the query biased densest subgraph that contains
the query nodes and is also connected.

The original QDC problem is NP-hard. To solve it effi-
ciently, we study two related problems QDC′ and QDC′′.
In QDC′′, we only maximize the query biased density. In
QDC′, in addition to maximizing the query biased densi-
ty, we also have the constraint that the query nodes must
be included in the resulting subgraph. These two problems
can be solved in polynomial time. Moreover, the solutions
to these two problems can often be used as the optimal or
approximate solutions to the QDC problem. We perform
extensive experimental studies on a variety of real and syn-
thetic networks to evaluate the performance of the proposed
method. The results show that our method achieves much
higher accuracy compared to the state-of-the-art methods
and runs efficiently.

2. RELATED WORK
Global graph partitioning: Global graph partitioning has

been extensively studied [11]. Representative methods in-
clude modularity clustering [27] and multi-level graph par-
titioning [17]. Some existing methods use edge weighting
schemes to enhance the performance. For example, one
method [18] strengthens the intracluster edges by rewarding
edges with high common neighbor ratio, and weakens the in-
tercluster edges by penalizing edges with high betweenness
centrality. Other methods reward edges that have short cy-
cles connecting their endpoints [4] or edges whose endpoints
have similar degrees [6].

Local community detection: Given a set of query nodes,
the local community detection problem aims at finding the
community near the query nodes. Most existing methods
optimize a goodness metric. The classic density definition
[29], edge-surplus [36], and minimum degree [31, 9] max-
imize the internal denseness of the community. The sub-
graph modularity [23], density-isolation [22], and external
conductance [33, 2, 19] try to maximize the internal dense-
ness and minimize the external sparseness at the same time.
The local modularity metric [7] optimizes the sharpness of
the boundary of the community. Other methods enumerate
different types of communities, such as the α-adjacency-γ-
quasi-k-clique [8] and the k-truss community [14]. The α-
adjacency-γ-quasi-k-clique is based on the γ-quasi-k-clique,

which contains k vertices and at least bγ k(k−1)
2
c edges. The

k-truss community is based on the k-truss subgraph, where
every edge is contained in at least (k − 2) triangles within
the subgraph.

3. THE FREE RIDER EFFECT
In this section, we first review some representative good-

ness metrics for local communities, and then discuss the free
rider effect caused by them. Table 1 lists the main symbols
used in this paper and their definitions.

3.1 Representative Goodness Metrics
Let G(V,E) be an undirected graph and G[S] be the sub-

graph induced by a set of nodes S ⊆ V . Let f(S) be a
goodness metric defined on subgraph G[S]. Most of the ex-
isting methods on local community detection can fit in the
following generic formulation [7, 2, 23, 29, 31, 24, 36].

799

Table 1: Main symbols

Symbols Definitions

G(V,E) undirected graphGwith node set V and edge setE

Q; q a set of query nodes Q; a query node q

S; |S| a set of nodes S ⊆ V ; number of nodes in S

S∗ node set of the global optimal subgraph
S∗l node set of a local optimal subgraph

G[S] subgraph induced by S

f(S) a goodness metric defined on subgraph G[S]

w(u, v) weight of an edge (u, v)

e(S) sum of edge weights, e(S) = 1
2

∑
u,v∈S w(u, v)

e(S, T) sum of edge weights, e(S, T) =
∑
u∈S,v∈T w(u, v)

c decay factor in the penalized hitting probability

r(u) penalized hitting probability of u w.r.t. the query

r(S) sum of proximity values, r(S) =
∑
u∈S r(u)

π(u) query biased node weight, π(u) = 1/r(u)

π(S) sum of query biased node weights,π(S)=
∑
u∈Sπ(u)

ρ(S) query biased density, ρ(S) = e(S)/π(S)

Nu the set of neighbor nodes of node u in graph G

wS(u) degree of u in G[S], wS(u) =
∑
v∈Nu∩S w(u, v)

w′S(u) query biased degree in G[S], w′S(u) = wS(u)/π(u)

w(u);w′(u) degree of u in G; query biased degree of u in G

φ(S) volume of S, φ(S) =
∑
u∈S w(u)

S complement of S, S = V \S
δS boundary of S, δS = {u ∈ S | ∃v ∈ Nu ∩ S}

Problem 1. [Local Community Detection]Given an undi-
rected graph G(V,E), a set of query nodes Q, and a goodness
metric f(S), find the subgraph G[S] such that

1) Q ⊆ S;
2) f(S) is optimized.

Table 2 lists some representative goodness metrics and
their formulas. The classic density definition [29], edge-
surplus [36], and minimum degree [31] measure the internal
denseness of the local community. In the edge-surplus met-
ric, h is a strictly-increasing function, and α is a constant.
As proposed in [36], usually h(x) is concave, or h(x) =

(
x
2

)
.

The subgraph modularity [23], density-isolation [22], and
external conductance [2] measure both the internal dense-
ness and external sparseness of the community. Note that α
and β in the density-isolation formula are user specified con-
stants [22]. In the external conductance metric [2], we have
that φ(S) = 2e(S) + e(S, S). The total internal edge weight
e(S) measures the internal denseness, and the total external
edge weight e(S, S) measures the external sparseness.

The local modularity metric [7] measures the sharpness of
the boundary of the community. In this metric, the numera-
tor represents the total weight of the internal edges incident
to δS, and the denominator represents the total weight of
all edges incident to δS.

Note that among the metrics discussed above, the exter-
nal conductance needs to be minimized, while other metrics
need to be maximized.

3.2 Global Free Rider Effect
In this section, we discuss the global free rider effect. In

this case, for any subgraph, its goodness value will increase
if the global optimal subgraph is merged into it.

Definition 1. [Global Optimal Subgraph] The global op-
timal subgraph is the subgraph G[S∗] whose goodness value
f(S∗) ≥ f(S), for any S ⊆ V .

Table 2: Goodness metrics and their free rider effects

Goodness metrics Ref. Formulas f(S) Glo. Loc.

Classic density [29] e(S)/|S| X X

Edge-surplus [36] e(S)−αh(|S|)
concave h(x) X X

h(x)=
(x
2

)
× X

Minimum degree [31] minu∈S wS(u) X X
Subgraph modularity [23] e(S)/e(S, S) X X

Density-isolation [22] e(S)−αe(S, S)−β|S| X X

External conductance [2] e(S, S)/min{φ(S), φ(S)} × X

Local modularity [7] e(δS, S)/e(δS, V) × X

A goodness metric f causes the global free rider effect if
for any S ⊆ V , f(S) ≤ f(S ∪ S∗). In this case, the opti-
mal solution to Problem 1 must contain the global optimal
subgraph G[S∗].

In the next, we formally prove that a set of goodness met-
rics cause the global free rider effect. First, we review some
definitions [30]: f is submodular if f(S)+f(T) ≥ f(S∩T)+
f(S∪T), supermodular if f(S)+f(T) ≤ f(S∩T)+f(S∪T),
and modular if it is both submodular and supermodular.

For example, f(S) = e(S, S) is submodular; f(S) = e(S)
is supermodular; f(S) = |S| is modular. The edge-surplus
metric with a concave h(x) and the density-isolation metric
are both supermodular.

Theorem 1. If the goodness metric f is supermodular,
then for any S ⊆ V , f(S) ≤ f(S ∪ S∗).

Proof.Since f is supermodular, we have thatf(S)+f(S∗)
≤ f(S ∩ S∗)+f(S ∪ S∗). Since G[S∗] is the global optimal
subgraph, we have that f(S∗)≥ f(S∩S∗). Combining these
two inequalities, we have that f(S)≤ f(S ∪ S∗).

Since the edge-surplus metric with a concave h(x) and the
density-isolation metric are both supermodular, we have the
following lemma.

Lemma 1. The edge-surplus metric with a concave h(x)
and the density-isolation metric satisfy that for any S ⊆ V ,
f(S) ≤ f(S ∪ S∗).

We say that f is monotonically increasing, if for any S ⊆
V and S′ ⊆ S, f(S ∪ S′) ≥ f(S).

Theorem 2. If f(S)= g(S)
h(S)

, where g(S)> 0 is supermod-

ular and monotonically increasing, and h(S)> 0 is submod-
ular, then for any S ⊆ V , f(S) ≤ f(S ∪ S∗).

Proof. Let f ′(S, λ) = g(S) − λh(S), where λ is a real-
valued constant. Let λ = f(S). Proving that f(S ∪ S∗) ≥
f(S) is equivalent to proving that f ′(S ∪ S∗, λ) ≥ 0. Note
that g(S)− λh(S) = 0 since λ = f(S). We have that

f ′(S ∪ S∗, λ) = g(S ∪ S∗)− λh(S ∪ S∗)
≥ g(S)+g(S∗)−g(S∩S∗)−λ(h(S)+h(S∗)−h(S∩S∗))
= g(S∗)− g(S ∩ S∗)− λ(h(S∗)− h(S ∩ S∗)).
Since g is monotonically increasing, g(S∗)−g(S∩S∗) ≥ 0.

If h(S∗)− h(S ∩ S∗) ≤ 0, we have that f ′(S ∪ S∗, λ) ≥ 0.
Now suppose that h(S∗)−h(S ∩ S∗)> 0. Since G[S∗] is the
global optimal subgraph, we have that f(S∗) ≥ f(S ∩ S∗).
Thus we can derive that

g(S∗)− g(S ∩ S∗)
h(S∗)− h(S ∩ S∗) ≥

g(S∗)

h(S∗)
= f(S∗) ≥ λ.

So, we have that f ′(S∪S∗, λ) ≥ 0, i.e., f(S∪S∗) ≥ f(S).

800

The classic density definition and subgraph modularity
both have the ratio form as shown in Theorem 2. Thus we
have the following lemma.

Lemma 2.The classic density definition and subgraph mod-
ularity satisfy that for any S ⊆ V , f(S) ≤ f(S ∪ S∗).

Lemma 3. The minimum degree metric satisfies that for
any S ⊆ V , f(S) ≤ f(S ∪ S∗).

Proof. If we merge G[S∗] into G[S], its minimum degree
will not decrease.

In summary, the classic density, edge-surplus with a con-
cave h(x), density-isolation, subgraph modularity, and min-
imum degree metrics all cause the global free rider effect.

3.3 Local Free Rider Effect
In this section, we discuss the free rider effects caused by

the local optimal subgraph.

Definition 2. [Local Optimal Subgraph] A local optimal
subgraph is the subgraph G[S∗l] whose goodness value f(S∗l)
≥ f(S), for any S ⊆ S∗l .

That is, deleting any node(s) from a local optimal sub-
graph will decrease its goodness value. Note that by defi-
nition, the global optimal subgraph is also a local optimal
subgraph.

Let G[S] denote the target local community that contains
the query nodes. A local optimal subgraph G[S∗l] could be
irrelevant to the query nodes. A goodness metric f causes
the local free rider effect if f(S) ≤ f(S∪S∗l) for an irrelevant
local optimal subgraph G[S∗l]. We can generalize Theorems
1 and 2 to the local optimal subgraphs.

Theorem 3. If the goodness metric f is supermodular,
then for any S ⊆ V , f(S) ≤ f(S ∪ S∗l).

Theorem 4. Suppose that f(S)= g(S)
h(S)

, where g(S)> 0 is

supermodular and monotonically increasing, and h(S)>0 is
submodular. If f(S∗l) ≥ f(S), the goodness metric f satisfies
that f(S) ≤ f(S ∪ S∗l).

The proofs of Theorems 3 and 4 are similar to those of
Theorems 1 and 2 respectively. Based on Theorems 3 and 4,
we have the following lemmas.

Lemma 4. The edge-surplus metric with a concave h(x)
and the density-isolation metric satisfy that for any S ⊆ V ,
f(S) ≤ f(S ∪ S∗l).

Lemma 5. If f(S∗l) ≥ f(S), the classic density definition
and the subgraph modularity metric satisfy that f(S) ≤ f(S∪
S∗l).

Next, we identify conditions that will cause the local free
rider effects for the remaining goodness metrics.

Lemma 6. If f(S∗l) ≥ f(S), the minimum degree metric
satisfies that f(S) ≤ f(S ∪ S∗l).

The following lemma says that if the target community
and the irrelevant local optimal subgraph are node disjoint,
and the goodness value of the irrelevant subgraph is large,
then the edge-surplus metric with h(x)=

(
x
2

)
causes the local

free rider effect.

Lemma 7. If S ∩ S∗l = ∅ and f(S∗l) ≥ α · |S| · |S∗l |, where
α is used in the definition of edge-surplus, then the edge-
surplus with h(x) =

(
x
2

)
satisfies that f(S) ≤ f(S ∪ S∗l).

The following lemma says that if any pair of nodes u and v,
where u is in the target community and v is in the irrelevant
local optimal subgraph, are at least two hops away from each
other, and the local optimal subgraph has a larger goodness
value, then the local modularity metric causes the local free
rider effect.

Lemma 8. If S∗l ∩ (S ∪ δS) = ∅ and f(S∗l) ≥ f(S), the
local modularity metric satisfies that f(S) ≤ f(S ∪ S∗l).

Different from other metrics, the external conductance
value needs to be minimized. In this case, a local opti-
mal subgraph is the subgraph G[S∗l] whose goodness value
f(S∗l) ≤ f(S), for any S ⊆ S∗l . A goodness metric f causes
the local free rider effect if f(S) ≥ f(S ∪ S∗l) for an irrel-
evant local optimal subgraph G[S∗l]. The following lemma
says that if the volumes of the target community and the
irrelevant local optimal subgraph are both small, and the ir-
relevant subgraph has a smaller goodness value, the external
conductance metric causes the local free rider effect.

Lemma 9. If φ(S ∪S∗l) ≤ φ(V)/2 and f(S∗l) ≤ f(S), the
external conductance metric satisfies that f(S) ≥ f(S∪S∗l).

In real-world networks, we can often find local optimal
subgraphs that are irrelevant to the query nodes and satisfy
the conditions discussed above. These irrelevant subgraphs
will reduce the accuracy of the local community detection
methods. Table 2 lists whether the goodness metrics cause
the global or local free rider effect in the last two columns.

4. NODE WEIGHTING
In this section, we first use the random walk based prox-

imity values to weight the nodes, and then define a new
goodness metric, the query biased density. We show that
after node weighting, the query biased densest subgraph is
in the neighborhood of the query nodes.

4.1 Node Weighting by Random Walk
We first compute the proximity value of each node with

regard to the query nodes. The reciprocal of the proximity
value is used as the node weight. Thus the nodes closer to
the query nodes will have smaller weights.

Many proximity measures can be used, such as random
walk with restart [35] and the degree normalized penalized
hitting probability [37]. In this paper, we use a variant of
the degree normalized penalized hitting probability, which
is referred to as the penalized hitting probability.

Let w(u, v) be the edge weight between u and v, w(u) be
the degree of node u, and wmax be the maximum degree. The
transition probability from u to v is w(u, v)/wmax, which is
normalized by the maximum degree. The penalized hitting
probability penalizes the random walk for each additional
step. The probability of hitting the query nodes for the
first time is used as the proximity value. Let r(u) denote
the proximity value with regard to the query nodes Q. The
penalized hitting probability can be defined as follows

r(u) =

{
1, if u ∈ Q;

c
∑
v∈Nu

w(u,v)
wmax

· r(v), if u ∈ V \Q,

801

where c (0 < c < 1) is the decay factor. The power iteration
method can solve this linear system in O(κm) time, where
κ is the number of iterations [28].

The query biased node weight π(u) of node u is defined as
the reciprocal of r(u), i.e., π(u) = 1/r(u). We always have
that 0 ≤ r(u) ≤ 1 and π(u) ≥ 1.

Consider the example in Figure 1. The nodes in com-
munity A are densely connected to the query node through
multiple short paths. Thus the random walker will have high
probability to hit the query node starting from any node in
A. On the other hand, there are only a few long paths con-
necting the query node and the nodes not in A. Starting from
these nodes, the random walker will have low probabilities
to hit the query node, since the probabilities are penalized
by the path lengths. Thus the nodes in A will have higher
proximity values than the nodes not in A. The distribution
of the node weights, i.e., the reciprocal of the proximity val-
ues, are shown in Figure 3. A lighter color indicates a higher
proximity value.

4.2 The Query Biased Density
Based on the query biased node weights, the query biased

density is defined as follows.

Definition 3. [Query Biased Density]

ρ(S) =
e(S)

π(S)
,

where π(S) =
∑
u∈S π(u) is the sum of the query biased

weights of nodes in S.

If the node weights π(u)=1, the query biased density de-
generates to the classic density e(S)/|S|. In the next, we will
use the query biased density and density interchangeably if
there is no ambiguity.

After node weighting, the densest subgraph is shifted to
the neighborhood of the query nodes. For example, in the
graph shown in Figure 1, before node weighting, the dens-
est subgraph is B. Figure 3 shows the node weights after
applying our node weighting scheme. A darker color repre-
sents a larger node weight. After node weighting, subgraph
A becomes the query biased densest subgraph.

In the next, we show why the query biased densest sub-
graph will shift to the neighborhood of the query nodes. In
particular, we prove that the query biased densest subgraph
always (1) contains the query node, and (2) is connected, if
the decay factor is small.

Let |Nu| be the number of neighbors of u, and Nmax be the
maximum number of neighbors among all the nodes. The
following lemma says that for any non-query node u, there
exists a neighbor node v whose weight is smaller than that
of node u times w(u, v)/w(u).

Lemma 10. If c < (Nmax)−1, for any node u ∈ V \Q,
there exists a neighbor node v of node u (i.e., v ∈ Nu), such

that π(v) < w(u,v)
w(u)

· π(u).

Proof. It is equivalent to prove that w(u, v) · r(v) >
w(u) · r(u). Suppose that node u violates this lemma, i.e.,
∀v ∈ Nu, w(u, v) · r(v) ≤ w(u) · r(u). We have that r(u) =

c
∑
v∈Nu

w(u,v)
wmax

r(v) ≤ c
∑
v∈Nu

w(u)
wmax

r(u) ≤ c · |Nu| · r(u) <

r(u). We get a contradiction that r(u) < r(u).

Based on this lemma, we can prove that if node u belongs
to the query biased densest subgraph, the neighbor node

Figure 3: Effect of node weighting with c = 0.9 (darker color
represents higher node weight; subgraph A is the query biased
densest subgraph)

v with small node weight also belongs to the query biased
densest subgraph. Next, we show that the query biased
densest subgraph is connected and contains the query node.

Theorem 5. If c<(Nmax)−1 and there is one query node,
the query biased densest subgraph is connected and contains
the query node.

Proof. Let G[T] denote one connected component of the
densest subgraph G[S]. We have that ρ(T) ≤ ρ(S). We also
have that ρ(T) ≥ ρ(S), since otherwise ρ(S \ T) > ρ(S).
Thus G[T] has equal density with G[S]. Suppose that G[T]
does not contain the query node.

First, let u ∈ T be the node with the smallest value π(u)
w(u)

,

i.e., ∀v ∈ Nu ∩ T, π(v)w(v)
≥ π(u)

w(u)
. Since w(v) ≥ w(u, v), we

have that ∀v ∈ Nu ∩ T, π(v) ≥ w(u,v)
w(u)

· π(u). There exists a

node y ∈ Nu ∩ T such that π(y) < w(u,y)
w(u)

· π(u). Otherwise,
node u violates Lemma 10.

Next, we will prove that ρ(T ∪{y}) > ρ(T). We have that
w(u)
π(u)

≥ e(T)
π(T)

because otherwise ρ(T \{u}) > ρ(T). Since

π(y) < w(u,y)
w(u)

· π(u), we have that w(u,y)
π(y)

> w(u)
π(u)
≥ e(T)

π(T)
. So,

we have that ρ(T ∪ {y}) ≥ e(T)+w(u,y)
π(T)+π(y)

> ρ(T).

In conclusion, if G[T] does not contain the query node,
there must exist a node in δT , whose addition increases the
density. This contradicts the assumption that G[T] has the
largest density. This completes the proof.

Theorem 5 can be generalized to multiple query nodes.

Theorem 6. If c<(Nmax)−1 and there are multiple query
nodes, each connected component of the query biased densest
subgraph contains at least one query node.

Please see the Appendix [1] for the proof.

4.3 Intuition behind the Query Biased Density
In this subsection, we further discuss the intuition on why

the query biased density can help to reduce the free rider
effect. The key observation is that the local community
should not include the nodes that are well separated from it.

We examine two different ways to model the separateness
between the local community and the irrelevant nodes. One
model utilizes the conductance. As discussed before, the
conductance of a subgraph can measure how well it is sepa-
rated from the remaining graph. In this model, we assume
that the local community has low conductance and show
that the irrelevant nodes are unlikely to be included in the
result using the query biased density. In another model, we
assume that the local community is separated from the re-
maining graph by a set of low degree nodes. We show that in
this case, irrelevant local optimal subgraphs are guaranteed

802

to be not included in the result. These theoretical results
help explain why the query biased density method can re-
duce the free rider effect.

We still use G[S] to denote the target local community.
Let r(S) be the sum of the proximity values of the nodes
outside G[S]. The following theorem says that the expected
value of r(S) is upper bounded by the conductance of G[S].

Theorem 7. Suppose that φ(S)<φ(V)/2. If we randomly
pick a node in G[S] with a probability proportional to its
degree and use it as the query node, the expected value of
r(S) is no greater than the conductance of G[S] times c

(1−c)2 .

Please see the Appendix [1] for the proof. Theorem 7
says that if the conductance of G[S] is small, the sum of the
proximity values of the nodes outside G[S] is also expected
to be small. Thus these nodes are unlikely to be included
in the result as a free rider to G[S] because of their large
weights (reciprocals of their proximity values).

The next theorem is based on the second model, i.e.,
the target local community is separated from the remain-
ing graph by a set of low degree nodes. We still use G[S∗l]
to denote a local optimal subgraph.

Theorem 8. Suppose that (1) G[S] and G[S∗l] are sepa-

rated by a set of nodes L with low degree w(v) < e(S)
|S| (for

any node v ∈ L); and (2) for any pair of nodes u ∈ S and
v ∈ L, π(u) < π(v). If c < (Nmax)−1, the query biased
density satisfies that f(S)≥f(S ∪ S∗l).

The theorem assumes the degree of the nodes in L is less
than half of the average node degree in G[S]. This is a
reasonable assumption to model a sparse region separating
G[S] and G[S∗l]. The second assumption is that the node
weight of any node u ∈ S is smaller than the node weight of
any node v ∈ L, i.e., π(u) < π(v). This is also a reasonable
assumption, because in Theorem 7, we already show that the
nodes outside G[S] usually have smaller proximity values
than the nodes in G[S]. Once these two assumptions are
satisfied, the query biased densest subgraph will not have
the free rider effect, no matter how dense the local optimal
subgraph is. Please see the Appendix [1] for the proof.

5. OUR PROBLEM FORMULATION
In this section, we introduce a new formulation for the

local community detection problem, i.e., the query biased
densest connected subgraph (QDC) problem. We further
study two related problems QDC′ and QDC′′ with fewer
constraints. The QDC problem is NP-hard, while QDC′

and QDC′′ can be solved in polynomial time. We can often
obtain the optimal or approximate solution for the QDC
problem by solving QDC′ and QDC′′.

5.1 The QDC Problem
We use the following problem formulation for the local

community detection. The problem aims at finding the
query biased densest subgraph that contains the query
nodes and is also connected.

Problem 2. [Query Biased Densest Connected Subgraph
(QDC)] Given an undirected graph G(V,E) and a set of
query nodes Q, find the subgraph G[S] such that

1) Q ⊆ S;
2) ρ(S) is maximized;
3) G[S] is connected.

Theorem 9. The QDC problem is NP-hard.

5.2 Two Related Problems
In this section, we study two related problems that have

fewer constraints than the QDC problem. The solutions to
these two problems can be used to obtain the optimal or
approximate solution to the QDC problem.

Problem 3. [QDC′] Given an undirected graph G(V,E)
and a set of query nodes Q, find the subgraph G[S] such that

1) Q ⊆ S;
2) ρ(S) is maximized.

Problem 4. [QDC′′] Given an undirected graph G(V,E),
find the subgraph G[S] such that ρ(S) is maximized.

Compared to the QDC problem, QDC′ removes the con-
nectivity constraint, and QDC′′ further removes the con-
straint that Q ⊆ S. It is easy to see that these three prob-
lems have the following relationships.

Lemma 11. Let G[S′′], G[S′], and G[S] be the solutions
to QDC′′, QDC′, and QDC respectively. We have that

1) ρ(S′′) ≥ ρ(S′) ≥ ρ(S);
2) If Q ⊆ S′′, G[S′′] is also the solution to QDC′;
3) If G[S′] is connected, G[S′] is also the solution to QDC.

Lemma 12. Suppose that G[S′] is the solution to QDC′

and it is disconnected. If G[S′] has a connected component
G[T] containing all the query nodes and at least one non-

query node, then G[T] is a π(T)
π(T)−π(Q)

-approximation of the

solution to the QDC problem.

Proof. Let G[S] be the solution to QDC. G[S′ \ (T \Q)]
is a feasible solution to QDC′ thus has smaller density than

G[S′] does. Since e(S′)−e(T)
π(S′)−(π(T)−π(Q))

≤ρ(S′\(T \Q)) ≤ ρ(S′),
e(T)

π(T)−π(Q)
≥ ρ(S′)≥ ρ(S). Thus ρ(S)≤ π(T)

π(T)−π(Q)
ρ(T).

For any u ∈ Q, π(u) > 1. If there is one query node, we
have that π(Q) = 1, π(T) > 2. Thus the approximation
ratio is smaller than 2.

As will be discussed in the next section, QDC′ and QDC′′

can be solved in polynomial time. Although QDC is NP-
hard, based on Lemmas 11 and 12, the solutions to QDC′

and QDC′′ can be used to obtain the optimal or approximate
solution to the QDC problem.

The overall procedure for the QDC problem: Algorithm 1
outlines the overall procedure for solving QDC. We first
compute the optimal solution to QDC′. If it is connect-
ed, it is also the solution to QDC. If it is disconnected but it
has one connected component containing all the query nodes
and at least one non-query node, this connected component
is returned as an approximate solution to QDC. Otherwise,
we apply the heuristic algorithms to find a solution to QDC.

6. ALGORITHMS
In this section, we describe the main components of the

overall procedure outlined in Algorithm 1. We start with
the algorithm for QDC′′.

803

Algorithm 1: The overall procedure for the QDC problem

Input: G(V,E), query nodes Q, decay factor c

1: Compute the node weights with the decay factor c;
2: Compute the optimal solution G[S] to the QDC′ problem;
3: if G[S] is connected then return G[S]; break;
4: if G[S] has a connected component G[T] containing all the

query nodes Q and at least one non-query node then
5: return G[T]; break;

6: Apply the heuristic algorithms to find a solutionG[S] to QDC;
7: return G[S];

6.1 Algorithm for the QDC′′ Problem
The algorithm to find the optimal solution of the QDC′′

problem consists of the following steps.

1. Find a density threshold d by applying the greedy node
deletion algorithm [5, 3] on G;

2. Find the d-core of G using the value d from step 1;
3. Find the densest subgraph from the d-core by the para-

metric maximum flow algorithm [12].

The first two steps are used to reduce the size of the orig-
inal graph. The optimal solution to the QDC′′ problem is
guaranteed to be retained in the pruned graph. The exact
parametric maximum flow algorithm is then applied to find
the optimal solution in the pruned graph.

In step 1, the greedy node deletion algorithm keeps delet-
ing the node with the lowest query biased degree: w′(u) =
w(u)/π(u). The subgraph with the maximum query bi-
ased density during the node deletion process is returned
as the approximate solution. This algorithm outputs a 2-
approximation to the QDC′′ problem. The proof can be
extended from that in [3] and is omitted here. The density
of the identified subgraph will be used as the threshold d.

In step 2, the d-core is the maximal subgraph of G with
all query biased node degrees no less than d. Any subgraph
in which every node’s query biased degree is no less than
d is part of the d-core. Let G[S] be the optimal solution
of the QDC′′ problem. Since any node u ∈ S has query
biased degree w′S(u)≥ ρ(S), G[S] is a subgraph of d-core if
d ≤ ρ(S). Thus using the d value identified in the previous
step, we guarantee that the optimal solution is retained in
the d-core.

In step 3, we apply the parametric maximum flow algor-
ithm to find the densest subgraph in the d-core from step 2.

Let n and m be the number of nodes and edges in the
original graph G, and n′ and m′ be the number of nodes
and edges in the d-core. The greedy node deletion algo-
rithm runs in O(m+n logn) [5]; the d-core is computed in
O(m) [3]; the parametric maximum flow algorithm runs in
O(n′m′ log(n′2/m′)) [12]. Experimental results show that
n′ (m′) is orders of magnitude smaller than n (m).

6.2 Algorithm for the QDC′ Problem
In this section, we develop an exact polynomial time al-

gorithm for the QDC′ problem. The algorithm uses the
following subgraph contraction operation.

Contracting a subgraph G[P] of G(V,E) into a supernode
p results in a new graph G′(V ′, E′) with V ′ = P ∪{p}. The
supernode p has weight r(P), i.e., the sum of query biased
weights of all nodes in P . Other nodes keep their original
weights. The edge set E′ is constructed as follows.

Figure 4:Subgraph contraction Figure 5:Articulation nodes

Algorithm 2: The algorithm for the QDC′ problem

Input: G(V,E), query nodes Q, node weights π

1: P0 ← Q; G0 ← contract G[P0] into a supernode p0; i← 0;
2: while true do
3: Compute the query biased densest subgraph Gi[Si] in Gi;
4: if Si contains the supernode pi then break;
5: Pi+1←Si∪Pi;Gi+1← contract G[Pi+1] into pi+1; i←i+1;

6: return G[Si \ {pi} ∪ Pi];

1. Keep edge (u,v) and its original weight w(u,v) if (u,v)∈
E and u, v ∈ P ;

2. Add an edge (u, p) with weight e({u}, P) if u ∈ δP ;

3. Add a self-loop edge (p, p) with weight e(P) if e(P) > 0.

Subgraph contraction operation preserves the density. That
is, for any S ⊆ P , subgraphs G[P ∪S] and G′[{p}∪S] have
the same density, so do subgraphs G[S] and G′[S].

The procedure is outlined in Algorithm 2. Initially, the
subgraph induced by the query nodes is contracted into a
supernode. In each iteration in lines 3-5, we find the query
biased densest subgraph Gi[Si] by solving the QDC′′ prob-
lem in Gi. If Gi[Si] does not contain the supernode pi, the
optimal solution of the QDC′ problem must contain G[Si],
since G[Si] is the optimal solution for the QDC′′ problem
in Gi and adding it will increase the density of the current
subgraph G[Pi]. Thus we can contract G[Si ∪ Pi] into a
supernode and repeat this process until the query biased
densest subgraph Gi[Si] in Gi contains the supernode.

Figure 4 shows an example. In the left figure, all nodes
and edges have unit weights. The purple node is the query
node. The densest subgraph is the 6-clique in the green
curve with density 2.5. Since it does not contain the query
node, we contract it together with the query node into a su-
pernode. The densest subgraph with density 2.38 in the new
graph is indicated by the purple curve, and it contains the
supernode. Thus, it is the optimal subgraph and highlighted
by the purple curve in both figures.

Algorithm 2 runs in O(κt), where κ is the number of itera-
tions and t is the running time of solving the QDC′′ problem.
At least one node is newly contracted into the supernode in
each iteration, thus κ ≤ n.

6.3 Algorithm for the QDC Problem
In this section, we develop two heuristic algorithms for

the QDC problem if solving QDC′ does not give the desired
solution. Note that our experimental results show that the
probability of getting an optimal or approximate solution of
QDC is very high by using the polynomial time algorithms
introduced in the previous two subsections. With more than
90% probability, we get the optimal solution of QDC by
solving QDC′. With more than 5% probability, we get an
approximate solution of QDC by solving QDC′ (approxima-
tion ratio is shown in Lemma 12). Only with less than 5%
probability, we need to apply the following heuristics to find
a solution of QDC.

Heuristic1: Greedy node deletion with connectivity con-
straint. The heuristic is outlined in Algorithm 3. It iter-
atively deletes a set of non-articulation nodes [34] which

804

Algorithm 3: Greedy node deletion with connectivity constraint

Input: G(V,E), query nodes Q, node weights π, parameter η

1: V0 ← V ; i← 0;
2: while true do
3: Compute the articulation nodes S in G[Vi]; S←Vi\S \Q;
4: if |S| = 0 then break;
5: Select a set of nodes T ⊆ S that can be deleted together

and has low query biased degree w′Vi
(u)≤ η ·ρ(Vi), ∀u∈T ;

6: if |T | = 0 then T ← {u |u = argminv∈S w
′
Vi

(v)};
7: Vi+1 ← Vi \ T ; i← i+ 1;

8: j ← argmaxi ρ(Vi); return G[Vj];

Algorithm 4: The maximum adjacency search algorithm

Input: G(V,E), query nodes Q, node weights π, parameter K

1: Compute the Steiner tree of Q, and let S be its node set;
2: V0 ← S; i← 0;
3: while |Vi| ≤ K do
4: u← argmaxv∈δVi

e({v}, Vi)/π(v);

5: Vi+1 ← Vi ∪ {u}; i← i+ 1;

6: j ← argmaxi ρ(Vi); return G[Vj];

have low query biased degrees. Here, the non-articulation
nodes are the nodes whose deletion will not disconnect the
graph [34]. The subgraph with the largest density during
the node deletion process is returned.

Suppose that we have a set of biconnected components of
graph G. In line 5, if we select at most one non-articulation
node from each biconnected component, the deletion of this
set of nodes will not disconnect the graph. This is because
the deletion of any non-articulation node in one biconnected
component does not disconnect this biconnected component.

Parameter η controls the degree of the non-articulation
nodes to be deleted. η is usually set between 0 ∼ 2. Since
2ρ(Vi) is the average node degree, there are about half of
the nodes whose query biased degree is smaller than the
threshold 2ρ(Vi). More nodes are deleted in each iteration
when larger η value is used. If all non-articulation non-query
nodes have query biased degree greater than η ·ρ(Vi), the al-
gorithm picks the node with the minimum degree to delete.
The algorithm runs in O(nm) for finding the articulation
nodes and biconnected components by depth first search [34].

Figure 5 shows an example. The articulation nodes are
represented by squares, and the non-articulations nodes are
represented by circles. The density of the original graph is
2.05. Suppose that η= 1. Then, the low degree node thresh-
old is 2.05. After deleting some low degree non-articulation
nodes, we get the subgraph as shown on the right in Figure 5.

Heuristic2:The maximum adjacency search algorithm. The
heuristic is outlined in Algorithm 4. Mehlhorn’s algorithm
[26] is used to compute the Steiner tree given the query
nodes. Thus the query nodes become connected. When
computing the Steiner tree, the edge weight is set to the
reciprocal of the original edge weight.

Next, the algorithm begins a local search process. The
Steiner tree is used as the initial subgraph. In each iteration
(lines 4-5), the algorithm adds the node u ∈ δVi with the
maximum adjacency value e({u}, Vi)/π(u) to Vi. The sub-
graph with the maximum density during the local search
process is returned. Parameter K is used to control the
search space. When the number of nodes in Vi is greater
than K, the algorithm will terminate.

The local search process needs at most K iterations. Let
Navg be the average number of neighbors. Then, at the ith

Table 3: Statistics of the real networks

Datasets Abbr. #Nodes #Edges #Communities

Amazon AZ 334,863 925,872 151,037

DBLP DP 317,080 1,049,866 13,477

Youtube YT 1,134,890 2,987,624 8,385

Orkut OR 3,072,441 117,185,083 6,288,363

LiveJournal LJ 3,997,962 34,681,189 287,512

Friendster FS 65,608,366 1,806,067,135 957,154

iteration, it takes O(i ·Navg) time to find the node with the
maximum adjacency value in line 4. Thus the local search
process runs in O(

∑K
i=0 i ·Navg) = O(K2Navg). The Steiner

tree can be computed in O(m+ n logn) [26].

7. PROBLEM VARIANTS
In this section, we extend the algorithm for QDC to solve

two variations of the basic QDC problem: (1) finding over-
lapping local communities, and (2) finding multiple disjoint
local communities.

Finding overlapping local communities: In real applica-
tions, the same set of query nodes may belong to multiple
different overlapping communities. We can extend the al-
gorithm for QDC to solve this problem: after finding one
community, we remove the nodes except the query nodes in
the community; the algorithm can then be applied to find
the next community. The algorithm runs in O(kτ), where
k is the number of local communities and τ is the running
time for finding one community.

Finding multiple disjoint local communities: Given a set
of query nodes Q, a subset of Q may belong to a community,
while other subsets may belong to entirely different commu-
nities. These communities are disjoint with each other. Our
algorithm can also be extended to solve this problem. For
each query node, we find its local community. Then we select
the community with the maximum density. If this commu-
nity contains several query nodes, then they are classified
into this community. We remove the nodes in this commu-
nity from the original graph. By applying this procedure
repeatedly, we can partition the query nodes and identify
their local communities. The algorithm runs in O(|Q|2τ),
where τ is the running time for finding one community.

8. EXPERIMENTAL RESULTS
We perform extensive experiments to evaluate the effec-

tiveness and efficiency of the proposed methods using a va-
riety of real and synthetic datasets. All the programs are
written in C++.All experiments are performed on a server
with 32G memory, Intel Xeon 3.2GHz CPU, and Redhat OS.

8.1 Datasets and State-of-the-Art Methods
The statistics of the real networks used in the experi-

ments are shown in Table 3. These datasets are provided
with ground-truth community memberships and are pub-
licly available at http://snap.stanford.edu.

We compare our QDC method with several state-of-the-
art local community detection methods, which are summa-
rized in Table 4. These methods are categorized into three
classes. The first class optimizes the internal denseness. The
second class optimizes both the internal denseness and ex-
ternal sparseness. The third class optimizes the sharpness
of the community boundary.

805

Table 4: State-of-the-art methods used for comparison

Classes Abbr. Ref. Key idea

Internal
DS [29] Densest subgraph with query constraint

OQC [36] Optimal quasi-clique; edge-surplus

MDG [31] Minimum degree

Internal &
PRN [2] External conductance

LS [25] Local spectral
External EMC [10] More internal edges than external edges

SM [23] Subgraph modularity

Boundary LM [7] Local modularity

The densest subgraph with query constraint (DS) method
finds the densest subgraph containing the query nodes [29].
The optimal quasi-clique with query constraint (OQC) meth-
od maximizes the edge-surplus goodness metric and also has
the query constraint [36]. The minimum degree with global
search (MDG) method maximizes the minimum degree and
also has the query, size and distance constraints [31].

PageRank-Nibble (PRN) minimizes the external conduc-
tance [2]. The local spectral (LS) method is a revised version
of the classic spectral method, and it is biased to the query
node [25]. We implement the Spielman-Teng linear equation
solver [32] in the LS method. The external minimum cut
(EMC) method defines a community as a subgraph whose
internal edges are more than external edges [10], and designs
a minimum cut based algorithm to find local communities.
The subgraph modularity (SM) and local modularity (LM)
methods both use a heuristic local search procedure but have
different goodness metrics [23, 7].

8.2 Evaluation Criteria
We use three different types of criteria to evaluate the se-

lected methods: F-score, a set of community goodness met-
rics, and consistency.

F-score: It measures the accuracy of the detected com-
munity with regard to the ground-truth community labels.
Given the discovered community G[S] and the ground-truth
community G[T], F-score is defined as

F (S, T) = 2 · prec(S, T)× rec(S, T)

prec(S, T) + rec(S, T)
,

where prec(S, T) = |S∩T |
|S| is the precision and rec(S, T) =

|S∩T |
|T | is the recall.

Community goodness metrics: We use three goodness met-
rics: density, separability, and cohesiveness [38]. Density
adopts the classic density definition. Subgraph modularity
is used to measure separability [38]. Cohesiveness is defined
as the minimum internal conductance,

min
S′⊂S

e(S′, S \S′)
min{φS(S′), φS(S \S′)} ,

where φS(S′) is the volume of S′ in G[S] [15]. Intuitive-
ly, a good local community should have high density, high
separability, and high cohesiveness.

Consistency: Intuitively, using different sets of nodes in
the same community as the query nodes, we should find
the same community. Let G[S] be the detected community
when the query is Q, and G[S′] be the detected community
when the query is Q′ ⊆ S. The consistency of an algorithm
is defined as

1−
√

1(|S|
|Q|

) ∑
Q′⊆S, |Q′|=|Q|

(F (S, S′)− Fmean)2,

Table 5: F-scores on real networks

F-score QDC DS OQC MDG PRN LS EMC SM LM

AZ 0.83 0.52 0.54 0.46 0.69 0.66 0.61 0.60 0.58

DP 0.46 0.31 0.33 0.32 0.48 0.42 0.34 0.36 0.37

YT 0.43 0.23 0.22 0.17 0.26 0.24 0.21 0.21 0.22

OR 0.47 0.15 0.16 0.13 0.21 0.17 0.19 0.16 0.18

LJ 0.64 0.48 0.47 0.40 0.52 0.51 0.47 0.48 0.49

FS 0.32 – 0.14 0.12 0.17 0.16 – 0.14 0.13

F 0.53 0.30 0.31 0.27 0.39 0.36 0.33 0.33 0.33

Prec 0.67 0.46 0.45 0.29 0.51 0.41 0.34 0.38 0.48

Rec 0.72 0.61 0.58 0.69 0.67 0.64 0.66 0.63 0.59

where Fmean is the mean value of F (S, S′) over all the S′

[24]. That is, the consistency is defined as one minus the
standard deviation of F-scores of the identified communities
using different sets of query nodes from the community. We

randomly take min{103,
(|S|
|Q|

)
} subsets Q′ ⊆ S as the queries

to estimate the consistency.

8.3 Evaluation on Real Networks
8.3.1 Effectiveness Evaluation

We first evaluate the effectiveness of the selected methods
on real networks. We randomly pick 1000 sets of query nodes
with size ranging from 1 to 40. Each set of query nodes is
picked from a random ground-truth community. The decay
factor is set to 0.9 in all experiments unless stated otherwise.

Table 5 shows the F-scores of the selected methods on
different datasets. It can be seen that the QDC method
outperforms other methods on most datasets except the DP
dataset. The ground-truth community of DP network is
based on conferences and the authors in one conference may
not be densely connected [38]. The QDC method signifi-
cantly improves the accuracy of the density based methods
compared to DS and OQC. The PRN method has the sec-
ond best performance. QDC outperforms PRN for about
10% on most datasets in terms of the F-score. Note that
LS is also biased to the query node. However, its thresh-
old constraint scheme cannot eliminate the free rider effect
effectively. Please see the Appendix [1] for more detailed
discussions. The average F-score F , precision Prec, and re-
call Rec over all datasets are also shown in this table. We
can observe that the existing methods have high recall but
low precision. This may be caused by the free rider effect.

Figure 6 shows the three goodness metrics, density, sep-
arability, and cohesiveness, of the detected communities on
the LJ network. These metrics are normalized so that their
maximum values are 1. The QDC method has the best over-
all performance. It has high cohesiveness, high density, and
high separability. DS, OQC, and MDG have high density,
but low cohesiveness and separability. PRN, LS, EMC, SM,
and LM have high separability but low cohesiveness and
density. All the selected existing methods suffer from the
free rider effect. This is why their cohesiveness scores are
low. Similar results can be observed in other datasets.

Table 6 shows the consistency of the detected communities
using different methods. We can see that the consistency
value of QDC is about 30% to 60% higher than those of other
methods. The free rider effect causes the low consistency
of other methods. If the nodes in the irrelevant free rider
subgraph are selected as the query nodes, these methods will
detect irrelevant communities.

806

Figure 6: Goodness metrics on the LJ network

Table 6: Consistency on real networks

Consisten. QDC DS OQC MDG PRN LS EMC SM LM

AZ 0.94 0.77 0.76 0.58 0.79 0.69 0.74 0.67 0.61

DP 0.88 0.62 0.64 0.37 0.65 0.53 0.56 0.43 0.56

YT 0.85 0.61 0.54 0.46 0.71 0.41 0.57 0.37 0.36

OR 0.83 0.56 0.52 0.32 0.68 0.43 0.51 0.54 0.47

LJ 0.93 0.74 0.67 0.43 0.84 0.64 0.73 0.58 0.52

FS 0.78 – 0.56 0.45 0.65 0.49 – 0.32 0.39

Average 0.87 0.64 0.62 0.44 0.72 0.53 0.61 0.49 0.49

Table 7: F-scores for different node weighting schemes

F-score AZ DP YT OR LJ FS F Prec Rec
PHP 0.83 0.46 0.43 0.47 0.64 0.32 0.53 0.65 0.78

RWR 0.73 0.39 0.33 0.35 0.56 0.28 0.45 0.52 0.69
PHP′ 0.76 0.37 0.35 0.38 0.58 0.24 0.46 0.54 0.71

Figure 7: Tuning the decay factor (left: LJ; right: AZ)

In addition to penalized hitting probability (PHP), we al-
so apply random walk with restart (RWR) [35] and degree
normalized penalized hitting probability (PHP′) [37]. Table
7 shows the F-scores using different weighting schemes. We
can see from the table that these three strategies provide
similar performance, with PHP being slightly better. The
differences between these three proximity measures are sub-
tle. Please see the Appendix [1] for further discussions. Note
that QDC with RWR or PHP′ still provides high F-scores
compared to other state-of-the-art methods.

We further test the sensitivity of QDC with respect to
the decay factor c. Figure 7 shows the F-scores on LJ and
AZ datasets when varying the value of c from 0.95 to 0.6.
It can be seen that the performance of QDC is stable for
different values. When the decay factor is 0.9, the algorithm
has the best performance. F-score slightly decreases when
decreasing the decay factor.

8.3.2 Efficiency Evaluation
In this section, we first compare the overall running time

of different methods, and then study the efficiency of each
step of the QDC method.

Figure 8 shows the overall running time averaged over
1000 random queries. The QDC method can process large
graphs with millions of nodes in tens of seconds. Note that
even though some heuristic local search methods, such as
LM and SM, run faster, their accuracies are low. The PRN
and LS methods have similar performance, because both of

Figure 8: The overall running time of different methods

Figure 9: Left figure: running time of each step in QDC;
right figure: pruning effect of the RLDN step

them are based on the Spielman-Teng’s method [32, 33]. The
MDG method takes long running time because of the size
and distance constraints in the problem formulation. The
DS and EMC methods compute the maximum flow on the
whole graph thus have long running time.

Recall that there are three major steps in solving QDC
after node weighting. We first solve QDC′ exactly by re-
peatedly calling the algorithm for solving QDC′′. If solving
QDC′ does not give the optimal solution to QDC, then we
try to find an approximate solution with approximation ratio
shown in Lemma 12. If both previous steps do not give the
solution to QDC, then we apply two heuristics, the greedy
node deletion with connectivity constraint (NDC) method
or the maximum adjacency search (MAS) method, to find a
solution to QDC.

Among the 1000 random queries, we get the optimal so-
lution of QDC by solving QDC′ for 915 queries. We get
an approximate solution of QDC by solving QDC′ for 54
queries. We only need to apply heuristics NDC or MAS in
31 queries. Among the 915 queries, the query biased densest
subgraph is the optimal solution to QDC for 813 queries.

The left figure in Figure 9 shows the running time of each
step of the QDC method. Weighting a network with millions
of nodes can be done in about 10 seconds. There are three
steps in solving the QDC′′ problem: greedy node deleting
(GND) for finding the density threshold d, removing low de-
gree node (RLDN) to find the d-core, and applying the para-
metric maximum flow (PMF) algorithm to find the densest
subgraph. In solving QDC, heuristic MAS is more efficient
than NDC, since NDC searches over the entire graph, while
MAS only searches locally. Note that node weighting and
solving QDC′′ dominate the overall running time, since in
most cases solving QDC′′ will solve QDC.

The right figure in Figure 9 shows the pruning effect of the
RLDN step in solving QDC′′. The RLDN step reduces the
number of nodes by 2 to 3 orders of magnitude. The para-
metric maximum flow step runs efficiently, since the RLDN
step has significantly reduced the number of nodes.

807

Figure 10: F-scores on the synthetic networks

Figure 11: Running time on the synthetic networks

8.4 Evaluation on Synthetic Networks
We generate a collection of synthetic networks as proposed

in [21] to evaluate the performance of the selected methods.
The network generating model has three parameters γ, β,
and µ. The degree and community size follow the power-
law distribution with exponents γ and β respectively. We
set γ = 2 and β = 1. The mixing parameter µ indicates
the proportion of a vertex’s neighbors that reside in other
communities. By tuning µ, we can vary the clearness of
the community structure: the boundaries between different
communities become less clear for larger µ values.

We first evaluate the F-score when varying the mixing
parameter µ from 0.1 to 0.6. The number of nodes in the
network is 220 and number of edges is 107. Figure 10 shows
the F-scores. QDC-NDC (QDC-MAS) indicates that we use
heuristic NDC (MAS). As we can see, the F-score decreases
when increasing µ, i.e., lowering the clearness of the com-
munity structure. The QDC-NDC and QDC-MAS methods
both have high F-scores, and clearly outperform other meth-
ods. Moreover, the QDC methods are very robust to the
parameter µ with slight drop in accuracy for large µ values.
The accuracies of all existing methods drop significantly af-
ter certain threshold. This is because when the boundary
between the communities becomes less clear, it is easier for
the existing methods to include irrelevant subgraphs in the
identified communities due to the free rider effect.

We then evaluate the scalability when varying the graph
size from 220 to 223 nodes. The edge density of each network
is 9.53, and the mixing parameter µ = 0.3. Figure 11 shows
the running time. The local search methods SM and LM
have almost constant running time. The OQC method uses
a local search procedure but has increasing running time for
larger networks. Other methods search the whole graph,
thus the running time increases when increasing the graph
size. The DS and EMC methods compute the maximum
flow on the whole graph, thus they have long running time.
The QDC method also computes the parametric maximum
flow. Even so, the RLDN step in it significantly prunes the
nodes. Thus the QDC method runs efficiently.

Figure 12: Three overlapping communities identified by QDC
with Jiawei Han as the query author

(a) Co-author networks

(b) Protein-protein interaction networks

Figure 13: Finding multiple disjoint local communities

8.5 Case Study in Co-Author Networks and
Biological Networks

Since the previous DBLP dataset does not include author
names, we construct an author collaboration network from
http://dblp.uni-trier.de/xml/ for case study. A node in the
network represents an author and the edge weight represents
the number of papers that the two connected authors have
co-authored. We remove the edges with weights less than
3. The network contains 236, 497 nodes and 557, 753 edges.
There is no ground-truth community in this co-author net-
work.

Figure 2(a) shows the communities detected by the exist-
ing DS method [29]. Clearly, the communities detected by
DS have free riders. On the other hand, our QDC method
only returns the communities in the upper part. Experimen-
tal results show that other methods also suffer from the free
rider effect. The results are omitted due to space limitation.

We further evaluate the results of QDC on solving the two
problem variants, i.e., finding overlapping local communities
and finding multiple disjoint local communities.

Figure 12 shows three overlapping communities detected
by QDC when using Jiawei Han as the query author. The
authors in the left community are senior researchers in the
core data mining research areas. The authors in the two
communities on the right contain students and two senior
researchers T. S. Huang and Chengxiang Zhai. The authors in the
upper right community have published many works
on social media mining. The authors in the lower right com-
munity mostly collaborate on information retrieval.

To find multiple disjoint local communities, in the co-
author network, we use the set of authors {Jeffrey Xu Yu, Xuemin

Lin, Dimitris Papadias, Nick Koudas} as the query authors. Figure
13(a) shows two detected communities. The left community
is more about data mining, while the right one is more about
database. Note that given a set of query nodes, no existing
work can be directly applied to find multiple disjoint local
communities.

We further apply QDC to protein-protein interaction net-
works to detect multiple protein complexes for a given set

808

of query proteins. We download the S. cerevisiae (yeast)
protein-protein interaction network from BioGRID (thebi-
ogrid.org). It contains 6,582 proteins and 224,724 unique
physical bonding interactions. Many databases have curat-
ed the protein complexes, which can be used as the ground
truth communities. We query the proteins {ARC15, ARC18,

RPN5, RPN12}. Figure 13(b) shows the two detected commu-
nities. These two communities correspond to two protein
complexes. The left community corresponds to the ARP2/3
complex, which contains the actin-related proteins. The
right community is part of the 19/22s regulator complex,
which is the proteasome regulatory particle [13].

9. CONCLUSIONS
Local community detection is a fundamental problem in

network analysis and has attracted intensive research in-
terests. Most existing local community detection methods
optimize a goodness metric but suffer from the free rider
effect. In this paper, we propose query biased node weight-
ing, which shifts the query biased densest subgraph to the
neighborhood of the query, to reduce the free rider effect.
We study the QDC problem and two related problems, and
develop efficient algorithms for them. Extensive experimen-
tal results demonstrate that the proposed method not only
effectively reduces the free rider effect and achieves high ac-
curacy, but also runs efficiently.

Acknowledgements. This work was partially supported
by the National Science Foundation grants IIS-1162374, IIS-
1218036, IIS-0953950, the NIH/NIGMS grantR01GM103309,
and the OSC (Ohio Supercomputer Center) grant PGS0218.
We would like to thank anonymous reviewers for their valu-
able comments.

10. REFERENCES
[1] http://filer.case.edu/yxw407 .

[2] R. Andersen, F. Chung, and K. Lang. Local graph
partitioning using PageRank vectors. In FOCS, pages
475–486, 2006.

[3] B. Bahmani, R. Kumar, and S. Vassilvitskii. Densest
subgraph in streaming and MapReduce. PVLDB,
5(5):454–465, 2012.

[4] J. W. Berry, B. Hendrickson, R. A. LaViolette, et al.
Tolerating the community detection resolution limit with
edge weighting. Physical Review E, 83(5):056119, 2011.

[5] M. Charikar. Greedy approximation algorithms for finding
dense components in a graph. In APPROX, pages 139–152.
2000.

[6] M. Ciglan, M. Laclav́ık, and K. Nørv̊ag. On community
detection in real-world networks and the importance of
degree assortativity. In KDD, pages 1007–1015, 2013.

[7] A. Clauset. Finding local community structure in networks.
Physical Review E, 72(2):026132, 2005.

[8] W. Cui, Y. Xiao, H. Wang, Y. Lu, and W. Wang. Online
search of overlapping communities. In SIGMOD, pages
277–288, 2013.

[9] W. Cui, Y. Xiao, H. Wang, and W. Wang. Local search of
communities in large graphs. In SIGMOD, pages 991–1002,
2014.

[10] G. W. Flake, S. Lawrence, and C. L. Giles. Efficient identi-
fication of web communities. In KDD, pages 150–160, 2000.

[11] S. Fortunato. Community detection in graphs. Physics
Reports, 486(3):75–174, 2010.

[12] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast
parametric maximum flow algorithm and applications.
SIAM J. Comput., 18(1):30–55, 1989.

[13] A.-C. Gavin et al. Proteome survey reveals modularity of
the yeast cell machinery. Nature, 440(7084):631–636, 2006.

[14] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu.
Querying k-truss community in large and dynamic graphs.
In SIGMOD, pages 1311–1322, 2014.

[15] R. Kannan, S. Vempala, and A. Vetta. On clusterings:
good, bad and spectral. JACM, 51(3):497–515, 2004.

[16] R. M. Karp. Reducibility among combinatorial problems.
Springer, 1972.

[17] G. Karypis and V. Kumar. A fast and high quality
multilevel scheme for partitioning irregular graphs. SIAM
J. Sci. Comput., 20(1):359–392, 1998.

[18] A. Khadivi, A. A. Rad, and M. Hasler. Network
community-detection enhancement by proper weighting.
Physical Review E, 83(4):046104, 2011.

[19] K. Kloster and D. F. Gleich. Heat kernel based community
detection. In KDD, pages 1386–1395, 2014.

[20] I. Kloumann and J. Kleinberg. Community membership
identification from small seed sets. In KDD, pages
1366–1375, 2014.

[21] A. Lancichinetti, S. Fortunato, and F. Radicchi.
Benchmark graphs for testing community detection
algorithms. Physical Review E, 78(4):046110, 2008.

[22] K. J. Lang and R. Andersen. Finding dense and isolated
submarkets in a sponsored search spending graph. In
CIKM, pages 613–622, 2007.

[23] F. Luo, J. Z. Wang, and E. Promislow. Exploring local
community structures in large networks. Web Intelligence
and Agent Systems, 6(4):387–400, 2008.

[24] L. Ma, H. Huang, Q. He, K. Chiew, J. Wu, and Y. Che.
GMAC: a seed-insensitive approach to local community
detection. In DaWak, pages 297–308, 2013.

[25] M. W. Mahoney, L. Orecchia, and N. K. Vishnoi. A local
spectral method for graphs: with applications to improving
graph partitions and exploring data graphs locally. JMLR,
13(1):2339–2365, 2012.

[26] K. Mehlhorn. A faster approximation algorithm for the
Steiner problem in graphs. IPL, 27(3):125–128, 1988.

[27] M. E. Newman. Modularity and community structure in
networks. PNAS, 103(23):8577–8582, 2006.

[28] Y. Saad. Iterative methods for sparse linear systems.
SIAM, 2003.

[29] B. Saha, A. Hoch, S. Khuller, L. Raschid, and X.-N. Zhang.
Dense subgraphs with restrictions and applications to gene
annotation graphs. In RECOMB, pages 456–472, 2010.

[30] A. Schrijver. Combinatorial optimization: polyhedra and
efficiency. Springer, 2003.

[31] M. Sozio and A. Gionis. The community-search problem
and how to plan a successful cocktail party. In KDD, pages
939–948, 2010.

[32] D. A. Spielman and S.-H. Teng. Nearly-linear time
algorithms for graph partitioning, graph sparsification, and
solving linear systems. In STOC, pages 81–90, 2004.

[33] D. A. Spielman and S.-H. Teng. A local clustering
algorithm for massive graphs and its application to
nearly-linear time graph partitioning. SIAM J. Comput.,
42(1):1–26, 2013.

[34] R. Tarjan. Depth-first search and linear graph algorithms.
SIAM J. Comput., 1(2):146–160, 1972.

[35] H. Tong, C. Faloutsos, and J. Pan. Fast random walk with
restart and its applications. In ICDM, pages 613–622, 2006.

[36] C. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and
M. Tsiarli. Denser than the densest subgraph: extracting
optimal quasi-cliques with quality guarantees. In KDD,
pages 104–112, 2013.

[37] Y. Wu, R. Jin, and X. Zhang. Fast and unified local search
for random walk based k-nearest-neighbor query in large
graphs. In SIGMOD, pages 1139–1150, 2014.

[38] J. Yang and J. Leskovec. Defining and evaluating network
communities based on ground-truth. In ICDM, pages
745–754, 2012.

809

