Compaction management in
distributed key-value datastores

Muhammad Yousuf Ahmad
McGill University

muhammad.ahmad2@mail.mcgill.ca

ABSTRACT

Compactions are a vital maintenance mechanism used by
datastores based on the log-structured merge-tree to counter
the continuous buildup of data files under update-intensive
workloads. While compactions help keep read latencies in
check over the long run, this comes at the cost of signif-
icantly degraded read performance over the course of the
compaction itself. In this paper, we offer an in-depth anal-
ysis of compaction-related performance overheads and pro-
pose techniques for their mitigation. We offload large, ex-
pensive compactions to a dedicated compaction server to
allow the datastore server to better utilize its resources to-
wards serving the actual workload. Moreover, since the
newly compacted data is already cached in the compaction
server’s main memory, we fetch this data over the network
directly into the datastore server’s local cache, thereby avoid-
ing the performance penalty of reading it back from the
filesystem. In fact, pre-fetching the compacted data from
the remote cache prior to switching the workload over to it
can eliminate local cache misses altogether. Therefore, we
implement a smarter warmup algorithm that ensures that all
incoming read requests are served from the datastore server’s
local cache even as it is warming up. We have integrated
our solution into HBase, and using the YCSB and TPC-C
benchmarks, we show that our approach significantly mit-
igates compaction-related performance problems. We also
demonstrate the scalability of our solution by distributing
compactions across multiple compaction servers.

1. INTRODUCTION

A number of prominent distributed key-value datastores,
including Bigtable [3], Cassandra [12], HBase', and Riak?,
can trace their roots back to the log-structured merge-tree
(LSMT) [13] — a data structure that supports high update
throughputs along with low-latency random reads. Thus,

"http://hbase.apache.org/
http://basho.com /riak/

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.

Proceedings of the VLDB Endowment, Vol. 8, No. 8

Copyright 2015 VLDB Endowment 2150-8097/15/04.

850

Bettina Kemme
McGill University

kemme@cs.mcgill.ca

these datastores are well-suited for online transaction pro-
cessing (OLTP) applications that have demanding work-
loads. In order to handle a high rate of incoming updates,
the datastore does not perform updates in place but creates
new values for the updated keys and initially buffers them
in main memory, from where they are regularly flushed, in
sorted batches, to read-only files on stable storage. As a
result, reading even a single key could potentially require
traversing multiple files to find the correct value of a key.
Hence, a continuous build-up of these immutable files can
cause a gradual degradation in read performance that gets
increasingly worse over time. In order to curb this behavior,
the datastore runs special maintenance operations — com-
monly referred to as compactions — on a regular basis. A
compaction merge-sorts multiple files together, consolidat-
ing their contents into a single file. In the process, individual
values of the same key, potentially spread across multiple
files, are merged together, and any expired or deleted values
are discarded. Thus, over the long run, compactions help
maintain read latency at an acceptable level by containing
the gradual build-up of immutable files in the system. How-
ever, this comes at the cost of significant latency peaks dur-
ing the execution of compactions, as they compete with the
actual workload for CPU, memory, and I/O resources.

Since compactions are an essential part of any LSMT-
based datastore, we would like to be able to exercise a
greater degree of control over their execution in order to mit-
igate any undesirable impacts on the performance of the reg-
ular workload. Datastore administrators, based on their ex-
perience and understanding of application workloads, man-
age these performance overheads by carefully tuning the
size and schedule of compaction events [1]. For example,
a straightforward mitigation strategy could be to postpone
major compactions to off-peak hours. Recent proposals and
prototypes of smarter compaction algorithms in Cassandra
and HBase (e.g., leveled, striped) attempt to make the com-
paction process itself more efficient, generally by avoiding
repetitive re-compactions of older data as much as possible.
However, there is currently a dearth of literature pertaining
to our understanding of how and when exactly compactions
impact the performance of the regular workload.

To this end, as our first contribution, this paper presents
an in-depth experimental analysis of these overheads. We
hope that this helps data platform designers and application
developers to better understand and evaluate these over-
heads with respect to resource provisioning and framing
performance-based service-level agreements.

Since our work relates to OLTP applications, a primary
concern is transaction response time. Our observations show
that large compaction events have an especially negative im-
pact on the response time of reads due to two issues. First,
during the compaction, the compaction process itself com-
petes for resources with the actual workload, degrading its
performance. A second major problem are the cache misses
that are induced upon the compaction’s completion. Dis-
tributed key-value datastores generally rely heavily on main
memory caching to achieve low latencies for reads®. In par-
ticular, if the entire working dataset is unable to fit within
the provisioned main memory, the read cache may experi-
ence a high degree of churn, resulting in very unstable read
performance. Since distributed datastores are designed to
be elastically scalable, it is generally assumed that a suf-
ficient amount of servers can be conveniently provisioned
to keep the application’s growing dataset in main memory.
Even so, under update-intensive workloads, frequent com-
pactions can become another problematic source of cache
churn. Since a compaction consolidates the contents of mul-
tiple input files into a new output file, all references to the
input files are obsoleted in the process, which necessitates
the datastore to invalidate the corresponding entries in its
read cache. Our analysis shows that the cache misses caused
by these large-scale evictions result in an extended degrada-
tion in read latency, since the datastore server then has to
read the newly compacted data from the filesystem into its
cache all over again.

With this in mind, our second major contribution is to
propose a novel approach that attempts to keep the impact
of compactions on the performance of the actual workload
as small as possible — both during a compaction’s execution,
and after it completes.

As a first step, we offload the compactions themselves to
dedicated nodes called compaction servers. Taking advan-
tage of the data replication inherent in distributed datas-
tores, we enable a compaction server to transparently read
and write replicas of the data by acting as a specialized peer
of the datastore servers.

In the second step, aiming to reduce the overhead of cache
misses after the compaction, we use the compaction server as
a remote cache for the datastore server. That is, instead of
reading the newly compacted files from the filesystem, the
datastore server reads them directly from the compaction
server’s cache, thereby significantly reducing both load time
and read latency. Although this alleviates the performance
penalty incurred by local cache misses to a great degree, it
does not completely eliminate it. In order to address the re-
maining overhead of these cache misses, one approach could
be to eagerly warm the datastore server’s cache with the
compacted data immediately upon the compaction’s com-
pletion. But such an approach is only feasible when we have
enough main memory provisioned, such that the datastore
server can simultaneously fit both the current data as well
as the compacted data in its cache, thus allowing for a seam-
less switch between the two. Instead, we propose a smart
warmup algorithm that fetches the compacted data from
the remote cache in sequential chunks, where each chunk re-
places the corresponding range of current data in the local
cache. During this incremental warmup phase, we guaran-
tee that each read request is served completely either by the

http://www.slideshare.net /xefyr/hbasecon2014-low-
latency

851

old data files or by the freshly compacted data. This ensures
that all incoming read requests can be served from the data-
store server’s local cache even as it is warming up, thereby
completely eliminating the performance penalty associated
with switching over to the newly compacted data.

In short, the main contributions of this paper are:

1. An experimental analysis of the performance impacts
associated with compactions in HBase and Cassandra.

2. A scalable solution for offloading compactions to one
or more dedicated compaction servers.

3. A solution for efficiently streaming the compacted data
from the compaction server’s cache into the datastore
server’s local cache over the network.

4. A smart algorithm for incrementally warming up the
datastore server’s cache with the compacted data.

5. An implementation of the above and its evaluation
based on HBase.

Our paper does not follow the typical structure found in
research papers, which first present the solution in full fol-
lowed by the experiments. Instead, we use a step-wise ap-
proach, where we first describe a part of our solution, imme-
diately accompanied by an experimental evaluation of this
part to better understand its implications. In this spirit,
Section 2 provides an overview of the log-structured merge
tree, HBase, and Cassandra. Section 3 describes the over-
all architecture of our approach and a high-level description
of the integration of our new components into HBase. Sec-
tion 4 then shortly describes the experimental setup, be-
fore Section 5 digs into the details of our solution and their
evaluation. Section 6 discusses scalability, along with some
further experimental results, and Section 7 discusses the
fault-tolerance aspects of our solution. Section 8 presents
a summary of the related work. We conclude in Section 9.

2. BACKGROUND

This section provides an overview of the background rel-
evant to our understanding of compactions in LSMT-based
datastores, as well as a short overview of how compactions
are performed in HBase and Cassandra.

2.1 LSMT

The log-structured merge-tree (LSMT) [13] is a key-value
data structure that aims to provide a data storage and re-
trieval solution for high-throughput applications. It is a hy-
brid data structure, with a main memory layer (C0) placed
on top of one or more filesystem layers (C1, and so on). Up-
dates are collected in CO and flushed down to C1 in batches,
such that each batch becomes an immutable file, with the
key-value pairs written in sorted order. This approach has
several important implications.

Firstly, for the client, updates are extremely fast, since
they are applied in-memory. Secondly, flushing updates
down in batches is more efficient since it significantly re-
duces disk I/O. Moreover, appending a batch of updates
to a single file is much faster than executing multiple ran-
dom writes on a rotational storage medium (e.g., magnetic
disk). This enables the data structure to support high up-
date throughputs. Thirdly, multiple updates on a given key
may end up spread across CO and any number of files in
C1 (or below). In other words, we can have multiple val-
ues per key. Therefore, a random read on a given key must
first search through CO (a quick, in-memory lookup), then
C1 (traversing all the files in that layer), and so on, until it

Application

Region Server
Block ||| ‘

Region Server

Block
Cache

store Cache store

HBase
Master

Mem- ‘

Mem- ‘

B e At

Figure 1: HBase Architecture

finds the most recent value for that key. Since the contents
of a file are already sorted by key, an in-file index can be
used to speed up random reads within a file.

These read-only files inevitably start building up in the
filesystem layer(s), resulting in reads becoming increasingly
slow over time. This is remedied by periodically selecting
two or more files in a layer and merge-sorting them together
into a single file. The merge process overwrites older values
with the latest ones and discards deleted values, thereby
clearing up any stale data.

2.2 HBase

HBase is a modern distributed key-value datastore in-
spired by Bigtable [3]. HBase offers the abstraction of a
table, where each row represents a key-value pair. The key
part is the unique identifier of the row, and the value part
comprises an arbitrary number of column values. Columns
are grouped into column families to partition the table ver-
tically. Each table can also be partitioned horizontally into
many regions. A region is a contiguous set of rows sorted by
their keys. When a region grows beyond a certain size, it is
automatically split into half, forming two new regions.

Every region is assigned by a Master server to one of
multiple region servers in the HBase cluster (see Figure
1). Through well-balanced region placement, the applica-
tion workload can be evenly distributed across the cluster.
When a region server becomes overloaded, some of its re-
gions can be reassigned to other underloaded region servers.
When the cluster reaches its peak load capacity, new region
servers can be provisioned and added to the online clus-
ter, thus allowing for elastic scalability. HBase relies on
Zookeeper?, a lightweight quorum-based replication system,
to reliably manage the meta-information for these tasks.

HBase uses HDFS® as its underlying filesystem for the ap-
plication data, where each column family of each region is
physically stored as one or more immutable files called store-
files (corresponding to LSMT layer C1). HDFS is a highly
scalable and reliable distributed filesystem based on GFS
[9]. It automatically replicates file blocks across multiple
datanodes for reliability and availability. Normally, there is
a datanode co-located with each region server to promote
data locality. HDFS has a Namenode, similar in spirit to
the HBase Master, for meta-management.

“http://zookeeper.apache.org/
®http://hadoop.apache.org/

852

Applications interact with HBase through a client library
that provides an interface for reading and writing key-value
pairs, either individually or in batches, and performing se-
quential scans that support predicate-based filtering. Each
read (i.e., get or scan) or write (i.e., put or delete) request
is sent to the region server that serves the region to which
the requested key-value pair(s) belongs. A write is served
simply by applying the received update to an in-memory
data structure called a memstore (corresponding to LSMT
layer C0). This allows for having multiple values for each
column of a row. Each region maintains one memstore per
column family. When the size of a memstore reaches a cer-
tain threshold, its content are flushed to HDFS, thereby
creating a new storefile. A read is served by scanning for
the requested data through the memstore and through all
region’s storefiles that might contain the requested data.
Each region server maintains a block cache that caches re-
cently accessed storefile blocks to improve read performance.

Periodically, or when the number of a region’s storefiles
crosses a certain configurable limit, the parent region server
will perform a compaction to consolidate the contents of sev-
eral storefiles into one. When a compaction is thus triggered,
a special algorithm decides which of the region’s storefiles
to compact. If it selects all of them in one go, it is called
a major compaction, and a minor compaction otherwise.
Unlike a minor compaction, a major compaction addition-
ally also removes values that have been flagged for deletion
via their latest updates. Therefore, major compactions are
more expensive and usually take much longer to complete.

2.2.1 Exploring Compactions

The default compaction algorithm in HBase uses a heuris-
tic that attempts to choose the optimal combination of store-
files to compact based on certain constraints specified by the
datastore administrator. The aim is to give the administra-
tor a greater degree of control over the size of compactions
and thus, indirectly, their frequency as well. For example, it
is possible to specify minimum and maximum limits on the
number of storefiles that can be processed per compaction.
Similarly, the algorithm also allows us to enforce a limit on
the total file size of the group, so that minor compactions
do not become too large. Finally, a ratio parameter can be
specified that ensures that the size of each storefile included
in the compaction is within a certain factor of the average
file size of the group. The algorithm explores all possible
permutations that meet all these requirements and picks the
best one (or none), optimizing for the ratio parameter. We
can configure HBase to use different ratio parameters for
peak and off-peak hours.

2.3 Cassandra

Cassandra is another popular distributed key-value data-
store. Its design incorporates elements from both Bigtable
and Dynamo [7]. As a result, it has a lot in common with
HBase, yet also differs from it in several important respects.

Unlike HBase, Cassandra has a decentralized architecture,
so a client can send a request to any node in the cluster,
which then acts as a proxy between the client and the nodes
that actually serve the client’s request. Cassandra also al-
lows applications to choose from a range of consistency set-
tings per request. The lowest setting allows for inconsisten-
cies such as stale reads and dirty writes (though, eventually,
the datastore does reach a consistent state), but offers supe-

Application

- N Compaction
HBase Manager
Client

N /

v |
Compaction Server | !

v
Region Server Region Server

Block Mem- Block
Cache store Cache

)) !

Mem- <
store

‘ Block Cache ‘

HBase j
Master !

Figure 2: Offloading Compactions

rior performance. The strictest setting matches the consis-
tency level of HBase, but sacrifices on performance. While
HBase maintains its own block cache, Cassandra relies in-
stead on the OS cache for faster access to hot file blocks.
At a finer granularity, it also offers the option of using a
row-level cache. Finally, Cassandra uses a slightly different
compaction algorithm (see tiered compactions in Section 8).
Unlike HBase, minor compactions in Cassandra clean up
deleted values as well. Cassandra also throttles compactions
to limit their overhead.

Despite these differences, Cassandra has two important
similarities with HBase: Cassandra also partitions its data
and runs compactions on a per-partition basis. Moreover,

Cassandra also flushes its in-memory updates in sorted batches

into read-only files. These similarities make us believe that
many aspects of our approach, although implemented in
HBase, are generally applicable to Cassandra and other data-
stores in the LSMT family as well.

3. ARCHITECTURE

Our solution adds two new components to the datastore
architecture: a centralized compaction manager and a set
of compaction servers. The integration of these components
into the HBase architecture is depicted in Figure 2.

A compaction server performs compactions on behalf of
region servers. Therefore, it also hosts a datanode in or-
der to gain access to the HDFS layer. Whenever a region
server flushes region data, it writes a new storefile to HDF'S,
which can then be read by the compaction server. Similarly,
upon compacting a region, the compaction server writes the
compacted storefile back to HDFS as well.

Compaction servers can be added or removed, allowing for
scalability. Each compaction server is assigned some subset
of the data. The compaction manager manages these as-
signments, mapping regions to compaction servers akin to
how the HBase Master maps regions to region servers.

While our implementation makes substantial additions
and changes to HBase, we have attempted to perform them
in a modular manner. We used the HBase Master and region
server code as a base for implementing the compaction man-
ager and the compaction server, respectively. For example,
the compaction server reuses the code for scanning storefiles
from HDFS and performing compactions on them. That is,
we take the compaction algorithm as a black box, without
modifying it. However, we modified specific subcomponents
of the region server code so that it could offload compactions
to a compaction server and also receive the compacted data
back over the network for more efficient warmup.

853

4. EXPERIMENTAL SETUP

Since the next section combines the presentation of our
proposed solutions along with a detailed performance anal-
ysis of each of the steps, we provide a summary of the general
experimental setup before proceeding.

4.1 Environment

We ran our experiments on a homogeneous cluster of 20
Linux machines. Each node has a 2.66 GHz dual-core Intel
Core 2 processor, 8 GB of RAM, and a 7,200 RPM SATA
HDD with 160 GB. The nodes are connected over a Gigabit
Ethernet switch. The OS is 64-bit Ubuntu Linux and the
Java environment is 64-bit Oracle JDK 7. We used the fol-
lowing software versions: HBase 0.96, HDF'S 2.3, Cassandra
2.0, and YCSB 0.1.4.

4.2 Datastores

4.2.1 HBase/HDFS

The HBase Master, the HDFS Namenode, and ZooKeeper
services all share one dedicated node®. We modified a few
key configuration parameters in HBase in order to better
study the overheads of compactions. The compaction file
selection ratio was changed from 1.2 to 3.0. Region servers
were allocated 7 GB of main memory, of which 6 GB went
to the block cache. We used Snappy” for compression. In all
our experiments, each region server and compaction server
hosts their respective datanode, with a minimum of three
datanodes in the cluster.

4.2.2 Cassandra

Since Cassandra prefers to use the OS cache, we allocated
only 4 GB of main memory to its process and kept the row
cache disabled. We used the ByteOrderedPartitioner, which
allows us to efficiently perform sequential scans by primary
key (the default, random partitioner is unsuitable for this
purpose). Since the standard YCSB binding for Cassandra
is outdated, we implemented a custom binding for Cassan-
dra 2.0 using the latest CQL 3 APL

4.3 Benchmarks

We are interested in running OLTP workloads on a cloud
datastore. A typical OLTP workload generates a high vol-
ume of concurrently executing read-write transactions. Most
transactions execute a series of short reads and updates, but
a few might also execute larger read operations such as par-
tial or full table scans. In our experiments, we try to emulate
these workload characteristics with two benchmarks.

YCSB is a popular microbenchmark for distributed data-
stores. We used it to stress both HBase and Cassandra with
an update-intensive workload. We launch separate client
processes for reads and writes. Our write workload consists
of 100% updates, while our read workload comprises 90%
gets and 10% scans. We used the Zipfian distribution to
reflect an OLTP workload more closely.

TPC-C is a well-known OLTP benchmark that is gen-
erally used for benchmarking traditional relational data-
base setups. We used an implementation of TPC-C called

SReliability was not a focus of the evaluation, so we provi-
sioned one ZooKeeper server only, with sufficient capacity.

"https://code.google.com/p/snappy/

—Get
125 125
. «---Scan .
é 100 é 100
Z 75 3 75
= c
g g
T 50 © 50
25 25
0 0
0 300 600 900 1200 0 300

Time (s)

(a) No Compactions (HBase)

600
Time (s)

(b) Compactions (HBase)

—Get

- Scan —
[%)

Latency (m

900 1200 0

1200

2400 3600

Time (s)

4800 6000

(c) Compactions (Cassandra)

Figure 3: Motivation: (a) Under an update-intensive workload, read latency in HBase gets increasingly worse
over time if the storefiles that build up are not regularly compacted (the figure is scaled for scans, but gets are
affected just the same). (b) Although regular compactions help maintain read performance within reasonable
limits over the long run, read latency still spikes significantly during the compaction events themselves. (c)
Cassandra suffers from the same problem; we can see that the larger of the two compactions has a significant
negative impact on read performance over a period of around ten minutes; note the same two distinct phases.

PyTPCC®, which works with various cloud datastores, in-
cluding HBase. Since there is no support for transactions
in HBase, the benchmark simply executes its transactions
without ACID guarantees. For convenience, it does not
simulate the think time between transactions, thus allowing
us to stress the datastore with less clients. The workload
comprises five transaction types: New-Order (45%), Pay-
ment (43%), Order-Status (4%), Delivery (4%), and Stock-
Level (4%). We populated 50 warehouses, corresponding to
around 14 GB of actual data.

S. OFFLOADING COMPACTIONS

A key performance goal of OLTP applications is main-
taining low response times under high throughput. In this
section, we first show that read performance can suffer sig-
nificantly during and immediately after a large compaction,
in both HBase and Cassandra. We then propose and evalu-
ate a number of strategies for alleviating this problem.

5.1 Motivation

To understand the implications of HBase compactions on
read performance, we ran a YCSB workload with 10 read
threads against one region server (no compaction server).
Our test table held three million rows in a single region,
equivalent to around 4 GB of actual, uncompressed data.
This ensured that the working dataset fit comfortably within
the region server’s 6 GB block cache. We recorded the re-
sponse times of gets and scans over the course of the exper-
iment, at five-second intervals.

The graphs in Figure 3 show the response time of gets
and scans over the duration of each experiment. Figure 3(a)
shows the observed degradation in read performance over
time when compactions are disabled altogether. Figure 3(b)
shows that while compactions help maintain read perfor-
mance within reasonable limits over the long run, each com-
paction event causes a significant spike in response time. We
can also see that a major compaction causes a much larger
and longer degradation in read performance relative to mi-
nor compactions. Note that both gets and scans are severely
affected by the major compaction. A similar experiment on
Cassandra shows that it also exhibits severe compaction-
related performance degradation (see Figure 3(c)).

8http://github.com/apavlo/py-tpce

854

Figure 4(a) zooms into the compaction phase. We can
see that a major compaction can add a noticeable perfor-
mance overhead on the region server that executes it, and
can typically take on the order of a few minutes to complete.
The response times of read operations executing on this re-
gion server degrade noticeably during this time. The figure
shows two distinct phases of degradation: compaction and
warmup. The compaction phase is characterized by higher
response times over the duration of the compaction. We
observed that this is mainly due to the CPU overhead as-
sociated with compacting the storefile data. Both gets and
scans are affected. The warmup phase starts when the com-
paction completes. At this time the server switches from
the current data to the newly compacted data. The switch
triggers the eviction of the obsoleted file blocks en masse,
followed by a flurry of caches misses as the compacted data
blocks are then read and cached. This leads to a severe
degradation in read response times for an extended period.
Figure 3(c) shows that Cassandra similarly exhibits these
two phases as well.

5.2 Compaction Phase

We first attempt to deal with the overhead of the com-
paction phase. Our observations show that the performance
degradation in this phase can be exacerbated by the data-
store server experiencing high loads. In other words, over-
loading an already saturated processor can cause response
times to spike and the compaction itself to take much longer
to complete. One approach to manage this overhead is for
the datastore to limit the amount of resources that a com-
paction consumes. By throttling compactions in this way,
the datastore can amortize their cost over a longer dura-
tion. In fact, this is the approach taken by Cassandra; it
throttles compaction throughput to a configurable limit (16
MB/s by default). However, we believe that this approach
does not sufficiently address the problem, for three reasons
mainly. Firstly, Figure 3(c) shows that despite the throt-
tling, response times still spiked with the compaction, just
as was observed with HBase with no throttling. We could,
of course, throttle more aggressively, thereby amortizing the
overhead over a much longer period, but this leads to our
second concern. The longer a compaction takes, the more
obsoleted data (deleted and expired values) the datastore
server must maintain over that duration, thus continuing to

—Get Compaction Warmup

250

—Scan

m
£ 200
3150
c
g
T 100

50

0 300 600

Time (s)

(a) Compaction Phases (SS)

900

—Get
250 —Scan
é 200
3150
c
2
T 100
50
Lo MWW~
o =
0 300 600 900
Time (s)

(b) Compaction Offloading (CO)

Figure 4: Compaction Phase

hurt read performance. Thirdly, even when throttling com-
pactions helps to alleviate their overhead to some extent, it
offers no further benefits for managing the overhead of the
subsequent warmup phase.

Therefore, our approach offloads these expensive com-
pactions to a dedicated compaction server, thus allowing the
region server to fully dedicate its resources towards serving
the actual application workload. There are two obvious ben-
efits to this approach. First, it eliminates the CPU overhead
that the region server would otherwise incur over the dura-
tion of the compaction. Second, the compaction can gen-
erally be executed faster, since it is running on a dedicated
server. Although the compaction server needs to read the
compaction’s input storefiles from the filesystem rather than
main memory (the region server can read the data from its
block cache), we could not observe any negative impact in
our experiment as a result of this. We evaluated the benefit
of offloading the compaction using YCSB. Figure 4(b) plots
the response times of gets and scans under our approach,
where we simply added the compaction manager and one
compaction server to the previous experiment. Comparing
Figure 4(b) against the standard setup in Figure 4(a), we can
see that with a dedicated compaction server, the compaction
phase is shorter, with a noticeable improvement in read la-
tency as well. On the other hand, we see no improvement
in the long-running warmup phase after the compaction has
completed. Therefore, next, we discuss the advantages of
having the compacted data in the compaction server’s main
memory for improving the warmup phase.

5.3 Warmup Phase

As previously discussed, we observe that once the com-
paction completes, the region server must read the output
storefile from disk back into its block cache in order to serve
reads from the newly compacted data. At this stage, read
performance can suffer significantly due to the high rate of
cache misses as the block cache gradually warms up again.
The experimental results presented so far clearly show that
the warmup phase has a significant negative impact on the
performance of our workload. In fact, we tend to see an ex-
tended phase of up to a few minutes of severely degraded
response times for both individual gets as well as scans.
Therefore, in the remainder of this section, we analyze this
particular performance issue and attempt to mitigate it.

5.3.1 Write-Through Caching

First, we analyze the warmup phase in the standard setup
(i.e., the region server does not offload the compaction). We

855

consider whether caching a compaction’s output in a write-
through manner — i.e., each block written to HDF'S is simul-
taneously cached in the block cache as well — could present
any benefit under the standard setup. Ideally, this would
eliminate the need for a warmup phase altogether. How-
ever, our observations show that this approach does not in
fact yield promising results. In order to test this idea, we
modified HBase to allow us to cache compacted blocks in
a write-though manner. In Figure 5(b), we can compare
the performance of this approach against the standard setup
(Figure 5(a)). We see that while the warmup phase improves
to an extent, the performance penalty is passed back to the
compaction phase instead. Upon further investigation, we
witnessed large-scale evictions of hot blocks from the block
cache during the compaction, resulting in heavy cache churn,
which severely degraded read performance. In other words,
we see that during the course of the compaction, the newly
compacted data competes for the limited capacity of the re-
gion server’s block cache even as the current data is still
being read, since the switch to the new data is made only
once the compaction completes. Therefore, this approach
only shifts the problem back to the compaction phase.

Clearly, the larger the main memory of each region server
is, compared to the size of the regions it maintains, the more
of the current data and compacted data will fit together
into main memory, and the less cache churn we will observe.
However, that would lead to a significant over-provisioning
of memory per region server, since the extra memory would
only be used during compactions. For this reason, we be-
lieve that having a few compaction servers acting as remote
caches that are shared by many region servers, can solve this
problem with less overall resources.

5.3.2 Remote Caching

Our approach of offloading compactions presents us with
an interesting opportunity to take advantage of write-through
caching on the compaction server instead, thereby combin-
ing both approaches. As a dedicated node, it can be asked
to play the role of a remote cache during the warmup phase
since it already has the compaction output cached in its
main memory. With this approach, instead of reading the
newly compacted blocks from its local disk, the region server
requests them from the compaction server’s memory instead.
There is an obvious trade-off here between disk and network
I/0. Since our main aim is achieving better response times,
we deem this trade-off to be worthwhile for setups where
network I/0 is faster than disk I/0O.

—Get —Get

—Scan

Compaction Warmup

—Scan

300 600

Time (s)

(a) Standard Setup (SS)

900 0 300

BT i

600
Time (s)

(b) Write-Through Caching (WTC)

—Get
—Scan

900 300 600

Time (s)

(c) Remote Caching (RC)

900

Figure 5: Warmup Phase

We have implemented a remote procedure call that al-
lows the region server to fetch the cached blocks from the
compaction server instead of reading them from the local
HDFS datanode. To reduce the network transfer overhead,
we compress the blocks at the source using Snappy, and
subsequently uncompress them upon receiving them at the
region server. This comes at the cost of a slight processing
overhead, but the savings in the total transfer time and net-
work I/O make this an acceptable trade-off. We evaluate the
effectiveness of this approach in Figure 5(c), which shows a
significant improvement in response times in the warmup
phase as compared to not having a remote cache available.
While the eviction of the obsoleted data blocks still causes
cache misses, note that the warmup phase completes quicker
due to the much faster access of blocks from the compaction
server’s memory over the network rather than from disk.
Of course, the benefit of compaction offloading on the com-
paction phase is retained as well.

Nevertheless, we still observe a distinct performance bound-
ary between the compaction and warmup phases where the
cache misses occur. Hence, while the remote cache offers
a significant improvement over reading from the local disk,
the performance penalty due to these cache misses remains
to be addressed.

5.4 Smart Warmup

To obtain further improvements, we essentially need to
avoid cache misses by preemptively fetching and caching the
compacted data. We discuss two options for doing this.

5.4.1 Pre-Switch Warmup

In the first option, we warm the local cache up (transfer-
ring data from the compaction server to the region server)
prior to making the switch to the compacted data. This is
similar in principle to the write-through caching approach
previously discussed. That is, its effectiveness depends on
the availability of additional main memory, such that the
region server can simultaneously fit both the current data
as well as the compacted data in its cache, thus allowing
for a seamless switch. When compared with write-through
caching, in which the warmup happens during the com-
paction itself, here we perform the warmup after the com-
paction completes. Therefore, since the compaction is per-
formed remotely and the compacted data fetched over the
network, the region server’s performance does not suffer dur-
ing the compaction, and, once the switch is made, the re-
mainder of the warmup is more efficient as well.

Figure 6(a) shows the performance of this approach. The
pre-switch warmup comprises two sub-phases, depicted in

856

the figure using gray and pink, respectively. Recall that 6
GB of main memory is available for the block cache. Since
the current data takes up around 4 GB, the pre-switch warm-
up can fill up the remaining 2 GB without severely affecting
the performance of the workload (gray). However, as the
warmup continues beyond this point (pink), the compacted
data competes with the current data in the cache, resulting
in severely detrimental cache churn. This also affects post-
switch performance (orange), since we must then re-fetch
the compacted data that was overwritten by the current
data. Therefore, the longer the pre-switch warmup phase
takes, the less effective this approach becomes. Neverthe-
less, its overall performance is still better than the write-
through caching approach without the compaction server
(Figure 5(b)), since, in the latter case, the old and new data
already start to compete during the compaction phase once
the block cache fills up; whereas, with the remote cache, the
detrimental cache churn occurs only for a much shorter part
of the pre-switch warmup phase.

Since OLTP workloads typically generate regions of hot
data, we also tried a version of this approach where we warm
the cache up with only as much hot data as can fit side-by-
side with the current data (gray) so that we do not cause
any cache churn (pink). However, this strategy appeared to
offer no additional benefit when tested. We realized that
this is because the hot data comprises less than 1% of the
blocks, which can easily be fetched almost immediately in
either case (before or after the switch), meaning that 99%
of cache misses are actually associated with cold data.

5.4.2 Incremental Warmup

Our experimental analysis above shows that the less ad-
ditional memory is provisioned on the region server, the
worse the pre-switch warmup will perform. Therefore, we
now present an incremental warmup strategy that solves
this problem without requiring the provisioning of additional
memory. It works on two fronts. The first aspect is that we
fetch the compacted data from the remote cache in sequen-
tial chunks, where each chunk replaces the corresponding
range of current data in the local cache. For this, we exploit
the fact that the storefiles written by LSMT datastores are
pre-sorted by key. Hence, we can move sequentially along
the compacted partition’s key range. That is, we first trans-
fer the compacted data blocks with the smallest keys in the
storefiles. At the same time, we evict the current data blocks
that cover the same key range that we just transferred. That
is, the newly compacted data blocks replace the data blocks
with the same key range. At any given time, we keep track
of the incremental warmup threshold T which represents the

—Get —Get —Get
250 —Scan 250 | —Scan 250 —Scan

éZOO éZOO ié’/ZOO

2 150 3150 3 150
=4 c c
2 2 2

© 100 © 100 < 100

50 50 50

R AV VU S NI (S S S B (SRS BN |12 5 v S 6 s 5 5 e e
0 N 0 0
0 300 600 900 0 300 600 900 0 300 600 900
Time (s) Time (s) Time (s)

(a) Pre-switch Warmup (PSW)

(b) Incremental Warmup (IW)

(c) Throttled Incremental (TIW)

Figure 6: Smart Warmup

row key with the following property: all newly compacted
blocks holding row keys smaller or equal to 7 have been
fetched and cached, and, correspondingly, all current blocks
holding rows keys up to 7" have been evicted from the lo-
cal cache. This means that all current blocks with row keys
larger than T have not been evicted yet and are still in the
region server’s cache.

Read operations are now executed in the following way on
this mixed data. Given a get request for a row with key R,
or a scan request that starts at key R, we direct it to read
the newly compacted storefile if R < T, and the current
storefiles (can be one or more, with overlapping key ranges)
otherwise. In this way, we ensure that all incoming requests
can be served immediately from the region server’s block
cache even as it is warming up, thus removing the overhead
associated with cache misses. As Figure 6(b) shows, the
improvement offered by this approach is significant.

While a get only reads a single row, a scan spans multiple
rows and thus could potentially span multiple blocks of a
storefile. Therefore, a scan may fall under one of the three
following cases. If the scan starts and ends below the incre-
mental threshold, T, it will read only compacted data that
is already cached. If the scan starts below but ends beyond
T, it will still read the compacted data, although all of this
data might not yet be cached when the scan starts. But as
the scan progresses, so will 7, in parallel, as the compacted
data is streamed into the region server, and thus, this scan
will most likely be fully covered by the cache as well. Only
in the case that the scan overtakes 7T, accessing keys with
a value higher than the current T, it will slow down due to
cache misses. If the scan starts and ends beyond T, it will
read the current data instead and will also, most likely, be
fully covered by the cache. In the case that T overtakes
it midway, evicting the blocks it was about to read, it will
encounter cache misses. However, since scanning rows from
locally cached blocks is faster than fetching blocks from the
remote cache, we do not expect or observe this to happen
often. In fact, we saw relatively very few cache misses over-
all in our experiment. Note that in all cases, any given read
request is served either entirely from the compacted data or
entirely from the current data.

Moreover, note that a region may comprise multiple col-
umn families, and each family has its own storefile(s). The
algorithm iterates over the region’s column families, warm-
ing them up one at a time. Therefore, when such a region
receives a read request covering multiple column families
during the incremental warmup, we ensure that a consis-
tent result is returned, since each family is individually read
consistently before the results are combined.

857

Compaction Warmup

Degradation (%) Duration Degradation (%) Duration

Get Scan (mm:ss) Get Scan (mm:ss)
55 115 58 05:20 1,020 642 06:10
WTC 106 274 09:20 667 408 04:30
Cco 6.67 23.3 03:25 1,040 642 06:00
RC 6.91 28.8 03:30 121 224 03:20
PSW 86.4 202 09:20 389 238 02:55
W 6.84 27.6 03:15 26.2 19.7 05:25
TIW 6.51 20.1 03:20 9.30 BN(5) 07:45

Figure 7: Performance Evaluation: YCSB

As a final improvement, we throttle the warmup phase.
The result is shown in Figure 6(c). This essentially means
that T advances slower than without throttling, and, there-
fore, the warmup phase lasts longer. However, as a result,
the performance overhead of this phase is virtually elimi-
nated. It reduces the CPU costs for the data transfer and
reduces the chances of cache misses caused by current data
blocks getting overwritten by the new data too quickly. As
a result, we see that there is hardly any noticeable impact
left from the compaction and warmup phases.

A summary of our YCSB performance evaluation is pre-
sented in Figure 7. For each approach, we show the degra-
dation of read latency during the compaction and warmup
phases, respectively, as a measure of the percentage dif-
ference from the baseline, i.e., the average latency before
the compaction started. The important improvements are
highlighted in green. We can see that with our best ap-
proach, throttled incremental warmup (TIW), the perfor-
mance degradation of gets is reduced to only 7%/9% (com-
paction/ warmup), while that of scans is reduced to only
20%/4%. The duration of the compaction phase is signif-
icantly shortened as well. Although the warmup phase is
longer than with simple remote caching (RC), the signifi-
cantly superior performance of TIW makes up for this.

5.5 TPC-C

We use TPC-C, a standard OLTP benchmark, to evaluate
the performance of our proposed approaches. On the back-
end, we ran two region servers and one compaction server,
while a total of 80 client threads were launched using two
front-end nodes. We recorded the average response time of
each transaction type, and also measured the tpmC metric
(New-Order transactions per minute) averaged over the du-

Compaction Warmup
Degrad. Duration | Degrad. Duration| tpmC
(%) (mm:ss) (%) (mm:ss)
SS 20.6 11:40 163 05:00 5201
Cco 12.9 08:00 161 05:00 5212
RC 12.4 08:00 13.9 03:00 5706
TIW 125 08:00 10.6 05:00 5755

(a) New-Order

Compaction Warmup
Degrad. Duration | Degrad. Duration
(%) (mm:ss) (%) (mm:ss)
g 6.44 14:00 150 02:40
co 5.67 07:20 152 02:40
RC 5.51 07:20 36.4 02:40
TIW 5.54 07:20 8.92 02:00

(b) Stock-Level

Figure 8: Performance Evaluation: TPC-C

ration of each experiment. In order to observe the adverse
impacts of compactions on the standard TPC-C workload,
we triggered compactions on the two most heavily updated
tables, Stock and Order-Line, in two separate sets of exper-
iments, respectively.

In the first set, we observed the performance of New-
Order, which is a short, read-write transaction. Since it
reads the Stock table, it is impacted by compactions running
on this table. Figure 8(a) shows the effects of this impact un-
der the standard setup (SS) and the improvements offered by
each of our main approaches. We can see that with throttled
incremental warmup (TIW), the degradation in the average
response time of New-Order transactions (against the base-
line), is significantly reduced in both the compaction and
warmup phases. The duration of the compaction phase is
also considerably shortened. The warmup phase is shortest
when using simple remote caching (RO). Overall, our best
approach, TIW, provides an improvement of nearly 11% in
terms of the tpmC metric.

In the second set, we observed the longer-running Stock-
Level transaction. Since it reads the Order-Line table, it was
impacted by compactions running on this table. In Figure
8(b), we see the performance improvement provided by each
of our approaches. While the response time is only slightly
better in the compaction phase, its duration is cut down
considerably by offloading the compaction. Once again, a
significant reduction in response time degradation is seen
with our incremental warmup (TIW) approach, even though
the warmup duration stays nearly the same.

6. SCALABILITY

By using a compaction manager that oversees the execu-
tion of compactions on all compaction servers, we can scale
our approach in a similar manner as HBase can scale to as
many region servers as needed. In fact, since HBase par-
titions its data into regions, we conveniently use the same
partitioning scheme for our purposes. Thus, the distributed
design of our solution inherits the elasticity and load distri-
bution qualities of HBase.

6.1 Elasticity

For application workloads that fluctuate over time, HBase
offers the ability to add or remove region servers as the need
arises. Along the same lines, our compaction manager is able
to handle many compaction servers at the same time. It uses
the same ZooKeeper-based mechanism as HBase for man-
aging the meta-information needed for mappings between
regions and compaction servers.

858

6.2 Load Distribution

As the application dataset grows, HBase creates new re-
gions and distributes them across the region servers. Our
compaction manager automatically detects these new re-
gions and assigns them to the available compaction servers.
We inherit the modular design of HBase, which allows us to
plug in custom load balancing algorithms as required. We
currently use a simple round-robin strategy for distribut-
ing regions across compactions servers. However, we can
envision more complex algorithms that balance regions dy-
namically based on the current CPU and memory loads of
compaction servers — metrics that we publish over the same
interface that HBase uses for its other components.

6.3 Compaction Scheduling

Scheduling compactions is an interesting problem. Cur-
rently, we let the region server schedule its own compactions
based on its default exploring algorithm (see Section 2.2.1).
However, our design allows for the compaction manager to
perform compaction scheduling based on its dynamic, global
view of the loads being handled by compaction servers.

An important parameter is how many compactions a com-
paction server can handle concurrently. As we use its main
memory as a remote cache, the sum of the compacted data
of all regions it is concurrently compacting should not be
larger than the server’s memory. A rough estimation of this
limit can be calculated as follows.

Given an estimate of the rate ¢ (in bytes/s), at which a
compaction server can read and compact data, and an es-
timate of the rate w (in bytes/s), at which the compacted
data is transferred back to the region server over the net-
work (with throttling), we can calculate the duration, D(b)
(in seconds), of a compaction as a function of its size, b (in
bytes): D =b/c+b/w. Moreover, a compaction server with
m bytes of main memory cache at its disposal can handle [
compactions of average size b at a time, where | = |m/b].
Thus, one compaction server will have the capacity to com-
pact up to h regions of average size b per interval of ¢ sec-
onds, where h = t/D(b)*|m/b]. Therefore, given an update
workload that triggers T' compactions per region per inter-
val of ¢t seconds, we can assign up to |h/T| regions per com-
paction server. And, for a dataset of R regions, we will need
to provision at least C' = [R/ |h/T']] of these compaction
servers for the given application dataset size and workload.
For example, consider a setup with the following parame-
ters: ¢ =20 MB/s, w=8 MB/s, m =6 GB, b =4 GB,
T = 1/hour, and R = 10 regions. This gives us C = 2
compaction servers.

I :
200 | Get
Scal
2150
= |l
2100
Q
T
-
|
0
0 3600 7200 10800
Time (s)
(a) Standard Setup: 5 RS
200 — Get
——Scan

Latency (ms)
=
o
o

10800

o

0 3600 7200

Time (s)
(c) Compaction Offloading: 10 RS / 1 CS

—Get
—Scan

ioschid bt st b Mk

0 3600 7200

Time (s)

(b) Compaction Offloading: 5 RS / 1 CS

10800

200 || Get
—Scan

é 150
)

< 100
Q
T
.

50

0

0 3600 7200 10800
Time (s)

(d) Compaction Offloading: 10 RS / 2 CS

Figure 9: Performance Evaluation: Scalability

6.4 Performance Evaluation

Using YCSB, we demonstrate the scalability of our solu-
tion by scaling our setup from five region servers up to ten.
The five-node setup served 10 million rows split into five
regions supported by one compaction server. We launched
two read/write clients (with 40 read threads and two write
threads each). The ten-node setup doubled both the dataset
size and workload; i.e., 20 million rows split into ten regions,
stressed with four read/write clients. At first, we provi-
sioned only one compaction server, overloading it beyond
its maximum capacity. Next, we ran the same experiment
with two compaction servers to demonstrate the capability
of our architecture to effectively distribute the load between
the two servers. The experiments run for four hours; multi-
ple major compactions are triggered in this duration.

Figures 9(a) to 9(d) show the results. Figure 9(a) shows
the average response time of reads over the four-hour pe-
riod on the five region servers (no compaction servers). We
can see the same latency spikes as in our smaller scale ex-
periments where compactions were not offloaded. Figure
9(b) shows the five-node setup with one compaction server,
which can handle the compactions triggered by all five region
servers, eliminating the performance overhead seen in the
standard setup. In Figure 9(c), ten region servers are served
by a single compaction server. In this case, the compaction
server becomes overloaded. As our compaction server only
has enough main memory cache available (6 GB) to com-
pact a single region’s data (4 GB) at a time, we cannot allow
several compactions to run concurrently. Thus, compactions
are delayed, and read performance on the region servers gets
increasingly worse, as more store files are created that have
to be scanned by reads, and the region servers start running
out of block cache space as well. Finally, we can observe in
Figure 9(d) that with two compaction servers, we can handle
the compaction load of ten region servers comfortably, and
response times remain smooth over the entire execution.

859

7. FAULT-TOLERANCE

Our approach offers an efficient solution for offloading
compactions while ensuring their correct execution even when
components fail. This section addresses several important
failure cases and discusses the fault-tolerance of our solution.

7.1 Compaction Server Failure

When the compaction manager detects that a compaction
server has failed, it reassign its regions to another available
compaction server. A compaction server can be in one of
three states at the time of failure: idle, compacting some
region(s), or transferring compacted data back to the region
server(s). If it was performing a compaction, then its fail-
ure will cause a remote exception on the region server and
the compaction will be aborted. Note that no actual data
loss occurs, since the compaction server was writing to a
temporary file, and the region server does not switch over
to the compacted file until the compaction has completed.
The region server can retry the compaction and it will be
assigned to another compaction server. If no compaction
servers are available, then the region server can simply per-
form the compaction itself.

If the compaction server was in the process of transferring
a compacted file back to the region server when the failure
occurs, this will also cause a remote exception on the other
end. In the case of incremental warmup, some requests will
already have started reading the partially transferred com-
pacted data. Therefore, the region server needs to final-
ize loading the compacted data, which it can do by simply
reading the storefiles from the filesystem instead, as the com-
paction server completed writing the new storefiles to HDFS
before beginning the transfer to the region server. How-
ever, since the remaining portion of the compacted data now
needs to be fetched from HDF'S, read performance might suf-
fer during the remainder of the warmup phase (as under the
standard setup).

7.2 Compaction Manager Failure

In our current implementation, in order to offload a com-
paction, the region server must go through the compaction
manager to be forwarded to the compaction server that will
handle the compaction. Thus, the compaction manager be-
comes a single point of failure in our setup. However, this
is only an implementation issue. Since we use ZooKeeper
for maintaining the compaction servers’ region assignments,
our design offers a reliable way for a region server to contact
a compaction server directly.

As with the HBase Master, if the compaction manager
fails, we lose the ability to add or remove compaction servers
and assign regions, so it would need to be restarted as soon
as possible to resume these functions. However, ongoing
compactions are not affected, since the region server and
compaction server communicate directly once connected.

7.3 Region Server Failure

If a region server fails while waiting for an offloaded com-
paction to return, the compaction server detects the discon-
nection in the communication channel via a timeout, and
the compaction is aborted. Once the HBase Master has as-
signed the affected regions to another region server, they
can simply retry the compaction and it will be handled by
the compaction server as a new compaction request. If a re-
gion server fails during the incremental warmup phase, the
new parent region server must ensure that it loads only the
newly compacted file(s) from HDFS, and not any of the older
files, which should be discarded at this point. Although we
currently do not handle this failure case, we intend to im-
plement a simple solution for it by modifying the file names
prior to initiating the incremental warmup. In this way, if
the region is reopened by another region server, it can detect
which files in the region’s HDFS directory can be discarded
due to being superseded by the newer compacted files.

8. RELATED WORK

The number of scalable key-value stores, as well as more
advanced datastores, providing more complex data models
and transaction consistency, has increased very quickly over
the last decade [2, 3, 5, 7, 10, 12]. Many of these datas-
tores rely on creating multiple values/versions of data items
rather than applying updates in-place, in order to handle
high write throughput requirements. However, read perfor-
mance can be severely affected as trying to find the right
data version for a given query takes increasingly longer over
time. Therefore, compactions are a fundamental feature of
these datastores, helping to regularly clean up expired ver-
sions, and thus keep read performance at acceptable levels.

Various types of compaction algorithms exist. In order
to make compactions more efficient, these algorithms gen-
erally attempt to limit the amount of data processed per
compaction by selecting files in a way that avoids the repet-
itive re-compaction of older data as much as possible. For
instance, tiered compactions were first used by Bigtable and
also adopted by Cassandra. Rather than selecting a ran-
dom set of storefiles to compact, this algorithm selects only
a fixed number (usually four) of storefiles at a time, picking
files that are all around the same size. One effect of this
mechanism is that larger storefiles may be compacted less
frequently, thereby reducing the total amount of I/O taken

860

up by compactions over time. The leveled compactions al-
gorithm was introduced in LevelDB® and was recently also
implemented in Cassandra. The aim of this algorithm is to
remove the need for searching through multiple storefiles to
answer a read request. The algorithm achieves this goal sim-
ply by preventing updated values of a given row from ending
up across multiple storefiles in the first place. The overall
I/0 load of leveled compactions is significantly larger than
standard compactions, however, the compactions themselves
are small and quick, and so tend to be much less disrup-
tive to the datastore’s runtime performance over time. On
the other hand, if the cluster is already I/O-constrained,
or if the workload is very update-intensive (e.g., time se-
ries), then leveled compactions become counter-productive.
Striped compactions'®, a variation of leveled compactions,
have been prototyped for HBase as an improvement over its
current algorithm. Yet another variation is implemented in
bLSM [15], which presents a solution for fully amortizing
the cost of compactions into the workload by dynamically
balancing the rate at which the existing data is being com-
pacted with the rate of incoming updates. In our approach,
we take the compaction approach itself as a black box. In
fact, all but the incremental warm-up approach do not care
at all what is the actual content of the storefiles. The in-
cremental warmup approach needs rows to be sorted in key
order, but is also independent of the compaction algorithm.

Other data structures that perform periodic data main-
tenance operations in the same vein as the LSMT include
R-trees [11] and differential files [16]. As with LSMT datas-
tores, updates are initially written to some short-term stor-
age layer, and subsequently consolidated into the underlying
long-term storage layer via periodic merge operations, thus
bridging the gap between OLTP and OLAP functionality.
SAP HANA [17] is a major in-memory database that falls
in this category. A merge in HANA is a resource-intensive
operation performed entirely in-memory. Thus, the server
must have enough memory to simultaneously hold the cur-
rent and compacted data. In principle, our incremental
warmup algorithm offers the same performance benefits as a
fully in-memory solution, while requiring half the memory.

Both computation offloading as well as smart cache man-
agement are well-known techniques in many distributed sys-
tems. But we are not aware of any other approach that con-
siders offloading compactions with the aim of relieving the
query processing server of the added CPU and memory load.
However, the concept of separating different tasks that need
to work on the same data is prevalent in replication-based
approaches, which affords an opportunity to run different
kinds of workloads simultaneously on different copies of the
data. As long as potential data conflicts are efficiently han-
dled, this has the advantage that the different workloads do
not interfere with each other. For instance, in approaches
that use primary copy replication, update transactions are
executed on the primary site only, while the other copies
are read-only. In the Ganymed system [14], for instance,
the various read-only copies are used for various types of
read-only queries, while the primary copy is dedicated to
update transactions. In a similar spirit, we separate com-
pactions from standard transaction processing to minimize
interference of these two tasks.

“http://leveldb.googlecode.com/svn/trunk /doc/impl.html
https://issues.apache.org/jira/browse/ HBASE-7667

Techniques for the live migration of virtual machines, such
as [4, 18], deal with transferring a machine’s state and data
to another and switching over to it without drastically af-
fecting the workload being served. Similarly, techniques for
live database migration deal with efficiently transferring the
contents of the cache [6] and potentially the disk as well [8].
Thus, similar data transfer considerations arise as for com-
paction offloading. However, in these migration approaches,
one generally does not need to consider the interference be-
tween two workloads (i.e., the query processing and the of-
floaded compaction, in our case).

9. CONCLUSIONS

In this paper, we took a fresh approach to compactions
in HBase. Our primary goal was to eliminate the negative
performance impacts of compactions under update-intensive
OLTP workloads, particularly with regards to read perfor-
mance. We proposed offloading major compactions from
the region server to a dedicated compaction server. This
allows us to fully utilize the region server’s resources to-
wards serving the actual workload. We also use the com-
paction server as a remote cache, since it already holds the
freshly compacted data in its main memory. The region
server fetches these blocks over the network rather than from
its local disk. Finally, we proposed an efficient incremental
warmup algorithm, which smoothly transitions from the cur-
rent data in the region server’s cache to the compacted data
fetched from the remote cache. With YCSB and TPC-C, we
showed that this last approach was able to eliminate virtu-
ally all compaction-related performance overheads. Finally,
we demonstrated that our system can scale by adding more
compaction servers as needed.

For future work, we would like to make the compaction
manager more aware of the load balancing requirements of
regions, region servers, and compaction servers. If one com-
paction server is assigned more regions that it can handle ef-
fectively, the compaction manager should re-balance regions
accordingly among the available compaction servers, while
taking into consideration their current respective loads.

10. ACKNOWLEDGMENTS

The authors would like to thank the anonymous review-
ers for useful feedback to improve this paper. This work
was partially funded by the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC) and Ministere de
I’Enseignement supérieur, Recherche, Science et Technolo-
gie, Québec, Canada (MESRST).

11. REFERENCES

[1] A. S. Aiyer, M. Bautin, G. J. Chen, P. Damania,
P. Khemani, K. Muthukkaruppan, K. Ranganathan,
N. Spiegelberg, L. Tang, and M. Vaidya. Storage
infrastructure behind Facebook Messages: Using
HBase at scale. IEEE Data Eng. Bull., 35(2):4-13,
2012.
J. Baker, C. Bond, J. C. Corbett, J. J. Furman,
A. Khorlin, J. Larson, J.-M. Leon, Y. Li, A. Lloyd,
and V. Yushprakh. Megastore: Providing scalable,
highly available storage for interactive services. In
CIDR, pages 223-234, 2011.
F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and

861

(11]

(12]

R. Gruber. Bigtable: A distributed storage system for
structured data. In OSDI, pages 205-218, 2006.

C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration
of virtual machines. In NSDI, 2005.

J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. C. Hsieh, S. Kanthak, E. Kogan,
H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,

S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak,
C. Taylor, R. Wang, and D. Woodford. Spanner:
Google’s globally-distributed database. In OSDI,
pages 261-264, 2012.

S. Das, S. Nishimura, D. Agrawal, and A. E1 Abbadi.
Albatross: Lightweight elasticity in shared storage
databases for the cloud using live data migration.
PVLDB, 4(8):494-505, 2011.

G. DeCandia, D. Hastorun, M. Jampani,

G. Kakulapati, A. Lakshman, A. Pilchin,

S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s highly available key-value store.
In SOSP, pages 205-220, 2007.

A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi.
Zephyr: live migration in shared nothing databases for
elastic cloud platforms. In SIGMOD, pages 301-312,
2011.

S. Ghemawat, H. Gobioff, and S.-T. Leung. The
Google file system. In SOSP, pages 29-43, 2003.

A. Gupta, F. Yang, J. Govig, A. Kirsch, K. Chan,

K. Lai, S. Wu, S. G. Dhoot, A. R. Kumar, A. Agiwal,
S. Bhansali, M. Hong, J. Cameron, M. Siddiqi,

D. Jones, J. Shute, A. Gubarev, S. Venkataraman, and
D. Agrawal. Mesa: Geo-replicated, near real-time,
scalable data warehousing. PVLDB, 7(12):1259-1270,
2014.

C. Kolovson and M. Stonebraker. Indexing techniques
for historical databases. In Data Engineering.

A. Lakshman and P. Malik. Cassandra: A
decentralized structured storage system. SIGOPS
Oper. Syst. Rev., 44(2):35-40, Apr. 2010.

P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil.
The log-structured merge-tree (LSM-tree). Acta Inf.,
33(4):351-385, 1996.

C. Plattner, G. Alonso, and M. T. Ozsu. Extending
DBMSs with satellite databases. VLDB J.,
17(4):657-682, 2008.

R. Sears and R. Ramakrishnan. bLSM: a general
purpose log structured merge tree. SIGMOD, pages
217-228, 2012.

D. G. Severance and G. M. Lohman. Differential files:
Their application to the maintenance of large
databases. ACM Trans. Database Syst., 1(3):256-267,
Sept. 1976.

V. Sikka, F. Farber, W. Lehner, S. K. Cha, T. Peh,
and C. Bornhovd. Efficient transaction processing in
SAP HANA database: The end of a column store
myth. SIGMOD, pages 731-742, 2012.

T. Wood, P. J. Shenoy, A. Venkataramani, and M. S.
Yousif. Black-box and gray-box strategies for virtual
machine migration. In NSDI, 2007.

