
DAQ: A New Paradigm for Approximate Query Processing

Navneet Potti
University of Wisconsin – Madison

nav@cs.wisc.edu

Jignesh M. Patel
University of Wisconsin – Madison

jignesh@cs.wisc.edu

ABSTRACT
Many modern applications deal with exponentially increas-
ing data volumes and aid business-critical decisions in near
real-time. Particularly in exploratory data analysis, the fo-
cus is on interactive querying and some degree of error in
estimated results is tolerable. A common response to this
challenge is approximate query processing, where the user
is presented with a quick confidence interval estimate based
on a sample of the data. In this work, we highlight some
of the problems that are associated with this probabilistic
approach when extended to more complex queries, both in
semantic interpretation and the lack of a formal algebra. As
an alternative, we propose deterministic approximate query-
ing (DAQ) schemes, formalize a closed deterministic ap-
proximation algebra, and outline some design principles for
DAQ schemes. We also illustrate the utility of this approach
with an example deterministic online approximation scheme
which uses a bitsliced index representation and computes
the most significant bits of the result first. Our prototype
scheme delivers speedups over exact aggregation and pred-
icate evaluation, and outperforms sampling-based schemes
for extreme value aggregations.

1 Introduction
As organizations collect ever-larger volumes of data and use
analytics to drive their decision-making processes, the focus
is often less on exactness of the result and more on timeliness
or responsiveness, particularly for interactive exploratory
analysis. This need is often best met with quick and ap-
proximate estimates that are either within a user-specified
error tolerance or are continuously updated to be more ex-
act over time. The most common querying paradigm in this
direction is sampling-based approximate querying (which we
call SAQ) [1, 3], where the computation is performed over a
small random subset of the data. A special case is online ag-
gregation [6], where a running estimate based on data seen
thus far is continuously updated as the computation pro-
ceeds. The error in the estimate is specified using a confi-
dence interval or error bars.
This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 9
Copyright 2015 VLDB Endowment 2150-8097/15/05.

Figure 1: A UI running online aggregation using DAQ.

SAQ schemes suffer from various shortcomings. The con-
fidence interval estimation does not lend itself to a formal
closed algebra, making it harder to formally reason about
complex queries. Sometimes this method is coupled with
bootstrapping [12] and the query is run on multiple arti-
ficial samples obtained by resampling the original sample.
But this approach can be computationally expensive and in-
accurate for some queries [2]. The confidence intervals also
ignore the tails of the data distributions entirely, making it
harder to use them when we are interested in the extreme
values (e.g. aggregations like MAX). It can also be difficult for
lay users to correctly interpret the semantics of confidence
intervals, particularly when presented with a large number
of independent estimates. (Section 2 has more details.)

In this work, we propose querying paradigm called de-
terministic approximate querying, abbreviated as DAQ. We
define the DAQ approach informally for now as one where
the precision of the estimate is maintained and presented
in terms of deterministically guaranteed lower and upper
bounds. The user interface in Figure 1 illustrates this con-
cept using a screenshot of the intermediate results of a query
in progress. The example query is an aggregation on the
Census table excerpted in Table 1. The aggregate requested
by the user is displayed using an interval (under “Range”)
which is deterministically guaranteed to include the true av-
erage. For instance, the average MalePopulation for Narnia
is guaranteed to be between 100 and 150, and the 42% “er-
ror” in the estimate is the ratio of the width of the interval
relative to its midpoint. As the aggregation proceeds, the
intervals get narrower and the error decreases. This process

898

Male Female

Country City Population Population

Far Away Galaxy Alderaan 1,001,453,234 1,000,671,173

Far Away Galaxy Coruscant 12,876,461,144 13,750,815,931

Far Away Galaxy Naboo 297,540,057 301,810,369

Far Away Galaxy Tatooine 103,488 97,001

Far Away Galaxy Kashyyyk 22,541,803 23,177,900

Middle-Earth Shire 1,654,784 1,432,605

Middle-Earth Rivendell 76,236 76,902

Middle-Earth Minas Morgul 30,204,645 25,784,115

Middle-Earth Minas Tirith 15,721,104 15,438,168

Table 1: Example tuples from a large Census table.

continues untill either all the errors are within the tolerance
specified by the user, or the user terminates the session.

These deterministic guarantees remedy the issues that are
associated with SAQ schemes highlighted above by simplify-
ing the semantics, making them easier to reason about and
interpret correctly. This approach allows us to develop a for-
mal closed algebra for such schemes in Section 3 so that the
approximation schemes are applicable to arbitrarily com-
plex queries. We mention some of the desired properties
of such schemes and outline some example schemes as well.
We delve into one such deterministic online approximation
scheme, the Bitwise approximation scheme, in Section 5.
In our prototype, termed Bitsliced Index implementation,
predicate evaluation and aggregation are performed using a
bitsliced index representation of the columns [10, 14], and
the query result is computed in order of significance of the
digits in the result. The empirical data presented in Sec-
tion 6 shows that this scheme allows efficient approximate
evaluation of queries, particularly when computing aggre-
gates that depend on extreme values in heavy-tailed distri-
butions.

Overall, our contributions lie in proposing the DAQ ap-
proach, developing a robust theoretical framework for han-
dling complex queries, and empirically demonstrating the
benefits and limitations of our methods. In our initial im-
plementation, we have limited our scope to a restricted class
of queries and focused on read-mostly environments. To the
best of our knowledge this is the first proposal for deter-
ministic approximate query processing, and as discussed in
Section 8, there are many interesting directions for future
work. We also acknowledge that this paper does not close
the chapter on DAQ, but rather is its opening chapter.

We also note that DAQ and SAQ schemes are complemen-
tary to each other, as they use distinctly different techniques
and provide semantically different error guarantees. While
this introductory work delves into how these approaches dif-
fer from each other, these approaches can certainly also be
combined, and we believe that looking at combining both
schemes presents a promising avenue for future work.

2 The need for DAQ over SAQ
We begin with an example to motivate the DAQ paradigm.
Consider a large Census relation such as the one excerpted
in Table 1 containing the populations of a large number of
cities and countries, broken out by gender. We will use this
relation as a running example for the rest of this paper.

Suppose that we want to find the maximum MalePopulation

across any City in this relation. The SQL query is:

SELECT MAX(MalePopulation) FROM Census

Figure 2: Relative errors in the lower and upper bounds when
evaluating MAX(MalePopulation) in Census.

In SAQ schemes, this MAX value is estimated by evaluating
the query on a small random sample of the relation. Natu-
rally, aggregation functions such as MAX that are sensitive to
outliers (i.e. rare, extreme values) are difficult to approxi-
mate well, as they are unlikely to occur in the sample.

In DAQ schemes, we find an interval within which the
maximum value is guaranteed to lie, and then iteratively re-
fine this interval by tightening the lower and upper bounds.
For instance, suppose that we examine the values in the
MalePopulation column one digit at a time. Then, a simple
approximation scheme would proceed by examining these
digits in the order of the most significant digits first and
update the estimate in the same order. This approach is
illustrated in Figure 2, where the two curves represent our
lower and upper bound estimates in successive iterations of
this algorithm. On the x-axis is the number of iterations,
which is also the number of digits we have examined from
each row of the column. The relative error on the y-axis is
computed as the ratio of the error in our estimate to the
exact maximum. After examining just the first digit in each
row for the entire column, we find that the maximum is
around 10 billion. Since we have ignored the remaining 10
digits, we can claim that the error in our estimate is between
0 and (10 billion - 1). So we use the interval [10 billion, 20
billion] to represent our estimate. Subsequently, as we ex-
amine more digits, we add more significant digits to our
estimate and tighten our bounds, as shown by the curves.
In fact, the relative error in our estimate falls exponentially
till we reach the exact result (after examining all 11 digits).

The discussion above provides an informal view of our
DAQ approach, leaving the theoretical and implementation
aspects to subsequent sections. Next, we further motivate
the need for, and the advantages of, our approach.

2.1 Where SAQ Falls Short
The SAQ approach provide approximate results for a query
by running it on small random samples of an “appropriate”
size. The error in the estimate is maintained and presented
in the form of confidence intervals.

Suppose that we are interested in the average of the at-
tribute MalePopulation across all cities, i.e. the query is:

SELECT AVG(MalePopulation) FROM Census

Depending on whether the city Coruscant is excluded or
included in the sample, the estimated average for the above
dataset can vary from 171 million to 1.58 billion. In the
former case, let us assume the average is estimated with
95% confidence as 171 million ± 100 million. This interval

899

indicates that the true average for the entire dataset is be-
tween 71 million and 271 million with 95% probability. The
large width of the interval reflects the high variance in the
column. Note that this probabilistic estimate gives us no
information about how far off the exact average might be in
the tails (which occur with 5% probability). Furthermore,
consider a query such as the following:

SELECT Country , AVG(MalePopulation)

FROM Census GROUP BY Country

If there are a large number of tuples in the result, each
with a presumably reliable 95% confidence interval for the
average MalePopulation in the corresponding Country, then
we are nearly guaranteed that in 5% of these cases, the exact
average will exceed the estimated interval. SAQ methods
make it hard to correctly reason about the semantics of the
probabilistic estimates.

This situation is exacerbated when we seek aggregates
that reflect extreme values, such as MAX, MIN or TOP k. The
SAQ schemes either provide weak guarantees for the esti-
mates or require large sample sizes.

The concerns highlighted above relate to the complex se-
mantics of the confidence interval, and its inability to cap-
ture extreme values. Next, consider a more complex query
that highlights a separate theoretical challenge.

SELECT Country FROM

(SELECT Country ,

AVG(MalePopulation) AS M,

AVG(FemalePopulation) AS F

FROM Census GROUP BY Country

) WHERE M > F

Here, we would like to find the countries where the average
MalePopulation exceeds the average FemalePopulation. Ide-
ally, we want to reuse the approach and results of the pre-
vious query, first finding confidence intervals that estimate
the averages (M and F), then comparing them (M > F). Such a
closed algebra becomes particularly appealing when the sub-
query is complex (e.g with many levels of nesting). However,
the confidence interval representation has no clear semantics
for the comparison operation: is the probabilistic estimate
100±10 “greater than” 90±20? In a closed algebra, we want
to associate an inclusion probability that the corresponding
Country satisfies this predicate, as in [4]. However, the rep-
resentation of approximation errors using confidence inter-
vals alone is not sufficient for this purpose. We run into
similar problems for queries such as one that computes the
average gender imbalance (M - F).

Note that complex queries (though not extreme value ag-
gregates) can be handled in SAQ schemes using bootstrap-
ping, but this approach is often expensive. As we show next,
the DAQ schemes lead to a more natural approach where we
define a formal closed algebra that is theoretically capable
of handling arbitrarily complex relational queries.

2.2 How DAQ Helps
The key idea in the DAQ paradigm is to eschew the proba-
bilistic guarantees provided by SAQ in favor of deterministic
guarantees. To represent an approximation to an attribute
a, rather than using a confidence interval, we use a deter-
ministic interval bounding it: lā ≤ a ≤ uā. To obtain a
closed algebra, we also extend this notion to relations: a
relation R is approximated using a pair of relations (sets of
tuples) LR̄ ⊆ R ⊆ UR̄. Intuitively, these relations bound

the membership of tuples in the exact relation R. Every
tuple that is potentially in the exact relation R is guaran-
teed to be in our upper bound UR̄ and every tuple that is
in our lower bound LR̄ is certainly in the exact relation R.
These bounds allow us to perform approximate evaluation
of complex queries, since every intermediate attribute and
relation has the same representation: a generalization of the
intervals we used in Figure 2.

This representation and resulting closed algebra are ex-
plained more formally in Section 3. The general approach is
to begin with an interval that is deterministically guaranteed
to include the exact value (whether an attribute resulting
from an aggregation, or a relation resulting from a selection
with a predicate), then iteratively tighten the intervals ei-
ther until the estimates are within the desired tolerance for
approximation error, or until the estimate becomes exact
(i.e. both the lower and upper bounds become equal).

Since the intervals are deterministic bounds, we avoid the
problem of estimating tail values. For efficiency, the DAQ
schemes must be designed to compute the most significant
part of the result first. For instance, in the example shown
in Figure 2, we did so by computing the result in the order
of the most significant digit first. Such a strategy allows
us to bound the uncertainty in any intermediate result us-
ing bounds on the value of the remaining (least significant)
digits. As the computation proceeds, in each iteration, we
tighten these bounds by including more digits in the aggre-
gation, leaving fewer uncertain digits of smaller significance.
This approach naturally leads to fast approximation for ag-
gregation functions that are sensitive to the extreme values,
such as MAX and TOP k. This approach can also be extended
to comparisons using interval algebra and 3-valued logic.
For brevity, we have excluded the extension to arithmetic
operations, which uses interval arithmetic.

3 Formal Definition of DAQ
In this section, we formally define the DAQ framework and
develop its algebra, using the notation shown in Table 2.

3.1 Attributes and Relations
We use a generalized notion of intervals to represent at-
tributes and relations approximately. For an attribute a in
a relation, we represent its approximation ā using a pair of
attributes with the same domain, (lā, uā) with lā ≤ uā. The
values of these attributes are respectively the lower and up-
per bound estimates for the corresponding values of a. In
our example in Figure 2, the attribute resulting from the
MAX aggregation on MalePopulation was represented using
intervals such as (10 billion, 20 billion), (12 billion, 13 bil-
lion), (12.8 billion, 12.9 billion) and so on.

A tuple is approximated using approximations for the re-
spective attributes. Similarly, a relation R is approximated
using a pair of relations (LR̄, UR̄) with LR̄ ⊆ UR̄. Intuitively,
LR̄ is the set of tuples that are guaranteed to be in R and
UR̄ is the set of tuples that are potentially in R. With slight
abuse of notation, we say

LR̄ ⊆ R ⊆ UR̄ (1)

to denote that the approximate relations bound the exact
R from below and above. Of course, R, LR̄ and UR̄ all
have the same schema, with the caveat that the latter use
approximate versions of the attributes.

For instance, consider a query that selects all the cities in
the Census relation (shown in Table 1) with MalePopulation

900

Object Exact Approximate Remarks

Attribute a ā = (lā, uā) lā: lower bound, uā: upper bound

Tuple t t̄ = 〈ā|a ∈ t〉
Approximations of all the attributes

t̄(ā): value of attribute ā in tuple t̄

Relation R R̄ = (LR̄, UR̄) LR̄ ⊆ R ⊆ UR̄

Projection operator πc(R) π̄c(R̄) = (πc(LR̄), πc(UR̄)) Semantics unchanged

Rename operator ρco→cn (R) ρ̄co→cn (R̄) = (ρco→cn (LR̄), ρco→cn (UR̄) Semantics unchanged

Comparison operators
= (=l,=u) ·l every pair of exact values satisfies comparison

≤ (≤l,≤u) ·u some pair of exact values satisfies comparison

Predicate p p̄ = (p̄l, p̄u) Using ·l and ·u for all operators, ā for all attributes a

Selection operator σp(R) σ̄p̄(R̄) = (L,U) L ⊆ σp̄l
(LR̄) ⊆ σp̄u (UR̄) ⊆ U

Cross-product operator R× S R̄×̄S̄ = (L,U) L ⊆ LR̄ × LS̄ ⊆ UR̄ × US̄ ⊆ U

Aggregation function f : B(DI)→ DO fl, fu : B(DI ×DI)→ DO
fl(b) = f({{ l | (l, u) ∈ b }})
fu(b) = f({{ u | (l, u) ∈ b }})

Group By operator cγg=f(a)
cγ̄ḡ:=f(ā) f : monotonically increasing with input weight

ḡ = (lḡ, uḡ) lḡ ≤ min
b
fl(b) ≤ max

b
fu(b) ≤ uḡ (see Section 3.5)

DAQ scheme Σ Collection of all of the above

Relational algebra expression R := E R̄ := ĒΣ Replace operators, operands with approx. from Σ

Online DAQ scheme Σ(m) Indexed sequence of DAQ schemes (see Section 3.6)

Table 2: Summary of the notation used in Section 3

less than 1 million. Let S denote the output of this query.
Then, the exact value of S is {Tatooine, Rivendell}, and
one possible approximate estimate of S is LS̄ = {Rivendell}
and US̄ = {Tatooine, Rivendell, Shire}.

For an exact relation, we can define the equivalent approx-
imate version by setting the same value for lower and upper
bounds of the intervals (for every attribute and relation).
We indicate this as LR̄ = UR̄ ≡ R.

3.2 Projection and Rename Operators
These projection and rename operators remain semantically
unchanged.

π̄c(R̄) := (πc(LR̄), πc(UR̄))

ρ̄co→cn(R̄) := (ρco→cn(LR̄), ρco→cn(UR̄)

As usual, c, co and cn are lists of attributes, with c and co
drawn from the schema of R and cn a list of new attribute
names (|co| = |cn|).

3.3 Selection Operator
To define the selection operator, we first define how Boolean
predicates are evaluated approximately. Since the tuples
consist of approximate attributes represented as intervals,
we use a 3-valued logic appropriate for interval comparisons.
Our approach is to define a new pair of Boolean operators
that correspond to tuples certainly and potentially satisfy-
ing the comparison. If all pairs of values drawn from the
two intervals in the tuple satisfy the comparison, the tuple
certainly satisfies it. If some pair of values drawn from the
two intervals in the tuple satisfies the comparison, then the
tuple potentially satisfies it.

For instance, corresponding to the equality comparison
operator =, we define two operators =l and =u, which con-
ceptually behave like lower and upper bounds for the equal-
ity operator. A tuple t̄ with attributes ā and b̄ satisfies
ā =l b̄ if t̄(ā) = t̄(b̄), i.e. if the lower and upper bounds for
the interval values for attributes ā and b̄ in tuple t̄ are all
equal to each other. A tuple t̄ satisfies ā =u b̄ if the intervals
overlap at least partially, i.e. if uā ∈ [lb̄, ub̄] or lā ∈ [lb̄, ub̄] in
t̄. Note that t̄ satisfies =l only when every possible exact tu-
ple in the approximation interval satisfies =, and t̄ satisfies

=u when some possible exact tuple in the approximation
interval could satisfy =.

Similarly, we extend ≤ operator as follows: t̄ satisfies ā ≤l

b̄ if uā ≤ lb̄ in t̄ (i.e. the entire interval for ā lies below the
interval for b̄) and satisfies ā ≤u b̄ if lā ≤ ub̄ in t̄ (i.e. if the
intervals for ā and b̄ overlap).

To illustrate these operators, consider the following query:

SELECT Country , AVG(MalePopulation) as M,

AVG(FemalePopulation) as F

FROM Census GROUP BY Country

Table 3 shows an approximate estimate C̄ of the result re-
lation C for the above query. UC̄ consists of all the tuples
shown, whereas LC̄ consists of only those that are marked
with an *. (A practical DAQ implementation can use this
technique to maintain only one table to represent both the
bounds.) The tuple for Narnia has the approximate esti-
mates for the attributes M̄ = (100, 250) and F̄ = (200, 300),
indicating that the exact values M and F lie in these inter-
vals. To check whether M = F is satisfied for Narnia, ap-
plying the definitions above, we find that M̄ =l F̄ is not true
(since we cannot guarantee that M and F are equal based
only on this approximation) and M̄ =u F̄ is true (since it
is potentially possible for M and F to be equal, as the in-
tervals overlap). Similarly, M̄ ≤l F̄ is not true (since we
cannot guaranteed that M and F will satisfy M ≤ F) while
M̄ ≤u F̄ is true (since there are some possible values for M
and F that satisfy M ≤ F). It is easy to verify that for
Discworld, both M̄ =l F̄ and M̄ =u F̄ are true, and for
Westeros, both M̄ ≤l F̄ and M̄ ≤u F̄ are true.

We define all other comparison operators similarly. Con-
stant operands are approximated using a trivial interval
(both bounds equal to the constant). The Boolean OR (∨)
and AND (∧) operators are applied to the Boolean certain
and potential operators ·l and ·u. This approach allows us
to rewrite any first order predicate p in its approximate form
(p̄l, p̄u) by replacing all the attributes and constants by their
approximate (interval) forms and replacing the comparison
operators with their ·l and ·u forms respectively.

In our example, if p refers to the predicate M ≤ F , then p̄
is represented by the pair of predicates (M̄ ≤l F̄ , M̄ ≤u F̄),

901

and the tuple for Narnia satisfies p̄u but not p̄l.

The approximate form of selection operator σ with predi-
cate p, σ̄p̄(R̄) is defined as a pair of relations (L,U) satisfying

L ⊆ σp̄l(LR̄) ⊆ σp̄u(UR̄) ⊆ U (2)

Semantically, σp̄l(LR̄) is the relation consisting of exactly
the tuples that certainly satisfy the predicate p on the in-
tervals in LR̄, and σp̄u(UR̄) is a relation consisting exactly
of all tuples that could potentially satisfy the predicate on
the intervals in UR̄. These correspond to exact interval op-
erations. L and U are themselves some approximations to
these relations, to be defined by the exact scheme used for
performing the operation. For instance, rounding the inter-
val bounds up or down appropriately before performing the
comparison would give us broader input intervals for the ·l
and ·u operators, making L and U different from σp̄l(LR̄)
and σp̄u(UR̄) respectively.

Let us again use M ≤ F as our predicate p, and LC̄

and UC̄ as defined in Table 3. It can be verified that p̄l is
true for Westeros, Discworld and Pandora, among which
only Discworld and Pandora are in LR̄. Therefore, σp̄l(LR̄)
consists of the tuples for Discworld and Pandora. Similarly,
p̄u is true for all of the tuples except Essos, and σp̄u(UR̄)
therefore consists of all four tuples other than Essos.

Thus far in this example, we have evaluated the predicate
and selection exactly on the approximate (interval) input.
In general, however, a DAQ scheme may apply a further
approximation at this stage if it achieves a better tradeoff
between accuracy and responsiveness. For instance, it may
be cheaper to evaluate the predicate after loosening the in-
put interval by using just the single most significant digit of
the attributes M̄ and F̄ (i.e., the hundreds’ place). In this
case, the result of p̄u on UR̄ will be unaffected for all the
tuples other than Essos. For Essos, the new widened inter-
vals for both M̄ and F̄ will be (0,100), and p̄u is now true
for this tuple. The added flexibility from allowing L and U
in our definition of σp̄l(LR̄) to be different from σp̄l(LR̄) and
σp̄u(UR̄) enables a much wider selection of query plans (po-
tentially choosing a different granularity for the intervals for
each operator in the plan), in turn allowing optimal tradeoff
between accuracy and responsiveness.

3.4 Cross-Product and Join Operators
We define the approximate cross-product operator between
two relations R̄×̄S̄ as some pair of relations (L,U) such that

L ⊆ LR̄ × LS̄ ⊆ UR̄ × US̄ ⊆ U (3)

As in the discussion of Equation 2, L and U are approxi-
mations to LR̄ × LS̄ and UR̄ × US̄ , which are the results of

Country M F *

Narnia (100, 250) (200, 300) *

Westeros (57, 76) (82, 93)

Essos (808, 952) (768, 784)

Discworld (431, 431) (431, 431) *

Pandora (622, 843) (845, 939) *

Table 3: Approximation to the result relation C. Note that the
input data, i.e. the instance of the Census relation is different
from that shown in Table 1. Both M and F are approximate at-
tributes, represented using intervals. All the tuples are in UC̄ and
* indicates tuples that are also in LC̄ .

the exact cross-product operations defined approximate re-
lations R and S. The join operation is defined simply as a
cross-product followed by a selection operation.

3.5 Group By Operator
We now incorporate the group by operator γ into our frame-
work. Note that the representation of intermediate results
using just the lower and upper bounds prevents us from ap-
proximating arbitrary aggregation functions. Fortunately,
as we show below, we can exploit some useful properties
common to most of our usual aggregation functions to ex-
tend them to work with the interval representation.

In general, an aggregation function is of the form

f : B(DI) → DO (4)

where DI and DO are the input and output domains, and
B(D) is the set of all bags of elements drawn from D. We
often have DI = DO, but not always. For instance, the
aggregation functions MAX, SUM, AVG map numeric domains
(integers or floating point numbers) into themselves, so that
DI = DO. On the other hand, TOP 100 maps numeric do-
mains into 100-element vectors with elements from the same
domain, and so DI and DO are not the same. Note that the
aggregation functions are defined on bags instead of sets or
lists, since the number of occurrences of a value in a column
affect the result of AVG, TOP k etc, but these results are not
dependent on the order of the input.

We assume that our domains have a partial ordering ≤,
as is the case for common domains such as string, time and
numeric. For the vector domain in the image (DO) of the
TOP k aggregation function, we use the l2 norm of the vectors
to define a partial ordering.

For a pair of bags b1,b2 ∈ B(D), we define the compar-
ison operation b1 ≤w b2 to be satisfied if |b1| = |b2| and
there is some bijection h from b1 to b2 satisfying x ≤ h(x)
for all x ∈ b1. Intuitively, we can consider b2 to have
been built element-by-element from b1 by either including
the element unchanged or after increasing its value. When
b1 ≤w b2, we say that b2 has a larger weight than b1. This
gives us a partial ordering between bags from the same do-
main. Note that in an approximate attribute such as M̄ in
Table 3, the lower and upper bounds can be considered as
two bags, the latter having a larger weight than the former.

An aggregation function f is said to be monotonically in-
creasing with input weight if for all bags b1 ≤w b2, we have
f(b1) ≤ f(b2). It can be verified that the aggregation func-
tions AVG, SUM, MIN, MAX and TOP k all satisfy this property,
whereas MEDIAN and STANDARD DEVIATION do not.

Aggregation functions, as defined above, do not apply di-
rectly to the intervals representing approximate attributes.
To extend an aggregation function of the form (4) to inter-
vals, we define a pair of aggregation functions

fl, fu : B(DI ×DI)→ DO

fl(b) = f({{ l | (l, u) ∈ b }})
fu(b) = f({{ u | (l, u) ∈ b }})

where {{·}} denotes bags. fl and fu compute the aggrega-
tion f on the lower and upper bounds of the intervals in the
bag b. Note that since

{{ l | (l, u) ∈ b }} ≤w {{ u | (l, u) ∈ b }}

902

we can conclude that fl(b) ≤ fu(b) when f is monotonic
with increasing input weight.

The approximate group by operator cγ̄ḡ:=f(ā) takes as in-
put a list of group by columns c from the schema of R as well
as a monotonic aggregation function f on some attribute
ā, and returns a pair of relations (L,U) as before, satisfy-
ing certain criteria. Naturally, L and U must have schemas
c
⋃
{ḡ} and must satisfy the functional dependency c→ {ḡ}.

The values in the group by attributes must also satisfy the
containment relation

πc(L) ⊆ πc(LR̄) ⊆ πc(UR̄) ⊆ πc(R)

i.e. they must be drawn from the respective lower and up-
per bound relations LR̄ and UR̄. The interval (lḡ, uḡ) of the
aggregate attribute ḡ in every tuple of L and U must re-
spectively be lower and upper bounds for the aggregation f
applied to all possible bags of a values in LR̄ and UR̄. We
now use the monotonicity of f with increasing input weight
to derive these bounds. For each set of values c taken by
the group by attributes c in LR̄ and UR̄, let us denote the
corresponding bags of interval values of ā by bc,ā and Bc,ā

respectively. Note that bc,ā ⊆ Bc,ā as LR̄ ⊆ UR̄ by def-
inition. The bounds we seek are the minimum and maxi-
mum values taken by f on any bag b “between” these, i.e.
bc,ā ⊆ b ⊆ Bc,ā. We know that fl(b) ≤ fu(b) for any bag
b of intervals. It follows that

min
b
fl(b) ≤ max

b
fu(b)

for any set of bags b. So we require that

lḡ ≤ min
b
fl(b) ≤ max

b
fu(b) ≤ uḡ

where b ranges over all bags bc,ā ⊆ b ⊆ Bc,ā. This ensures
that lḡ and uḡ are deterministic lower and upper bounds for
the aggregate g.

3.6 DAQ Scheme
A DAQ scheme Σ is specified by defining the relational op-
erators π̄, ρ̄, σ̄, ×̄ and γ̄, along with the comparison oper-
ators =l,=u,≤l,≤u, and aggregation functions etc. This
provides us a closed algebra, where every relational operator
operates on and returns approximate relations with approx-
imate attributes, all using lower and upper bounds forming
deterministic intervals. Given an expression E in standard
relational algebra, we can convert into the corresponding
DAQ expression in Σ, ĒΣ, by replacing the operators and
operands by their approximate forms.

We now define the notion of an online DAQ scheme. In-
tuitively, we want an online scheme to iterate on a database
of relations, and produce intermediate results such that suc-
cessive iterations bring us closer to the exact result.

More formally, we define an online scheme Σ as an indexed
sequence of DAQ schemes Σ(m). When a relation is defined
by a relational algebra expression R := E , we iteratively
evaluate R̄(m) := ĒΣ(m) for m ∈ Z+ until we converge on the

exact result. These successive approximations R̄(m) must
satisfy the following conditions.

• Monotonicity : The bounds in the approximations must
get progressively tighter.

LR̄(m) ⊆ LR̄(m+1) ⊆ UR̄(m+1) ⊆ UR̄(m)

150133120100755545272070

15013312610045200

150126450

1500

Figure 3: Conceptual DAQ attribute representation

The same must be true for all attributes ā in all the tuples.

l
(m)
ā ≤ l(m+1)

ā ≤ u(m+1)
ā ≤ u(m)

ā

• Convergence: The iterations must eventually converge,
i.e. for every input expression E, there is some M ∈ Z+

such that

LR̄(M) = UR̄(M)

and all attributes ā in all tuples satisfy

l
(M)
ā = u

(M)
ā

and, this convergence must be to the exact relation R, i.e.

LR̄(M) = UR̄(M) ≡ R

The example we showed in Figure 2 is an online aggrega-
tion scheme where successive iterations examine more digits
of the column and tighten the approximation interval for the
attribute. The error in the approximation falls monotoni-
cally (in fact, exponentially) and both the bounds converge
to the exact value after all the digits have been examined.

4 Designing DAQ Schemes
We now highlight some principles for designing efficient DAQ
schemes. In this work, we limit our focus to single-relation
queries without group-by clauses (i.e. queries with selection,
projection and aggregations without group-by columns).

To efficiently evaluate range predicates as well as aggre-
gates such as MAX, MIN and TOP k, the data structure we use
to represent attributes must respect the order of values in
the domain. Further, for online evaluation with iteratively
improving approximation bounds, it is natural to seek a hier-
archical data structure where different levels of the hierarchy
are at different granularities and yield increasingly precise
representations of the exact values. Thus, the key to efficient
DAQ schemes is a hierarchical decomposition of the domain
of the attribute into non-overlapping intervals, with succes-
sive levels of the hierarchy defining finer sub-partitions. The
end-points of the intervals at a given level act as lower and
upper bounds for all the values falling within it (see Fig-
ure 3). We also require an efficient way to find all the tuples
in which the attribute takes values in a given interval (par-
tition) at some level of the hierarchy.

One such data structure is Count B-tree (described in [13])
shown in Figure 4, a B-tree where each node also stores the
minimum and maximum values, as well as count of leaves
of the sub-tree rooted at the node. Computing MAX and MIN

involves a traversal of a single path down the tree. SUM and
AVG can be approximated using the bounds and counts for
the nodes at successive levels of the tree.

In the next section, we explore an alternative scheme,
viewing a bitsliced index representation of a column as a
repeated binary partitioning of the underlying domain.

903

15 19 20 20 25 36 39 41 43 4332 34 35 45 48 49 52 52 53 6210 12 13 14

≥10 14 25 ≤354 5 3 ≥36 43 49 ≤625 3 4

≥10 35 ≤6212Min Key MaxCount
12

Count

Figure 4: Count B-tree

5 The Bitwise DAQ Scheme
The Bitwise DAQ scheme is conceptually similar to the ag-
gregation in Figure 2: in each iteration, we examine and
compute the next most significant bit of the attribute.

Recall that the query that we used there computed the
maximum value of the MalePopulation attribute. In Ta-
ble 1, this maximum value was 12,876,461,144. Let us as-
sume that the unsigned integer data type used for this at-
tribute uses an n-bit representation (with n = 32).

Suppose that the user specifies a tolerance level for ap-
proximation error of 100, 000, i.e. an estimate such as “be-
tween 12,876,400,000 and 12,876,500,000” is acceptable. We
can use this fact to ignore the computation of the last 5 dig-
its in the answer, i.e. the last 16 bits. In Section 5.3, we will
show how the Bitsliced Index representation can be used
to perform this aggregation with a significant speedup by
ignoring half the bits of our 32-bit attribute.

Furthermore, we do not need the user to specify the above
tolerance level a priori. Instead, if we perform the compu-
tation in the order of the most significant bit first, and con-
tinuously update the result to display the latest available
digits; the user can choose either to terminate the compu-
tation early or to wait to get the exact answer.

In general, if we perform the computation of MAX as above
using the most significant m bits and ignoring the last b =
n −m bits, the maximum possible error is 2b − 1, which is
dlog10(2b−1)e digits (using the ceiling function d.e). Concep-
tually, the Bitwise DAQ scheme sets all the least significant
b bits to zeroes and ones to obtain lower and upper bounds
respectively for each attribute value. Thus, we can repre-
sent the interval using only the lower bound (using m bits)
and the number of bits ignored (i.e. b), greatly simplifying
the algorithms to be described in Section 5.3. We can sim-
ilarly bound the error incurred in other operations caused
by ignoring the least significant bits, so that our result ap-
proximates the most significant bits exactly. In successive
iterations of the online scheme, we increase m and get an
exponential reduction in the approximation error.

Note that as a DAQ scheme, the notion of “error” in the
Bitwise scheme is different from that in SAQ approaches: it
is more akin to a rounding error (due to the fact that we
use reduced precision for operands) rather than a sampling
error. Hence, in this approach, we can forego the probabilis-
tic notion of confidence intervals in favor of deterministic
approximation error bounds, thereby simplifying semantics
and presentation for lay users.

5.1 Error Bounds
As in the case of MAX above, it is easy to bound the error
in approximating many other aggregation functions by re-
ducing the precision of the input to the most significant m
bits, ignoring the least significant b bits. Note that these are
worst-case deterministic error bounds, agnostic to both the
distribution and order of data being aggregated. The error

1

Bits
1 2 3 n.

2
3

N

.

.

.

.

.
Rows

Bitslices
1 2 3 n.

Figure 5: Bitsliced Index: N rows of an n-bit column are
represented using n bitslices, each with N elements.

.
Bitslices

1 2 3 n. . .

n-m bits ignoredm bits used

Lower
bound

Upper
boundEstimate

aggregation all-0 all-1

Figure 6: Bitsliced Index implementation

bound of 2b−1 also applies to MIN and AVG. The approxima-
tion error when calculating the SUM for a column, however,
scales with the number of tuples being aggregated (N).

∆MAX = ∆MIN = ∆AVG = 2b − 1

∆SUM = N × (2b − 1)

Intuitively, this means that achieving the same error toler-
ance for SUM requires us to use more bits in the computation.

5.2 Pruning
A key advantage of aggregation using progressively increas-
ing precision is that it permits early termination in the case
of aggregation functions that are based on comparisons, al-
lowing faster pruning of the search space. Both MAX and
TOP k benefit greatly from this pruning effect, as the ob-
jective is to identify extreme values (outliers). Traditional
sampling-based approaches do not approximate these well,
particularly when the data is heavy-tailed. We will demon-
strate this aspect further in Section 6.

5.3 Bitsliced Index Implementation
We call our specific implementation of the Bitwise approx-
imation scheme discussed above as the Bitsliced Index im-
plementation. It consists of the approximation algorithms
discussed in the next section, executed on a bitsliced index
representation of columns, i.e. an n-bit column is repre-
sented using an array of n bitslices (bitvectors), each with
length equal to the number of rows in the table. The first
bitslice contains the highest order bit of each row of the data
column, second bitslice the next highest order bit, and so on
(see Figure 5). This implementation uses the most signif-
icant m bitslices for aggregation and predicate evaluation
ignoring the remaining n −m bitslices. The lower and up-
per bounds are obtained using all zeroes and all ones for the
least significant n−m bits (see Figure 6).

904

Alternative DAQ scheme implementations using slices at
byte boundaries, or using groups of smaller number of bits
are possible, and rich targets for future work.

Converting a column into the bitsliced index representa-
tion (or vice versa) is an expensive operation. So there are
advantages to maintaining both representations simultane-
ously for base data (i.e. not for intermediate results during
query processing), and to process as much of the query with-
out conversion as possible.

5.4 Bitslice Algorithms
We now provide algorithms for evaluating predicates and
aggregations in the Bitsliced Index implementation of the
Bitwise DAQ scheme. Note that we do not explicitly iden-
tify the intervals used to approximate the attribute values in
the algorithms below: the estimate up to m bits, along with
the number of bits ignored (n −m), completely define the
interval. Similarly, an approximate relation resulting from
a predicate evaluation does not need to be explicitly iden-
tified using a pair of relations: since the input relation is a
superset of both the lower and upper bound relations (LR̄

and UR̄ in our notation), we only need to maintain bitvec-
tors corresponding to the membership of the tuples in the
corresponding bounding relations.

Algorithm 1 shows how a predicate (here X < Y for
columns X and Y in bitsliced index representation) can be
evaluated progressively. Using the two columns in the bit-
sliced index representation, it iteratively computes bitvec-
tors that specify whether the tuples satisfy the predicate
potentially or certainly, based on the most significant m
bits. As discussed in Section 3.3, the predicate is poten-
tially satisfied by a tuple if some pair of values from the
two intervals corresponding to the approximate values of X
and Y could satisfy it, and it is certainly satisfied if every
pair of values from the two intervals satisfies it. The inter-
vals here correspond to the values obtained by setting the
least significant n−m bits in the range from all zeroes to all
ones. We introduce bitvectors Equal and Less to identify
tuples for which X = Y and X < Y up to m bits. Note that
given our choice of intervals, Potential is made up of tuples
that satisfy either Equal or Less, and Certain is identical
to Less.

We begin with all the tuples satisfying Equal and none sat-
isfying Less, since without examining any of the bits, both
intervals are identically equal to the entire domain. The two

Input : X, Y: Columns in bitsliced index
representation

Output: Certain, Potential: Bitvectors of length
NumElements representing the rows that
certainly (respectively potentially) satisfy
X < Y, when both columns have all their
elements rounded to most significant m bits

SetZeroes(Less);
SetOnes(Equal);
for i← 1 to m do

Less ← Less ∨ (Equal ∧ ¬X[i] ∧ Y[i]);
Equal ← Equal ∧ ¬(X[i] ⊕ Y[i]);

end
Potential ← Less ∨ Equal;
Certain ← Less;

Algorithm 1: Less Than predicate up to m bits

Input : X: A column in bitsliced index representation
Output: Avg: Average of elements in X, rounded to m

bits each

Sum ← 0;
for i← 1 to m do

Sum ← Sum � 1 + CountOnes(X[i]);
end
Sum ← Sum � (NumBitsPerElement − m);
Avg ← Sum ÷ NumElements;

Algorithm 2: Average aggregation up to m bits

bitvectors Equal and Less are then iteratively updated us-
ing successive bitslices from X and Y . When examining the
ith bit, a tuple satisfies X < Y up to i bits if it already did
so up to i−1 bits, or if it satisfied X = Y up to i−1 bits and
the ith bits of X and Y in the tuple are 0 and 1 respectively.
Similarly, a tuple satisfies X = Y up to i bits if it already
did so up to i − 1 bits and the ith bits are equal (logical
xnor). We omit the algorithms for other logical predicates,
as they can be derived in a similar way.

The next three algorithms, Algorithms 2, 3 and 4, show
how the bitsliced index representation for a column X can
be used to evaluate three different aggregation functions on
it: AVG, MAX and TOP k respectively. In Algorithm 2, we
compute the column sum using the number of set bits in
each of the first m bitslices, summed after weighting by the
appropriate place values (power of 2). When divided by the
number of rows, the resulting average is correct to m most
significant bits, and the remaining n−m bits can be set to
all zeroes and all ones to obtain the lower and upper bounds
of the approximation interval.

In Algorithm 3, we use a bitvector PotentialMax to repre-
sent all the maximal tuples after examining the most signifi-
cant i bitslices of the column, i.e. the ones that could poten-
tially have the maximum value, as they are not dominated
by any others. Of course, all the tuples in this bitvector have
identical values in this column, up to the most significant i
bits. The algorithm begins by setting PotentialMax to all
ones. Thereafter, after i iterations, we update PotentialMax
to that subset of tuples that were already maximal after ex-
amining i bitslices and have a set bit in the i+ 1th bitslice,
as long as there is such a tuple. Note that we can termi-
nate the algorithm before examining all m bitslices when
we have only one maximal tuple remaining (see line **). If,
however, there are multiple maximal tuples after m itera-
tions, they are all equal to the actual maximum up to the
first m bits and we make the arbitrary choice of picking the
first one. This algorithm finds the index of the tuple hav-
ing the approximate maximum value. Thereafter, there are
many ways to recover the corresponding attribute value. In
our prototype, we simply use the copy in the ordinary rep-
resentation (a row or column store). The lower and upper
bound of our estimate for the maximum follow, as before, by
setting the remaining n−m bits to all zeroes and all ones.

In Algorithm 4, we extend the above approach for es-
timating the maximum to finding Top k tuples. We use
two bitvectors, CertainTopK and PotentialTopK as before,
but in a break with our previous convention, PotentialTopK
excludes the tuples in CertainTopK, as this makes the algo-
rithms easier to describe. During the algorithm, CertainTopK
identifies the NumTopFound ≤ k tuples that are maximal,
and PotentialTopK identifies maximal tuples among the

905

Input : X: A column in bitsliced index representation
Output: MaxIndex: Index of the tuple containing

maximum of elements in X, rounded to m bits
each

SetOnes(PotentialMax);
for i← 1 to m do

NextResult ← PotentialMax ∧ X[i];
NumOnes ← CountOnes(NextResult);
if NumOnes ≥ 1 then

PotentialMax ← NextResult;
end

** if NumOnes = 1 then
Break;

end

end
MaxIndex ← IndexOfFirstSetBit(PotentialMax)
Algorithm 3: Maximum aggregation up to m bits

remaining, and we decrease the total count of tuples in
the two bitvectors in successive iterations. In each itera-
tion, we check how many of the tuples in PotentialTopK

have a set bit in the next bitslice. If this count is less
than the number we need (k − NumTopFound), then we add
all of these tuples to CertainTopK and remove them from
PotentialTopK. Otherwise, we simply remove all the others
from PotentialTopK. We terminate the loop when the total
count of tuples in both vectors falls to k, or when the m bit-
slices have all been examined. We then extract the indices
and return them. If there are more than k tuples at this
point, all the tuples in PotentialTopK are maximal up to
m bits, in that the corresponding true Top k values (other
than the ones in CertainTopK) would differ from these only
in the least significant n−m bits.

The break conditions labeled ** in Algorithms 3 and 4
allow us to terminate the loops as soon as we have found
the required number of maximal elements, without iterating
through the rest of the bitslices. Additionally, in our imple-
mentation, each bitslice is segmented into smaller portions
of a few hundreds to thousands of bits, allowing us to prune
more aggressively.

5.5 Extensions
In this section we describe two implementation extensions.

5.5.1 Parallelization
To parallelize the predicate evaluation and aggregation op-
erators, we simply partition our column into a set of con-
tiguous sub-columns and apply the algorithms from above
in parallel to each sub-column. The results are then merged
together according to the specifics of the operator. This
technique is, of course, only applicable to non-holistic ag-
gregates. For instance, to find the average MalePopulation

across all cities in our Census example from Section 2, we
can partition the MalePopulation column, find the partial
sums for the sub-columns in parallel worker threads, add
them together and divide by the total count. This approach
has very little parallelization overhead, since there is vir-
tually no synchronization required between worker threads.
To further improve performance, we use a NUMA-aware as-
signment of partial aggregation work to worker threads, thus
ensuring that each thread only reads its local data, and also
to balance the load across cores in different sockets.

Input : X: A column in bitsliced index representation
Input : k : Number of top elements required
Output: TopKIndices: Indices of tuples containing the

top k elements in X, rounded to m bits each

SetOnes(PotentialTopK);
SetZeroes(CertainTopK);
NumTopFound ← 0;
for i← 1 to m do

NextResult ← PotentialTopK ∧ X[i];
NumOnes ← CountOnes(NextResult);
if NumOnes ≤ k − NumTopFound then

CertainTopK ← CertainTopK ∧ NextResult;
PotentialTopK ← PotentialTopK ∧ ¬NextResult;
NumTopFound ← NumTopFound + NumOnes;

else
PotentialTopK ← NextResult;

end
** if NumTopFound = k then

Break;

end

end
TopKIndices ← IndicesSet(CertainTopK);
PotentialTopKIndices ← IndicesSet(PotentialTopK);
PotentialTopKIndices ← First(PotentialTopKIndices, k
− NumTopFound);
Concat(TopKIndices,PotentialTopKIndices);

Algorithm 4: Top k aggregation up to m bits

5.5.2 Compression
Our methods can use compression to improve memory con-
sumption and memory bandwidth utilization. For optimal
performance, we need a compression scheme that can oper-
ate directly on the compressed codes, avoiding the decom-
pression overhead. Intuitively, we expect that the most sig-
nificant bitslices are likely to be highly compressible because
column values on real datasets often follow skewed distribu-
tion or are in a limited range. But this is not always the
case for the least significant bitslices. Our approach is to
use Word-Aligned Hybrid compression scheme [16], as it dy-
namically adjusts to use a compressed (run-length encoded)
representation or an uncompressed (literal) representation,
for each sequence of bits in the bitslice longer than a single
machine word. The resulting hybrid compressed bitslices
can directly be used for bit operations such as logical AND
and OR as well as CountOnes. In [13], we describe how dic-
tionary compression can also be used with DAQ.

6 Evaluation
We evaluated our Bitsliced Index implementation of the Bit-
wise DAQ scheme both against the exact evaluation baseline
in a columnar storage system, and a simple SAQ scheme.

The evaluation was performed using a synthetic dataset
consisting of a single table Census of 10 million tuples with
the columns MalePopulation and FemalePopulation repre-
sented using 32-bit unsigned integers. For different runs,
these columns were drawn from four different distributions:
Uniform random (over the entire 32-bit range, or over a
small range of 10,000 numbers), and Zipf (with parameters
1.25 or 1.5, limiting to 32-bit values)1. The Zipf distribu-
tion was chosen as a representative heavy-tailed distribution,

1Some of the experimental results for data drawn from a
smaller range are deferred to [13].

906

4 bits

16 bits

8 bits
12 bits

20 bits

22 bits

26 bits

30 bits

10-510
-7 10

-6 10
-4

10
-3

10
-2 10

-1

0

00

5

10

15

20

30

25

Relative Error
Figure 7: Speedup vs relative error tradeoff in evaluating a
predicate on uniformly distributed data, varying no. of most
significant bits used.

popularly used to model various data distributions, from
populations of cities to sizes of organizations and word fre-
quencies in natural language corpora. The parameters 1.25
and 1.5 mean that the most frequent 10 elements (the values
1 through 10) constitute respectively 52% and 77% of the
observed data values, so most of the numbers (respectively
500,000 and 65,000 distinct values) are much larger than
the mean. Unless otherwise mentioned, the results shown
are from 5 runs each on 25 different randomly generated
datasets, with each run taking between 5 and 20ms on a
2GHz Intel(R) Xeon(R) E5-2620 CPU. To keep this paper
focused, we only consider in-memory settings as that envi-
ronment is common for interactive analytics; i.e. all data
sets are resident in main memory.

6.1 Predicate Evaluation
Figure 7 shows the tradeoff between speedup and relative
error during evaluation of the following query:

SELECT COUNT (*) FROM Census

WHERE MalePopulation < FemalePopulation

We compared the implementation of Algorithm 1 to the
baseline (exact) result of the predicate, with both columns
uniformly distributed in the 32-bit range. The relative er-
ror on the x-axis is defined, as in Figure 2, by the ratio
of the approximation error in the count to the exact count
obtained in the baseline, i.e. the fraction of incorrectly eval-
uated predicates. The speedup on the y-axis is the ratio of
execution cycles in the Bitsliced Index implementation to
that in the baseline implementation. The curve is obtained
by varying the number of most significant bits used in the
evaluation from 4 to 32.

It can be seen that using fewer than 8 bits, the relative
error already drops below 1%, while giving us a larger than
factor of 6 speedup. As we increase the number of bits
used in the evaluation, the error drops exponentially but the
speedup also drops linearly. Beyond about 22 bits, the rel-
ative error drops to 0. This is a consequence of the pruning
mentioned in Section 5.2. As we examine more bits, there
are fewer tuples for which we are uncertain about whether
the predicate is satisfied, and consequently there is less com-
putation needed in the next iteration.

When the column values are drawn from a uniform distri-
bution in a small range of 10,000 elements, the most signif-
icant bitslices are suppressed as all-zeroes or all-ones, and

Figure 8: Relative errors in the lower and upper bounds during
AVG for a uniformly distributed column.

the 1% relative error with a much larger speedup of a factor
of 20.

With a more heavy-tailed distribution, such as the Zipf(1.25),
nearly all the bits have to be examined before we can be rela-
tively certain of the result, i.e. the pruning effect is minimal.
In fact, for the error to drop below 1% at this dataset size,
we have to examine all the bits. We therefore see a speedup
of only 1.75x in this case.

6.2 Aggregation: Compared to Baseline
We now consider the following aggregation query:

SELECT AVG(MalePopulation) FROM Census

For this experiment we use uniformly distributed data for
the column MalePopulation. We use the same definition
of relative error as before, i.e. the ratio of the error in our
estimate of the average to its exact value obtained in the
baseline. Figure 8 shows the relative error in the lower and
upper bounds generated in the online evaluation of the Bit-
sliced Index scheme implementation of AVG on this column,
as we vary the number of bits from 4 to 32 in a single sample
run. The exact value is about 231 (because of the uniform
distribution in the 32-bit range). In this graph, 0 on the
y-axis indicates the exact value. As the number of bits used
increases, the error in our lower and upper bounds fall off
exponentially. When using 10 bits, say, the lower and up-
per bounds are obtained by setting the remaining 22 bits to
all zeroes or all ones, incurring errors of about 221 in either

direction. The relative errors are therefore 221

231 = 2−10 in
either direction.

Figure 9(a) shows the tradeoff between speedup and rel-
ative error (similar to Figure 7), using the AVG aggregation
on each of the three distributions. The x-axis has the rela-
tive error for the lower bound, which is about the same as
that for the upper bound (in absolute value). The speedup
is measured against the baseline (exact) evaluation. As be-
fore, for the uniform distribution, fewer than 8 of the most
significant bits are sufficient for a less than 1% error, yield-
ing a speedup of a factor of 4 or more. Beyond about 20
bits, the error is negligibly small (not within range of fig-
ure). As the distribution becomes more heavy-tailed, while
the time taken for aggregation (and hence the speedup) re-
mains roughly the same for a fixed number of bits, the rel-
ative error in the estimate increases. In the extreme case,
for the Zipf distribution with parameter 1.5, at least 16 bits
need to be evaluated to obtain a 1% relative error, with a
speedup of only a factor of 2.

907

(a) AVG on Uniform and Zipfian data (b) TOP 100 on Uniform and Zipfian data (c) AVG on Uniform data

(d) TOP 100 on Uniform and Zipfian data (e) TOP 100 on Uniform, parallel threads (f) TOP 100 on Zipfian, using WAH and
Snappy.

Figure 9: Speedup vs relative error tradeoff, varying no. of most significant bits used in Bitslice and sample size in Sampling.

Next, we run the same experiment, but with the TOP 100

query:

SELECT TOP 100 MalePopulation FROM Census

ORDER BY MalePopulation DESC

Now, the curves for the different distributions flip rela-
tive to each other. The result of the aggregation is a 100-
element vector of the largest values in the MalePopulation,
and the error on the x-axis here is the l2-norm of the dif-
ference between the approximate and exact vector results,
relative to the norm of the exact vector result. Here, even
6 bits suffice to give a relative error of less than 1% for the
uniform distribution, with a speedup of about 3.5. A much
higher speedup is obtained with the more heavy-tailed dis-
tributions, with the Zipf(1.5) distribution yielding greater
than a factor of 4 speedup with 1% error using just 4 bits.
While this aggregation function is clearly even more sensi-
tive to extreme values, the pruning effect is largest for the
heavy-tailed distributions. In fact, convergence to the exact
result is reached after just 12 of the most significant bits are
evaluated in Zipf(1.5).

We also ran the experiments using the MAX aggregation
function. As expected, there is a clear gradation in the
pruning effect and the impact of the heavy tail as we move
from AVG to MAX to TOP 100.

6.3 Aggregation: Compared to SAQ
We now compare the Bitsliced Index implementation with
a sampling-based approximation scheme. In these experi-
ments, for the SAQ implementation, we computed the aggre-
gation functions for sample sizes varying from 5% to 100%
of the column MalePopulation, in increments of 5%. The
Bitsliced Index implementation uses the entire dataset as
before, without any sampling. The speedup numbers below
are with respect to the baseline (exact) evaluation, and the
relative errors are defined in the same way as before.

SELECT AVG(MalePopulation) FROM Census

When evaluating AVG for the uniform distribution (Fig-
ure 9(c)), the sampling approach clearly stands out. Even

a 5% random sample gives a highly accurate (0.1% error)
estimate of the average with a speedup of more than 20.
Increasing the sample size has only a small impact on the
error up to about 35%, after which the error drops to 0. On
the other hand, as we described before, the Bitsliced Index
aggregation only gives a factor of 5 speedup for a 1% error
tolerance.

The relatively high performance of sampling-based ap-
proaches in this regime, where the aggregation function is
insensitive to extreme values and the dataset is highly uni-
form, is expected. On the other hand, when we switch to a
more outlier-sensitive aggregation function (MAX or TOP 100)
and to a heavy-tailed distribution, Bitsliced Index aggrega-
tion starts to outperform sampling. This is shown in Fig-
ure 9(d), where the line style and color indicate the approx-
imation scheme and the marker indicates the distribution of
data for the TOP 100 aggregation, using the following query:

SELECT TOP 100 MalePopulation FROM Census

ORDER BY MalePopulation DESC

As we move to the more heavy tailed (Zipf) distribution, the
sampling implementation requires almost the entire dataset
to achieve a low error rate, while the Bitsliced Index imple-
mentation performs much better.

6.4 Parallelization
Figure 9(e) shows how increasing the number of parallel
worker threads allows us even greater freedom in choosing
between improved accuracy of approximation and speedup
relative to the (serial) baseline. For the case of TOP 100 ag-
gregation on 100 million uniformly distributed numbers, we
see a nearly linear speedup upto 8 threads on our machine.
Beyond this point, and for simpler aggregation functions like
SUM, we see a significantly sub-linear scaling with the number
of threads as we run into memory bandwidth limits.

6.5 Compression
Figure 9(f) shows that WAH compression improves the per-
formance of the Bitsliced Index implementation, particularly
for skewed distributions such as the Zipf(1.25) used in the
figure. When the column values are drawn from a uniform

908

distribution over the entire 32-bit range, there is almost no
compression possible, and the overhead of the WAH scheme
results in worse performance than the Bitslice implementa-
tion without compression. As we increase the skew (and
hence, compressibility) of the distribution to the Zipf dis-
tributions, we see a relative improvement in speedup of the
compressed Bitslice implementation. In fact, for Zipf(2.0),
we see a greater than 100x speedup over the baseline.

7 Related Work
Deterministic aggregation schemes: The notion of determin-
istic error guarantees has been proposed for some aggrega-
tion schemes in the past. For instance, Multi-Resolution
Aggregation trees [8] is a multi-dimensional extension of the
Count B-trees we presented in Section 4. However, unlike
the Bitsliced Index scheme, they can not be used when the
predicates are on columns that are not part of the index,
and the extra cost of progressive convergence to the exact
result can be prohibitive. Pirk et al. [11] use bitwise de-
composition and rounding-based approximation, similar to
the Bitsliced Index scheme, but in the context of optimal
utilization of hardware heterogeneity.

To the best of our knowledge, our work is the first to
highlight the importance of semantic (deterministic) guar-
antees and our theoretical framework conceptually encapsu-
lates previously proposed schemes.

Bitsliced Index : Our Bitsliced Index scheme draws heavily
from [10] and [14], but our work is differentiated by our focus
on progressive approximation.

SAQ schemes: There is a rich history of SAQ schemes.
Olken and Rotem [9] show how sampling can be used to an-
swer interactive relational queries, and Hellerstein et al. [6]
show how the confidence interval estimates can be derived in
online aggregation. AQUA [1] and BlinkDb [3], among oth-
ers, are notable prototypical examples of systems using SAQ
scheme for interactive querying. An important problem in
SAQ schemes is the derivation of confidence intervals (or,
put differently, the required sample size for a given error
tolerance level). Both the closed-form confidence interval
estimates [5] as well as bootstrapping methods [12] suffer
from some shortcomings [2], either in their applicability to
aggregation functions that are sensitive to outliers, or in
their reliability and efficiency when applicable. Recent ana-
lytical methods [17] show promise in overcoming the latter
shortcoming.

Probabilistic databases: A lot of research has focused on
explicitly modeling uncertainty in probabilistic databases
[15]. DAQ schemes can be thought of as efficient ways of
approximately computing the support of the probability dis-
tribution modeling the uncertainty in attributes or tuples.
An interesting related system is ProbView [7] which uses
intervals to represent uncertainty. However, these intervals
are on the probability associated with attributes or tuples,
unlike the intervals on domains in our work.

8 Conclusion
Our main contribution in this work has been to propose
a new approach of using deterministic guarantees for ap-
proximation, which, while complementary to the traditional
sampling-based approach, overcomes some of its limitations.
We formally defined the DAQ paradigm and developed a
closed algebra capable of approximating relational queries.
We also enumerated some desiderata for DAQ schemes and

outlined an approach to develop them. We delved into one
such scheme - the Bitsliced Index scheme - and provided
efficient algorithms for evaluating predicates and aggrega-
tions in a specific Bitsliced Index implementation of this
conceptual scheme. The experimental evaluations confirm
that this scheme performs efficient approximation, giving es-
timates with less than 1% error along with a speedup of 6x
for predicate evaluation and 2-4x for aggregation functions.
In comparison with SAQ schemes, the Bitsliced Index im-
plementation performs best when the data distribution has
a heavy tail (i.e., when there are outliers in the dataset),
and for aggregation functions that are sensitive to outliers.

The particulars of our Bitsliced Index implementation leave
much room for improvement: we currently only handle un-
signed integers and support a subset of the capabilities in
SQL. As part of future work, we plan to explore methods
to extend the DAQ framework to group-by and join queries.
We also plan to explore query optimization methods to com-
bine SAQ and DAQ schemes and/or switch between these
two schemes based on the workload and data characteristics.

9 Acknowledgements
This work was supported in part by the National Science
Foundation under grants IIS-0963993 and IIS-1250886, and
a gift donation from Google.

10 References
[1] S. Acharya, P. B. Gibbons, and V. Poosala. Aqua: A fast

decision support systems using approximate query answers. In
VLDB, 1999.

[2] S. Agarwal, H. Milner, A. Kleiner, A. Talwalkar, M. Jordan,
S. Madden, B. Mozafari, and I. Stoica. Knowing when youre
wrong: Building fast and reliable approximate query processing
systems. In ACM SIGMOD, 2014.

[3] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and
I. Stoica. Blinkdb: queries with bounded errors and bounded
response times on very large data. In ACM EuroSys, 2013.

[4] N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. The VLDB Journal, 2007.

[5] P. J. Haas. Hoeffding Inequalities for Join Selectivity
Estimation and Online Aggregation. IBM, 1996.

[6] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. ACM SIGMOD Record, 1997.

[7] L. V. Lakshmanan, N. Leone, R. Ross, and V. S.
Subrahmanian. Probview: a flexible probabilistic database
system. TODS, 1997.

[8] I. Lazaridis and S. Mehrotra. Progressive approximate
aggregate queries with a multi-resolution tree structure. In
ACM SIGMOD Record. ACM, 2001.

[9] F. Olken and D. Rotem. Simple random sampling from
relational databases. VLDB, 1986.

[10] P. O’Neil and D. Quass. Improved query performance with
variant indexes. In ACM SIGMOD Record, 1997.

[11] H. Pirk, S. Manegold, and M. Kersten. Waste not? efficient
co-processing of relational data. In ICDE. IEEE, 2014.

[12] A. Pol and C. Jermaine. Relational confidence bounds are easy
with the bootstrap. In ACM SIGMOD, 2005.

[13] N. Potti and J. M. Patel. DAQ: A New Paradigm for
Approximate Query Processing (Extended Version) at
http://pages.cs.wisc.edu/~nav/DAQ-extended.pdf. Technical
report, University of Wisconsin-Madison, 2014.

[14] D. Rinfret, P. O’Neil, and E. O’Neil. Bit-sliced index
arithmetic. In ACM SIGMOD Record, volume 30, pages 47–57.
ACM, 2001.

[15] D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic
databases. Synthesis Lectures on Data Management, 2011.

[16] K. Wu, E. J. Otoo, and A. Shoshani. Optimizing bitmap indices
with efficient compression. ACM Trans. Database Syst., 2006.

[17] K. Zeng, S. Gao, B. Mozafari, and C. Zaniolo. The analytical
bootstrap: a new method for fast error estimation in
approximate query processing. In ACM SIGMOD, 2014.

909

