
A Scalable Search Engine for Mass Storage Smart Objects
Nicolas Anciaux 1,2 Saliha Lallali 1,2 Iulian Sandu Popa1,2 Philippe Pucheral1,2

1INRIA Rocquencourt
78153 Le Chesnay Cedex, France

2Université de Versailles Saint-Quentin-en-Yvelines
78035 Versailles Cedex, France

Firstname.Lastname@inria.fr Firstname.Lastname@prism.uvsq.fr

ABSTRACT
This paper presents a new embedded search engine designed for
smart objects. Such devices are generally equipped with
extremely low RAM and large Flash storage capacity. To tackle
these conflicting hardware constraints, conventional search
engines privilege either insertion or query scalability but cannot
meet both requirements at the same time. Moreover, very few
solutions support document deletions and updates in this context.
In this paper, we introduce three design principles, namely Write-
Once Partitioning, Linear Pipelining and Background Linear
Merging, and show how they can be combined to produce an
embedded search engine reconciling high insert/delete/update rate
and query scalability. We have implemented our search engine on
a development board having a hardware configuration
representative for smart objects and have conducted extensive
experiments using two representative datasets. The experimental
results demonstrate the scalability of the approach and its
superiority compared to state of the art methods.

1. INTRODUCTION
With the continuous development of sensor networks, smart
personal portable devices and Internet of Things, the tight
combination of computing power and large storage capacities
(Gigabytes) into many kinds of smart objects becomes reality. On
the one hand, large Flash memories (GBs) are now adjunct to
many small computing devices, e.g., SD cards plugged into
sensors [19] or raw Flash chips superimposed on SIM cards [4].
On the other hand, microcontrollers are integrated into many
memory devices, e.g., Flash USB keys, SD/micro-SD cards and
contactless badges. Examples of smart objects combining
computing power and large storage capacity (GBs of Flash
memory) are pictured in Figure 1.

As smart objects gain the capacity to acquire, store and process
data, new services emerge. Camera sensors tag photographs and
provide search capabilities to retrieve them [22]. Smart objects
maintain the description of the surrounding objects [23] enabling
the Internet of Things [1], e.g. shops like bookstores can be
queried directly by customers in search of a certain product. Users
securely store their personal files (documents, photos, emails) in
Personal Data Servers [3, 4, 12, 18]. Smart meters record energy
consumption events and embedded GPS devices track locations
and moves. A myriad of new applications and services are being

built by querying these data. So far, all these data end up on
centralized servers where they are analyzed and queried. This
centralized model however has two main drawbacks. First, the
ever increasing amount of data transferred from their source (the
smart objects) to their destination (the servers) has a dramatic
negative impact on environmental sustainability (i.e., energy
waste) and costs (i.e., data transfer). Hence, significant energy
and bandwidth savings can be obtained by storing data locally in
smart objects, especially when dealing with large data and seldom
used records [8, 19]. Second, centralizing data sensed about
individuals introduces an unprecedented threat on data privacy
(e.g., at 1Hz granularity, an electricity smart meter can reveal the
precise activity of the inhabitants [3]).

Figure 1. Smart objects endowed with MCUs and NAND Flash

This explains the growing interest for transposing traditional data
management functionalities directly into the smart objects. Simple
query evaluation facilities have been recently proposed for sensor
nodes equipped with large Flash memory [8, 9] to enable filtering
operations. Relational database operations like selection,
projection and join for new generations of SIM cards with large
Flash storage capacities have been proposed in [4, 18]. More
complex treatments such as facial recognition and the related
indexing techniques have been investigated also.

In this paper, we make a step further in this direction by
addressing the traditional problem of information retrieval queries
over large file collections. A file can be any form of document,
picture or data stream associated with a set of terms. A query can
be any form of keyword search using a ranking function (e.g., tf-
idf) identifying the top-k most relevant files. The proposed search
engine can be used in sensors to search for relevant objects in
their surroundings [17, 23], in cameras to search pictures by using
tags [22], in personal smart dongles to secure the querying of
documents and files hosted in an untrusted Cloud [4, 12] or in
smart meters to perform analytic tasks (i.e., top-k queries) over
sets of events (i.e., terms) captured during time windows (i.e.,
files) [3]. Hence, this engine can be thought of as a generalized
Google desktop or Spotlight embedded in smart objects.

Designing such embedded search engine is however challenging
due to a combination of severe and conflicting hardware
constraints. Smart objects are usually equipped with a tiny RAM
and their persistent storage is made of NAND Flash badly adapted
to random fine-grain updates. Unfortunately, state-of-the-art
indexing techniques either consume a lot of RAM or produce a
large quantity of random fine-grain updates. Few pioneer works
already considered the problem of embedding a search engine in
sensors equipped with Flash storage [17, 20, 22, 23], but they

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain
permission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume were
invited to present their results at the 41st International Conference on Very
Large Data Bases, August 31st – September 4th 2015, Kohala Coast, Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 9
Copyright 2015 VLDB Endowment 2150-8097/15/05.

910

target small data collections (i.e., hundreds to thousands of files)
with a query execution time which remains proportional to the
number of indexed documents. By construction these search
engines cannot meet insertion performance and query scalability
at the same time. Moreover none of them support file deletions
and updates, however useful in a number of scenarios.

In this paper, we make the following contributions:

• We introduce three design principles, namely Write-Once
Partitioning, Linear Pipelining and Background Linear
Merging, to devise an inverted index capable of tackling the
conflicting hardware constraints of smart objects.

• Based on these principles, we propose a novel inverted index
structure and related algorithms to support all the basic index
operations, i.e., search, insertion, deletion and update.

• We validate our design through an extensive experimentation on
a real smart object platform and with two representative datasets
and show that query scalability and insertion/deletion/update
performance can be met together in various contexts.

The rest of the paper is organized as follows. Section 2 details the
smart objects' hardware constraints, analyses the state-of-the-art
solutions and derives from this analysis a precise problem
statement. Section 3 introduces our three design principles, while
Sections 4 and 5 detail the proposed inverted index structure and
algorithms derived from these principles. Section 6 is devoted to
the tricky case of file deletions and updates. We present the
experimental results in Section 7 and conclude in Section 8.

2. PROBLEM STATEMENT

2.1 Smart Objects’ Hardware Constraints
Whatever their form factor and usage, smart objects share strong
commonalities in terms of data management architecture. Indeed,
a large NAND Flash storage is used to persistently store data and
indexes, and a microcontroller (MCU) executes the embedded
code, both being connected by a bus. Hence, the architecture
inherits hardware constraints from both the MCU and the Flash.

The MCUs embedded in smart objects usually have a low power
CPU, a tiny RAM (few KB) and a few MB of persistent memory
(ROM, NOR or EEPROM) used to store the embedded code. The
NAND Flash component (either raw NAND Flash chip or
SD/micro-SD card) also exhibits strong limitations. In NAND
Flash, the minimum unit for a read and a write operation is the
page (usually 512 Bytes, also called a sector). Pages must be
erased before being rewritten but the erase operation must be
performed at a block granularity (e.g., 256 pages). Erases are then
costly and a block wears out after about 104 repeated write/erase
cycles. In addition, the pages have to be written sequentially in a
block. Therefore, NAND Flash badly supports random writes. We
observed this same bad behavior both with raw NAND Flash
chips and SD/micro-SD cards. Our own measurements shown in
Table 1 corroborate the ones published in [6].

Table 1. Measured performance of common SD cards

Time (ms) per I/O Read Seq.Write Rand. Write
Kingston µSDHC 1.3 6.3 160

Lexar SDMI4GB-715 0.8 2.1 180
Samsung µSDHC Plus 1.3 2.9 315
SiliconPower SDHC 1.4 3.4 40

2.2 Search Engine Requirements
As in [17], we consider that the search engine of interest in this
paper has similar functionality as a Google Desktop for smart
objects. Hence, we use the terminology introduced in the
Information Retrieval literature for full-text search. Then, a
document refers to any form of data files, terms refers to any
forms of metadata elements, term frequencies refer to metadata
element weights and a query is equivalent to a full-text search.

Full-text search has been widely studied by the information
retrieval community (see [24] for a recent survey). The core
problem is, given a collection of documents and a user query
expressed as a set of terms {ti}, to retrieve the k most relevant
documents according to a ranking function. In the wide majority
of the related works, the tf-idf score, i.e., term frequency-inverse
document frequency, is used to rank the query results. A
document can be of many types (e.g., text file, image, etc.) and is
associated with a set of terms (or keywords) describing its content
and weights indicating their respective importance in the
document. For text documents, the terms are words composing the
document and their weight is their frequency in the document. For
images, the terms can be tags, metadata or visterms describing
image subparts [22]. For a query Q={t}, the tf-idf score of each
document d containing at least a query term can be computed as:

  







 

 t
td

Qt
F

N
fdidftf log1log)(,

where fd,t is the frequency of term t in document d, N is the total
number of indexed documents and Ft is the number of documents
that contain t. This formula is given for illustrative purpose, the
weight between fd,t and N/Ft varying depending on the proposals.

Figure 2. Typical inverted index structure.

Classically, full-text search queries are evaluated efficiently using
an inverted index, named I hereafter (see Figure 2). Given D={di}
a set of documents, the inverted index I over D consists of two
main components [24]: (i) a search structure I.S (also called
dictionary) which stores for each term t appearing in the
documents the number Ft of documents containing t and a pointer
to the inverted list of t; (ii) a set of inverted lists {I.Lt} where each
list stores for a term t the list of (d, fd,t) pairs where d is a
document identifier in D that contains t and fd,t is the weight of
the term t in the document d (typically the frequency of t in d).
The dictionary is constituted by all the distinct terms t of the
documents in D, and is large in practice, which requires
organizing it into a search-efficient structure such as a B-tree.

A query Q={t} is traditionally evaluated by: (i) accessing I.S to
retrieve for each query term t the inverted lists elements {I.Lt}tQ;
(ii) allocating in RAM one container for each unique document
identifier in these lists; (iii) computing the score of each of these
documents using a weight function, e.g., tf-idf; (iv) ranking the
documents according to their score and producing the k
documents with the highest scores.

911

2.3 State-of-the-Art Solutions
Data management embedded in smart objects is no longer a new
topic. Many proposals from the database community tackle this
problem in the context of the Internet of Things, strengthening the
idea that smart objects must now be considered as first-class data
sources. However, many works [3, 4, 19] consider a traditional
database context and do not address the full-text search problem,
leading to different query processing techniques and indexing
structures. Therefore, we focus below on works specifically
addressing embedded search engines and then extend the review
to a few works related to Flash-based indexing when the way they
tackle the MCU or Flash constraints can enlighten the discussion.

Embedded search engines. A few pioneer works recently
demonstrate the interest of embedding search engine techniques
into smart objects equipped with extended Flash storage to
manage collections of files stored locally [16, 17, 20, 22]. These
works rely on a similar design of the embedded inverted index as
proposed in [17]. Instead of maintaining one inverted list per term
in the dictionary, each term is hashed to a bucket and a single
inverted list is built for each bucket. The inverted lists are stored
sequentially in Flash memory, within chained pages, and only a
small hash table referencing the head of each bucket is kept in
RAM. The number of buckets is kept small such that the main
part of the RAM can be used as an insertion buffer for the
inverted lists elements, i.e., (t, d, fd,t) triples. This approach
complies with a small RAM and suits well the Flash constraints
by precluding fine grain random (re)writes in Flash. However,
each inverted lists corresponds to a large number of different
terms, which leads to a high query evaluation cost that increases
proportionally with the size of the data collection. The less RAM
available, the smaller the number of hash buckets and the more
severe the problem is. In addition, these techniques do not support
document deletions, but only data aging mechanisms, where old
index entries automatically expire when overwritten by new ones.
A similar design is proposed in [22] that builds a distributed
search engine to retrieve images captured by camera sensors. A
local inverted index is embedded in each sensor node to retrieve
the relevant images locally, before conducting the distributed
search. However, this work considers powerful sensors nodes
(with tens of MB of local RAM) equipped with custom SD card
boards (with specific performances). At the same time, the
underlying index structure is based on inverted lists organized in a
similar way as in [17]. All these methods are highly efficient for
document insertions, but fail to provide scalable query processing
for large collections of documents. Therefore, their usage is
limited to applications that require storing only a small number
(few hundreds) of documents.

B-tree indexing in NAND Flash. In the database context,
adapting the B-tree to NAND Flash has received a great attention.
Indeed, the B-tree is a very popular index and its standard
implementation performs poorly in Flash [21]. Many recent
proposals [2, 13, 21] tackle this problem or the closely related
problem of a key-value stored in Flash [7]. The key idea in these
approaches is to buffer the updates in log structures that are
written sequentially and to leverage the fast (random) read
performance of Flash memory to compensate the loss of
optimality of the lookups. When the log is large enough, the
updates are committed into the B-tree in a batch mode, to
amortize the Flash write cost. The log must be indexed in RAM to

ensure performance. The different proposals vary in the way the
log and the in-memory index are managed, and in the impact it
has on the commit frequency. To amortize the write cost by a
significant factor, the log must be seldom committed, which
requires more RAM. Conversely, limiting the RAM size leads to
increasing the commit frequency, thus generating more random
writes. The RAM consumption and the random write cost are thus
conflicting parameters. Under severe RAM limitations, virtually
no reduction of random writes can be obtained.

Partitioned indexes. In another line of work, partitioned indexes
have been extensively employed in environments with insert-
intensive workloads and concurrent queries on magnetic disks.
Prominent examples are the LSM-tree (i.e., the Log-Structured
Merge-tree) [14] and its many variants (e.g., the Partitioned
Exponential file [10] and the bLSM-tree [15] to name but a few).
The LSM-tree consists in one in-memory B-tree component to
buffer the updates and one on-disk B+-tree component that
indexes the disk resident data. Periodically, the two components
are merged to integrate the in-memory data and free the memory.
The benefit is twofold. First the updates are integrated in batch,
which amortizes the write cost per update. Second, the merge
operation uses sequential I/Os, which reduces the disk arm
movements and thus increases the throughput. Note that Google’s
Bigtable and Facebook’s Cassandra employ a similar partitioning
approach to optimize the indexing of key-value stores in
massively parallel and distributed architectures. The search
engine proposed in this paper shares the general idea of index
partitioning. However, the similarity stops at the general level
because of major differences regarding the targeted hardware
platforms (embedded systems versus high-end servers) and the
queries of interest (top-k keyword search versus classical key-
value search). Consequently, our solution differs from the above
mentioned ones in a number of aspects (e.g., RAM usage,
partitioning organization, management of updates and deletions,
way of computing the top-k with a minimal RAM consumption).

As a conclusion, tiny RAM and NAND Flash persistent storage
introduce conflicting constraints and lead to split state of the art
solutions in two families. The insert-optimized family reaches
insertion scalability thanks to a small indexed structure buffered
in RAM and sequentially flushed in Flash, thereby precluding
costly random writes in Flash. This good insertion behavior is
however obtained to the detriment of query scalability, the
performance of searches being roughly linear with the index size
in Flash. Conversely, the query-optimized family reaches query
scalability by adapting traditional indexing structures to Flash
storage, to the detriment of insertion scalability, the number of
random (re)writes in Flash (linked to the log commit frequency)
being roughly inversely proportional to the RAM capacity. In
addition, we are not aware of works addressing the crucial
problem of random document deletions in the context of an
embedded search engine.

2.4 Problem Formulation
In the light of the preceding sections, the problem addressed in
this paper can be formulated as designing an embedded full-text
search engine that has the following two properties:

• Bounded RAM agreement: the proposed engine must be able to
respect a predefined RAM consumption bound (RAM_Bound),

912

precluding any solution where this consumption depends on the
size of the document set.

• Full scalability: it must be scalable for queries and updates
(insertion, deletion of documents) without distinction.

The Bounded RAM agreement is required to comply with the
widest population of smart objects. The consequence is that the
full-text search engine must remain functional even when very
little RAM (a few KB) is made available to it. Note that the
RAM_Bound size is a subpart of the total physical RAM capacity
of a smart object considering that the RAM resource is shared by
all software components running in parallel on the platform,
including the operating system. The RAM_Bound property is also
mandatory in a co-design perspective where the hardware
resources of a given platform must be precisely calibrated to
match the requirements of a particular application domain.

The Full scalability property guarantees the generality of the
approach. By avoiding to privilege a particular workload, the
index can comply with most applications and datasets. To achieve
update scalability, the index maintenance needs to be processed
without generating random writes, which are badly supported by
the Flash memory. At the same time, achieving query scalability
means obtaining query execution costs in the same order of
magnitude with the ideal query costs provided by a classical
inverted index I.

3. DESIGN PRINCIPLES
Satisfying the Bounded RAM agreement and Full scalability
properties simultaneously is challenging, considering the
conflicting MCU and Flash constraints mentioned above. To
tackle this challenge, we propose in this paper an indexing
method that relies on the following three design principles.

P1. Write-Once Partitioning: Split the inverted index structure I
in successive partitions such that a partition is flushed only once
in Flash and is never updated.

By precluding random writes in Flash, Write-Once Partitioning
aims at satisfying update scalability. Considering the Bounded
RAM agreement, the consequence of this principle is to parse
documents and maintain I in a streaming way. Conceptually, each
partition can be seen as the result of indexing a window of the
document input flow, the size of which is limited by the
RAM_Bound. Therefore, I is split in an infinite sequence of
partitions <I1, I2,…, Ip>, each partition Ii having the same internal
structure as I. When the size of the current Ii partition stored in
RAM reaches RAM_Bound, Ii is flushed in Flash and a new
partition Ii+1 is initialized in RAM for the next window.

A second consequence of this design principle is that document
deletions have to be processed similar to document insertions
since the partitions cannot be modified once they are written. This
means adding compensating information in each partition that will
be considered by the query process to produce correct results.

P2. Linear Pipelining: Compute each query Q with respect to the
Bounded RAM agreement in such a way that the execution cost of
Q over <I1, I2,…, Ip> is in the same order of magnitude as the
execution cost of Q over I.

Linear Pipelining aims at satisfying query scalability under the
Bounded RAM agreement. A unique structure I as the one

pictured in Figure 2 is assumed to satisfy query scalability by
nature and is considered hereafter as providing a lower bound in
terms of query execution time. Hence, the objective of Linear
pipelining is to keep the performance gap between Q over <I1,
I2,…, Ip> and Q over I, both small and predictable (bounded by a
given tuning parameter). Computing Q as a set-oriented
composition of a set of Qi over Ii, (with i=0,...p) would
unavoidably violate the Bounded RAM agreement as p increases,
since it will require to store all Qi's intermediate results in RAM.
Hence the necessity to organize the processing in pipeline such
that the RAM consumption remains independent of p, and
therefore of the number of indexed documents. Also, the term
linear pipelining conveys the idea that the query processing must
preclude any iteration (i.e., repeated accesses) over the same data
structure to reach the expected level of performance. This
disqualifies brute-force pipeline solutions where the tf-idf scores
of documents are computed one after the other, at the price of
reading the same inverted lists as many times as the number of
documents they contain.

However, Linear Pipelining alone cannot prevent the performance
gap between Q over <I1, I2,…, Ip> and Q over I to increase with
the increase of p as (i) multiple searches in several small Ii.S are
more costly than a single search in a large I.S and (ii) the inverted
lists in <I1, I2,…, Ip> are likely to occupy only fractions of Flash
pages, multiplying the number of Flash I/Os to access the same
amount of data. A third design principle is then required.

P3. Background Linear Merging: To limit the total number of
partitions, periodically merge partitions compliantly with the
Bounded RAM agreement and without hurting update scalability.

The objective of partition merging is therefore to obtain a lower
number of larger partitions to avoid the drawbacks mentioned
above. Partition merging must meet three requirements. First the
merge must be performed in pipeline to comply with the Bounded
RAM agreement. Second, since its cost can be significant (i.e.,
proportional to the total size of the merged partitions), the merge
must be processed in background to avoid locking the index
structure for unbounded periods of time. Since multi-threading is
not supported by the targeted platforms, background processing
can simply be understood as the capacity to interrupt and recover
the merging process at any time. Third, update scalability requires
that the total cost of a merge run be always smaller than the time
to fill out the next bunch of partitions to be merged.

Taken together, principles P1 to P3 reconcile the Bounded RAM
agreement and Full scalability index properties. The technical
solutions to implement these three principles are presented next.
To ease the presentation, we introduce first the foundation of our
solution considering only document insertions and queries. The
trickier case of document deletions is postponed to Section 6.

4. WRITE-ONCE PARTITIONING AND
LINEAR PIPELINING
These two design principles are discussed together because the
complexity comes from their combination. Indeed, Write-Once
Partitioning is straightforward on its own. It simply consists in
splitting I in a sequence <I1, I2,…, Ip> of small indexes called
partitions, each one having a size bounded by RAM_Bound. The
difficulty is to implement a linear pipeline execution of any query
Q on this sequence of partial indexes.

913

Executing Q over I would lead to evaluate:























 t

td

Qt

k F

N
fWTop ,,

, with Dd 

where Topk selects the k documents dD having the largest tf-idf
scores, each score being computed as the sum, for all terms tQ,
of a given weight function W taking as parameter the frequency
fd,t of t in d and the inverse document frequency N/Ft. Our
objective is to remain agnostic regarding W and then let the
precise form of this function open. Let us now consider how each
term of this expression can be evaluated by a linear pipelining
process on a sequence <I1, I2,…, Ip>.

Computing N. We assume that the number of documents is a
global metadata maintained at insertion/deletion time and needs
not be recomputed for each Q.

Figure 3. Consecutive index partitions (overlapping docs).

Computing Ft . Ft should be computed only once for each term t
since Ft is constant for Q. This is why Ft is materialized in the
dictionary part of the index ({t, Ft}  I.S), as shown in Figure 2.
When I is split in <I1, I2,…, Ip>, the global value of Ft should be
computed as the sum of the local Ft of all partitions. The
complexity comes from the fact that a same document d may
cross several partitions with the consequence of contributing
several times to the global Ft if a simple sum is performed. The
Bounded RAM agreement precludes maintaining in RAM a
history of all the terms already encountered for a given document
d across the parsing windows, the size of this history being
unbounded. Accessing the inverted lists {Ii.Lt} of successive
partitions to check whether they intersect for a given d would also
violate the Linear Pipelining since these same lists will be
accessed again when computing the tf-idf score of each document.

The solution is then to store in the dictionary of each partition the
boundary of that partition, namely the identifiers of the first and
last documents considered in the parsing window. Then, two bits
firstd and lastd are added in the dictionary for each inverted list to
register whether this list contains one (or both) of these
documents, i.e., {t, Ft, firstd, lastd}  I.S. As illustrated in Figure
3, this is sufficient to detect the intersection between the inverted
lists of a same term t in two successive partitions. Whether an
intersection between two lists is detected, the sum of their
respective Ft is decremented by 1. Hence, the correct global value
of Ft can easily be computed without physically accessing the
inverted lists. During the Ft computation phase, the dictionary of
each partition is read only once and the RAM consumption sums
up to one buffer to read each dictionary, page by page, and one
RAM variable to store the current value of each Ft.

Figure 4. Linear Pipeline computation of Q over terms ti and tj.

Computing fd,t . If a document d overlaps two consecutive
partitions Ii and Ii+1, the inverted list Lt of a queried term tQ may
also overlap these two partitions. In this case the fd,t score of d is
simply the sum of the (last) fd,t value in Ii.Lt and the (first) fd,t
value in Ii+1.Lt. To get the fd,t values, the inverted lists Ii.Lt have to
be accessed. The pointers referencing these lists are actually
stored in the dictionary which has already been read while
computing Ft. According to the Linear pipelining principle, we
avoid reading again the dictionary by storing these pointers in
RAM during the Ft computation. The extra RAM consumption is
minimal and bounded by the fact that the number of partitions is
itself bounded thanks to the merging process (see Section 5).

Computing Topk. Traditionally, a RAM variable is allocated to
each document d to compute its tf-idf score by summing the
results of W(fd,t, N/Ft) for all terms tQ [24]. Then, the k best
scores are selected. Unfortunately, this approach conflicts with
the Bounded RAM agreement since the size of the document set
is likely to be much larger than the available RAM. Hence, we
organize the query processing in a pure pipeline way, allocating a
RAM variable only to the k documents having currently the best
scores. This forces the complete computation of tf-idf(d) to be
done for each d, one after the other. To meet this requirement
while precluding any iteration on the inverted lists, these lists are
maintained sorted on the document id. Note that if document ids
reflect the insertion ordering, the inverted lists are naturally
sorted. Hence, the tf-idf computation sums up to a simple linear
pipeline merging process of the inverted lists for all terms tQ in
each partition (see Figure 4). The RAM consumption for this
phase is therefore restricted to one variable for each of the current
k best tf-idf scores and to one buffer (i.e., a RAM page) per query
term t to read the corresponding inverted lists Ii.Lt (i.e., Ii.Lt are
read in parallel for all t, the inverted lists for the same t being read
in sequence). Figure 4 summarizes the data structures maintained
in RAM and in Flash to handle this computation.

5. BACKGROUND LINEAR MERGING
The background merging process aims at achieving scalable query
costs by timely merging several small indexes into a larger index
structure. As mentioned in Section 3, the merge must be a
pipeline process in order to comply with the Bounded RAM
agreement while keeping a cost compatible with the update rate.
Moreover, the query processing should continue to be executed in
Linear Pipelining (see Section 4) on the structure resulting from
the successive merges. Therefore, the merges have to preserve the
global ordering of the document ids within the index structures.

To meet these requirements, we introduce a Sequential and
Scalable Flash structure, called SSF, pictured in Figure 5. The

914

SSF consists in a hierarchy of partitions of exponentially
increasing size. Specifically, each new index partition is flushed
from RAM into the first level of the SSF, i.e., L0. The merge
operation is triggered automatically when the number of partitions
in a level becomes b, the branching factor of SSF, which is a
predefined index parameter. The merge combines the b partitions
at level Li of SSF, denoted by i

b
i II ,...1 , into a new partition at level

Li+1, denoted by 1i
jI and then reclaims all partitions at level Li.

Figure 5. The Scalable and Sequential Flash structure.

The merge is directly processed in pipeline as a multi-way merge
of all partitions at the same level. This is possible since the
dictionaries of all the partitions are already sorted on terms, while
the inverted lists in each partition are also sorted on document ids.
So are the dictionary and the inverted lists of the resulting
partition at the upper level. More precisely, the algorithm works
in two steps. In the first step, the I.L part of the output partition is
produced. Given b partitions in the index level Li, b+1 RAM
pages are necessary to process the merge in linear pipeline: b
pages to merge the inverted lists in I.L of all b partitions and one
page to produce the output. The indexed terms are treated one
after the other in alphabetic order. For each term t, the head of its
inverted lists in each partition is loaded in RAM. These lists are
then consumed in pipeline by a multi-way merge. Document ids
are encountered in descending order in each list and the output list
resulting from the merge is produced in the same order. A
particular case must be distinguished when two pairs (d, f1d,t) and
(d, f2d,t) are encountered in separate lists for the same d; this
means that document d overlaps two partitions and these two pairs
are aggregated in a single (d, f1d,t + f2d,t) before being added to
I.L. In the second step, the metadata I.M is produced (see Figure
3), by setting the value of firstd (resp. lastd) with the firstd (resp.
lastd) value of the first (resp. last) partition to be merged, and the
I.S structure is constructed sequentially, with an additional scan of
I.L. The I.S tree is built from the leaves to the root. This step
requires one RAM page to scan I.L, plus one RAM page per I.S
tree level. For each list encountered in I.L, a new entry (t, Ft,
presence_flags) is appended to the lowest level of I.S; the value Ft
is obtained by summing the fd,t fields of all (d, fd,t) pairs in this
list; the presence flag reflects the presence in the list of the firstd
or lastd document. Upper levels of I.S are then trivially filled
sequentially. This Background Merging process generates only
sequential writes in Flash and previous partitions are reclaimed in
large blocks after the merge. This pipeline process sequentially

scans each partition only once and produces the resulting partition
also sequentially. Hence, assuming b+1 is strictly lower than
RAM_bound, one RAM buffer (of one page) can be allocated to
read each partition and the merge is I/O optimal. If b is larger than
RAM_bound, the algorithm remains unchanged but its I/O cost
increases since each partition will be read by page fragments
rather than by full pages.

Search queries can be evaluated in linear pipeline by accessing
the partitions one after the other from partitions b to 1 in level 1
up to level n. Thus, the inverted lists are scanned in descending
order of the document ids, from the most recently inserted
document to the oldest one, and the query processing remains
exactly the same as the one presented in Section 4, with the same
RAM consumption. The merging and the querying processes
could be organized in opposite order (i.e., in ascending order of
the document ids) with no impact. However, order matters as soon
as deletions are considered (see Section 6). SSF provides scalable
query costs since the amount of indexed documents grows
exponentially with the number of levels, while the number of
partitions increases only linearly with the number of levels.

Note that merges in the upper levels are exponentially rare (one
merge in level Li for bi merges in L0) but also exponentially
costly. To mitigate this problem, we perform the merge operations
in background (i.e., in a non-blocking manner). Since the merge
may consume up to b pages of RAM, we launch/resume it each
time after a new partition is flushed in L0 of the SSF, the RAM
being empty at this time. A small quantum of time (a few hundred
milliseconds in practice) is allocated to the merging process. Each
time this quantum expires, the merge is interrupted and its
execution status (i.e., a cursor indicating the current Flash page
position in each partition) is memorized. The quantum of time is
chosen so that the merge of a given SSF level ends before the next
merge of the same level need to be triggered. In this way, the cost
of a merge operation is spread among the flush operations and
remains almost transparent. This basic strategy is simple and does
not make any assumption regarding the index workload.
However, it could be improved in certain contexts, by taking
advantage of the idle time of the platform.

6. DOCUMENT DELETIONS
To the best of our knowledge, our proposal is the first embedded
search index to implement document deletions. This problem is
actually of primary importance because deletions are required in
many practical scenarios. Unfortunately, index updating increases
significantly the complexity of the index maintenance by
reintroducing the need for random updates in the index structure.
We extend here the index structure to support the deletions of
documents without generating any random write in Flash.

6.1 Solution Outline
Implementing the delete operation is challenging, mainly because
of the Flash memory constraints which proscribe the
straightforward approach of updating in-place the inverted index.
The alternative to updating in-place is compensation, i.e., the
deleted documents’ identifiers (DDIs) are stored in an appropriate
way and used as a filter to eliminate the ghost documents
retrieved by the query evaluation process.

915

A basic solution could be to organize the DDIs as a sorted list in
Flash and to intersect this list at query execution time with the
inverted lists in the SSF corresponding to the query terms.
However, this solution raises several problems. First, the
documents are deleted in random order, according to users' and
application decisions. Hence, maintaining a sorted list of DDIs in
Flash would violate the Write-Once Partitioning principle since
the list has to be rewritten each time a set (e.g., a page) of new
DDIs is flushed from RAM. Second, the computation of the Ft for
each query term t during the first step of the query processing
cannot longer be achieved without an additional merge operation
to subtract the sorted list of DDIs from the inverted lists of the
SSF. Third, the full DDI list has to be scanned for each query
regardless of the query selectivity. These two last elements make
the query cost dependent of the total number of deleted
documents and then conflict with the Linear pipelining principle.

Therefore, instead of compensating the query evaluation process,
we propose a solution based on compensating the indexing
structure itself. In particular, a document deletion is treated
similarly to a document insertion, i.e., by re-inserting the
metadata (terms and frequencies) of all deleted documents in the
SSF. The objective is threefold: (i) to be able to compute, as
presented in Section 4, the Ft for each term t of a query based on
the metadata only (of both existing and deleted documents), (ii) to
have a query performance that depends on the query selectivity
(i.e., number of inserted and deleted documents relevant to the
query) and not on the total number of deleted documents and (iii)
to effectively purge the indexing structure from the largest part of
the deleted documents at Background Merging time, while
remaining compliant with the Linear Pipelining principle. We
present in the following the required modifications of the index
structure to integrate this form of compensation.

6.2 Impact on Write-Once Partitioning
As indicated above, a document deletion is treated similarly to a
document insertion. Assuming a document d is deleted in the time
window corresponding to a partition Ii, a pair (d, -fd,t) is inserted
in each list Ii.Lt for the terms t present in d and the Ft value
associated to t is decremented by 1 to compensate the prior
insertion of that document. To distinguish between an insertion
and a deletion, the frequency value fd,t for the deleted document id
is simply stored as a negative value, i.e., -fd,t.

6.3 Impact on Linear Pipelining
Executing a query Q over our compensated index structure sums
up to evaluate:

)(with ,,,


























 DDd
F

N
fWTop

t
td

Qt

k

where D+ (resp. D-) represents the set of inserted (resp. deleted)
documents.

Computing N. As presented earlier, N is a global metadata
maintained at update time and then already integrates all insert
and delete operations.

Computing Ft . The global Ft value for a query term t is computed
as usual since the local Ft values are compensated at deletion time
(see above). The case of deleted documents that overlap with

several consecutive partitions is equally treated as with the
inserted documents.

Computing fd,t . The fd,t of a document d for a term t is computed
as usual, with the salient difference that a document which has
been deleted appears twice: with the value (d, fd,t) (resp. (d, -fd,t))
in the inverted lists of the partition Ii (resp. partition Ij) where it
has been inserted (resp. deleted). By construction i < j since a
document cannot be deleted before being inserted.

Computing Topk. Integrating deleted documents makes the
computation of Topk more subtle. Following the Linear Pipelining
principle, the tf-idf scores of all documents are computed one after
the other, in descending order of the document ids, thanks to a
linear pipeline merging of the insert lists associated to the queried
terms. To this end, the algorithm introduced in Section 4 uses k
RAM variables to maintain the current k best tf-idf scores and one
buffer (i.e., a RAM page) per query term t to read the
corresponding inverted lists. Some elements present in the
inverted lists correspond actually to deleted documents and must
be filtered out. The problem comes from the fact that documents
are deleted in random order. Hence, while inverted lists are sorted
with respect to the insertion order of documents, a pair of the
form (d, -fd,t) may appear anywhere in the lists. In case a
document d has been deleted, the unique guarantee is to encounter
the pair (d, -fd,t) before the pair (d, fd,t) if the traversal of the lists
follows a descending order of the document ids. However,
maintaining in RAM the list of all encountered deleted documents
in order to filter them out during the follow-up of the query
processing would violate the Bounded RAM agreement.

The proposed solution works as follows. The tf-idf score of each
document d is computed by considering the modulus of the
frequencies values |±fd,t| in the tf-idf score computation, regardless
of whether d is a deleted document or not. Two lists are
maintained in RAM: Topk = {(d, score(d))} contains the current k
best tf-idf scores of documents which exist with certainty (no
deletion has been encountered for these documents); Ghost = {(d,
score(d))} contains the list of documents which have been deleted
(a pair (d, -fd,t) has been encountered while scanning the inverted
lists) and have a score better than the smallest score in Topk. Topk
and Ghost lists are managed as follows. If the score of the current
document d is worse than the smallest score in Topk, it is simply
discarded and the next document is considered (step 2 in Figure
6). Otherwise, two cases must be distinguished. If d is a deleted
document (a pair (d, -fd,t) is encountered), then it enters the Ghost
list (step 3); else it enters the Topk list unless its id is already
present in the Ghost list (step 4). Note that this latter case may
occur only if the id of d is smaller than the largest id in Ghost,
making the search in Ghost useless in many cases. An important
remark is that the Ghost list has to register only the deleted
documents which may compete with the k best documents, to
filter them out when these documents are later encountered, which
makes this list very small in practice.

While simple in its principle, this algorithm deserves a deeper
discussion in order to evaluate its real cost. This cost actually
depends on whether the Ghost list can entirely reside in RAM or
not. Let us compute the nominal size of this list in the case where
the deletions are evenly distributed among the document set. For
illustration purpose, let us assume k=10 and the percentage of
deleted documents δ=10%. Among the first 11 documents
encountered during the query processing, 10 will enter the Topk

916

list and 1 is likely to enter the Ghost list. Among the next 11
documents, 1 is likely to be deleted but the probability that its
score is in the 10 best scores is roughly 1/2. Among the next 11
ones, this probability falls to about 1/3 and so on and so forth.

Hence, the nominal size of the Ghost list is 



n

i
ik

1

1 , which

can be approximated by))(ln(  nk . For 10.000 queried

documents, n=1000 and the size of the Ghost list is only
10))(ln(  nk elements, far beyond the RAM size. In

addition, the probability that the score of a Ghost list element
competes with the Topk ones decreases over time, giving the
opportunity to continuously purge the Ghost list (step 5 in Figure
6). In the very improbable case where the Ghost list overflows
(step 6 in Figure 6), it is sorted in descending order of the
document ids, and the entries corresponding to low document ids
are flushed. This situation remains however highly improbable
and will concern rather unusual queries (none of the 300 queries
we evaluated in our experiment produced this situation, while
allocating a single RAM page for the Ghost list).

Figure 6. Linear pipeline computation of Q with deletions.

6.4 Impact on Background Pipeline Merging
The main purpose of the Background Merging principle, as
presented in Section 5, is to keep the query processing scalable
with the indexed collection size. The introduction of deletions has
actually a marginal impact on the merge operation, which
continues to be efficiently processed in linear pipeline as before.
Moreover, given the way the deletions are processed in our
structure, i.e., by storing couples (d, -fd,t) for the deleted
documents, the merge acquires a second function which is to
absorb the part of the deletions that concern the documents
present in the partitions that are merged. Indeed, let us come back
to the Background Merging process described in Section 5. The
main difference when deletes are considered is the following.
When inverted lists are merged during step 1 of the algorithm, a
new particular case may occur, that is when two pairs (d, fd,t) and
(d, -fd,t) are encountered in separate lists for the same d; this
means that document d has actually been deleted; d is then purged
(the document deletion is absorbed) and will not appear in the
output partition. Hence, the more frequent the Background
Merging, the smaller the number of deleted entries in the index.

Taking into account the supplementary function of the merge, i.e.,
to absorb the data deletions, we can adjust the absorption rate of

deletions by tuning the branching factor of the last index level
since most of the data is stored in this index level. By setting a
smaller value to the branching factor b’ of the last level, the
merge frequency in this level increases and consequently the
absorption rate also increases. Therefore, in our implementation
we use a smaller value for the branching factor of the last index
level (i.e., b'=3 for the last level and b=10 for the other levels).
Typically, about half of the total number of deletions will be
absorbed for b'=3 if we consider that the deletions are uniformly
distributed over the data insertions.

7. EXPERIMENTAL EVALUATION
7.1 Experimental Setup
Hardware platform. All the experiments have been conducted
on a development board ST3221G-EVAL (see www.st.com/web/
en/catalog/tools/PF251702) equipped with the MCU STM32-
F217IG (see www.st.com/web/catalog/mmc/FM141/SC1169/
SS1575/LN9/PF250172) connected to a micro-SD card slot. This
hardware configuration is representative of typical smart objects
[4, 17, 19]. The board runs the embedded operating system RTOS
7.0.1 (see freertos.svn.sourceforge.net/viewvc/freertos/tags/
V7.1.0/). The search engine code is stored on the internal NOR
Flash memory of the MCU, while the inverted index is stored on a
micro-SD NAND Flash card. We used for data storage two
commercial micro-SD cards (i.e., Kingston MicroSDHC Class 10
4GB and Silicon Power SDHC Class 10 4GB) exhibiting different
performance (see lines 1 and 4 of Table 1). The MCU has 128KB
of available RAM. However, the search engine only uses a
maximum amount of 5KB of RAM, to validate our design
whatever the available RAM of existing smart objects and the
RAM consumption of the OS and the communication drivers.

Table 2. Desktop and synthetic datasets and query sets

 Desktop Synthetic
Number of documents 27000 100000

Total Raw Text 63 MB 129 MB
Total Unique Words 337952 10,000

Total Word Occurrences 35624875 10000000
Average Occurrences per Word 26 988

Frequent Words 20752 1968
Infrequent Words 317210 8032

Frequent Word Occurrences 6.14% 19.68%
Infrequent Word Occurrences 93.85% 80.32%
KB per documents (avg, max) 8, 647 1.3, 1.3

Words per documents (avg, max) 1304, 105162 100, 100
Total number of queries 837 1000

Queries with 1, 2 & 3 terms 85, 255, 272 200, 200, 200
Queries with 4 & 5 terms 172, 82 200, 200

Datasets and queries. Selecting a representative data and query
set to evaluate our solution is challenging considering the
diversity and quick evolution of smart object usages, explaining
the absence of recognized benchmarks in this area. We then
validate our proposal using two use-cases where an embedded
keyword-based search engine is called to play a central role and
which exhibit different requirements in terms of document
indexing with the objective to assess the versatility of the
solution.

917

The first use-case relates to the Personal Cloud where a secure
smart object embedding a Personal Data Server [3, 4, 18] is used
to securely store, query and share personal user's files
(documents, photos, emails). These files can be stored encrypted
on a regular server (e.g., in the Cloud or in a PC) but the
metadata describing them (keywords extracted from the file
content, date, type, tags set by the user herself, etc.) are indexed
and stored by the embedded Personal Data Server acting as a
Google Desktop or Spotlight for the user's dataspace [12]. Indeed,
the metadata are as sensitive as the files themselves and must be
managed in the secure smart object (e.g., a mass storage
smartcard connected to a PC or an internet gateway) to prevent
any privacy breach. This use-case is representative of situations
where the indexing documents have a rich content (tens to
hundreds of thousands of terms) and documents updates and
deletes can be performed randomly. To capture the behavior of
our solution in such context, we use the pseudo-desktop data
collection and query set provided in [11] which is considered as
representative of a personal desktop where searches, updates and
deletes are performed.

The second use-case is in the smart sensor context. Sensors can be
smart meters deployed at home to enable new generation of
energy services, home gateways capturing a variety of events
issued by a growing number of smart appliances or car trackers
registering our locations and driving habits to compute insurance
fees and carbon tax [3]. In this case, documents are time windows
and terms are events occurring during this time window. Top-k
queries are useful for analytic tasks and executing them at the
sensor side helps reducing evaluation time, energy consumption
linked to data transmission costs and risk of private information
leakage. We consider that in this use-case the indexing documents
have a poorer content (hundreds to thousands of terms/event types
per time window). We are not aware of publicly available datasets
for this context and then generate a synthetic one.

The statistics of the desktop dataset and query set are given in
Table 2. This dataset contains five representative types of
personal files (i.e., email, html, pdf, doc and ppt). The desktop
search is an important topic in the IR community, but real
personal collections of desktop files cannot be published for
evident privacy issues. Instead, the authors in [11] propose a
method to generate pseudo desktop collections and show that such
collections have the same properties as real collections. As
recommended in [11], we preprocess the files in this collection by
removing the stop words and stemming the remaining terms using
the Krovetz stemmer. The obtained number of terms in the
vocabulary is large, i.e., 337952. We also use a set of 837 queries
prepared for this dataset and provided in [11]. Different, the
synthetic dataset has a much smaller vocabulary, i.e., 10000

terms, and an average of 100 terms per document, chosen using a
zipfian distribution with a skew of 0.7. For this dataset, we
generated a query set of 1000 random queries with up to five
terms per query. In the experiments, we analyze the cost of
insertions and queries separately, one operation at a time. Indeed
smart objects, contrary to central servers, rarely support parallel
or multi-task processing. Moreover, the RAM consumption
increases linearly with the number of operations executed in
parallel, a serious constraint in our context. Due to space
limitation, we focus in this paper on the results obtained with the
desktop dataset and provide results issued from the synthetic
dataset only when the differences are significant. The reader
interested in the full set of measures can refer to a technical report
[5]. This report also gives the pseudo-code of the measured
algorithms and discusses results obtained using a third larger
dataset (the ENRON email dataset available at : https://www.cs.
cmu.edu/~enron/) which actually gives similar results as those
presented here.

7.2 Index Maintenance
According to the algorithms presented earlier, the insertions and
deletions of documents produce a sequence of index partitions
which are subsequently merged in the SSF. Given the
RAM_Bound of 5KB, we set the branching factor b (intermediate
levels in the SSF) to ss8 to decrease the merge frequency, and the
branching factor b’ (last level in the SSF) to 3, to absorb faster the
document deletions. The insertion or deletion of a single
document is very efficient, since the document metadata is
preliminary inserted in RAM. Also, given the small size of the
RAM_Bound, flushing the RAM content into the level L0 of the
SSF is fast; it takes on average 6ms to write a partition in L0 in all
our experiments (see Table 3).

Table 3 shows also the SSF merge cost, which is periodically
triggered (i.e., each time the number of flushed partitions in Li

reaches the branching factor b). The table presents the number of
IOs for the flush and merge operations performed in the different
SSF levels, and their execution times for the two tested SD cards,
while inserting the 27K documents of our dataset and randomly
deleting 10% of them. In our experiments, the deletions are
uniformly distributed over the inserted documents and uniformly
interleaved with the insertions. All these operations lead to an SSF
with six levels. As expected, the merge time grows exponentially
from L0 to L5, since the size of the partitions also increases by
(nearly) a factor of b. It requires a few seconds to merge the
partitions in the levels L0 to L3 and up to a few minutes in L4 to L5.
The merge time is basically linear with the size of the merged
partitions in the number of reads and writes. The merge time can
vary especially in the first three levels of the SSF, depending on
the term distribution in the indexed documents. However, the

Table 3. Statistics of the flush and merge operations

 Flush
[RAML0]

Merge
[L0L1]

Merge
[L1L2]

Merge
[L2L3]

Merge
[L3L4]

Merge
[L4L5]

Number of Read IOs 1 (1)* 90 (92) 503 (617) 2027 (2570) 11010(15211) 50997(73026)
Number of Write IOs 9 (9) 71 (100) 339 (548) 1485 (2085) 9409 (14027) 47270 (66335)

Exec. time on Kingston (sec.) 0.008 (0.0084) 0.58 (0.77) 2.9 (4.44) 13.2 (19.1) 84.6 (124.4) 436 (615)
Exec. time on Silicon Power (sec.) 0.004 (0.0045) 0.38 (0.48) 1.94 (2.84) 8.67 (11.7) 54.5 (79.3) 278 (393)

Total number of occurrences 73277 9160 1145 143 18 2
Inserted docs between flushes/merges 0.42 (16) 3 (42) 24 (232) 189 (1193) 1453 (6496) 8906 (10547)

 * The numbers given in brackets are maximum values, other values are average values.

918

partitions in L3 contain most of the term dictionary and the
variation of the merge time in the upper levels is less significant.

Table 3 indicates that the most costly merges are also the less
frequent. Only 20 merges costing more than 15 seconds are
triggered while inserting the complete set of documents and
deleting 10% of them. However, blocking the index for a long
duration may be problematic for some applications and justifies
the non-blocking merge implementation presented in Section 5.
Table 4 compares the maximum and average insertion/deletion
time in the index between blocking and non-blocking merge
implementations. The time is measured as the RAM flush time
plus the merge time, if a merge is triggered (for the blocking
merge) or is currently in progress (for the non-blocking merge).
We observe that the cost of a blocking merge in L5 can take up to
393 seconds with Silicon Power, while this cost is spread among
the next 13844 insert/delete operations (each time the RAM is
flushed) in the non-blocking case. This leads to an extremely
large gap between the maximum and average insertion times in
the blocking case. The insertion of the synthetic dataset also leads
to an SSF with 6 levels [5]. The average insertion time is similar
to the desktop dataset, e.g., with a non-blocking merge, the
average cost is 0.29s for Kingston and 0.20s for Silicon Power.

Table 4. Blocking vs. non-blocking merge performance (sec.)

Max. Avg.
Blocking merge (Kingst./Silicon P.) 615/393 0.16/0.10

Non-blocking merge (Kingst./Silicon P.) 0.23/0.15 0.21/0.13

7.3 Index Search Performance
We evaluated the search performance of our index on our test
board with the two SD cards, with both the blocking and non-
blocking merge implementations. Due to the similarity of the
results, we present hereafter only the results obtained with the
Silicon Power card. Figure 7 shows the average query time for the
837 search queries of the query set as a function of the number of
documents. The curves present the query cost before ("max"
curve) and after ("min" curve) each merge occurring in the higher
index levels, i.e., from level 3 to level 5. We can observe that
locally, the query cost increases linearly with the number of
partitions in the lower levels, and then decreases significantly
after every merge operation. The large variations in the query cost
correspond to the creation of a new partition in the fifth level of
the SSF, while the intermediary peaks correspond to the creation
of a partition in level 4 of the SSF (see the arrows in Figure 7).

Globally, the query time increases linearly with the number of
indexed documents, but with a low factor. For example, after
inserting 27K documents and deleting 10% of them, the average
query execution time is only 0.18s (maximum of 0.35s) with the
non-blocking merge implementation. The query times are lower
with a blocking merge, i.e., an average execution time of 0.14s
and a maximum of 0.28s. Indeed, in the non-blocking merge
implementation, the number of lower level partitions can
temporarily exceed b, so that more partitions have to be visited. In
our setting, the increase is on average of about 25% and
represents approximately 0.04s seconds. This appears to be a fair
trade-off for applications that cannot accept unpredictable or
unbounded update index latencies.

With the synthetic dataset [5], our index exhibits an average
execution time of only 0.21s and a maximum of 0.42s. The
slightly higher query times compared to the desktop dataset are
explained by the larger index size (see Table 6) and by the smaller
vocabulary (which reduces the average query selectivity).

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

124 16396 24665

T
im

e
(s

ec
.)

Number of documents

Non-blocking_Max
Non-blocking_Min Level 5

Level 4

Figure 7. Query times with the non-blocking merge strategy

7.4 Impact of the Deletion Rate
Table 5 shows the average query performance for different
deletion rates with Silicon Power storage (we obtained similar
results with the Kingston storage). We considered two cases.
First, we inserted the whole dataset while deleting a number of
documents corresponding to the deletion rate (first line in Table
5). In this case, the higher the deletion rate is, the lower the query
time is since a good part of the deleted documents (app. 50%) will
be purged from the index and decrease the query processing time.
In the second case, the total number of active documents in the
index is the same (i.e., 13500) regardless the deletion rate (second
line in Table 5). Hence, the higher the deletion rate is, the more
documents we insert to compensate the deletions. In this case, a
higher deletion rate leads to larger query times since part of the
deletions are present in the index and have to be processed by the
queries. However, the increase of the query times is relatively
small compared to the case with no deletions, i.e., less than 16%
for deletion rates up to 50%. Globally, the index is robust with the
number of deletions in both cases.

Table 5. Avg. query time (in sec.) with deletion (Silicon P.)

Deletion rate 0% 10% 30% 50%
Avg. query time (27k docs) 0.18 0.17 0.16 0.16
Avg. query time (13k docs) 0.12 0.13 0.13 0.14

Table 6. Index (I.L/I.S) size (MB) varying the deletion rate

Deletion rate 0% 10% 30% 50%
Desktop (SSF) 81/1.24 76/1.14 60/0.82 55/0.73

Desktop (classic) 81/0.4 73/0.4 57/0.4 40/0.4
Synthetic (SSF) 78 /0.97 74 /0.88 66 /0.78 58 /0.69

Synthetic (classic) 78 /0.13 70 /0.13 55 /0.13 40 /0.13

Table 6 shows the index size for the desktop and synthetic
datasets after the insertion of all the documents in the collection
and the uniform deletion of a certain percentage of the indexed
documents. In each table cell, the first number indicates the
cumulated size in MB of all the I.L parts of the SSF (i.e., the
global size of the inverted lists), while the second number gives
the cumulated size of all the I.S parts of the SSF (i.e., the global
size of the search structures). Also, Table 6 gives for each dataset

919

and deletion rate the index size of the classical inverted index
used as reference (i.e., a single standard B+-Tree built with no
consideration for the Flash cost). Without deletions, the SSF
index size is comparable to the classical inverted index size.
Indeed, the size of the I.L part (inverted lists) is similar in both
indexes and the overhead introduced by SSF for the I.S part (each
partition having its own search structure) is negligible since the
search structure represents less than 1% of the global index size.
As the deletion rate augments, the difference between SSF and the
classical index increases. The explanation is that the deleted
documents are reinserted in SSF, which temporarily increases the
index size, until a merge is triggered and absorbs part of the
deleted documents. Typically, we observed that about 45% to
55% of deletions are not absorbed after a high number of
document insertions and deletions. This makes the SSF index size
to be at most 40% larger than the inverted index size.

7.5 Comparison with the State-of-the-Art
This section compares our search engine with state of the art
indexing methods. We choose the classical inverted index (see
figure 2) to represent the query-optimized index family (although
it has not been designed with embedded constraints in mind) and
Microsearch [17] to represent the insert-optimized index family.
Note that the other embedded search engines presented in Section
2.3 rely on similar index structures with Microsearch. We used
the same test conditions as above, i.e., a RAM_Bound equals to
5KB. The insertions in the classical inverted index are first
buffered in RAM until the RAM_Bound is reached, then applied
in batch to the index structure in Flash, generating random writes
at this time. To be able to evaluate the queries under the RAM
constraint, the inverted lists have to be maintained sorted on
document ids, which permits applying a linear pipeline query
processing similar to the SSF. In the case of Microsearch, we used
a hash function with 8 buckets, since this value leads to the most
balanced query-insert performance given the 5KB of RAM.
Besides, we only considered data insertions and queries in the
tests below, since Microsearch does not support deletions.

Insertion performance. Figure 8 shows the average insertion time
for the three methods (i.e., SSF, Microsearch and the classical
Inverted Index) while inserting the 27,000 documents in the
desktop dataset. Microsearch and SSF have similar insert
performance. On average, a document insertion in Microsearch
takes about 0.08s and 0.33s in SSF (with Silicon Power). The
insertion time in the classical Inverted Index is at least two orders
of magnitude higher (30s with Silicon Power) because of the
costly random writes in Flash memory, clearly dismissing this
method in the context of smart objects. For the synthetic dataset,
the average insertion times are 0.02s, 0.07s and 15s for

Microsearch, SSF and the inverted index respectively (with
Silicon Power). The higher insertion cost of the SSF compared to
Microsearch is generated by the SSF merges. But this gap seems
acceptable for most of the applications and is outweighed by the
query performance and scalability benefit of the SSF (see next).

Query performance. Figure 9 shows the query execution time for
the three methods in function of the number of indexed
documents. Unsurprisingly, the Inverted Index reaches the best
query performance. SSF appears as a good challenger (0.18s on
the average to process a query compared to 0.07s with the
Inverted Index, with Silicon Power), this difference being
explained by the fragmentation of the SSF index structure.
Microsearch exhibits the worst query performance and can
definitely not scale to a large number of documents. On average,
Microsearch takes 880 seconds (14 minutes) to process a query.
Even for a low number of documents, SSF outperforms
Microsearch. The first reason is that Microsearch merges many
terms in the same inverted lists, so that large part of the index has
to be scanned. Second, Microsearch requires two passes over the
inverted lists, one to compute the global Ft value of the term and a
second one to compute the tf-idf score of the documents
containing the term. For the synthetic dataset, the average query
times are 0.05s, 0.2s and 355s for the inverted index, SSF and
Microsearch respectively (with Silicon Power).

Overall performance. Figure 10 shows the speedup of SSF (i.e.,
the ratio between the throughput of SSF and of the competitors)
with Silicon Power for workloads containing insertions and
queries (with the pseudo-desktop collection) in different ratios.
We obtained similar results with the other dataset or storage card.
In most cases, SSF has (much) better throughput with both insert-
and query-oriented workloads, while being the sole versatile
method. Practically, SSF will be the preferred index method
unless the expected workload contains in an overwhelming
proportion either insertions or queries.

Other concerns. The pros and cons of the SSF approach
compared to its competitors originates from the specific way the
index grows (by partitioning and merging) and the deletes are
managed (by reinserting deleted documents and absorbing deletes
during merges). While performances have been extensively
studied and compared above, the specificities of SSF may impact
other aspects of an indexing structure, more difficult to weight.
First, partitioning introduces some variability in the query cost
(see the stairway-like curves in Figures 8 and 9) which could be
prejudicial for real-time applications and could perturb a query
optimizer. Note however that the occurrences of stairs are fully
predictable, though it complexifies the optimization process.
Second, the way deletes are processed lead to an increase of the

Fig. 8. Insert time comparison (Silicon P.)

0,001
0,01

0,1
1

10
100

1000
10000

0 10000 20000

T
im

e
(s

ec
. l

og
. s

ca
le

)

Number of documents

Inverted Index
SSF
Microsearch

Fig. 9. Query time comparison(Silicon P.) Fig. 10. Overall performance comparison

920

index size and consequently, of the query cost. Nevertheless, this
negative effect is limited by the merge operations that permit to
purge some of the deleted documents (see Table 6). Moreover, we
do not see how to manage deletions differently without violating
any of our design principles. Finally, we do not consider the
problem of concurrent accesses in SSF, i.e., multiple processes
that query/update the index at the same time. While this seems not
a primary concern today, this problem may deserve a deeper
interest as smart objects become more powerful.

8. ACKNOWLEDGMENTS
This work is partially funded by project ANR-11-INSE-0005
KISS.

9. CONCLUSION
This paper presents the design of an embedded search engine for
smart objects equipped with extremely low RAM and large Flash
storage capacity. This work contributes to the current trend to
endow smart objects with more and more powerful data
management techniques. Our proposal is founded on three design
principles, which are combined to produce an embedded search
engine reconciling high insert/delete rate and query scalability for
very large datasets. By satisfying a RAM_Bound agreement, our
search engine can accommodate a wide population of smart
objects, including those having only a few KBs of RAM.
Satisfying this agreement is also a mean to fulfill co-design
perspectives, i.e., calibrating a new hardware platform with the
hardware resources strictly necessary to meet a given
performance requirement. The proposed search engine has been
implemented on a hardware platform representative of smart
objects and the experimental evaluation validates its efficiency
and scalability. We feel that our three design principles may have
a wider applicability and could pave the way to the definition of
other embedded indexing techniques. It is part of our future work
to try to validate this assumption.

10. REFERENCES
[1] Aggarwal, C. C. Ashish, N. and Sheth, A. The internet of things:

A survey from the data-centric perspective. Managing and
mining sensor data, Springer, 2013.

[2] Agrawal, D., Ganesan, D., Sitaraman, R., Diao, Y. and
Singh, S. Lazy-adaptive tree: An optimized index structure
for flash devices. In PVLDB 2, 1 (2009), 361-372.

[3] Anciaux, N., Bonnet, P., Bouganim, L., Nguyen, B., Sandu
Popa, I. and Pucheral, P. Trusted cells: A sea change for
personal data services. In Conference on Innovative Data
Systems Research (CIDR'13), 2013.

[4] Anciaux, N., Bouganim, L., Pucheral, P., Guo, Y., Folgoc, L. L.
and Yin, S. MILo-DB: a personal, secure and portable database
machine. Distribut. and Parallel Databases, 32, 1 (2014), 37-
63.

[5] Anciaux, N., Lallali, S., Sandu Popa, I., Pucheral, P. A
Scalable Search Engine for Mass Storage Smart Objects.
PRISM Technical Report.
http://www.prism.uvsq.fr/~isap/files/RT.pdf

[6] Bjorling, M., Bonnet, P., Bouganim, L. and Jonsson, B. T.
uflip: Understanding the energy consumption of flash
devices. IEEE Data Eng. Bull., 33, 4 (2010), 48–54.

[7] Debnath, B., Sengupta, S. and Li, J. Skimpystash: Ram space
skimpy key-value store on flash-based storage. In ACM
SIGMOD, 2011, 25–36.

[8] Diao, Y., Ganesan, D., Mathur, G. and Shenoy, P. J.
Rethinking data management for storage-centric sensor
networks. In Conference on Innovative Data Systems
Research (CIDR'07), 2007.

[9] Huang, Y.-M. and Lai, Y.-X. Distributed energy
management system within residential sensor-based
heterogeneous network structure. In Wireless Sensor
Networks and Ecological Monitoring, 3 (2013), 35–60.

[10] Jermaine, C., Omiecinski, E. and Yee, W.G. The partitioned
exponential file for database storage management. The VLDB
Journal 16, 4 (2007), 417-437.

[11] Kim, J. Y. and Croft, W. B. Retrieval Experiments using
Pseudo-Desktop Collections. In ACM CIKM', 2009, 1297-
1306.

[12] Lallali, S., Anciaux, N., Sandu Popa, I. and Pucheral, P. A
Secure Search Engine for the Personal Cloud. In Sigmod,
2015. http://dx.doi.org/10.1145/2723372.2735376

[13] Li, Y., He, B., Yang, R. J., Luo, Q. and Yi, K. Tree Indexing
on Solid State Drives. In PVLDB 3, 1-2 (2010), 1195-1206.

[14] O’Neil, P.E., Cheng, E., Gawlick, D. and O’Neil, E.J. The Log-
Structured Merge-Tree (LSM-Tree). Acta Informatica, 33, 4
(1996).

[15] Sears, R. and Ramakrishnan, R. bLSM: a general purpose
log structured merge tree. In ACM SIGMOD, 2012, 217-228.

[16] Tan, C. C., Sheng, B., Wang, H. and Li, Q. Microsearch:
When search engines meet small devices. In Pervasive
Computing, 2008, 93-110.

[17] Tan, C. C., Sheng, B., Wang, H. and Li, Q. Microsearch: A
search engine for embedded devices used in pervasive
computing. ACM Transactions on Embedded Computing
Systems, 9, 4 (2010).

[18] To, Q.-C., Nguyen, B. and Pucheral, P. Privacy-Preserving
Query Execution using a Decentralized Architecture and
Tamper Resistant Hardware. In EDBT, 2014, 487-498.

[19] Tsiftes, N. and Dunkels, A. A database in every sensor. In
ACM Embedded Networked Sensor Systems (SenSys’11),
2011, 316-332.

[20] Wang, H., Tan, C. C. and Li, Q. Snoogle: A search engine
for pervasive environments. In IEEE Transactions on
Parallel and Distributed Systems, 21, 8 (2010), 1188–1202.

[21] Wu, C.-H., Kuo, T.-W. and Chang, L.-P. An efficient b-tree
layer implementation for flash-memory storage systems.
ACM Trans. on Embedded Computing Systems, 6, 3 (2007).

[22] Yan, T., Ganesan, D. and Manmatha, R. Distributed image search
in camera sensor networks. In ACM Embedded Network Sensor
Systems (SenSys’08), 2008, 155–168.

[23] Yap, K.-K., Srinivasan, V. and Motani, M. Max: Wide area
human-centric search of the physical world. ACM
Transactions on Sensor Networks, 4, 4 (2008), 1-34.

[24] Zobel, J. and Moffat, A. Inverted files for text search
engines. ACM Computing Surveys, 38, 2 (2006).

921

