
Giraph Unchained: Barrierless Asynchronous Parallel
Execution in Pregel-like Graph Processing Systems

Minyang Han
David R. Cheriton School of Computer Science

University of Waterloo
m25han@uwaterloo.ca

Khuzaima Daudjee
David R. Cheriton School of Computer Science

University of Waterloo
kdaudjee@uwaterloo.ca

ABSTRACT
The bulk synchronous parallel (BSP) model used by syn-
chronous graph processing systems allows algorithms to be
easily implemented and reasoned about. However, BSP can
suffer from poor performance due to stale messages and fre-
quent global synchronization barriers. Asynchronous com-
putation models have been proposed to alleviate these over-
heads but existing asynchronous systems that implement
such models have limited scalability or retain frequent global
barriers, and do not always support graph mutations or al-
gorithms with multiple computation phases. We propose
barrierless asynchronous parallel (BAP), a new computation
model that reduces both message staleness and global syn-
chronization. This enables BAP to overcome the limitations
of existing asynchronous models while retaining support for
graph mutations and algorithms with multiple computation
phases. We present GiraphUC, which implements our BAP
model in the open source distributed graph processing sys-
tem Giraph, and evaluate our system at scale with large
real-world graphs on 64 EC2 machines. We show that Gira-
phUC provides across-the-board performance improvements
of up to 5× faster over synchronous systems and up to an
order of magnitude faster than asynchronous systems. Our
results demonstrate that the BAP model provides efficient
and transparent asynchronous execution of algorithms that
are programmed synchronously.

1. INTRODUCTION
Due to the wide variety of real-world problems that rely

on processing large amounts of graph data, graph data pro-
cessing has become ubiquitous. For example, web graphs
containing over 60 trillion indexed webpages must be pro-
cessed by Google’s ranking algorithms to determine influ-
ential vertices [17]. Massive social graphs are processed at
Facebook to compute popularity and personalized rankings,
determine shared connections, find communities, and prop-
agate advertisements for over 1 billion monthly active users

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 9
Copyright 2015 VLDB Endowment 2150-8097/15/05.

Running: Blocked (comm.): Blocked (barrier):

0 50 100 150 200 250 300 350

Time (s)

8
7
6
5
4
3
2
1

W
o
rk
e
rs

Figure 1: Communication and synchronization over-
heads for a BSP execution of weakly connected com-
ponents using 8 worker machines on TW (Table 1).

[15]. Scientists are also leveraging biology graphs to under-
stand protein interactions [26] and cell graphs for automated
cancer diagnosis [18].

These graph processing problems are solved by imple-
menting and running specific graph algorithms on input
graphs of interest. Graph processing systems provide an
API for developers to implement such algorithms and a
means to run these algorithms against desired input graphs.
Google’s Pregel [25] is one such system that provides a na-
tive graph processing API by pairing the bulk synchronous
parallel (BSP) computation model [34] with a vertex-centric,
or “think like a vertex”, programming model. This has in-
spired popular open source Pregel-like graph processing sys-
tems such as Apache Giraph [1] and GraphLab [24].

For graph processing systems, one key systems-level per-
formance concern stems from the strong isolation, or stale-
ness, of messages in the synchronous BSP model. Relaxing
this isolation enables asynchronous execution, which allows
vertices to see up-to-date data and leads to faster conver-
gence and shorter computation times [24]. For pull-based
systems such as GraphLab, where vertices pull data from
their neighbours on demand, asynchrony is achieved by com-
bining GraphLab’s Gather, Apply, Scatter (GAS) model
with distributed locking. For push-based systems such as
Giraph [1], Giraph++ [33], and GRACE [35], where ver-
tices explicitly push data to their neighbours as messages,
asynchrony is achieved through the asynchronous parallel
(AP) model. The AP model extends BSP and avoids dis-
tributed locking, which is advantageous as distributed lock-
ing is difficult to tune and was observed to incur substantial
communication overheads, leading to poor scalability [20].

A second key performance concern is the frequent use of
global synchronization barriers in the BSP model. These
global barriers incur costly communication and synchroniza-
tion overheads and also give rise to the straggler problem,
where fast machines are blocked waiting for a handful of
slow machines to arrive at the barrier. For example, Fig-

950

Worker 1

Worker 2

Worker 3

Worker 1

Worker 2

Worker 3

Worker 1

Worker 2

Worker 3

Global Barrier Global Barrier

Superstep 1 Superstep 2 Superstep 3

Figure 2: The BSP model, illustrated with three
supersteps and three workers [22].

ure 1 illustrates an actual BSP execution of the weakly con-
nected components algorithm in which workers are, on aver-
age, blocked on communication and synchronization for 46%
of the total computation time. GraphLab’s asynchronous
mode attempts to avoid this blocking by removing global
barriers altogether and instead relying on distributed lock-
ing. However, as pointed out above, this solution scales
poorly and can result in even greater communication over-
heads. Although the AP model avoids distributed locking,
it relies on the use of frequent global barriers and thereby
suffers from the same overheads as the BSP model.

Finally, there is a third concern of usability and also com-
patibility. The simple and deterministic nature of the BSP
model enables algorithm developers to easily reason about,
and debug, their code. In contrast, a fully exposed asyn-
chronous model requires careful consideration of the under-
lying consistency guarantees as well as coding and debug-
ging in a non-deterministic setting, both of which can be
confusing and lead to buggy code. Hence, a performant
graph processing system should allow developers to code
for the BSP model and transparently execute with an ef-
ficient asynchronous computation model. Existing systems
that provide asynchronous execution leak too much of the
underlying asynchronous mechanisms to the developer API
[35], impeding usability, and do not support algorithms that
require graph mutations [24, 35] or algorithms with multiple
computation phases [33], impeding compatibility.

To address these concerns, we propose a barrierless asyn-
chronous parallel (BAP) computation model that both re-
laxes message isolation and substantially reduces the fre-
quency of global barriers, without using distributed lock-
ing. Our system, GiraphUC, implements the proposed BAP
model in Giraph, a popular open source system. Gira-
phUC preserves Giraph’s BSP developer interface and fully
supports algorithms that perform graph mutations or have
multiple computation phases. GiraphUC is also more scal-
able than asynchronous GraphLab and achieves good perfor-
mance improvements over synchronous Giraph, asynchronous
Giraph (which uses the AP model), and synchronous and
asynchronous GraphLab. Thus, GiraphUC enables develop-
ers to code for a synchronous BSP model and transparently
execute with an asynchronous BAP model to maximize per-
formance.

Our contributions are hence threefold: (1) we show that
the BAP model greatly reduces the frequency of global barri-
ers without the use of distributed locking; (2) we implement
the BAP model in Giraph to demonstrate that it provides
across-the-board performance gains of up to 5× over syn-
chronous systems and up to 86× over asynchronous systems;
and (3) at the user level, we show that the BAP model pro-
vides a “program synchronously, execute asynchronously”

Superstep 1:

Superstep 2:

Superstep 3:

Superstep 4:

Superstep 5:

Superstep 6:

0 1 2 3 4 5

v0 v1 v2 v3 v4 v5

Worker 1 Worker 2 Worker 3

0 0 1 2 3 4

0 0 0 1 2 3

0 0 0 0 1 2

0 0 0 0 0 1

0 0 0 0 0 0

Figure 3: BSP execution of a WCC example. Gray
vertices are inactive. Blue vertices have updated
vertex values.

paradigm, transparently providing performance gains with-
out sacrificing usability or compatibility.

This paper is organized as follows. In Section 2, we pro-
vide background on the BSP, AP, and GAS models and their
limitations. In Section 3, we describe our BAP model and
in Section 4, its implementation in Giraph, GiraphUC. We
provide an extensive experimental evaluation of GiraphUC
in Section 5 and describe related work in Section 6 before
concluding in Section 7.

2. BACKGROUND AND MOTIVATION
We first introduce the BSP model used by Pregel and Gi-

raph, followed by the AP model, an asynchronous extension
of BSP. We then consider the GAS model used by GraphLab
as a point of comparison before motivating the BAP model
by discussing the limitations of BSP and AP.

2.1 The BSP Model
Bulk synchronous parallel (BSP) [34] is a parallel compu-

tation model in which computations are divided into a series
of (BSP) supersteps separated by global barriers (Figure 2).
To support iterative graph computations, Pregel (and Gi-
raph) pairs BSP with a vertex-centric programming model,
in which vertices are the units of computation and edges act
as communication channels between vertices.

Graph computations are specified by a user-defined com-
pute function that executes, in parallel, on all vertices in
each superstep. Consider, as a running example, the BSP
execution of the weakly connected components (WCC) algo-
rithm (Figure 3). In the first superstep, a vertex initializes
its vertex value to a component ID. In the subsequent su-
persteps, it updates this value with any smaller IDs received
from its in-edge neighbours and propagates any changes
along its out-edges (Section 5.2.2). Crucially, messages sent
in one superstep are visible only during the next superstep.
For example, ID 1 sent by v2 in superstep 2 is seen by v3
only in superstep 3. At the end of each superstep, all ver-
tices vote to halt to become inactive. A vertex is reactivated
by incoming messages, for example v1 in superstep 2. The
computation terminates at the end of superstep 6 when all
vertices are inactive and no more messages are in transit.

Pregel and Giraph use a master/workers model. The
master machine partitions the graph among the worker ma-
chines, coordinates all global barriers, and performs termi-
nation checks based on the two aforementioned conditions.
BSP uses a push-based approach, as messages are pushed
by the sender and buffered at the receiver.

951

Superstep 1:

Superstep 2:

Superstep 3:

Superstep 4:

0 1 2 3 4 5

v0 v1 v2 v3 v4 v5

Worker 1 Worker 2 Worker 3

0 0 1 1 3 3

0 0 0 0 1 1

0 0 0 0 0 0

Figure 4: AP execution of the WCC example.

2.2 The AP Model
The asynchronous parallel (AP) model improves on the

BSP model by reducing the staleness of messages. It al-
lows vertices to immediately see their received messages in-
stead of delaying them until the next superstep. These mes-
sages can be local (sent between vertices owned by a single
worker) or remote (sent between vertices of different work-
ers). The AP model retains global barriers to separate su-
persteps, meaning that messages that do not arrive in time
to be seen by a vertex in superstep i (i.e., because the vertex
has already been executed) will become visible in the next
superstep i+1. GRACE and, to a lesser extent, Giraph++’s
hybrid mode both implement the AP model (Section 6).

To see how reducing staleness can improve performance,
consider again our WCC example from Figure 3. For sim-
plicity, assume that workers are single-threaded so that they
execute their two vertices sequentially. Then, in the BSP ex-
ecution (Figure 3), v3 in superstep 3 sees only a stale mes-
sage with the ID 1, sent by v2 in superstep 2. In contrast,
in the AP execution (Figure 4), v3 sees a newer message
with the ID 0, sent from v2 in superstep 3, which enables
v3 to update to (and propagate) the component ID 0 ear-
lier. Consequently, the AP execution is more efficient as it
completes in fewer supersteps than the BSP execution.

However, the AP model suffers from communication and
synchronization overheads, due to retaining frequent global
barriers, and has limited algorithmic support (Section 2.4).

2.3 Comparison to the GAS Model
The Gather, Apply, and Scatter (GAS) model is used

by GraphLab for both its synchronous and asynchronous
modes, which we refer to as GraphLab sync and GraphLab
async respectively. While synchronous GAS is essentially a
pull-based version of BSP1, asynchronous GAS is very dif-
ferent from the AP model.

Specifically, GAS is pull-based and its asynchronous im-
plementation must use distributed locking to ensure that a
vertex does not pull inconsistent data from any concurrently
executing neighbours [4]. In contrast, AP is push-based and
can avoid expensive distributed locking because messages
are received only after a vertex finishes its computation and
explicitly pushes such messages. Since messages are buffered
in a local message store, concurrent reads and writes to the
store can be handled locally with local locks or lock-free data
structures. Additionally, asynchronous GAS has no notion
of supersteps and uses a distributed consensus algorithm to
check for termination, whereas the AP model has supersteps
and relies on the master to check for termination.

1See the longer version of this paper for details [19].

Running: Blocked (comm.): Blocked (barrier):

W1

W2

W3

Global barrier

(a) BSP

W1

W2

W3

(b) AP

W1

W2

W3

Local barrier

(c) BAP

Figure 5: Computation times for the WCC example
under different computation models.

2.4 Limitations and Opportunities

2.4.1 Performance
In BSP, global barriers ensure that all messages sent in

one superstep are delivered before the start of the next su-
perstep, thus resolving implicit data dependencies encoded
in messages. However, the synchronous execution enforced
by these global barriers causes BSP to suffer from major per-
formance limitations: stale messages, large communication
overheads, and high synchronization costs due to stragglers.

To illustrate these limitations concretely, Figures 5a and
5b visualize the BSP and AP executions of our WCC ex-
ample with explicit global barriers and with time flowing
horizontally from left to right. The green regions indicate
computation while the red striped and gray regions indicate
that a worker is blocked on communication or on a barrier,
respectively. For simplicity, assume that the communication
overheads and global barrier processing times are constant.

Stale messages. As described in Section 2.2, reducing
stale messages allows the AP execution of WCC to finish
in fewer supersteps than the BSP execution, translating to
shorter computation time. In general, allowing vertices to
see more recent (less stale) data to update their per-vertex
parameters enables faster convergence and shorter compu-
tation times, resulting in better performance [24]. Our pro-
posed BAP model preserves these advantages of the AP
model by also reducing message staleness without using dis-
tributed locking (Section 3).

Communication overheads. Since BSP and AP ex-
ecute only one superstep between global barriers, there is
usually insufficient computation work to adequately overlap
with and mask communication overheads. For example, in
Figures 5a and 5b, workers spend a large portion of their
time blocked on communication. Furthermore, for AP, the
communication overheads can outweigh performance gains
achieved by reducing message staleness. Figure 5c illustrates
how our proposed BAP model resolves this by minimizing
the use of global barriers: each worker can perform multiple
logical supersteps (separated by inexpensive local barriers)
without global barriers (Section 3), which greatly improves
the overlap between computation and communication.

Stragglers and synchronization costs. Stragglers are
the slowest workers in a computation. They are caused by
a variety of factors, some as simple as unbalanced hardware

952

Running: Blocked (comm.): Blocked (barrier):

W1

W2

W3

(a) BSP

W1

W2

W3

(b) BAP

Figure 6: WCC computation times based on real
executions of 16 workers on TW (Table 1).

resources and others that are more complex. For example,
the power-law degree distribution of natural graphs used
in computations can result in substantial computation and
communication load for a handful of workers due to the ex-
tremely high degrees of a small number of vertices [32]. In
algorithms like PageRank, some regions of the graph may
converge much slower than the rest of the graph, leading to
a few very slow workers.

The use of global barriers then gives rise to the straggler
problem: global synchronization forces all fast workers to
block and wait for the stragglers. Consequently, fast work-
ers spend large portions of their time waiting for stragglers
rather than performing useful computation. Hence, global
barriers carry a significant synchronization cost. Further-
more, because BSP and AP both use global barriers fre-
quently, these synchronization costs are further multiplied
by the number of supersteps executed. On graphs with very
large diameters, algorithms like WCC can require thousands
of supersteps, incurring substantial overheads.

As an example, consider Figure 6, which is based on real
executions of a large real-world graph. In the BSP execution
(Figure 6a), W3 is the straggler that forces W1 and W2 to
block on every superstep. This increases the overall compu-
tation time and prevents W1 and W2 from making progress
between global barriers. The BAP model (Figure 6b) sig-
nificantly lowers these synchronization overheads by mini-
mizing the use of global barriers, which allows W1 and W2

to perform multiple iterations without waiting for W3. Fur-
thermore, W1 and W2 are able to compute further ahead and
propagate much newer data to W3, enabling W3 to finish in
less time under the BAP model.

2.4.2 Algorithmic Support
The AP model supports BSP algorithms that perform ac-

cumulative updates, such as WCC (Section 5.2.2), where a
vertex does not need all messages from all neighbours to
perform its computation (Theorem 1).

Theorem 1. The AP and BAP models correctly execute
single-phase BSP algorithms in which vertices do not need
all messages from all neighbours.

Proof Sketch. (See Appendix B of [19] for full proof.)
A key property of single-phase BSP algorithms is that (1)
the computation logic is the same in each superstep. Conse-
quently, it does not matter when a message is seen, because
it will be processed in the same way. If vertices do not need
all messages from all neighbours, then (2) the compute func-
tion can handle any number of messages in each superstep.
Intuitively, if every vertex executes with the same logic, can

W1 W1 W1 W1

W2 W2

W3 W3 W3

W1

W2

W3

Global BarrierLocal Barrier

LSS 1 LSS 2 LSS 3 LSS 4

LSS 1 LSS 2

LSS 1 LSS 2 LSS 3

GSS 1 GSS 2

Figure 7: The BAP model, with two global super-
steps and three workers. GSS stands for global su-
perstep, while LSS stands for logical superstep.

have differing number of edges, and does not always receive
messages from all neighbours, then it must be able to process
an arbitrary number of messages.

Thus, correctness depends only on ensuring that every
message from a vertex v to a vertex u is seen exactly once.
Since both the AP and BAP model change only when mes-
sages are seen and not whether they are seen, they both
satisfy this condition. For example, AP’s relaxed isolation
means that messages may be seen one superstep earlier.

However, the AP model cannot handle BSP algorithms
where a vertex must have all messages from all neighbours
nor algorithms with multiple computation phases. In con-
trast, the BAP model supports both types of algorithms.
Furthermore, as we show in the next section, we can add
BAP’s support of these two types of algorithms back into
AP to get the enhanced AP (eAP) model.

3. THE BAP MODEL
Our barrierless asynchronous parallel (BAP) model offers

an efficient asynchronous execution mode by reducing both
the staleness of messages and frequency of global barriers.

As discussed in Section 2.4.1, global barriers limit perfor-
mance in both the BSP and AP models. The BAP model
avoids global barriers by using local barriers that separate
logical supersteps. Unlike global barriers, local barriers do
not require global coordination: they are local to each worker
and are used only as a pausing point to perform tasks like
graph mutations and to decide whether a global barrier is
necessary. Since local barriers are internal to the system,
they occur automatically and are transparent to developers.

A logical superstep is logically equivalent to a regular BSP
superstep in that both execute vertices exactly once and are
numbered with strictly increasing values. However, unlike
BSP supersteps, logical supersteps are not globally coordi-
nated and so different workers can execute a different num-
ber of logical supersteps. We use the term global supersteps
to refer to collections of logical supersteps that are separated
by global barriers. Figure 7 illustrates two global supersteps
(GSS 1 and GSS 2) separated by a global barrier. In the first
global superstep, worker 1 executes four logical supersteps,
while workers 2 and 3 execute two and three logical super-
steps respectively. In contrast, BSP and AP have exactly
one logical superstep per global superstep.

Local barriers and logical supersteps enable fast work-
ers to continue execution instead of blocking, which min-
imizes communication and synchronization overheads and
mitigates the straggler problem (Section 2.4.1). Logical su-
persteps are thus much cheaper than BSP supersteps as they
avoid synchronization costs. Local barriers are also much

953

LSS i Msgs? LSS i+ 1

GB

Yes

No

(a) Naive approach.

LSS i Msgs?

Lightweight GB

LSS i+ 1

GB

Yes

No

Receive msg All workers
arrive

(b) Improved approach.

Figure 8: Simplified comparison of worker control
flows for the two approaches to local barriers. LSS
stands for logical superstep and GB for global barrier.

faster than the processing times of global barriers alone (i.e.,
excluding synchronization costs), since they do not require
global communication. Hence, per-superstep overheads are
substantially smaller in the BAP model, which results in
significantly better performance.

Finally, as in the AP model, the BAP model reduces mes-
sage staleness by allowing vertices to immediately see local
and remote messages that they have received. In Figure 7,
dotted arrows represent messages received and seen/pro-
cessed in the same logical superstep, while solid arrows in-
dicate messages that are not processed until the next logical
superstep. For clarity, we omit dotted arrows between every
worker box but note that they do exist.

Next, we present details about local barriers and algorith-
mic support in the BAP model.

3.1 Local Barriers
For simplicity, we first focus on algorithms with a single

computation phase. Algorithms with multiple computation
phases are discussed in Section 3.3.

3.1.1 Naive Approach
The combination of relaxed message isolation and local

barriers allow workers to compute without frequently block-
ing and waiting for other workers. However, this can pose
a problem for termination as both the BSP and AP models
use the master to check the termination conditions at the
global barrier following the end of every BSP superstep.

To resolve this, we use a two step termination check. The
first step occurs locally at a local barrier, while the second
step occurs globally at the master. Specifically, at a local
barrier, a worker independently decides to block on a global
barrier if there are no more local or remote messages to
process since this indicates there is no more work to be done
(Figure 8a). We do not need to check if all local vertices are
inactive since any pending messages will reactivate vertices.
After all workers arrive at the global barrier, the master
executes the second step, which is simply the regular BSP
termination check: terminate if all vertices are inactive and
there are no more unprocessed messages.

3.1.2 Improved Approach
The above approach is naive because it does not take into

account the arrival of remote messages after a worker de-
cides to block on a global barrier. That is, newly received
remote messages are not processed until the next global su-
perstep. This negatively impacts performance as workers

Running: Blocked (comm.): Blocked (barrier):

W1

W2

W3

Global barrier Local barrier

(a) Naive approach: workers remain blocked.

W1

W2

W3

Unblock to process new messages

(b) Improved approach: workers unblock to process new
messages. Blue regions indicate lightweight global barrier.

Figure 9: Performance comparison between the
naive vs. improved approach, based on SSSP ex-
ecutions of 16 workers on TW (Table 1).

can remain blocked for a long time, especially in the pres-
ence of stragglers, and it also results in more frequent global
barriers since the inability to unblock from a barrier means
that all workers eventually stop generating messages.

For example, the single source shortest path (SSSP) algo-
rithm begins with only one active vertex (the source), so the
number of messages sent between vertices increases, peaks
and then decreases with time (Section 5.2.1). Figure 9a
shows an SSSP execution using the naive approach, where
W1 and W3 initially block on a global barrier as they have
little work to do. Even if messages from W2 arrive, W1 and
W3 will remain blocked. In the second global superstep, W2

remains blocked for a very long time due to W1 and W3 be-
ing able to execute many logical supersteps before running
out of work to do. As a result, a large portion of time is
spent blocked on global barriers.

However, if we allow workers to unblock and process new
messages with additional logical supersteps, we can greatly
reduce the unnecessary blocking and shorten the total com-
putation time (Figure 9b). The improved approach does
precisely this: we insert a lightweight global barrier, before
the existing (BSP) global barrier, that allows workers to
unblock upon receiving a new message (Figure 8b). This
additional global barrier is lightweight because it is cheaper
to block and unblock from compared to the (BSP) global
barrier (Section 4.3). Unblocking under the above condi-
tion is also efficient because messages arrive in batches (Sec-
tion 4.2), so there is always sufficient new work to do.

Additionally, with this improved approach, if each worker
Wi waits for all its sent messages to be delivered (acknowl-
edged) before blocking, the recipient workers will unblock
before Wi can block. This means that all workers arrive
at the lightweight global barrier (and proceed to the (BSP)
global barrier) only when there are no messages among any
workers. This allows algorithms with a single computation
phase to be completed in exactly one global superstep.

Hence, local barriers ensure that algorithms are executed
using the minimal number of global supersteps, which min-
imizes communication and synchronization overheads. Fur-
thermore, the two step termination check is more efficient
and scalable than the distributed consensus algorithm used
by GraphLab async, as our experimental results will show
(Section 5.3). Finally, unlike GraphLab and its GAS model,
BAP fully supports graph mutations by having workers re-
solve pending mutations during a local barrier (Section 4.4).

954

3.2 Algorithmic Support
The BAP model, like the AP model, supports single-phase

algorithms that do not need all messages from all neighbours
(Theorem 1). Theorem 2 shows how the BAP model also
supports algorithms where vertices do require all messages
from all neighbours. This theorem also improves the algo-
rithmic support of the AP model, to give the eAP model.

Theorem 2. Given a message store that is initially filled
with valid messages, retains old messages, and overwrites
old messages with new messages, the BAP model correctly
executes single-phase BSP algorithms in which vertices need
all messages from all neighbours.

Proof Sketch. (See Appendix B of [19] for full proof.)
Like in Theorem 1’s proof sketch, we again have property
(1), so when a message is seen is unimportant. Since ver-
tices need all messages from all (in-edge) neighbours, we also
have that (2) an old message m from vertex v to u can be
overwritten by a new message m′ from v to u. The intuition
is that since every vertex needs messages from all its in-edge
neighbours, it must also send a message to each of its out-
edge neighbours. This means a newer message contains a
more recent state of a neighbour, which can safely overwrite
the old message that now contains a stale state.

Correctness requires that every vertex u sees exactly one
message from each of its in-edge neighbours in each (logical)
superstep. That is, u must see exactly N = deg−(u) mes-
sages. The message store described in the theorem ensures
that each u starts with, and (by retaining old messages) will
always have, exactly N messages. Property (2) allows new
incoming messages to overwrite corresponding old messages,
again ensuring N messages. Thus, independent of the (log-
ical) superstep of execution, u always sees N messages, so
both the AP and BAP models guarantee correctness.

Per Theorem 2, the message store must be initially filled
with messages. This is achieved in the BAP model by adding
a global barrier after the very first logical superstep of the
algorithm, when messages are sent for the first time.

3.3 Multiple Computation Phases
Algorithms with multiple computation phases are com-

putations composed of multiple tasks, where each task has
different compute logic. Therefore, computation phases re-
quire global coordination for correctness. To do so otherwise
requires rewriting the algorithm such that it can no longer
be programmed for BSP, which negatively impacts usability.

For example, in DMST (Section 5.2.3), the phase where
vertices find a minimum weight out-edge occurs after the
phase in which vertices add and remove edges. If these two
phases are not separated by a global barrier, the results
will be incorrect as some vertices will not have completed
their mutations yet. Hence, the BAP model must use global
barriers to separate different computation phases. However,
we can continue to use local barriers and logical supersteps
within each computation phase, which allows each phase to
complete in a single global superstep (Section 3.1.2).

In addition to computation phases that have multiple su-
persteps, many multi-phase algorithms have single-superstep
phases (phases that are only one BSP superstep). These are
typically used to send messages to be processed in the next
phase. Even with global barriers separating computation
phases, relaxed message isolation will cause vertices to see

these messages in the incorrect phase. In other words, mes-
sages for different phases will be incorrectly mixed together.
We handle these heterogeneous messages by considering all
the possible scenarios, as proved in Theorem 3.

Theorem 3. If every message is tagged with a Boolean at
the API level and two message stores are maintained at the
system level, then the BAP model supports BSP algorithms
with multiple computation phases.

Proof. Since the BAP model executes only algorithms
written for the BSP model, it suffices to consider multi-
phase algorithms implemented for BSP. For such algorithms,
there are only three types of messages: (1) a message sent
in the previous phase k − 1 to be processed in the current
phase k; (2) a message sent in phase k to be processed in
this same phase k; and (3) a message sent in phase k to be
processed in the next phase k+1. Other scenarios, in which a
message is sent in phase m to be processed in phase n where
(n−m) > 1, are not possible due to a property of BSP: any
message sent in one superstep is visible only in the next
superstep, so messages not processed in the next superstep
are lost. If (n−m) > 1, then phases n and m are more than
one superstep apart and so n cannot see the messages sent
by m. Since BAP separates computation phases with global
barriers, it inherits this property from the BSP model.

For the two message stores, we use one store (call it MSC)
to hold messages for the current phase and the other store
(call it MSN) to hold messages for the next phase. When
a new computation phase occurs, the MSN of the previous
phase becomes the MSC of the current phase, while the new
MSN becomes empty. We use a Boolean to indicate whether
a message, sent in the current phase, is to be processed in
the next computation phase. Since all messages are tagged
with this Boolean, we can determine which store (MSC or
MSN) to store received messages into.

Thus, all three scenarios are covered: if (1), the message
was placed in MSN during phase k−1, which becomes MSC

in phase k and so the message is made visible in the correct
phase; if (2), the message is placed in MSC of phase k, which
is immediately visible in phase k; finally, if (3), the message
is placed in MSN of phase k, which will become the MSC

of phase k + 1.

Theorem 3 implicitly requires knowledge of when a new
phase starts in order to know when to make MSN the new
MSC . In BAP, the start and end of computation phases can
be inferred locally by each worker since each phase completes
in one global superstep. That is, the start of a phase is
simply the start of a global superstep, while the end of a
phase is determined by checking if any more local or remote
messages are available for the current phase. Messages for
the next phase are ignored, as they cannot be processed yet.
Hence, the BAP model detects phase transitions without
modifications to the developer API.

Theorem 3 is also applicable to the AP model, thus en-
hancing it to also support multi-phase algorithms. However,
unlike BAP, the eAP model is unable to infer the start and
end of computation phases, so it requires an additional API
call for algorithms to notify the system of a computation
phase change (Section 4.5.1).

Section 4.5 describes an implementation that provides mes-
sage tagging without introducing network overheads. Hence,
the BAP model efficiently supports multi-phase algorithms
while preserving the BSP developer interface.

955

4. GIRAPHUC
We now describe GiraphUC, our implementation of the

BAP model in Giraph. We use Giraph because it is a popu-
lar and performant push-based distributed graph processing
system. For example, Giraph is used by Facebook in their
production systems [12]. We first provide background on Gi-
raph, before discussing the modifications done to implement
the eAP model and then the BAP model.

4.1 Giraph Background
Giraph is an open source system that features receiver-side

message combining (to reduce memory usage and computa-
tion time), blocking aggregators (for global coordination or
counters), and master.compute() (for serial computations
at the master). To support multithreading, each worker is
assigned multiple graph partitions. During each superstep,
a worker pairs available compute threads with uncomputed
partitions. Between supersteps, workers execute with a sin-
gle thread to perform serial tasks like resolving mutations
and blocking on global barriers.

Each worker maintains its own message store to hold all
incoming messages. To reduce contention on the store and
efficiently utilize network resources, each compute thread
has a message buffer cache to batch all outgoing messages.
After the cache is full or the partition has been computed,
the messages are flushed to the local message store (for local
messages) or sent off to the network (for remote messages).

To implement BSP, workers maintain two message stores
to hold messages from the previous and current supersteps,
respectively. The stores are rotated so that the store holding
messages from the current superstep can be read from only
in the next superstep. Lastly, global barriers are coordinated
by the master using Apache ZooKeeper.

4.2 Giraph Async
We first describe Giraph async, our implementation of the

enhanced AP (eAP) model that has support for additional
types of algorithms (Section 2.4.2). Just as the AP model is
the starting point for the BAP model, implementing Giraph
async is the first step towards implementing GiraphUC.

Giraph async provides relaxed message isolation by using
a single message store that holds messages from both the
previous and current supersteps. For GiraphUC, this would
be the previous and current logical, rather than BSP, super-
steps. We allow outgoing local messages to skip the message
buffer cache to minimize staleness, but continue to batch
outgoing remote messages to improve network performance.
This contrasts with GraphLab async, whose pull-based ap-
proach hinders the ability to batch communication.

When computing a vertex, messages that have arrived for
that vertex are removed from the message store, while mes-
sages that arrive after are seen in the next (logical) super-
step. For algorithms in which vertices require all messages
from all neighbours (Theorem 2), the messages for a vertex
are retrieved but not removed, since the message store must
retain old messages. To allow the message store to identify
which old messages to overwrite, we transparently tag each
message with the sender’s vertex ID, without modification
to the developer API. Section 4.5 describes how we support
algorithms with multiple computation phases.

In Giraph, graph mutations are performed after a global
barrier. Since Giraph async retains these global barriers, it

naturally supports mutations in the same way. Section 4.4
describes how mutations are supported in GiraphUC.

4.3 Adding Local Barriers
To implement GiraphUC, we add local barriers to Giraph

async. We implement local barriers following the improved
approach described in Section 3.1.2.

In the first step of the termination check, workers check
whether their message store is empty or, if messages are
overwritten instead of removed, whether any messages were
overwritten. In the second step, the master checks if all ver-
tices are inactive and the number of unprocessed messages
is zero, based on statistics that each worker records with
ZooKeeper. Since remote messages can arrive at any time
and be processed in the same global superstep, we assign
each worker a byte counter that increases for sent remote
messages, decreases for received and processed remote mes-
sages, and is reset at the start of every global (but not logi-
cal) superstep. Each worker records the counter’s value with
ZooKeeper before blocking at a global barrier. By summing
together the workers’ counters, the master correctly deter-
mines the presence or absence of unprocessed messages.

Finally, the lightweight global barrier is also coordinated
by the master via ZooKeeper but, unlike the (BSP) global
barrier, does not require workers to record any statistics with
ZooKeeper before blocking. This allows workers to unblock
quickly without needing to erase recorded statistics.

4.4 Graph Mutations
GiraphUC, unlike GraphLab, fully supports graph muta-

tions. Mutation requests are sent as asynchronous messages
to the worker that owns the vertices or edges being modified
and the requests are buffered by that worker upon receipt.

In Giraph, and hence GiraphUC, a vertex is owned solely
by one partition, while an edge belongs only to its source
vertex (an undirected edge is represented by two directed
edges). That is, although edges can cross partition (worker)
boundaries, they will always belong to one partition (worker).
Hence, vertex and edge mutations are both operations local
to a single worker and can be safely resolved during a local
barrier, when no compute threads are executing.

Finally, because messages are buffered in the recipient
worker’s message store, messages for a new vertex will re-
main until the vertex is added and retrieves them by itself,
while messages for a deleted vertex will be properly purged,
which is identical to what is done in BSP. We have addi-
tionally verified correctness experimentally, using both algo-
rithms that perform edge mutations, such as DMST (Section
5.2.3), and algorithms that perform vertex mutations, such
as k-core [27, 3]. Even non-mutation algorithms like SSSP
(Section 5.2.1) can perform vertex additions in Giraph: if
an input graph does not explicitly list a reachable vertex, it
gets added via vertex mutation when first encountered.

4.5 Multiple Computation Phases
As proved for Theorem 3, multi-phase algorithms can be

supported by having developers tag all messages with a
Boolean. This addition does not impede usability since the
Boolean is straightforward to set: true if the phase sending
the message is unable to process such a message and false

otherwise. For example, this change adds only 4 lines of
code to the existing 1300 lines for DMST (Section 5.2.3).

956

Table 1: Directed datasets. Parentheses indicate values for the undirected versions used by DMST.

Graph |V | |E| Average Degree Max In/Outdegree Harmonic Diameter

USA-road-d (US) 23.9M 57.7M (57.7M) 2.4 (2.4) 9 / 9 (9) 1897± 7.5
arabic-2005 (AR) 22.7M 639M (1.11B) 28 (49) 575K / 9.9K (575K) 22.39± 0.197
twitter-2010 (TW) 41.6M 1.46B (2.40B) 35 (58) 770K / 2.9M (2.9M) 5.29± 0.016
uk-2007-05 (UK) 105M 3.73B (6.62B) 35 (63) 975K / 15K (975K) 22.78± 0.238

To avoid network overheads, we note that messages in Gi-
raph are always sent together with a destination partition
ID, which is used by the recipient to determine the destina-
tion graph partition of each message. Hence, we encode the
Boolean into the integer partition ID: messages for the cur-
rent phase have a positive partition ID, while messages for
the next phase have a negative partition ID. The sign of the
ID denotes the message store, MSC or MSN (Theorem 3),
that the message should be placed into.

4.5.1 Giraph Async
Giraph async uses the same Boolean tagging technique

to support multi-phase algorithms. However, since Giraph
async cannot infer computation phase changes (Section 3.3),
a parameterless notification call must be added in either
master.compute(), where phase transition logic is typically
managed, or in the vertex compute function. In the for-
mer case, the master notifies all workers before the start of
the next superstep. This allows workers to discern between
phases and know when to exchange its message stores.

4.6 Aggregators and Combiners
Since Giraph is based on the BSP model, aggregators are

blocking by default. That is, aggregator values can be ob-
tained only after a global barrier. To avoid global barriers,
GiraphUC supports aggregators that do not require global
coordination. For example, algorithms that terminate based
on some accuracy threshold use an aggregator to track the
number of active vertices and terminate when the aggrega-
tor’s value is zero. This works in GiraphUC without change
since each worker can use a local aggregator that tracks its
number of active vertices, aggregate the value locally on
each logical superstep, and block on a global barrier when
the local aggregator’s value is zero. This then allows the
master to terminate the computation. Finally, like Giraph,
GiraphUC also supports receiver-side message combining.

4.7 Fault Tolerance
Fault tolerance in GiraphUC is achieved using Giraph’s

existing checkpointing and failure recovery mechanisms. Just
as in Giraph, all vertices, edges, and message stores are se-
rialized during checkpointing and deserialized during recov-
ery. In the case of algorithms with multiple computation
phases, checkpointing can be performed at the global bar-
riers that separate the computation phases. For more fine-
grained checkpointing, or in the case of algorithms with only
a single computation phase, checkpointing can be performed
at regular time intervals instead. After each time interval,
workers independently designate the next local barrier as a
global barrier to enable a synchronous checkpoint.

5. EXPERIMENTAL EVALUATION
We compare GiraphUC to synchronous Giraph (Giraph

sync), Giraph async, GraphLab sync, and GraphLab async.

We use these systems as both Giraph and GraphLab are
widely used in academia and industry and are performant
open source distributed systems [20]. While Giraph sync
and GraphLab sync capture the performance of synchronous
systems (BSP and synchronous GAS, respectively), Giraph
async is a performant implementation of the eAP model
(Section 4.2) and GraphLab async is a state-of-the-art pull-
based asynchronous system (asynchronous GAS).

We exclude GRACE and Giraph++’s hybrid mode, which
both implement AP, because Giraph async is a more perfor-
mant and scalable implementation of AP that also provides
better algorithmic support (Section 4.2). Specifically, Gi-
raph async is distributed, whereas GRACE is single-machine,
and it is implemented on top of Giraph 1.1.0, which signifi-
cantly outperforms the much older Giraph 0.1 on which Gi-
raph++ is implemented. Giraph async also supports DMST,
a multi-phase mutations algorithm, whereas GRACE and
Giraph++’s hybrid mode do not. We also exclude systems
like GPS, Mizan, and GraphX (Section 6) as they are less
performant than Giraph and GraphLab [20, 36].

5.1 Experimental Setup
To test performance at scale, we use 64 EC2 r3.xlarge

instances, each with four vCPUs and 30.5GB of memory.
All machines run Ubuntu 12.04.1 with Linux kernel 3.2.0-
70-virtual, Hadoop 1.0.4, and jdk1.7.0 65. We use Giraph
1.1.0-RC0 from June 2014, which is also the version that
GiraphUC and Giraph async are implemented on, and the
version of GraphLab 2.2 released in October 2014.

As scalability is a key focus, we evaluate all systems with
large real-world datasets2,3[8, 7, 6]. We store all datasets as
regular text files on HDFS and load them into all systems
using the default random hash partitioning.

Table 1 lists the four graphs we test: US is a road net-
work graph, TW is a social network graph, and AR and UK

are both web graphs. Table 1 also details several properties
for each graph. |V | and |E| denote the number of vertices
and directed edges, while the average degree gives a sense of
how large |E| is relative to |V |. The maximum indegree or
outdegree provides a sense of how skewed the graph’s degree
distribution is, while the harmonic diameter indicates how
widely spread out the graph is [5, 9].

In particular, the social and web graphs all have very large
maximum degrees since they follow a power-law degree dis-
tribution. Their small diameters also indicate tight graphs:
TW, being a social graph, exhibits the “six degrees of separa-
tion” phenomenon, while the web graphs have larger diam-
eters. In contrast, US has very small average and maximum
degrees but a very large diameter. Intuitively, this is be-
cause cities (vertices) do not have direct roads (edges) to
millions of other cities. Instead, most cities are connected

2
http://www.dis.uniroma1.it/challenge9/download.shtml

3
http://law.di.unimi.it/datasets.php

957

http://www.dis.uniroma1.it/challenge9/download.shtml
http://law.di.unimi.it/datasets.php

by paths that pass through other cities, which means that
road networks tend to sprawl out very widely—for example,
US is spread across North America. These real-world char-
acteristics can affect performance in different ways: high
degree skews can cause performance bottlenecks at a hand-
ful of workers, leading to stragglers, while large diameters
can result in slow convergence or cause algorithms to require
a large number of supersteps to reach termination.

5.2 Algorithms
In our evaluation, we consider four different algorithms:

SSSP, WCC, DMST, and PageRank. These four algorithms
can be categorized in three different ways: compute bound-
edness, network boundedness, and accuracy requirements.
PageRank is an algorithm that is computationally light,
meaning it is proportionally more network bound, and it
has a notion of accuracy. SSSP and WCC are also com-
putationally light but do not have a notion of accuracy as
their solutions are exact. Both are also network bound, with
WCC requiring more communication than SSSP, and, un-
like PageRank, the amount of communication in SSSP and
WCC also varies over time. Finally, DMST also provides
exact solutions but it is computationally heavy and there-
fore more compute bound than network bound. Hence, each
algorithm stresses the systems in a different way, providing
insight into each system’s performance characteristics.

The BSP implementations of SSSP, WCC, and PageR-
ank work without modification on all systems. DMST is
a multi-phase mutations algorithm that, while unsupported
by GraphLab, can run on Giraph async and GiraphUC via
a simple modification (Section 4.5). We next describe each
algorithm in more detail.

5.2.1 SSSP
Single-source shortest path (SSSP) finds the shortest path

between a source vertex and all other vertices in its con-
nected component. We use the parallel variant of the Bellman-
Ford algorithm [14]. Each vertex initializes its distance (ver-
tex value) to∞, while the source vertex sets its distance to 0.
Vertices update their distance using the minimum distance
received from their neighbours and propagate any newly dis-
covered minimum distance to all neighbours. We use unit
edge weights and the same source vertex to ensure that all
systems perform the same amount of work.

5.2.2 WCC
Weakly connected components (WCC) is an algorithm

that finds the maximal weakly connected components of a
graph. A component is weakly connected if all constituent
vertices are mutually reachable when ignoring edge direc-
tions. We use the HCC algorithm [21], which starts with
all vertices initially active. Each vertex initializes its com-
ponent ID (vertex value) to its vertex ID. When a smaller
component ID is received, the vertex updates its vertex value
to that ID and propagates the ID to its neighbours. We cor-
rect GraphLab’s WCC implementation so that it executes
correctly in GraphLab async.

5.2.3 DMST
Distributed minimum spanning tree (DMST) finds the

minimum spanning tree (MST) of an undirected, weighted
graph. For unconnected graphs, DMST gives the minimum
spanning forest, a union of MSTs. We use the parallel

Boruvka algorithm [13, 29] and undirected versions of our
datasets weighted with distinct random edge weights.

The algorithm has four different computation phases. In
phase one, each vertex selects a minimum weight out-edge.
In phase two, each vertex u uses its selected out-edge and
the pointer-jumping algorithm [13] to find its supervertex, a
vertex that represents the connected component to which u
belongs. Phase two requires multiple supersteps to complete
and is coordinated using summation aggregators. In phase
three, vertices perform edge cleaning by deleting out-edges
to neighbours with the same supervertex and modifying the
remaining out-edges to point at the supervertex of the edge’s
destination vertex. Finally, in phase four, all vertices send
their adjacency lists to their supervertex, which merges them
according to minimum weight. Vertices designated as su-
pervertices return to phase one as regular vertices, while all
other vertices vote to halt. The algorithm terminates when
only unconnected vertices remain.

The implementation of DMST is over 1300 lines of code
and uses custom vertex, edge, and message data types. We
add only 4 lines of code to make DMST compatible with
GiraphUC and an additional change of 4 more lines of code
for Giraph async. As described in Section 4.5, these changes
are simple and do not affect the algorithm’s logic.

5.2.4 PageRank
PageRank is an algorithm that ranks webpages based on

the idea that more important pages receive more links from
other pages. Like in [33], we use the accumulative update
PageRank [39]. All vertices start with a value of 0.0. At each
superstep, a vertex u sets delta to be the sum of all values
received from its in-edges (or 0.15 in the first superstep), and
its PageRank value pr(u) to be pr(u) + delta. It then sends
0.85·delta/deg+(u) along its out-edges, where deg+(u) is u’s
outdegree. The algorithm terminates after a user-specified
K supersteps, and each output pr(u) gives the expectation
value for a vertex u. The probability value can be obtained
by dividing the expectation value by the number of vertices.

All systems except GraphLab async terminate after a fixed
number of (logical) supersteps, as this provides the best ac-
curacy and performance. GraphLab async, which has no
notion of supersteps, terminates after the PageRank value
of every vertex u changes by less than a user-specified thresh-
old ε between two consecutive executions of u.

5.3 Results
For our results, we focus on computation time, which is

the total time of running an algorithm minus the input load-
ing and output writing times. Computation time hence in-
cludes time spent on vertex computation, barrier synchro-
nization, and network communication. This means, for ex-
ample, it captures network performance: poor utilization of
network resources translates to poor (longer) computation
time. Since computation time captures everything that is af-
fected by using different computation models, it accurately
reflects the performance differences between each system.

Due to space constraints, we exclude the results for AR.
They can be found in the longer version of this paper [19].
For SSSP, WCC, and DMST (Figure 10), we report the
mean and 95% confidence intervals of five runs. For PageR-
ank (Figure 11), each data point is the mean of five runs,
with 95% confidence intervals shown as vertical and hori-
zontal error bars for both accuracy and time. Additionally,

958

Giraph (sync) Giraph (async) GiraphUC GraphLab (sync) GraphLab (async)

US0

200

400

600

800

1000

1200

1400

1600

C
o
m
p
u
ta
ti
o
n
 t
im

e
 (
se
cs
)

F 0.0

10.1

C
o
m
p
u
ta
ti
o
n
 t
im

e
 (
se
cs
)

530

550

570

TW0

5

10

15

20

0

1000

C
o
m
p
u
ta
ti
o
n
 t
im

e
 (
se
cs
)

4400
4550
4700

UK0

20

40

60

80

100

120

(a) SSSP

US0

200

400

600

800

1000

1200

1400

1600

1800

C
o
m
p
u
ta
ti
o
n
 t
im

e
 (
se
cs
)

F 0

100

C
o
m
p
u
ta
ti
o
n
 t
im

e
 (
se
cs
)

670
710
750

TW0
10
20
30
40
50
60
70
80

UK0

100

200

300

400

500

C
o
m
p
u
ta
ti
o
n
 t
im

e
 (
se
cs
)

F

(b) WCC

US0

10

20

30

40

50

60

70

80

C
o
m
p
u
ta
ti
o
n
 t
im

e
 (
se
cs
)

NS NS
TW0

50

100

150

200

250

300

350

400

C
o
m
p
u
ta
ti
o
n
 t
im

e
 (
se
cs
)

NSNS

(c) DMST

Figure 10: Computation times for SSSP, WCC, and DMST. Missing bars are labelled with ‘F’ for unsuccessful
runs and ‘NS’ for unsupported algorithms.

Giraph (sync) Giraph (async) GiraphUC GraphLab (sync) GraphLab (async)

0 20 40 60 80 100
Computation time (secs)

10-2
10-1
100
101
102
103
104
105
106

L
1
-n
o
rm

 (
lo
g
 s
ca

le
)

(a) US

0 200 400 600 800 1000
Computation time (secs)

10-4
10-3
10-2
10-1
100
101
102
103
104
105
106

L
1
-n
o
rm

 (
lo
g
 s
ca

le
)

(b) TW

200 400 600 800 1000 1200 1400 1600
Computation time (secs)

10-2
10-1
100
101
102
103
104
105
106

L
1
-n
o
rm

 (
lo
g
 s
ca

le
)

(c) UK

Figure 11: Plots of L1-norm (error) vs. computation time for PageRank.

we ensure correctness by comparing the outputs of Gira-
phUC and Giraph async to that of Giraph sync. In total,
we perform over 700 experimental runs.

5.3.1 SSSP
GiraphUC outperforms all of the other systems for SSSP

on all datasets (Figure 10a). This performance gap is par-
ticularly large on US, which requires thousands of supersteps
to complete due to the graph’s large diameter (Table 1). By
reducing per-superstep overheads, GiraphUC is up to 4.5×
faster than Giraph sync, Giraph async, and GraphLab sync.
Giraph async performs poorly due to the high per-superstep
overheads of using global barriers. GraphLab async fails
on US after 2 hours (7200s), indicated by an ‘F’ in Fig-
ure 10a, due to machines running out of memory during
its distributed consensus termination. This demonstrates
that GiraphUC’s two step termination check has superior
scalability.

On TW and UK, GiraphUC continues to provide gains. For
example, it is up to 2× faster than Giraph sync, Giraph
async, and GraphLab sync on TW. GraphLab async success-
fully runs on these graphs but its computation times are
highly variable (Figure 10a) due to highly variable network
overheads. These overheads are due to GraphLab async’s
lack of message batching and its pairing of lightweight threads
to individual vertices, which results in highly non-deterministic
execution compared to GiraphUC’s approach of pairing com-
pute threads with partitions (Section 4.1). GraphLab async’s
poor scalability is especially evident on TW and UK, where Gi-
raphUC outperforms it by 59× and 86× respectively. Hence,
GiraphUC is more scalable and does not suffer the com-
munication overheads caused by GraphLab async’s lack of

message batching and its use of distributed locking and dis-
tributed consensus termination.

5.3.2 WCC
For WCC, GiraphUC consistently outperforms all of the

other systems on all graphs: up to 4× versus Giraph sync
and async on US, and nearly 5× versus GraphLab sync on
TW (Figure 10b). In particular, whenever Giraph async has
gains over Giraph sync, such as on UK, GiraphUC further
improves on Giraph async’s performance. In cases where
Giraph async performs poorly, such as on US, GiraphUC
still performs better than Giraph sync. This shows that the
BAP model implemented by GiraphUC provides substantial
improvements over the eAP model used by Giraph async.

Finally, like in SSSP, GraphLab async again performs
poorly at scale: it fails on US after 5 hours (18,000s) and
UK after 40 minutes (2400s) due to exhausting the avail-
able memory at several worker machines. For TW, on which
GraphLab async successfully runs, GiraphUC is still 43×
faster (Figure 10b).

5.3.3 DMST
For DMST, GiraphUC is 1.7× faster than both Giraph

sync and async on US, and 1.4× and 1.8× faster than Gi-
raph sync and async respectively on TW (Figure 10c). These
performance gains are primarily achieved in the second com-
putation phase of DMST, which typically requires many su-
persteps to complete (Section 5.2.3). GiraphUC’s gains are
slightly lower than in SSSP and WCC because DMST is
more compute bound, which means proportionally less time
spent on communication and barriers. This is particularly
true for TW, whose extreme degree skew leads to more com-
putation time spent performing graph mutations. Neverthe-

959

less, GiraphUC’s good performance establishes its effective-
ness also for compute bound algorithms and algorithms that
require multiple computation phases.

Giraph sync, Giraph async, and GiraphUC, when running
DMST on UK, all exhaust the memory of several worker ma-
chines due to the size of the undirected weighted version of
the graph. However, we expect trends to be similar since UK

has a less extreme degree skew than TW (Table 1), meaning
DMST will be less compute bound and can hence benefit
more under GiraphUC.

Note that GraphLab (both sync and async) cannot im-
plement DMST as they do not fully support graph muta-
tions. This is indicated in Figure 10c with ‘NS’ for “not
supported”. Hence, GiraphUC is both performant and more
versatile with full support for graph mutations.

5.3.4 PageRank
PageRank, unlike the other algorithms, has a dimension

of accuracy in addition to time. Like in [33], we define ac-
curacy in terms of the L1-norm between the output PageR-
ank vector (the set of output vertex values) and the true
PageRank vector, which we take to be the PageRank vec-
tor returned after 300 supersteps of synchronous execution
[33]. The lower the L1-norm, the lower the error and hence
higher the accuracy. We plot the L1-norm (in log scale) ver-
sus computation time to characterize performance in terms
of both accuracy and time (Figure 11).

In the plots, all lines are downward sloping because the
L1-norm decreases (accuracy increases) with an increase in
time, since executing with more supersteps or a lower ε tol-
erance requires longer computation times. In particular, this
shows that Giraph async and GiraphUC’s PageRank vectors
are converging to Giraph’s, since their L1-norm is calculated
with respect to Giraph’s PageRank vector after 300 super-
steps. When comparing the different lines, the line with
the best performance is one that (1) is furthest to the left
or lowest along the y-axis and (2) has the steepest slope.
Specifically, (1) means that a fixed accuracy is achieved in
less time or better accuracy is achieved in a fixed amount of
time, while (2) indicates faster convergence (faster increase
in accuracy per unit time).

From Figure 11, we see that GiraphUC has the best PageR-
ank performance on all datasets. Its line is always to the left
of the lines of all other systems, meaning it achieves the same
accuracy in less time. For example, on US (Figure 11a), Gi-
raphUC is 2.3× faster than GraphLab sync and 1.8× faster
than Giraph sync in obtaining an L1-norm of 10−1. Com-
pared to Giraph async, GiraphUC’s line is steeper for US

and TW and equally steep for UK, indicating GiraphUC has
similar or better convergence than Giraph async.

Lastly, GraphLab async again performs poorly due to lim-
ited scalability and communication overheads: its line is far
to the right and has a very shallow slope (very slow conver-
gence). Additionally, as observed with SSSP and WCC, its
computation times tend to be highly variable: its horizontal
(time) error bars are more visible than that of the other sys-
tems, which are largely obscured by the data point markers
(Figure 11c). On US, GraphLab async achieves an L1-norm
of 2.6 × 105 after roughly 530s, which is 45× slower than
GiraphUC. On TW, GraphLab async reaches an L1-norm of
1.0 after roughly 3260s, meaning GiraphUC is 10× faster in
obtaining the same level of accuracy.

5.4 Sensitivity Analysis
We also analyzed the sensitive of message batching and

the performance of the naive vs. improved approach to lo-
cal barriers in GiraphUC. Briefly, for batching, the default
buffer cache size of 512KB is optimal in that using 256KB or
1MB do not yield benefits. Using message batching is also
up to an order of magnitude faster than not using batching.
For local barriers, the improved approach is up to an order
of magnitude faster than the naive approach and also pro-
duces less variable computation times. We refer interested
readers to [19] for a more detailed analysis.

6. RELATED WORK
An overview of Pregel, Giraph, and GraphLab (which in-

corporates PowerGraph [16]) and how their models compare
to GiraphUC’s BAP model is provided in Sections 2 and 3.

In addition, there are several other synchronous graph
processing systems based on BSP. Apache Hama [2] is a
general BSP system that, unlike Giraph, is not optimized
for graph processing and does not support graph mutations.
Blogel [37] is a BSP graph processing system that extends
the vertex-centric programming model by providing a block-
centric programming model where developers can addition-
ally specify computation on blocks of vertices. GraphX [36]
is a system built on the data parallel engine Spark [38] and
presents a Resilient Distributed Graph (RDG) programming
abstraction in which graphs are stored as tabular data and
graph operations are implemented using distributed joins.
GraphX’s primary goal is to provide more efficient graph
processing for end-to-end data analytic pipelines implemented
in Spark. Pregelix [11] is a BSP graph processing system
implemented in Hyracks [10], a shared-nothing dataflow en-
gine. Pregelix stores graphs and messages as data tuples and
uses joins to implement message passing. Hence, it consid-
ers graph processing at a lower architectural level. Trinity
[31] is a propriety graph computation system that uses a dis-
tributed in-memory key-value store to support online graph
queries and offline BSP graph processing. GraphChi [23]
is a single-machine disk-based graph processing system for
processing graphs that do not fit in memory.

There are also several BSP systems that focus on dy-
namic workload balancing, which is orthogonal to our BAP
model. GPS [28] is an open source system that considers
optimizations like large adjacency list partitioning and dy-
namic migration, both of which aim to improve performance
on power-law graphs. GPS was found to be overall less per-
formant than Giraph 1.0.0 and its optimizations did not
substantially improve computation times [20]. Our experi-
mental evaluation uses the newer Giraph 1.1.0, which out-
performs Giraph 1.0.0. Mizan [22] also considers dynamic
migration but its performance was found to be poor com-
pared to Giraph and GraphLab [20]. Catch the Wind [30]
is a closed source system built on top of Hama that con-
siders dynamic migration through workload monitoring and
message activities.

As outlined in Section 5, asynchronous execution in BSP
has been considered in GRACE and Giraph++. GRACE
[35] is a single-machine shared memory system that, un-
like Giraph, GiraphUC, and GraphLab, is not distributed.
GRACE implements the asynchronous model through user
customizable vertex scheduling and message selection, which
can complicate the developer API. In contrast, GiraphUC
preserves Giraph’s simple BSP developer interface. GRACE

960

also requires an immutable graph structure, so it does not
support graph mutations, and it retains per-superstep global
barriers, meaning it does not implement the BAP model.
Giraph++ [33], which primarily focuses on a graph-centric
programming model, considers a vertex-centric hybrid mode
in which local messages are immediately visible but remote
messages are delayed until the next superstep. Unlike Gi-
raphUC, Giraph++’s hybrid mode supports neither algo-
rithms that need all messages from all neighbours nor al-
gorithms with multiple computation phases. It also retains
global barriers and so does not consider the BAP model.

7. CONCLUSION
We presented a new barrierless asynchronous parallel (BAP)

computation model, which improves upon the existing BSP
and AP models by reducing both message staleness and the
frequency of global synchronization barriers. We showed
how the BAP model supports algorithms that require graph
mutations as well as algorithms with multiple computation
phases, and also how the AP model can be enhanced to
provide similar algorithmic support. We demonstrated how
local barriers and logical supersteps ensure that each com-
putation phase is completed using only one global barrier,
which significantly reduces per-superstep overheads.

We described GiraphUC, our implementation of the BAP
model in Giraph, a popular open source distributed graph
processing system. Our extensive experimental evaluation
showed that GiraphUC is much more scalable than asyn-
chronous GraphLab and that it is up to 5× faster than syn-
chronous Giraph, asynchronous Giraph, and synchronous
GraphLab, and up to 86× faster than asynchronous GraphLab.
Thus, GiraphUC enables developers to program their algo-
rithms for the BSP model and transparently execute using
the BAP model to maximize performance.

8. REFERENCES
[1] Apache Giraph. http://giraph.apache.org.

[2] Apache Hama. http://hama.apache.org.

[3] Okapi. http://grafos.ml/okapi.
[4] GraphLab: Distributed Graph-Parallel API.

http://docs.graphlab.org/classgraphlab_1_1async_
_consistent__engine.html, 2014.

[5] L. Backstrom, P. Boldi, M. Rosa, J. Ugander, and S. Vigna.
Four Degrees of Separation. In WebSci ’12, 2012.

[6] P. Boldi, B. Codenotti, M. Santini, and S. Vigna.
UbiCrawler: A Scalable Fully Distributed Web Crawler.
Software: Practice & Experience, 34(8):711–726, 2004.

[7] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered Label
Propagation: A MultiResolution Coordinate-Free Ordering
for Compressing Social Networks. In WWW ’11, 2011.

[8] P. Boldi and S. Vigna. The Webgraph Framework I:
Compression Techniques. In WWW ’04, 2004.

[9] P. Boldi and S. Vigna. Four Degrees of Separation, Really.
http://arxiv.org/abs/1205.5509, 2012.

[10] V. R. Borkar, M. J. Carey, R. Grover, N. Onose, and
R. Vernica. Hyracks: A Flexible and Extensible Foundation
for Data-Intensive Computing. In ICDE ’11, 2011.

[11] Y. Bu, V. Borkar, J. Jia, M. J. Carey, and T. Condie.
Pregelix: Big(ger) Graph Analytics on A Dataflow Engine.
PVLDB, 8(2):161–172, 2015.

[12] A. Ching. Scaling Apache Giraph to a trillion edges.
http://www.facebook.com/10151617006153920, 2013.

[13] S. Chung and A. Condon. Parallel Implementation of
Borvka’s Minimum Spanning Tree Algorithm. In IPPS ’96.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. The MIT Press, 3rd edition.

[15] J. Edwards. ‘Facebook Inc.’ Actually Has 2.2 Billion Users
Now. http://www.businessinsider.com/
facebook-inc-has-22-billion-users-2014-7, 2014.

[16] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. PowerGraph: Distributed graph-parallel
computation on natural graphs. In OSDI ’12, 2012.

[17] Google. How search works. http://www.google.com/
insidesearch/howsearchworks/thestory/, 2014.

[18] M. Gurcan, L. Boucheron, A. Can, A. Madabhushi,
N. Rajpoot, and B. Yener. Histopathological Image
Analysis: A Review. IEEE Rev Biomed Eng, 2, 2009.

[19] M. Han and K. Daudjee. Giraph Unchained: Barrierless
Asynchronous Parallel Execution in Pregel-like Graph
Processing Systems. Technical Report CS-2015-04,
University of Waterloo, 2015.

[20] M. Han, K. Daudjee, K. Ammar, M. T. Özsu, X. Wang,
and T. Jin. An Experimental Comparison of Pregel-like
Graph Processing Systems. PVLDB, 7(12):1047–1058, 2014.

[21] U. Kang, C. E. Tsourakakis, and C. Faloutsos. PEGASUS:
A Peta-Scale Graph Mining System Implementation and
Observations. In ICDM ’09, pages 229–238, 2009.

[22] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom,
D. Williams, and P. Kalnis. Mizan: A system for dynamic
load balancing in large-scale graph processing. In EuroSys
’13, pages 169–182, 2013.

[23] A. Kyrola, G. Blelloch, and C. Guestrin. GraphChi:
Large-scale Graph Computation on Just a PC. In OSDI
’12, pages 31–46, 2012.

[24] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola,
and J. M. Hellerstein. Distributed GraphLab: A
Framework for Machine Learning and Data Mining in the
Cloud. PVLDB, 5(8):716–727, 2012.

[25] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A system for
large-scale graph processing. In SIGMOD/PODS ’10.

[26] N. Przulj. Protein-protein interactions: Making sense of
networks via graph-theoretic modeling. BioEssays,
33(2):115–123, 2011.

[27] L. Quick, P. Wilkinson, and D. Hardcastle. Using
Pregel-like Large Scale Graph Processing Frameworks for
Social Network Analysis. In ASONAM ’12, 2012.

[28] S. Salihoglu and J. Widom. GPS: A Graph Processing
System. In SSDBM ’13, pages 22:1–22:12, 2013.

[29] S. Salihoglu and J. Widom. Optimizing Graph Algorithms
on Pregel-like Systems. Technical report, Stanford, 2013.

[30] Z. Shang and J. X. Yu. Catch the Wind: Graph Workload
Balancing on Cloud. In ICDE ’13, pages 553–564, 2013.

[31] B. Shao, H. Wang, and Y. Li. Trinity: A Distributed Graph
Engine on a Memory Cloud. In SIGMOD ’13, 2013.

[32] S. Suri and S. Vassilvitskii. Counting Triangles and the
Curse of the Last Reducer. WWW ’11, 2011.

[33] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and
J. McPherson. From “Think Like a Vertex” to “Think Like
a Graph”. PVLDB, 7(3):193–204, 2013.

[34] L. G. Valiant. A Bridging Model for Parallel Computation.
Commun. ACM, 33(8):103–111, 1990.

[35] G. Wang, W. Xie, A. J. Demers, and J. Gehrke.
Asynchronous large-scale graph processing made easy. In
CIDR ’13, 2013.

[36] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica.
GraphX: A Resilient Distributed Graph System on Spark.
In GRADES ’13, pages 2:1–2:6, 2013.

[37] D. Yan, J. Cheng, Y. Lu, and W. Ng. Blogel: A
Block-Centric Framework for Distributed Computation on
Real-World Graphs. PVLDB, 7(14):1981–1992, 2014.

[38] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: Cluster Computing with Working Sets. In
HotCloud ’10, 2010.

[39] Y. Zhang, Q. Gao, L. Gao, and C. Wang. Accelerate
Large-scale Iterative Computation Through Asynchronous
Accumulative Updates. In ScienceCloud ’12, 2012.

961

http://giraph.apache.org
http://hama.apache.org
http://grafos.ml/okapi
http://docs.graphlab.org/classgraphlab_1_1async__consistent__engine.html
http://docs.graphlab.org/classgraphlab_1_1async__consistent__engine.html
http://arxiv.org/abs/1205.5509
http://www.facebook.com/10151617006153920
http://www.businessinsider.com/facebook-inc-has-22-billion-users-2014-7
http://www.businessinsider.com/facebook-inc-has-22-billion-users-2014-7
http://www.google.com/insidesearch/howsearchworks/thestory/
http://www.google.com/insidesearch/howsearchworks/thestory/

	Introduction
	Background and Motivation
	The BSP Model
	The AP Model
	Comparison to the GAS Model
	Limitations and Opportunities
	Performance
	Algorithmic Support

	The BAP Model
	Local Barriers
	Naive Approach
	Improved Approach

	Algorithmic Support
	Multiple Computation Phases

	GiraphUC
	Giraph Background
	Giraph Async
	Adding Local Barriers
	Graph Mutations
	Multiple Computation Phases
	Giraph Async

	Aggregators and Combiners
	Fault Tolerance

	Experimental Evaluation
	Experimental Setup
	Algorithms
	SSSP
	WCC
	DMST
	PageRank

	Results
	SSSP
	WCC
	DMST
	PageRank

	Sensitivity Analysis

	Related Work
	Conclusion
	References

