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ABSTRACT
The skyline operator returns records in a dataset that pro-
vide optimal trade-offs of multiple dimensions. State-of-the-
art skyline computation involves complex tree traversals,
data-ordering, and conditional branching to minimize the
number of point-to-point comparisons. Meanwhile, GPGPU
computing offers the potential for parallelizing skyline com-
putation across thousands of cores. However, attempts to
port skyline algorithms to the GPU have prioritized through-
put and failed to outperform sequential algorithms.

In this paper, we introduce a new skyline algorithm, de-
signed for the GPU, that uses a global, static partitioning
scheme. With the partitioning, we can permit controlled
branching to exploit transitive relationships and avoid most
point-to-point comparisons. The result is a non-traditional
GPU algorithm, SkyAlign, that prioritizes work-efficiency
and respectable throughput, rather than maximal through-
put, to achieve orders of magnitude faster performance.

1. INTRODUCTION
The skyline [3] is a well-studied operator for selecting the

most competitive points from a multi-dimensional dataset.
Consider the canonical example of selecting from amongst
a set of hotels such as those in Table 1. Here, hotel C is
clearly worse than A, because it is both more expensive and
lower rated. The skyline is the subset of data points that
are not clearly worse than any others, in this case {A,B}.

The skyline is expensive to compute. So, like several other
database operators (c.f., [7, 8, 11]), it could benefit from co-
processor acceleration. The GPU, in particular, offers high
throughput from extreme parallelism, running tens of thou-
sands of threads on thousands of cores to hide memory and
instruction latencies. Indeed, GPU skyline algorithms al-
ready exist [2, 5] and often approach the device’s maximum
theoretical compute throughput.

However, this throughput comes at a cost: in comparison
to state-of-the-art sequential algorithms [12, 20], the most
efficient of these GPU algorithms, GGS [2], does up to 650×
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Hotel Price Rating
A $45/nt ***
B $75/nt ****
C $50/nt **

Table 1: Sample hotel dataset. A and B are both in the
skyline, but C is not because it is dominated by (i.e., has
less desirable values for every attribute than) A.

more work (see Section 6). Even with 2688 cores, the par-
allelism in our modern GPU is insufficient to overcome this
volume of work; for benchmark datasets, computing skylines
sequentially is up to 3× faster than using the GPU. That
is to say, it is better not to use the GPU at all than to use
current GPU skyline algorithms.

Improving the algorithms, however, is non-trivial, because
they are compute-bound. Therefore, in order to outperform
sequential computation, GPU skyline algorithms must do
less work. Thus is our challenge, to achieve greater work-
efficiency on an architecture that thrives on throughput.

Even for multi-core [4], designing work-efficient, parallel
skyline algorithms is non-trivial. State-of-the-art sequential
skyline algorithms [12,20] derive performance from extensive
use of trees, recursion, strict ordering of computation, and
unpredictable branching. Many of these techniques are not
conducive to parallel performance, in general. On the GPU,
where threads are executed in groups (called warps) such
that blocks of warps execute in arbitrary order and threads
within a warp always execute the same instruction (i.e., are
step-locked), recursive data structures, ordered computa-
tion, and branch divergence are debillitating.

So, we introduce a new approach to skylines wherein we
globally, statically partition the data into a grid defined by
quartiles in the dataset. We recognize that the efficiency of
the recursive partitioning algorithms [12, 20] does not come
primarily, as thought, from their point-based partitioning,
but rather from the memoization of pairwise relationships
whenever two points are compared. (Section 4.1 reviews
this.) The memoization can still be done with our static
grid. Moreover, we can assign homogeneous work to step-
locked threads by allocating it in alignment with the static
grid cells. The result is hundreds-fold less work than GGS [2].

The compromise is that, even with our static grid scheme,
skipping point-to-point comparisons still incurs branch di-
vergence. Our non-traditional trade-off, then, is throughput:
we do not maximize throughput, but we are work-efficient—
running an order of magnitude faster than state-of-the-art
multicore [4]—while remaining bound by the availability of
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id x0 x1 x2 Dominated? Pruned?

p1 2 2 1
p0 1 2 3
p2 2 4 1 X
p3 3 3 3 X X

Table 2: Example of skyline definitions and of GPU-friendly
prefilter. Points p2 and p3 are dominated, so not part of the
skyline. The max of each row is bolded. The min of these,
2, is used as a threshold to prefilter points (just p3 here).

physical compute resources. So, our proposed SkyAlign al-
gorithm will scale elegantly with the increase in available
parallelism of next-generation GPUs.

Outline We introduce the skyline operator formally, along
with background on GPU computing in Section 2. In Sec-
tion 3 we detail key algorithmic developments in skyline lit-
erature. We describe a global, static partitioning scheme
in Section 4. Our proposed GPU algorithm, SkyAlign is
presented in Section 5 and evaluated against state-of-the-
art sequential, multicore, and GPU algorithms in Section 6.
Finally, we conclude in Section 7.

2. BACKGROUND
In this section, we introduce the notations and assump-

tions that formalize the work in this paper.
To begin, let P be a dataset consisting of n = |P | points

in d dimensions. Arbitrary points in P are denoted by pi, pj ,
or pk. The ith point in P , under the current ordering of P , is
denoted P [i]. The value of pi (or P [i]) in the δth dimension
is denoted pi[δ] (or P [i][δ]). For example, in Table 2, n = 4,
d = 3, and p1[2] = P [0][2] = 1.

Next, we describe skyline-related concepts (Section 2.1)
and then key characteristics of GPUs (Section 2.2).

2.1 Skyline Computation
The skyline is defined through the concept of dominance.

A point pi dominates another point pj if the points are dis-
tinct and pj does not have a smaller value1 than pi:

Definition 1 (Dominance [3]).
Point pi dominates point pj , denoted pi ≺ pj iff:

(∃δ ∈ [0, d), pi[δ] 6= pj [δ]) ∧
(
6 ∃δ′ ∈ [0, d), pj [δ

′] < pi[δ
′]
)
.

We denote the right half of the expression by pi ≺distinct

pj . This is useful when the distinctness of pi and pj can
be safely assumed, for it is twice cheaper to evaluate than
all of Definition 1. If neither pi ≺ pj nor pj ≺ pi, we say
that pi and pj are incomparable, denoted pi ≺� pj . Note that
dominance is transitive (i.e., pi ≺ pj∧pj ≺ pk =⇒ pi ≺ pk),
but that incomparability is not.

Given an input dataset, P , the skyline is the subset of P
that is not dominated:

Definition 2 (Skyline [3]).
The skyline of P , denoted SKY(P ), is the set:

{pi ∈ P : 6 ∃pj ∈ P, pj ≺ pi}.

Considering Table 2 again, both p2 and p3 are dominated
by p1, because none of the points are equivalent and neither

1We assume to prefer smaller values to simplify exposition.

p2 nor p3 has a smaller value on any dimension than does p1.
Point p0, on the other hand, is not dominated by p1, because
p0[0] < p1[0]. Since p1 6≺ p0 transitively implies that neither
p2 nor p3 dominate p0 either, the skyline is {p0, p1}.

Measuring skyline “work” Determining whether pi ≺
pj requires evaluating Definition 1, often called a dominance
test (DT). Although DTs are cheap, each requiring 6d+4 in-
structions,2 they are more expensive than the surrounding
computation, which consists mostly of control flow. Fur-
thermore, each DT loads 2d floats into registers, a transfer
cost that is poorly amortized by the 6d+ 4 instructions and
susceptible to memory-boundedness for parallel skylines.

Consequently, the performance of skyline algorithms is of-
ten measured in terms of the number of DTs executed [12,
20]. Minimizing this reduces both the compute and mem-
ory workload of an algorithm. Compared to the n(n − 1)
DTs used in a brute-force, quadratic algorithm, DTs can
be avoided with transitivity relative to a common “pivot”
point, which can be ascertained with a mask test (MT)
that loads just two integers and conducts just 3 instructions
(more on this in Section 4).

We define the number of these two high-level operations
as the work done by a skyline algorithm:

Definition 3 (Skyline work). The work done by algorithm
A to compute SKY(P ) using D DTs and M MTs is:

W(A, P ) = (3M + (6d+ 4)D).

An algorithm requiring a low amount of work is called
work-efficient. While the exact cost of DTs vs. MTs de-
pends on cache hit ratios, instruction-level parallelism, etc.,
work provides an abstract measure of performance of sky-
line algorithms. Unlike previous work (e.g. [4, 12]), which
only counts DTs, work recognizes that, while MTs are much
cheaper that DTs, they are also significantly more frequent.

2.2 GPU Computation
With thousands of physical processing cores, the GPU

offers tremendous opportunity for parallelism, especially as
a co-processor to simultaneous CPU computation. However,
it has important architectural differences from CPUs. Here,
we review those most relevant to this paper.

2.2.1 Computational model
The GPU can reach teraflop-level computational through-

put from a combination of rapid context switching and thou-
sands of (relatively slow) physical cores. Threads are grouped
into warps of size 32, and warps are grouped into thread
blocks (of tuneable size). Warps are rapidly switched out for
others when waiting for memory transfers in order to hide la-
tencies. So, throughput depends on launching enough warps
that some are always ready for execution.

Within a warp, all threads are step-locked; i.e., they all
execute the same instruction at the same time (although
some can idle instead). Branch divergence results when
two threads within the same warp evaluate a condition dif-
ferently, and consequently must execute separate instruc-
tions. This serializes computation, because some threads
execute one branch while the others idle, after which the

2Obtained by counting low-level operations in Algorithm 1
of GGS [2] (the branch-free dominance test). Branching DTs
are ill-suited to GPUs and have unpredictable, variable cost.
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candidate buffer

. . .

unprocessed points

Figure 1: Control flow for sort-based skyline algorithms.
As-yet-unprocessed points are iterated sequentially and
compared to current solution from left-to-right.

other threads execute the second branch while the first ones
idle. The cost of branch divergence can be minimized by en-
suring conditions have only one branch (i.e., no ELSE state-
ment), but this still idles threads, affecting throughput.

Thread blocks are launched concurrently and the order
in which they are executed is controlled at the hardware
level. Therefore, there are two means of introducing order
into computation: either at the thread-level (the sequence
of instructions executed by each thread) or with synchro-
nization points (where all active thread blocks finish before
any new ones are launched). Ordered computation within
a thread reduces throughput by limiting opportunities for
instruction-level parallelism. Synchronization also reduces
throughput, because the last thread blocks are unlikely to
finish at the same time, leaving physical resources idle.

2.2.2 Memory model
It is important to be aware of the GPU memory model,

because control flow that maximizes cache utilization is crit-
ical to achieving high memory throughput on the device.

Similar to the CPU, the GPU has a highly stratified mem-
ory hierarchy. There is a high latency in copying data from
the CPU (host) to the GPU (device) and back. The GPU
memory hierarchy consists of global memory shared among
all resources (6GB on our device), an L2 cache (1.5MB on
our device), and three lower-level caches. The read-only tex-
ture cache (48KB) has the lowest latency when reading from
L2 and is shared among all active thread blocks. 64KB is
available for shared memory and the L1 cache, and the pro-
portion devoted to each is configurable. Shared memory is
local to a thread block and the L1 cache is local to the set of
thread blocks that share a multiprocessor. While L2, and L1
behave like a naive cache, one can deliberately specify which
data should be read through texture cache. Shared mem-
ory can be used like a heap, with allocations and memory
accesses controlled from software.

Finally, each thread can use up to 255 registers, subject to
the constraint that at most 65536 registers can be used by
the thread blocks sharing the 192 cores of a multiprocessor.

3. RELATED WORK
The skyline operator was introduced by Börzsönyi et al. [3]

and has sinced received considerable research attention. Here,
we are primarily interested in milestone algorithmic devel-
opments in main-memory and parallel skyline computation.
We review a key selection of them below.

3.1 Sort-based (and GPU) skyline algorithms
Sort-based skyline algorithms obtain efficiency from mono-

tonicity and transitivity. Figure 1 illustrates the basic con-
trol flow, introduced as the block-nested-loops (BNL)3 algo-

3We assume “large” memory to simplify the algorithm.

rithm [3]. Each unprocessed point pi is compared with DTs
against each point pj in the current solution. If pj ≺ pi,
then pi is discarded and control passes to the next point. If
pi ≺ pj , then pj is removed from the current solution. BNL
can be parallelized (e.g., on FPGAs [19]), but is inefficient
in terms of work.

The sort-first skyline (SFS) [6] algorithm sorts the points
by Manhattan Norm4 prior to executing BNL. The sort key
ensures P [i + x] 6≺ P [i], for any positive x. In other words,
once a point is added to the solution, it will never be re-
moved. Furthermore, the sort order loosely correlates with
the probability of dominating a random point; so, domi-
nated points are discarded faster. The SaLSa [1] extension
changes the sort key to min attribute value, which permits
halting once the smallest max seen in the buffer is less than
the min at the head of the unprocessed list. Points can also
be sorted by z-order [13], another monotonic sort key.

Existing GPU skyline algorithms are adaptations of these
ideas for the GPU. The GNL [5] algorithm launches a thread
for every point. The thread working on behalf of pi treats
the half of the dataset following pi (wrapping around to
the beginning) as the candidate window. For any point pj
determined to be dominated by pi, the thread increments
pj ’s global counter (initialized to zero). If pj ≺ pi, then pi’s
counter is incremented. Afterwards, any points with non-
zero counters are not in the solution. These counters avoid
any synchronization; so, GNL achieves very high throughput.

The GGS algorithm [2], similarly to SFS, first sorts the
data by Manhattan Norm. For each iteration, the first α
sorted points are declared the candidate buffer. A thread is
launched for every point and it compares its point to every
point in the buffer. Each iteration is suceeded by a syn-
chronization step in which dominated points are removed,
non-dominated points in the α-block are output as skyline
points, and the remaining data is re-coalesced. In addition
to the advantage of monotonic sorting, this block-wise pro-
cessing achieves very good spatial locality.

The principal disadvantage of sort-based algorithms is
that when the skyline is large, so too is the candidate buffer,
causing performance to degrade to brute-force quadratic.

3.2 Partition-based skyline algorithms
Another class of skyline algorithms partitions the dataset

or data space. The first such algorithm was recursive Divide-
and-Conquer [3] that halved the dataspace by the median of
an arbitrarily chosen dimension and solved each half. The
results are merged when backtracking out of the recursion.

A non-recursive version of this is found in many parallel
algorithms, which vertically cut the data file, solve each slice
on a worker, and then merge the results (e.g., PSkyline [10]).
In such setups, a key consideration is how the file is cut (e.g.,
so that points within the same slice are cosine similar [18]),
to better balance workload distribution. This approach is
common for distributed skyline computation (see the survey
by Hose et al. [9]), but does not enable one-word mask tests.

Sequential partition-based algorithms have evolved towards
recursive, point-based partitioning [12, 20]. For each (recur-
sive) partition, a skyline point, called the pivot, is found, and
the other points are partitioned based on their relationship
to the pivot. A search tree is constructed from the pivots to
accelerate the merge phase, which is typically the bottleneck
of partition-based approaches. These methods vary on how

4Manhattan Norm is the sum of all attribute values.
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Figure 2: Point-based partitioning methods [12,20].

the pivot is selected, either as a random skyline point [20]
or as the one whose attribute values have the smallest nor-
malized range [12], and in the exact layout of the search
tree. The Hybrid multi-core algorithm [4] is a point-based
method that flattens the tree into an array structure for bet-
ter access patterns and processes points in blocks of size α
to improve parallelism. We describe this class in more de-
tail in section 4.1. The proposed SkyAlign algorithm is a
partition-based method, but it is unlike other algorithms in
this class, because it is not recursive and has no merge.

3.3 Other key skyline algorithms
A few algorithms do not fit well into the categorization

above. The index-based methods (using B+-Trees [17] or
R-Trees [15]) are not especially interesting in our context
because GPU support for indexes is weak and they cannot
be applied within arbitrary positions of a query plan.

A number of MapReduce algorithms have recently emerged
(e.g., [14,16]). The more recent of these [14] partitions each
dimension into m even-width cells to produce a grid with
md cells. They encode a bitstring of length md with 1’s for
and only for non-empty cells. They then use a method sim-
ilar to PSkyline [10], but exploiting bitstring encodings to
avoid regions of points that cannot include skyline points.

4. GPU-FRIENDLY PARTITIONING
The (work-)efficiency of skyline algorithms comes from

skipping DTs. The incomparability of two points pi, pj can
often be ascertained by transitivity if the relationship to a
third point, pk, is known for both pi and pj . We call this
a mask test (MT). The relationship of pi[δ] and pk[δ] (and
also of pj [δ] and pk[δ]) is represented with one bit for each
δ ∈ [0, d). The incomparability of pi and pj can sometimes
be detected by comparing the masks: if each has a different
bit set, then they each have a dimension on which, by tran-
sitivity, they are preferable to each other. A MT is much
cheaper than a DT, because it only requires (loading and)
comparing 2 values, rather than 2d values.

MTs have been shown to drastically improve performance
by reducing DTs [4,12,20]. In this section, we briefly review
the recursive, point-based approach that introduced MTs in
literature, including its limitations (Section 4.1). We then
describe our GPU-friendly static grid method (Section 4.2).

4.1 The case against recursive partitioning
A review of point-based methods Point-based, recur-
sive partitioning methods induce a quad-tree partitioning of
the data set and record skyline points as they are found
in a tree. A skyline point (called a pivot) is discovered
and used to split the partition into 2d sub-partitions. Each

sub-partition is then handled recursively. Figure 2a illus-
trates the partitioning of space by a set of two-dimensional
points and Figure 2b shows the resultant quad-tree of sky-
line points. Each tree node contains one point pi and (except
for the root) a bitmask that records on which dimensions pi
is worse than its parent. We represent the bitmasks graphi-
cally in Figure 2b.

The tree is built incrementally, point by point. When pro-
cessing the next point, pi, the quad-tree that has so far been
built can be used to eliminate DTs for pi. First, pi builds
a new bitmask recording its dimension-wise relationship to
the root of the tree. If all bits are set, then pi is dominated.
Otherwise, only children of the root for which the bitmask of
pi and the bitmask of the child do not infer incomparability
need to be visited. For example, consider when point F is
added in Figure 2b. It is first partitioned to the lower-right
of root point C. Since all points to the lower right of C are
incomparable to all those to the upper left of C, F need not
be compared to any point in the subtree rooted at B. The
bitmask generated against E similarly permits skipping the
subtree rooted at D.

A deeper tree, therefore, permits skipping more DTs. If a
point pi is to compare to a point pj at depth h in the quad-
tree, it uses h cheap MTs to try and infer incomparability
before resigning to a DT against pj . Furthermore, the higher
the height of a point pj for which pi infers incomparability,
the more points pi can skip entirely.

High divergence The recursively defined, point-based
methods are unsurprisingly poorly suited for the branching-
sensitive GPU architecture. We discuss challenges for both
the traversal of the trees and the partitioning itself.

Traversal We illustrate the challenge with an example.
Consider two subtrees, L and R, of a quad-tree and their
lowest common ancestor, A. When the points in the sub-
tree rooted at A were partitioned was the last time that
points in L and points in R were partitioned using the same
boundaries; afterwards, they are sub-partitioned indepen-
dently based on their own subset of points.

Points are added incrementally to the tree (in depth-first
manner). Consider when the points in R (not yet added to
the tree) are to compare to the points in L (which are in
the tree). First, a DT with the root of L is conducted for
each point in R, generating a bitmask. These bitmasks are
then used to determine which branches of L each point of
R should traverse. Because the root of L is chosen indepen-
dently of R, the results of all the MTs diverge sporadically.
Without some form of global alignment, this will happen for
any pair of partitions that are not siblings in the quad-tree.

Partitioning Even just partitioning the points is hard to
do effectively. Each partition is sub-partitioned relative to
its own pivot, independent of all other partitions. The pivot
needs to be a skyline point. Therefore, for each level of the
recursion, each subset of points need to independently select
a representative skyline point, preferably a “balanced” one.
The independent partitions must each do this in a data-
parallel fashion to avoid incurring copious branch diver-
gence, while still utilizing the thousands of physical cores on
the GPU. We posit that a global partitioning scheme, with
a common pivot to all partitions at each level of recursion,
can achieve much better utilization and data-parallelism.
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p0
p1

p2
p3

Median/Quartile Masks
M0 = 01 Q0 = 10
M1 = 11 Q1 = 00
M2 = 10 Q2 = 11
M3 = 10 Q3 = 10

Figure 3: Static median/quartile-based partitioning of data.
Solid lines denote medians and dashed lines denote quartiles.

High dimensions Although the quad-tree partitioning
can be effective at reducing DTs, it does not scale well with
dimensionality. Consider the effect of adding another dimen-
sion to the example in Figure 2. Each bitmask will carry one
extra bit of information; so, the probability of a random MT

inferring incomparability will rise from 1− 3
4

2
to 1− 3

4

3
. On

the other hand, the branching factor of the quad-tree will
double, drastically shortening the tree. So, the number of
MTs that, on average, shield any given point from a DT will
decrease from log4 n to log8 n. Also, the number of points
in any given subtree will decrease; so, the value of skipping
subtrees with MTs will decrease. In the ultimate case, a tree
with n nodes consists of one root and n − 1 children, and
the average number of masks per point is less than one.

Note that the poor scalability with respect to dimension-
ality has been noted before [12]; the proposed (although not
investigated) solution was to ignore a subset of dimensions-
—and, ergo, information. We posit that a static grid that
assigns a constant number of masks to every point scales el-
egantly with the information gain in higher dimensionality.

4.2 A static grid alternative
The recursive, point-based methods do not scale with (or

otherwise fail to capture the increasing information with)
dimensionality. They also lead to heavy, GPU-unfriendly
branch divergence. We introduce a static grid that avoids
these issues, yet retains—or even expands—the value of MTs.

We first give an overview of the partitioning mechanism
(Section 4.2.1). We then describe how to statically generate
bitmasks from the partitioning (Section 4.2.2) and how to
use the the bitmasks for MTs (Section 4.2.3).

4.2.1 Median/Quartile as a partitioning scheme
Our static grid is conceptually simple: we split each di-

mension based on the quartiles in the dataset. We de-
fine three global pivots, one corresponding to each quartile
boundary. The middle quartile, the median of the dataset,
provides a coarser resolution. For each point pi, one can
define a bitmask relative to the median for a coarse-grain
perspective, and one bitmask relative to either the first or
third quartile (whichever is relevant), to provide a finer-grain
perspective. Then, every point has exactly two bitmasks
(and two possible MTs), irrespective of the input parame-
tres. Importantly, all partition boundaries are defined rel-
ative to three global pivots, so the boundaries of partitions
are aligned with each other.

Conceptually, this is similar to the quad-tree decomposi-
tion, albeit with virtual pivots. All points are partitioned
at the first level by their relationship to the median of the
dataset. At the second level of recursion, all points are par-
titioned by their relationship to the first and third quartiles.
This produces a tree with branching factor 2d, with virtual
points in the inner nodes, and sets of points in the leaves.

Of course, using consistent splitting points at all second-
level vertices is the distinct difference that makes the scheme
GPU-friendly.

Indeed, it is worth questioning whether a third level of
resolution (octiles) would be worthwhile. Naturally, this de-
pends on both cardinality and dimensionality. Two layers of
resolution already provide 4d distinct partitions. At d = 10,
this is enough to give a unique partition to one million points
(assuming a perfect partitioning). A third level partitioning
in 10 dimensions would produce 810, or slightly more than
a billion, distinct partitions. Current GPU memory is well
shy of the 40GB that a 10d dataset with a point for every
octile-level partition would occupy.

4.2.2 Definition of masks
We outlined previously the challenges with assigning the

recursively-defined bitmasks to points on the GPU. Here,
we describe how it can be done quite easily when using the
static grid. Let quarti[δ] denote the i’th quartile for the δ’th
dimension; quart2 is, of course, the median of the dataset.
Considering Figure 3 as an example, quart1[1] = p2[1] and
quart2[1] = p1[1]. The quartiles are virtual: every dimen-
sional value of a quartile corresponds to a value of a data
point, but no quarti is likely to be equal on all dimensions
to any single point.

We denote by Mi the median-level-resolution bitmask for
point pi, and we denote by Qi point pi’s quartile-level-resolution
bitmask. For dimension δ, Mi[δ] is set iff pi is larger than or
equal to the median on dimension δ. Qi is similarly defined.
Formally, we have:

Mi[δ] = 0,Qi[δ] = 0 ⇐⇒ pi[δ] < quart1[δ]

Mi[δ] = 0,Qi[δ] = 1 ⇐⇒ pi[δ] ∈ [quart1[δ], quart2[δ])

Mi[δ] = 1,Qi[δ] = 0 ⇐⇒ pi[δ] ∈ [quart2[δ], quart3[δ])

Mi[δ] = 1,Qi[δ] = 1 ⇐⇒ pi[δ] ≥ quart3[δ]

Consider Figure 3 again. The thick lines denote the medi-
ans and the thin lines denote the quartiles. The median-level
masks are set depending on to which side of the thick lines a
point lays and the quartile-level masks are set depending on
to which side of the relevant thin line a point lays. Specif-
ically, M0 = 01 because p0 is less than the x-median and
greater than the y-median. By contrast, M2 = M3 = 10,
because p2 and p3 are greater than the x-median, but less
than the y-median. However, they differ on quartile masks,
where Q2 = 11 and Q3 = 10. Finally, Q0 = 10, M1 = 11
and Q1 = 00.

4.2.3 Statically-defined MT-based incomparability
Given the bitmasks defined in the previous subsection, we

can define a series of non-dominance implications from their
orders (i.e., number of bits set) and bitwise relationships.
We define these equations at both levels of resolution. The
finer, quartile-level resolution assumes knowledge of median-
level resolution MTs to elegantly simplify the equations.

Median-level resolution Let pi, pj be points with me-
dian relationships Mi,Mj . Also, let |Mi| denote the or-
der of Mi. Often, inspecting Mi and Mj is sufficient to
reveal that pj 6≺ pi. We define three rules for this pur-
pose. The rules rely on transitivity with respect to the
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median: if Mi[δ] < Mj [δ], then pi[δ] < quart2[δ] ≤ pj [δ]
and therefore pj 6≺ pi. Note that the reverse is not true:
pi[δ] < pj [δ] 6=⇒ Mi[δ] < Mj [δ], because both pi[δ], pj [δ]
could be less/greater than the median.

(Mj | Mi) > Mi =⇒ pj 6≺ pi. (1)

|Mi| < |Mj | =⇒ pj 6≺ pi. (2)

|Mi| = |Mj |, Mi 6= Mj =⇒ pj ≺� pi. (3)

Equation 1 The first equation directly expresses this tran-
sitivity simultaneously for all bits. It checks whether Mj has
any bits set that are not also set in Mi. If so, then ∃δ s.t.
pi[δ] < pj [δ], and, consequently, pj 6≺ pi. In Figure 3, we can
deduce that p1 6≺ p0 from the median masks alone. Since
M0 = 01 and M1 = 11, the first bit is set in M1, not in M0,
and M1 | M0 = 11 > M0 = 01. Therefore, the antecedent of
the rule evalutes true, and we have p1 6≺ p0.

Equation 2 Equation 2 is a special case of Equation 1.
If Mj has more 1’s set than does Mi, then it necessarily
contains one that is not set in Mi. In such a case, Equa-
tion 1 is trivially true. Considering Figure 3 again, we could
actually determine p1 6≺ p0 from this easier special case:
|M0| = 1 < |M1| = 2.

Equation 3 Finally, Equation 3 identifies another special
case, when |Mi| = |Mj |, of Equation 1. If Mi,Mj have the
same order, then the only condition under which all bits
set in Mj are also set in Mi is if the masks are identical.
If the masks are not identical, then neither pi ≺ pj nor
pj ≺ pi, because both necessarily have bits set that the
other does not. This rule is exemplified between p2 and p0
in Figure 3. Both points are partitioned to the same level
(|M0| = |M2| = 1); however, they do not appear in the
same partition (M0 = 01, but M2 = 10). Therefore, the
points and bitmasks are both incomparable to each other
(M0 ≺� M2 and p0 ≺� p2).

Quartile-level resolution If Mi,Mj are insufficient to
determine that pj 6≺ pi (i.e., the precedent does not hold in
Equations 1-3), the quartile-level masks, Qi,Qj , may suffice.

Here, we have two cases: Equation 4 corresponds to a false
precedent in Equation 1 and Equation 5, in Equation 3.

Mj � Mi,
((

(Mj | ∼Mi) & Qj

)
| Qi

)
> Qi =⇒ pj 6≺ pi (4)

Mi = Mj ,
(
Qj | Qi

)
> Qi =⇒ pj 6≺ pi (5)

Equation 4 Equation 4 bears similarity to Equation 1. The
primary difference is that some bits of Qj are cleared first.
This is the incorporation of knowledge from the median-level
MT, that Mj � Mi. (Note that without the condition on the
median-level MT, the equation is incorrect!) The expression
Mj | ∼Mi yields a result with bit δ set iff Mi[δ] = Mj [δ],
because Mj � Mi enforces that Mj [δ] ≤ Mi[δ]. In other
words, Mj | ∼Mi indicates on which dimensions pi and pj
lay to the same side of the median. These are the dimen-
sions unresolved by the median-level masks (the others, it
is safe to assume, indicate pj < pi). So, the expression
(Mj | ∼Mi) & Qj selects exactly those bits that were un-
resolved by median-level masks and for which pj is greater
than the median. Should pi be less than the median on any
of these dimensions, then pj 6≺ pi.

Algorithm 1 SkyAlign: P −→ SKY(P )

1: τ ← minp∈P maxi∈[0,d) p[i]
2: P ← {p ∈ P |∃i ∈ [0, d) : p[i] ≤ τ}
3: for all dimensions δ ∈ [0, d) do
4: Sort P by dimension δ
5: quarti[δ]← P [bi ∗ |P |/4c][δ], i ∈ {1, 2, 3}
6: for all points pi ∈ P (in parallel) do
7: for all dimensions δ ∈ [0, d) do
8: Mi[δ]← (pi[δ] > quart2[δ])
9: Qi[δ]← (pi[δ] > (Mi[δ]?quart3[δ] : quart1[δ]))

10: Sort P by 〈|M|,M〉
11: for all levels l ∈ [0, d) do
12: Record start index of all nonempty partitions
13: for all points pi ∈ P (in parallel) do
14: if |Mi| > l then
15: for all M : |M| = l ∧ (M | Mi) = Mi do
16: for all points pj ∈ P,Mj = M do
17: if

((
(Mj | ∼Mi) & Qj

)
| Qi

)
> Qi then

18: if pj ≺distinct pi then
19: Mark pi dominated; terminate thread
20: else
21: for all points pj ∈ P,Mj = Mi do
22: if

(
Qj | Qi

)
= Qi then

23: if pj ≺ pi then
24: Mark pi dominated; terminate thread
25: Remove dominated points from P
26: SKY(P )← SKY(P ) ∪ {pi ∈ P : |Mi| = l}
27: Return SKY(P )

Equation 4 is illustrated in Figure 3 to determine that
C 6≺ B. Here, MC ≺ MB. Specifically, C is better than B on
the second dimension and equal on the first dimension (w.r.t.
relationship to the median). Thus, we get MC | ∼MB = 10.
However, the quartile masks reveal that 10 & QC = 10,
which contains a bit (namely, the first) that is not in QB.
Hence, the quartile-level masks permit skipping a dominance
test that otherwise would have been conducted.

Equation 5 Equation 5 is a special case of Equation 4,
corresponding to when the median-level masks are equal (as
in Equation 3). Then, Mj | ∼Mi = [1]d, the identity mask,
and so (Mj | ∼Mi) & Qj = Qj . The median masks in this
case provide no information for the quartile-level test, thus
do not appear in the equation.

This last equation is illustrated in Figure 3 with C and
D, for which MC = MD = 10. Since they are in the same
median-level partition, nothing is known of their relation-
ship. We use the entire quartile-level masks to determine,
since QC | QD = 11 | 10 = 11 > QD, that C 6≺ D.

5. THE SKYALIGN ALGORITHM
Here, we introduce SkyAlign (Algorithm 1), a work-efficient

GPU skyline algorithm that uses static partitioning (Sec-
tion 4). The key algorithmic idea in SkyAlign is the man-
ner in which we introduce order. Data points are physically
sorted by grid cell and threads are mapped onto that sorted
layout. The actual computation, however, is loosely ordered
with d carefully-placed synchronizations. This use of order
simultaneously achieves good spatial locality, homogeneity
within warps, and independence among threads.

At a high level, SkyAlign consists of d iterations. In the
l’th iteration, remaining points are compared, each by its
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own thread, to all points with order l, using MTs and DTs
as necessary. After each phase, we remove dominated points
and move all surviving points with order l into the solution.
We also repack the remaining data to improve locality and
repack the warps, since some threads may have already de-
termined that their points are dominated.

We detail Algorithm 1 in the following subsections. We
describe the initialization (Section 5.1), the data layout and
allocation of work to threads and warps (Section 5.2), how
Equations 1-5 are utilized to improve work-efficiency (Sec-
tion 5.3), and the thread-level control flow (Section 5.4).

5.1 GPU-friendly initialization
Our initialization, once the data is resident in GPU mem-

ory,5 consists of a pre-filter, the assignment of masks/grid
cells, and sorting of the data points.

Pre-filter The pre-filter (Lines 1–2 of Algorithm 1) elim-
inates points that are easy to identify as not in the skyline
prior to the calculation of quartiles and other sorting op-
erations. A similar idea was used in the Hybrid multi-core
algorithm [4]. The technique in [4] is to precede the main
algorithm by first identifying the β points with the small-
est sum of attributes, and then comparing every other point
to these β points. For the GPU, however, those β points
are difficult to identify without sorting; the technique in
Hybrid [4] uses priority queues (not available on a GPU).

Instead, SkyAlign uses a parallel reduction to identify a
threshold, τ , as the min of max values. This threshold has
already been shown to be effective at eliminating many com-
parisons [1]. However, we use the threshold differently here:
in [1], τ is used to halt execution; we instead employ it be-
fore execution to remove some non-skyline points from the
input and minimize the costs of subsequent sorting.

Recall the example in Table 2. Here, we use the paral-
lel reduction to identify a threshold of τ = 2, p1’s largest
value and the smallest largest value in the data. Next, each
thread is responsible for one point, checking whether it has
any values less than the threshold (or has all values equal
to the threshold). Here, p3 can be eliminated because it
has no values less than τ . Notice that, although p2 is also
dominated by p1, it is not caught by the prefilter.

Mask assignment Section 4.2.2 described how masks are
assigned to each point, given the quartiles of the dataset for
each dimension (Lines 6-9). To compute quartiles, we use
the extremely parallel built-in GPU radix sort on each di-
mension independently (Lines 3-5). This is not so expensive:
each sort only considers the n floats for the relevant dimen-
sion. In some cases, the (approximate) quartiles may even
be known, but SkyAlign does not make this assumption.

Data sorting Our final initialization step, Line 10, sorts
the data points to improve subsequent access patterns. We
first sort the ids of the points by integer representation of
their median-level bitmasks. We then sort these bitmasks
by their cardinality (i.e., |M|). Finally, we reorganize the
data to match this two-level sort, which also matches the
control flow described in the next subsections.

5.2 Data Layout and Thread Allocations
5either via PCIe transfer from host memory or because the
previous GPU operator in the query plan completes

SkyAlign uses three elements per data point, the attribute
values, median-level masks, and quartile-level masks. Here,
we describe how we represent these elements and how threads
map onto them.

The data itself is stored in a long one-dimensional array
of the form [p[0][0], p[0][1], . . . , p[n− 1][d− 1]] with padding
to fit cache lines. This format best supports coalesced reads,
because, when an infrequent, ad-hoc DT is required between
P [i] and P [j], we load the d values offset from i ∗ d and
offset from j ∗d, which are on the same or consecutive cache
lines. The quartile masks are stored in an array of length n,
sorted in the same order as the data points. Therefore, the
quartile mask for P [i] is at the i’th position of the quartile
mask array.

Because there are fewer median-level masks, we represent
them with two arrays. One stores at position i the i’th
distinct median-level bitmask that is used. The other array
contains the start index in the quartile mask array of the
first incidence of the i’th median-level bitmask (i.e., a prefix
sum). This permits indexing directly into the quartile mask
array when a median-level MT fails.

All three data structures are repacked (i.e., values are
shifted left to cover points that have been removed) at each
synchronization to maintain contiguousness and alignment.

The threads then are allocated in order. Thread ti works
on point P [i]. Because the data points are sorted by median-
level partition, threads are similarly sorted. In other words,
the threads working within any given warp work on a small
set of partitions, so have minimized divergence with respect
to median-level MTs (Line 15).

5.3 Work-efficiency
The work-efficiency of SkyAlign comes from the static

partitioning described in Section 4. The five equations in-
troduced in that section are used to substitute DTs for MTs.

We employ Equation 2 first, on Lines 10-11 and 26. Due
to the iteration order, a thread processing point pi will only
consider points pj such that |Mi| ≥ |Mj |. Once pi has fin-
ished processing all points with order ≤ Mi, it can be pro-
gressively added to the solution: no point with higher order
can possibly dominate pi.

On Line 14, we branch on the order of the point. Note that
at most 1 warp diverges at this line for any given iteration.
The points with order > l branch into Lines 15-19, where
they conduct both median-level and (possibly) quartile-level
MTs. Line 15 branches on fewer than 2d warps. The median-
level MT occurs on Line 16, where a thread processing point
pi only considers other median masks for which Equation 1
does not hold. If this MT fails, we then load and iterate
the quartile-level masks and use Equation 4 on Line 18 to
ascertain which points will require a DT.

Conversely, if at Line 14 a thread branches towards order
= l (note that < l is impossible), then Lines 21-24 are ex-
ecuted. In this case, Equation 3, used on Line 21, permits
skipping median-level tests by only comparing a point pi to
other points pj with Mi = Mj . The quartile-level MT on
Line 22 invokes Equation 5 to decide if a DT is necessary.

5.4 Thread-level control flow
Here, we combine the previous subsections with our run-

ning example from Figure 3. Figure 4 illustrates, for the
first (and, in this case, only) iteration, the control flow of
each thread through the data structures described earlier.
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Figure 4: SkyAlign’s thread flow for the data in Figure 3

The seven points are sorted by median-level mask: masks
with 1 bit set appear first; the mask with 2 bits set appears
afterwards. There is no sort with respect to quartile-level
mask; however, the quartile-mask array is ordered the same
as the list of points. Thread ti is responsible for point P [i].
Threads are grouped into warps (of size 2 for illustrative pur-
poses). For example, thread t1 from warp w0 processes point
p[1] = p6. The path of a thread through the data structures
is traced with a line. All threads run concurrently.6

Threads t0–t5 process points with order 1, the same as the
current iteration. Thus, they index directly into and iter-
ate the three quartile masks for their own point’s partition
(Lines 21–24). When a quartile MT fails, for example in
all cases for t1, a DT is conducted, denoted by a D under
the quartile mask. When a point is dominated, the thread
dies (denoted by a dagger). If thread ti reaches the end of
its point’s partition without discovering dominance, such as
with t0, t2, t3, t4, point P [i] will be added to the solution.

Thread t6, on the other hand, works on point p1 with
order 2. So, it iterates all the median-level masks with order
1 (Lines 15–19). For each median-level MT that fails (in
this case, both), the thread iterates the corresponding set of
quartile masks. When the quartile-level MT fails, such as
at position 0 and 3, a distinct-value DT is conducted. Were
this thread to reach the end of the iteration without being
dominated, it would survive to the next iteration. However,
p1 here is dominated on its second DT, against p4.

Note that only one warp, w1, diverges on the median-level
MT. This is the only warp that contains points of multiple
median-level grid cells. In general, because there are at most
2d − 1 median-level grid cell boundaries, at most 2d − 1
warps can contain threads that diverge at this line. This is
in sharp contrast to point-based partitioning, which would
branch sporadically. Also note that, because the threads are
step-locked, whenever multiple threads need to access data,
they are always accessing the same data. Consequently, all
share the same cache line.

6. EXPERIMENTAL EVALUATION
6Strictly speaking, some warps will run concurrently while
others queue, and the order in which they are queued is
unpredictable.
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Figure 5: Unoptimized vs. optimized GGS implementations.

Here, we conduct thorough experimentation, evaluating
SkyAlign against state-of-the-art sequential, multi-core, and
GPU skyline algorithms and investigating SkyAlign in de-
tail. We begin by describing the setup of the experiments
(Section 6.1) and then discuss the results (Section 6.2).

6.1 Setup and configuration
Software For CPU algorithms, we use publicly available [4]
C++ implementations of sequential BSkyTree [12] and multi-
core Hybrid [4]. These algorithms have both been recently
shown to be state-of-the-art by their respective authors for
their respective platforms. We use our own implementa-
tion of GGS [2], the state-of-the-art GPU algorithm; how-
ever, we optimize it (described below) to utilize features in
our newer graphics card. We implement our proposed algo-
rithm, SkyAlign (Section 5), in CUDA 7.

Our implementation of SkyAlign and our optimized ver-
sion of GGS will both be released publicly upon publication.7

GPU Optimizations We optimize GGS by unrolling loops
to make better use of registers and to increase instruction-
level parallelism (using C++ templates). The original im-
plementation tiled data into shared memory, but we in-
stead load it through lower-latency, read-only texture cache
(which was not available on the graphics card used in [2]).
Finally, we augment the GGS algorithm with distinct-value
DTs, since the BSkyTree, Hybrid, and SkyAlign implemen-
tations all take advantage of distinctness: In GGS, points
with different Manhattan scores are certainly distinct; com-
paring them can use the twice-cheaper distinct-value DT.
Figure 5 shows the speed-up provided by these optimiza-
tions. We make the same optimizations to SkyAlign.

Datasets To measure trends, we use synthetic data, gen-
erated with the standard skyline dataset generator [3], to
produce datasets that are correlated, independent, and anti-
correlated. We vary dimensionality d ∈ {4, 6, . . . , 16} and
cardinality n ∈ { 1

2
, 1, 2, 4, 6, 8}∗106. Following literature [4,

12], we assume default values of d = 12 and n = 1 ∗ 106.

Environment All experiments are run on a quad core In-
tel i7-3770 at 3.40GHz, with 16GB of RAM, running Fedora
21. The GPU algorithms use a dedicated Nvidia GTX Titan
graphics card. Timings are measured with C++ libraries in-
side the software and do not include reading input files into
CPU memory, but do include transfer times from the CPU

7
http://cs.au.dk/research/research-areas/data-intensive-systems/repository/
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host to the GPU device. The GPU implementations are
compiled using the nvcc 7.0.17 compiler; the CPU imple-
mentations are compiled using g++ 4.9.2 with the -O3 flag.
Hybrid is run with eight threads (hyper-threading enabled).

Experiments We conduct four experiments, the first two
comparing the performance of the four algorithms to each
other, and the next two investigating the performance of
SkyAlign in more depth. We describe each of them below:

Run-time performance We compare the relative perfor-
mance and trends in execution times of the four algorithms
over variations in distribution, dimensionality, and cardinal-
ity (Section 6.2.1).

Work-efficiency As with run-time performance, we com-
pare the relative performance and trends of the four algo-
rithms, this time with respect to DTs and work (Defini-
tion 3), and compare this to run-time (Section 6.2.2).

SkyAlign variants To isolate the effect of SkyAlign’s algo-
rithmic contributions, we disable features of SkyAlign and
observe the resultant performance. Specifically, we exam-
ine the effects of synchronization, padded partitions, and
quartile-level vs. median-level partitioning (Section 6.2.3).

Per-phase performance SkyAlign processes data in d phases,
synchronizing after each. We examine the run time of and
points pruned by each phase, illustrating which skyline points
most impact efficiency and the final result (Section 6.2.4).

6.2 Results and Discussion
Here, we report and discuss the experimental results.

6.2.1 Run-time performance
Figure 6 shows run times in milliseconds on a logarithmic

scale for each of the four algorithms on the three distribu-
tions (decreasing correlation from top to bottom).

Cardinality The subfigures on the left show trends with
respect to increasing cardinality (d = 12). We note first
that GGS is slower than BSkyTree on most workloads and
only marginally faster on the exceptions (low cardinality,
independent). It is always much slower than Hybrid. This
justifies the need for this research, that state-of-the-art GPU
skyline algorithms are simply too slow to warrant use.

By contrast, our proposed SkyAlign consistently com-
putes the skyline fastest, the only exceptions being the eas-
ier low cardinality, correlated workloads, where all methods
except GGS terminate within one hundred milliseconds.

Considering the multi-core algorithm, Hybrid, we do not
see the same margin of improvement relative to BSkyTree as
reported in [4], but we have fewer cores in our configuration.

All methods exhibit the same basic trend of increasing
running times with respect to increases in cardinality, irre-
spective of distribution. GGS has the highest rate of growth.
This is an unsurprising result: previous literature (c.f., [3,
12, 20]) has noted this distinction between partition-based
and non-partition-based (i.e, sort-based) methods, and GGS

is the only method here that fits into the latter class. Sort-
based methods typically do more work per point, so suffer
worst when more points must be processed.

Dimensionality The subfigures on the right show trends
with respect to increasing dimensionality (n = 106). Note
that, unlike with cardinality, not all methods have the same
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Figure 6: Execution time (ms) of Hybrid, GGS, BSkyTree,
and SkyAlign as a function of n (left) and d (right).

trends: SkyAlign behaves differently on anticorrelated data.
In general, SkyAlign has a slow growth rate. This is a con-
sequence of the static, rather than recursive, partitioning,
as will be elucidated in the experiment on work-efficiency.

Finally, for all distributions, neither GPU algorithm is
suitable for very low dimensional (i.e., d < 6) data: the
computation is not challenging enough to provide the op-
portunity to amortize the cost of transferring the data to
the GPU. With one million correlated points, increases in
dimensionality are still insufficient to increase the workload
to beyond tens of milliseconds. On the other hand, SkyAlign
achieves nearly an order of magnitude improvement over the
next competitor for high dimensional, anticorrelated data.

6.2.2 Work-efficiency
Dominance tests Figure 7 plots the number of DTs, nor-
malized per point, conducted by GGS, BSkyTree, Hybrid,
and SkyAlign as a function of n and d for anticorrelated
and independent distributions. The slow performance of
high-throughput GGS observed in Section 6.2.1 is clearly ex-
plained by the plots: GGS consistently performs significantly
more DTs, a difference of nearly five orders of magnitude rel-
ative to SkyAlign in the most extreme case (anticorrelated,
d = 16). Without any mechanism to avoid DTs, other than
Manhattan Norm sort, and a very large skyline that limits
the avoidance of DTs through transitivity, GGS necessarily
degrades to quadratic. The extreme parallelism on the GPU
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Figure 7: DTs conducted by each algorithm

counters much, but not enough, of this difference in DTs
to make GGS nearly competitive with sequential BSkyTree.
However, compared to the other parallel algorithms, which
have much better work-efficiency, GGS is uncompetitive.

By contrast, lower-throughput SkyAlign consistently uses
within 5% of the fewest DTs for d ≥ 10, often less work even
than the sequential algorithm. This is astounding, since
parallel algorithms, like Hybrid can be seen to do here, typ-
ically trade off work-efficiency for more parallelism. These
plots enforce that, while throughput is crucial for parallel—
especially GPU—algorithms, so too is work-efficiency.

The trends with respect to cardinality (on the left) show a
convergence among Hybrid, BSkyTree, and SkyAlign. The
recursively partitioned algorithms do not require many ad-
ditional DTs per point when the number of points increases,
because the resultant quad tree simply becomes deeper; more
meta-data (in terms of MTs) is available for avoiding DTs
among the new points. The growth rate of DTs for SkyAlign
is slow, since quartile-level partitioning is still sufficient to
give nearly every point its own quartile-level cell.

It is worth comparing the cardinality plots for indepen-
dent data in Figures 6 and 7. The consistency among
algorithms in the shape of their trendlines permits really
observing the effect of the parallel architectures. Despite
such a significant gap in DTs between GGS and BSkyTree,
we observe roughly equal performance: the impact of high-
throughput GPU computing is really massive. On the other
hand, the work-efficient algorithms have roughly the same
performance with respect to DTs; we see the expected sev-
eral factors improvement for multicore Hybrid over BSkyTree,
and the order of magnitude improvement, despite the lower
throughput, for GPU SkyAlign over BSkyTree.

Work A curious effect is observed when comparing DTs
in the dimensionality plots in Figure 7 to execution times
in Figure 6. For SkyAlign, the number of DTs per point
actually decreases with increases in d; however, the running
time continues to climb (albeit slowly). The reason, natu-
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Figure 8: Work-efficiency of each algorithm

rally, is that the standard counting of DTs does not take
into account the work done in evaluating MTs. The plots in
Figure 8 of work (Definition 3), which also constantly climb
at a slow rate, better match the observed performance, so
are perhaps a better measure of performance than DTs.

Here we observe that GGS is not as extremely outperformed
in work as the DT plots imply, because it does no MTs.
We also see that the recursively-partitioned methods have
very similar work to SkyAlign for d ≥ 10; while SkyAlign

manages to avoid DTs that BSkyTree and Hybrid cannot,
it uses many MTs to do so. As is more intuitive, we see
that the sequential algorithm, by this definition of work, is
approximately as work-efficient as SkyAlign.

In summary, we expect low d to advantage recursive par-
titioning, where it is nonetheless outperformed on account
of parallelism. Conversely, the static grid method becomes
relatively more work-efficient with increasing d, and so, with
massive parallelism, clearly outperforms the competition.

6.2.3 SkyAlign variants
We study a few algorithmic choices in SkyAlign that are

perhaps surprising relative to typical GPU algorithms. Syn-
chronization often limits parallelism; so, to evaluate our use
of it, we run a version, NoSync, where Line 11 is removed
from Algorithm 1. Similarly, MTs create divergence within
warps. We study a SkyAlign variant that only uses median-
level partitioning (NoQuart) to remove quartile-level MT di-
vergence. We also study a variant, Padded, wherein every
median-level partition is padded with data to align the par-
tition boundaries with warp boundaries. Padded thus com-
pletely avoids median-level MT divergence. Figure 9 plots
the variants. The slower a variant is relative to SkyAlign,
the more effective is its disabled feature.

The most striking of the variants is NoSync, which has a
profound impact on low (anticorrelated) to moderate (inde-
pendent) dimensionality. Recall, the value of the synchro-
nization is to improve data access patterns by recompressing
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Figure 9: Run-time of SkyAlign with features disabled

the data structures to exclude data that has already been
eliminated and to improve resource utilization by allocating
new work to otherwise retired threads.

The number of synchronizations is the same as the dimen-
sionality, so cost clearly grows with d. Also, as d increases,
so, too, does the size of the skyline; so, the number of points
being removed between synchronization points decreases.
This presents less value in the synchronization. Thus, we
see decreasing payoff with increasing dimensionality.

On the independent data, however, the trend is delayed.
Note that utilization can only be improved if there is enough
work to utilize the resources. In low-dimensional, indepen-
dent data, much of the data is pruned early. If there are not
at least 286728 points left, we cannot fill enough threads any-
way, and so the value of repacking warps is compromised. It
is after 8 dimensions where the skyline becomes large enough
that the graphics card can be utilized well enough to really
take advantage of the synchronizations.

With respect to increasing cardinality, we always see added
value in synchronization. More data points leads to larger
skylines, larger working sets, and thus better utilization.

The effect of the quartile-level MTs is notable and con-
sistent. The NoQuart variant always performs worse than
SkyAlign, and moreso with increases in either input parame-
tre, d or n. This ratifies the observations we made in the pre-
vious subsection on work-efficiency. MTs are much cheaper
than DTs, and SkyAlign trades the latter for the former.

Our final variant, Padded, is quite interesting. It gener-
ally outperforms SkyAlign by a small margin by achieving
higher throughput from less divergence. However, this does
not continue into higher dimensions, where the performance
spikes to worse than SkyAlign. Note that with more dimen-
sions, the same number of points are scattered over more
median-level partitions. Consequently, each partition has
fewer points and more padding. Thus, the throughput de-
creases after a critical point, because the gains from homo-
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Figure 10: Run-time, pruning of SkyAlign, by iteration.

geneous work are overcome by the percentage of resources
idled by each warp. Many (up to 32×) more warps are ulti-
mately launched, resulting in a slow-down. It is for the con-
sistency and reliability that we prefer SkyAlign to Padded.
Nonetheless, it is interesting to observe the trade-off in two
elements of GPU throughput: avoiding branch divergence
versus busying all the resources with meaningful work.

6.2.4 Per-iteration performance
Our final plots, Figure 10, show a break-down of SkyAlign

per each of the ≤ d iterations. We also show “iteration 0,”
which includes transfer to device, the pre-filter, and me-
dian/partition calculations. The dotted lines depict, on the
left y-axis, the number of points pruned in each iteration; the
dashed-lines depict, on the right y-axis, the execution time
of each iteration. We show independent and anticorrelated
data in the plots. There are three plots, one each for low
(d = 6), default (d = 12), and high (d = 16) dimensionality.

The 12d plot illustrates the difference between the distri-
butions quite nicely. For independent data, the number of
points pruned spikes quickly in the first couple of iterations.
Thereafter follows a spike in execution time over the next
few iterations (#3-5) where the majority of remaining points
are verified as members of the solution. Conversely, for the
anticorrelated data, execution time spikes first, right in the
middle where the most (i.e.,

(
d/2
d

)
) partitions are. The spike

in points pruned follows thereafter (iterations #6-8).
This effect explains the success on correlated and indepen-

dent data of prioritizing points with low Manhattan Norm [2,
6], Z-order [13], and our bitmask cardinality. All these
heuristics lead to comparing first against points that are
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in our earlier iterations, which quickly reduces input size
and improves algorithmic performance. However, these re-
sults also suggest exploring alternatives for anticorrelated
data, where the majority of point pruning occurs after the
majority of the running time. Although the MTs make the
processing time faster, alternatives could reduce the input
size enough to make for less processing overall.

The independent data is particularly interesting. On low
dimensionality, we see that the pre-filter is especially effec-
tive. More than half of the points that are eventually pruned
are pruned by the pre-filter (#0). The pre-filter is also very
fast, always taking < 10ms to compute on any workload.
This behaviour is especially dramatic for the correlated data
(not shown), where the pre-filter nearly solves the skyline.

On the other end of the scale, the independent data be-
haves quite unusually in high dimensions. The points pruned
have a bimodal distribution, exhibiting characteristics of
both independent and anticorrelated data. Still, true to in-
dependent data, there is a spike in points pruned in the first
couple of iterations, but it is only half the amplitude as on
the default dimensionality. Thereafter, as before, follows the
spike in execution time. However, this is also followed by a
second spike in points pruned, which is nearly as dramatic
as the first. The second spike, which follows the majority
processes, is reflective of anticorrelated data.

Lastly, recall the performance of NoSync in Figure 9. For
low d, the synchronization was especially effective. Consid-
ering the 6d plot in Figure 10, we see that a lot of points,
both for anticorrelated and independent data, are pruned
in the early iterations. So, it is intuitive that repacking the
data and warps to physically remove these pruned points
would have a dramatic impact on the access patterns of the
several subsequent iterations. For the 12d data, on the other
hand, the distributions behave quite differently already. The
independent data still prunes many points early and thus
benefits well from the synchronization; however, the anti-
correlated data sees less impact, having not pruned many
points until the mid- to late-iterations. Finally, at high di-
mensions (d = 16), both distributions prune a large percent-
age of their points after the majority of processing time has
completed; so, the synchronization is less impactful.

6.3 Summary
To summarize our findings, measuring work is a more ac-

curate reflection of running times than is counting DTs. The
work of recursively-partitioned methods scales well with n,
but not d. The work of our statically-partitioned SkyAlign

scales very well with d and reasonably well with n. Con-
sequently, SkyAlign, being the most parallel of the work-
efficient methods, is the most run-time efficient. The state-
of-the-art GPU competitor, GGS, struggles even to match
sequential computation because of its poor work-efficiency.

Looking deeper, we see that the synchronization and branch
divergence, which is generally ill-advised for GPU algorithms,
pays off for SkyAlign because of the resultant work-efficiency.
The only alternative that showed promise, that of padding
partitions to fit the size of warps, does not scale well with d.
Looking more generally at when skyline points are pruned,
we distinctly see that independently distributed points are
generally pruned by other points that are better than the
median across most dimensions, whereas anticorrelated points
are generally pruned by other points that are worse than the
median on more than half the dimensions. As d increases,

the distinction between the distributions blurs, and the in-
dependent data exhibits hybrid distribution characteristics.

7. CONCLUSION
In this paper, we investigated skyline computation on the

GPU. We showed that existing algorithms, although utiliz-
ing the GPU card well, lack the work-efficiency to justify the
use of the co-processor. We introduced a new static, global
partition-based method, SkyAlign, that achieves lower through-
put, but that does orders of magnitude less work. This
serves as an example of how sophisticated algorithms can
outperform high-throughput, but relatively naive, algorithms,
even on the massively parallel GPUs. Our static partition-
ing reduces dominance tests beyond even what is achieved
by sequential algorithms for high dimensions. These results
suggest that exploring more work-efficient query algorithms
on the GPU is a promising direction for database research.
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