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ABSTRACT
We propose the first real-time fully-dynamic index data struc-
ture designed for influence analysis on evolving networks.
With this aim, we carefully redesign the data structure of the
state-of-the-art sketching method introduced by Borgs et al.,
and construct corresponding update algorithms. Using this
index, we present algorithms for two kinds of queries, in-
fluence estimation and influence maximization, which are
strongly motivated by practical applications, such as vi-
ral marketing. We provide a thorough theoretical analy-
sis, which guarantees the non-degeneracy of the solution
accuracy after an arbitrary number of updates. Further-
more, we introduce a reachability-tree-based technique and
a skipping method, which greatly reduce the time consump-
tion required for edge/vertex deletions and vertex additions,
respectively, and counter-based random number generators,
which improve the space efficiency.

Experimental evaluations using real dynamic networks with
tens of millions of edges demonstrate the efficiency, scalabil-
ity, and accuracy of our proposed indexing scheme. Specif-
ically, it can reflect a graph modification within a time of
several orders of magnitude smaller than that required to
reconstruct an index from scratch, estimate the influence
spread of a vertex set accurately within a millisecond, and
select highly influential vertices at least ten times faster than
state-of-the-art static algorithms.

1. INTRODUCTION
Recently, the increasing popularity of online social net-

works has resulted in the opportunity to analyze the spread
of product adoption, ideas, and news through the popula-
tion, and exploit the results. A considerable amount of work
has focused on the analysis of the diffusion process [1,2,22],
the prediction of future diffusions [7], learning the strength
of influence between a pair of individuals [13,26], estimating
the influence spread [10, 20], and finding a small seed set
of individuals to maximize the spread of influence, which
has been termed influence maximization [15,19,24,29]. One
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of the central elements in such work is the mathematical
formalization of stochastic cascade models for diffusion pro-
cesses. Therefore, the efficient simulation and estimations
of influence in these models is essential to such studies.

However, in reality, social networks have a highly dynamic
nature, and evolve rapidly over time [17,18]. Consequently,
results concerning the estimation and maximization of influ-
ence can quickly become outdated. Because such diffusion
models involve complicated stochastic processes, even with
state-of-the-art scalable algorithms, to re-run them on mod-
ern massive networks from scratch requires a non-negligible
computational cost every time.

In this study, we address this issue by developing the first
fully-dynamic index data structure for analyzing influence in
a large time-evolving network. Our index is fully dynamic,
i.e., it can instantly incorporate graph updates of any kind,
including the addition and deletion of vertices and edges,
and propagation probability updates. By applying this up-
dated index, two kinds of queries for diffusion analysis, in-
fluence estimation and influence maximization, can be effi-
ciently answered on the latest graph snapshot. These are
described below.

1.1 Influence estimation
The first query type that we consider is influence estima-

tion. Given a seed set of vertices, we can use our index to
quickly estimate the expected number of vertices that would
be influenced if the seed set is activated. Despite the fact
that an exact computation of the answer is a #P-hard prob-
lem (under the independent cascade model), our index en-
ables us to obtain an estimate in under a millisecond, where
the error is theoretically bounded and empirically small.

This type of query is useful for evaluating, comparing, and
identifying influential people or groups on the latest snap-
shot of a dynamic network. Moreover, we can keep track of
the transition of the influence spread for a person or group.
For example, Figure 1 illustrates the transition of the influ-
ences of vertices in a real-world evolving network of Flixster
dataset.1 We observe that several vertices have critical times
at which their influences rapidly grow or decline.

1.2 Influence maximization
Another type of query that can be efficiently answered us-

ing our index is influence maximization. Given an integer k,
this returns the seed vertex set of size k comprising the most
influential vertices on the latest snapshot. This query is mo-
tivated by the recent cost-effective marketing strategy called

1http://www.cs.ubc.ca/~jamalim/datasets/
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Figure 1: Transition of
the influence spread of
popular vertices in a
real-world network.
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Figure 2: Transition of
the approximated maxi-
mum influence spread of
a seed set of size 100.

viral marketing, where products are promoted by presenting
free or discounted items to a selected group of highly influen-
tial individuals, with the aim of achieving a large number of
product adoptions through “word-of-mouth” effects [9, 25].
Owing to the success and growth of viral marketing, the
influence maximization problem on static graphs has been
intensively studied [3–5,8, 14–16,19, 24, 28–30]. However, in
contrast to these methods, which compute the answer from
scratch for each query, we can quickly obtain the answer on
the latest snapshot using our dynamic index.

Figure 2 illustrates the transition of the (approximated)
maximum influence spread of a seed vertex set of size 100
computed by our method using the real evolving network of
Flixster dataset. Remarkable difference can be observed be-
tween the static setting (i.e., the outdated solution) and the
dynamic setting (i.e., the updated solution), which suggests
the usefulness of dynamic methods.

1.3 Our solution
The key idea underlying our proposed index is to focus the

intermediate data structures that are used in state-of-the-
art influence maximization algorithms [3,28,29]. Conceptu-
ally, we can say that whereas these are thrown away after
each computation in such algorithms, we maintain and reuse
them after their construction. However, as the original data
structure itself does not contain sufficient information for
an efficient and correct dynamic update, our main challenge
is the careful redesign of the data structure. We examine
the necessary information that should be stored, and prove
the non-degeneracy of our estimation accuracy after an ar-
bitrary number of updates. Moreover, we further improve
the update time by maintaining reachability trees and em-
ploying a skipping method, and the space efficiency by using
counter-based random number generators.

Through our experiments using real dynamic networks
with tens of millions of edges, we confirm the scalability,
efficiency, and accuracy of the proposed index. It can up-
date the index within a time of several orders of magni-
tude smaller than that required to reconstruct an index
from scratch. Our speed-up techniques for dynamic updates
achieve several orders of magnitude improvements over naive
implementations, and the index size is reduced by a factor
of up to 50. Furthermore, using our index we can obtain
an accurate estimation of the influence spread within a mil-
lisecond, and select highly influential vertices at least ten
times faster than state-of-the-art static algorithms.

The contributions of this study are summarized as follows.

• We carefully redesign the data structure of the sketch-
ing method introduced by [3], present query algorithms

for two kinds of queries, influence estimation and in-
fluence maximization, and construct update algorithms
(Section 4).

• We provide a thorough theoretical analysis, which guar-
antees the non-degeneracy of our update algorithms and
solution accuracy of our query algorithms (Section 5).

• We introduce several techniques for improving the per-
formance of our indexing method, i.e., a reachability-
tree-based technique for edge/vertex deletions, a skipping
method for vertex additions, and counter-based random
number generators for the space efficiency (Section 6).

• We experimentally demonstrate the scalability and ef-
ficiency of our indexing method, the effectiveness of the
proposed techniques compared to naive implementations,
and the accuracy and efficiency of our query algorithms
for diffusion analysis (Section 7).

The remainder of this paper is organized as follows. In
Section 2, we describe related work on influence analysis.
In Section 3, we provide definitions, notations, and base
algorithms to be used in this paper. Section 4 is devoted to
explaining our dynamic indexing scheme. In Section 5, we
present a theoretical analysis of our method. In Section 6,
we introduce several techniques that further improve the
performance of our method. We present our experimental
results in Section 7, and our conclusions in Section 8.

2. RELATED WORK

2.1 Influence maximization and influence es-
timation in static networks

Motivated by the work of Domingos and Richardson [9,
25], Kempe et al. [15] formulated influence maximization
as a discrete optimization problem, involving the extraction
of a vertex set of a given size that maximizes the influence
spread. They proved the NP-hardness of the influence maxi-
mization problem, and the monotonicity and submodularity
of the influence spread function under two well-established
information diffusion models, called the independent cascade
and linear threshold. Thus, the greedy strategy guarantees
an approximation ratio of 1 − 1/e. The drawback of this
strategy is that no efficient method to compute the influ-
ence spread is known, and this was later proven to be #P-
hard [4]. Kempe et al. [15] resorted to using the Monte-Carlo
simulation to approximate the influence spread, which is ef-
fective but too slow for large graphs. This motivates the
development of efficient influence estimation methods that
improve the scalability of Kempe et al.’s greedy algorithm.
Here, we classify existing methods of influence maximiza-
tion on static graphs, some of which can be also used to es-
timate the influence spread, into the following three types:
simulation-based, heuristic-based, and sketch-based.

Simulation-based methods simulate the diffusion process
repeatedly in order to accurately estimate the influence spread
with a theoretical guarantee. To enhance the scalability,
existing approaches have introduced several techniques for
pruning unnecessary influence computations [19], as well as
a sample average approximation approach [5, 8, 16,24].

Heuristic-based methods avoid the use of Monte-Carlo
simulations by restricting the spread of influence into com-
munities [30], the most probable influence paths [4], and
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other groups, or approximating the influence spread using
linear systems [14]. Such heuristics are more scalable than
simulation-based methods, but they often produce solutions
of poor quality, owing to an absence of accuracy guarantees.

Sketch-based methods resolved the inefficiency of Monte-
Carlo simulations without sacrificing accuracy guarantees.
Instead of simulating the diffusion process directly, the method
introduced by Borgs et al. [3], called reverse influence sam-
pling (RIS), conducts reverse simulations to build sketches
consisting a family of vertex sets to efficiently estimate the
influence spread. RIS has been proven to run in nearly linear
time, and to return a constant-factor approximate solution.
Subsequently, several techniques for reducing the number of
sketches have been developed [28,29].

Despite such efforts, direct applications of these static
methods for tracking the influence of a certain vertex or
highly influential vertices in highly evolving networks are
computationally expensive, because they require at least lin-
ear time in the graph size.

2.2 Influence maximization in dynamic net-
works

There have been a few studies that have considered influ-
ence maximization in a dynamic setting. Zhuang et al. [31]
considered a related but different problem, in which a graph
dynamically changes, but only a small number of vertices
can be probed and only at certain times. Hence, informa-
tion is only available on a small part of the current network.
The objective is to maximize the influence spread in the
current network. Note that in our problem, we have full
knowledge on how the graph has been changed, and our
primary concern is to efficiently maintain the index.

Chen et al. [6] considered the problem of tracking a seed
set that maximizes the influence spread when a graph dy-
namically changes, and proposed a method that iteratively
updates the current seed set. It should be noted that their
method does not incorporate vertex additions and deletions.
Furthermore, our method concerns not only influence max-
imization, but also influence estimations for any vertex set.

3. PRELIMINARIES

3.1 Notations
For an integer k, we use [k] to denote the set {1, 2, . . . , k}.

For a finite set S, s ←R S means that we sample s from S
uniformly at random.

Let G = (V,E, p) be a directed influence graph, where V
is a vertex set of size n, E is an edge set of size m, and p :
E → [0, 1] is a propagation probability function representing
the magnitude of influence between a pair of vertices. For
a vertex v in G, we use d+G(v) and d−G(v) to denote the out-
degree and the in-degree of v, respectively. When G is clear
from the context, we will omit the subscripts.

3.2 Problem definition of influence estimation
and influence maximization

In this paper, we adopt the most standard information
diffusion model, called the independent cascade (IC) model,
which was formulated by Goldenberg et al. [11, 12]. In the
IC model, given a graph G = (V,E, p) and a vertex set
S ⊆ V , called a seed set, we first activate the vertices in S.
Then, the process evolves in discrete steps according to the
following randomized rule. When a vertex u becomes active

for the first time at the step t, it is given a single chance to
activate each current inactive vertex v among its neighbors.
It will succeed with probability puv. If u succeeds, then
v will become active in the step t + 1. Whether or not u
succeeds, it cannot make any further attempts to activate v
in subsequent steps. This process continues until no further
activation is possible. The influence spread of a seed set
S under the IC model, denoted by σ(S), is defined as the
expected total number of active vertices for S.

We formally define the influence estimation problem and
the influence maximization problem as follows.

Problem 1 (Influence estimation). Given a graph
G = (V,E, p) and a vertex set S ⊆ V , this problem asks to
compute the influence spread σ(S) of S.

Problem 2 (Influence maximization). Given a graph
G = (V,E, p) and an integer k, this problem asks to find a
vertex set S ⊆ V of size k that maximizes σ(S).

Note that it has been proven that the influence estima-
tion problem is #P-hard [4], and the influence maximization
problem is NP-hard [15].

3.3 Naive method for influence estimation
Because the exact computation of σ(·) is #P-hard [4],

previous studies have employed Monte-Carlo simulations for
this purpose [5, 8, 15, 19, 30]. That is, we simulate the dif-
fusion process several times, and then compute the aver-
age number of activated vertices. The time complexity of
Monte-Carlo simulations is O(mr), where r is the number of
simulations. As this naive method requires linear time just
to estimate the influence of a single set, we cannot adopt
this method in the dynamic setting.

3.4 Naive method for influence maximization
Although the influence maximization problem has been

proven to be NP-hard [15], a natural greedy algorithm can
achieve a constant approximation to the optimum solution,
owing to the non-negativity, monotonicity, and submodu-
larity of σ(·). We say that a set function f : 2V → R is
monotone if f(S) ≤ f(T ) for all S ⊆ T , and submodular if
f(S ∪ {v}) − f(S) ≥ f(T ∪ {v}) − f(T ) for all S ⊆ T and
v ∈ V \T . The greedy algorithm, introduced by [15], repeat-
edly adds the vertex with the maximum marginal influence
into S until k vertices have been added. The following theo-
rems guarantee that the greedy algorithm approximates the
optimum solution within a factor of 1 − 1/e, by evaluating
the influence spread function σ(·) kn times.

Theorem 3.1. [15] For the IC model, the influence spread
function σ(·) is non-negative, monotone, and submodular.

Theorem 3.2. [23] For a non-negative, monotone, and
submodular function f , let S be a set of size k obtained using
the greedy strategy. Then, f(S) ≥ (1− 1/e)f(S∗), where S∗

is the optimum solution.

Although we cannot evaluate σ(·) exactly, we can estimate
it using the Monte-Carlo simulations described in the previ-
ous section. By doing so, although the approximation guar-
antee does not deteriorate greatly, the time complexity is
O(knmr), which is prohibitively large for even static graphs.
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3.5 The RIS sketching method
Borgs et al. [3] addressed the inefficiency of these naive

methods by introducing a sketching method. Because we
will provide the details in Section 4, we will only present an
overview of their method here.

First, we repeatedly construct subgraphs as follows. In
the i-th step, we choose a target vertex zi ∈ V and an
activation function xi : E → [0, 1] uniformly at random.
We call an edge uv ∈ E active with respect to xi if xi(uv) ≤
puv, and inactive with respect to xi otherwise. We regard
a non-edge uv 6∈ E as inactive irrespective of xi. We write

u
xi
; v to indicate that there is a directed path from u to v

consisting only of active edges with respect to xi. Then, we
compute a subgraph Hi that consists of vertices v such that

v
xi
; zi by performing a reverse BFS from zi. We cease this

process when the total number of traversed edge exceeds
Θ( 1

ε3
(n+m) logn), where ε is an error parameter.

Intuitively, influential vertices seem likely to appear in
Hi’s. For a vertex set S ⊆ V , let d′(S) be the number of
subgraphs Hi such that S ∩V (Hi) 6= ∅. It is not hard to see
that d′(S) is proportional to the expected number of vertices
influenced by some vertex in S. More precisely, we estimate
the influence spread of S by n · d′(S)/t, where t is the total
number of generated subgraphs. With high probability, this
value is a (1± ε)-approximation to σ(S) [3].

We can also solve the influence maximization problem, as
follows. We begin with an empty set S, and then add the
vertex t that has the maximum marginal degree, i.e., t =
argmaxv∈V \S d

′(S∪{v})−d′(S), into S until k vertices have
been added. The resulting set is a (1−1/e−ε)-approximation
to the optimum set with high probability [3].

The advantage of this sketching method is that no matter
what k is, the total time complexity is bounded by O( 1

ε3
(n+

m) logn), which is much smaller than the time complexity
O(knmr) of the naive method. However, it is too expensive
to apply this sketching method from scratch every time the
graph changes. In the next section, we will develop a method
that efficiently updates the sketch when the graph changes.

4. PROPOSED METHOD
In this section, we will present our efficient indexing method

for influence analysis in evolving graphs. First, we will ex-
plain what we store in our index, and how it is constructed
from a static graph. Then, we will demonstrate how to com-
pute the influences of vertex sets and extract a set of highly
influential vertices using the index. Finally, we will explain
how the index is dynamically updated.

4.1 Index structure
Let us begin with our index structure for a static graph

G = (V,E, p). Let ε > 0 be a precision parameter. Our
index consists of a set of tuples I = {(zi, xi, Hi)}i, where
zi ∈ V is a target vertex, xi : E → [0, 1] is an activation
function, and Hi is a subgraph of G consisting of active
edges with respect to x. Here, every vertex in V (Hi) is able
to reach zi in Hi. We call each (zi, xi, Hi) a sketch.

The number of sketches in I is determined as follows: The
weight of a subgraph H, denoted by w(H), is defined as
|V (H)| +

∑
v∈V (H) d

−(v), which equals the space required

to store H. Then, we will always keep the condition that∑
i∈[|I|−1] w(Hi) < W and

∑
i∈[|I|] w(Hi) ≥W , where W =

Θ( 1
ε3

(n + m) logn). Note that the space complexity of our
index is roughly bounded by O(W ).

For a vertex v, let Iv denote the set of indices i ∈ [|I|] with
v ∈ V (Hi), and for a vertex set S, let IS denote the set of
indices i ∈ [|I|] with S ∩ V (Hi) 6= ∅. That is, IS =

⋃
v∈S Iv.

Our index stores Iv for every vertex v, so that we can quickly
fetch the sketches that include a particular vertex.

We note that the sketch adopted in RIS [3] cannot support
dynamic updates efficiently, because it only stores the vertex
set V (Hi). On the other hand, we will show that we can
update sketches when the graph dynamically changes.

4.2 Index construction
Here, we describe how we construct our index from a static

graph. Given a graph G = (V,E, p), we begin with an empty
index I = ∅, and we repeatedly create new sketches and add
them into I for as long as the total weight of the current
index is less than W . A sketch is constructed using the fol-
lowing reverse-BFS-like method: First, we sample a target
vertex zi ∈ V uniformly at random, and add it to an empty
queue. We also sample xi : E → [0, 1] uniformly at random.
If the queue is not empty, then we remove a vertex v from
the queue. If this is the first time that v is visited, then for
each active edge uv, we add u to the queue. Finally, we set
V (Hi) to the visited vertices and E(Hi) to the visited active
edges. Building a sketch (zi, xi, Hi) requires O(w(Hi)) time,
and thus the entire index construction requires O(W ) time.

4.3 Supporting queries
In this subsection, we will describe how we approach in-

fluence estimation and influence maximization queries using
the index constructed in the previous subsection.

4.3.1 Influence estimation
We will start with influence estimation. The number of

vertices that a vertex v influences can be approximated by
n · |Iv|/|I|. Because we actually simulate the propagation
process several times and take the average, the expected
value is exactly equal to the influence σ({v}). Similarly, for
a vertex set S, the number of vertices that S influences can
be approximated by n · |IS |/|I|.

Given a single vertex v, we can compute n · |Iv|/|I| in con-
stant time, as we have Iv stored in our index. For a vertex
set S of size greater than one, by storing each V (Hi) using
a hash so that we can check v ∈ V (Hi) in constant time,
the time complexity of EstimateInfluence is bounded by
O(|S| · |I|). However, we can improve the running time by
using Iv stored in our index. That is, we compute IS as
IS =

⋃
v∈S Iv. This technique reduces the running time to

O(
∑
v∈S |Iv|), and we will demonstrate that |Iv| is much

smaller than |I| by means of our thorough experiments.
See EstimateInfluence in Algorithm 1 for further details.

Because our method is equivalent to the (non-indexing)
method by Borgs et al. [3], we inherit the same guarantee of
its accuracy. To summarize, the following guarantee holds.

Theorem 4.1. By choosing W = Θ( 1
ε3

(n + m) logn),
EstimateInfluence(I, S) estimates σ(S) with an additive
error of ε with probability at least 1− 1

n
over the choice of zi’s

and xi’s. The time complexity of EstimateInfluence(I, S)
is O(

∑
v∈S |Iv|).

4.3.2 Influence maximization
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Algorithm 1 Influence queries.

1: procedure EstimateInfluence(I, S)
2: if S = {v} then
3: return n · |Iv |/|I|.
4: else
5: return n ·

∣∣⋃
v∈S Iv

∣∣ /|I|.
6: procedure MaximizeInfluence(I, k)
7: S ← ∅.
8: for i = 1 to k do
9: vi ← argmaxv∈V \S dI−S(S ∪ {vi}).

10: S ← S ∪ {vi}.
11: return S.

Next, we consider the problem of finding a vertex set
S of size k that maximizes the expected number of ver-
tices influenced by S, where k is the input parameter. The
greedy algorithm is a standard approach for this problem,
and Borgs et al. [3] reduced this greedy algorithm to the
greedy strategy on a set of subgraphs. We will describe their
procedure in our language. For a vertex v, define the degree
dI(v) of v in I as the number of i ∈ [|I|] with v ∈ V (Hi).
In other words, dI(v) = |Iv| initially. We choose the ver-
tex with the maximum degree in I and denote this by v1.
Then, examining each sketch (zi, xi, Hi), we remove it if
v1 ∈ V (Hi). Next, we choose the vertex with the maxi-
mum degree in the resulting index, and denote this by v2.
Then, examining each sketch (zi, xi, Hi), we remove it if
v2 ∈ V (Hi). We repeat this process k times, and then out-
put the vertex set {v1, v2, . . . , vk}. The details are provided
in MaximizeInfluence in Algorithm 1. Here, I−S denotes
the index obtained by removing all of the sketches (zi, xi, Hi)
with S ∩ V (Hi) 6= ∅. To boost the empirical performance,
we also employ the lazy evaluation technique [21].

Theorem 4.2. Let W = Θ( 1
ε3

(n+m) logn). Then, Max-
imizeInfluence(I, k) returns a set S of size k, such that
σ(S) ≥ (1−1/e−ε)σ(S∗) with probability at least 1− 1

n
over

the choice of zi’s and xi’s, where S∗ = argmaxS⊆V :|S|=k σ(S).
The time complexity of MaximizeInfluence(I, k) is bounded
by O(

∑
i∈[|I|] |V (Hi)|).

Proof. Because this method is equivalent to the (non-
indexing) method by Borgs et al. [3], we inherit the same
guarantee of its accuracy.

Now, we consider the time complexity. When we add a
vertex v to the output, we need to decrement the degrees of
vertices u ∈ V (Hi) for each i ∈ Iv. However, this decremen-
tation occurs only once for each sketch. Hence, the total
time complexity is O(

∑
i∈[|I|] |V (Hi)|).

4.4 Supporting dynamic update operations
In this subsection, we explain how we update our index

efficiently. We consider five operations: vertex additions,
vertex deletions, edge additions, edge deletions, and propa-
gation probability updates. First, we present three subrou-
tines used in our update operations, and then we describe
how we update the index when the graph changes. The de-
tails are provided in Algorithms 2, 3, and 4. The correctness
will be demonstrated in Section 5.

4.4.1 Auxiliary subroutines

Expand(I, i, z): Suppose that we have added an edge zw or
increased the propagation probability of an edge zw. Then,

Algorithm 2 Auxiliary functions.

1: procedure Expand(I, i, z)
2: Q← a queue with only one element z.
3: Hi ← Hi ∪ {z}.
4: while Q 6= ∅ do
5: Dequeue v from Q.
6: for all uv ∈ E do
7: if xi(uv) < puv then
8: E(Hi)← E(Hi) ∪ {uv}.
9: if v 6∈ V (Hi) then

10: Enqueue u onto Q.
11: V (Hi)← V (Hi) ∪ {u}.

12: procedure Shrink(I, i)
13: Hi ← the subgraph consisting of vertices that can reach

zi by passing through active edges.

14: procedure Adjust(I)

15: W ← Θ( 1
ε3

(n+m) logn).

16: while
∑

1≤i≤|I|
w(Hi) < W do

17: z|I|+1 ←R V .

18: Expand(I, |I|+ 1, z|I|+1).

19: while
∑

1≤i≤|I|−1

w(Hi) ≥W do

20: Discard the last element from I.

for each i ∈ [|I|] with w ∈ V (Hi), we want to add vertices
from which we can newly reach the vertex zi to Hi. To this
end, we perform a reverse BFS from z, and add the traversed
vertices to Hi. Note that all of the newly added vertices can
reach z.

Shrink(I, i): Suppose that we have removed an edge uv or
decreased the propagation probability of an edge uv. Then,
for i ∈ [|I|] such that uv ∈ E(Hi), we want to remove the
vertices in Hi from which we can no longer reach zi anymore.
To this end, we recompute the set of vertices that can reach
zi by conducting a reverse BFS from zi.

Adjust(I): While we are processing edge and vertex up-
dates, the total weight of the index may violate the condition
on the total weight. In such a case, we create new sketches
or remove current sketches as follows. If the total weight is
smaller than the threshold W , then we create a new sketch
(z, x,H) by sampling z ∈ V , and calling Expand on z to
make H. On the other hand, if the total weight of sketches,
excluding the last one, is larger than or equal to W , then
we remove the last sketch from the index.

4.4.2 Dynamic update routines
Now, we explain how we update our index when the graph

changes.

AddVertex(I, v): Suppose that we have added a new ver-
tex v to the current graph. In such a case, we must update
the target vertices in the index to preserve the property that
each vertex in the graph is chosen uniformly at random as
a target vertex.

Let V and V ′ denote the vertex set of a graph before
and after we add a new vertex v, respectively. That is,
V ′ = V ∪ {v}. Suppose that we construct an index from
scratch after inserting v. Obviously, for each time we choose
a sketch, the probability that the target vertex is chosen
from V is n

n+1
, and the probability that the target vertex

is v is 1
n+1

. In order to ensure that this property holds,
we update the target vertex in the current index to v with
probability 1

n+1
.
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Algorithm 3 Vertex operations.

1: procedure AddVertex(I, v)
2: for i = 1 to |I| do
3: continue with probability 1− 1

n+1
.

4: Hi ← ∅, zi ← v.
5: Expand(I, i, zi).

6: Adjust(I).

7: procedure DeleteVertex(I, v)
8: Remove edges incident to V from each E(Hi).
9: for all i ∈ Iv do

10: if zi = v then
11: Hi ← ∅, zi ←R V .
12: Expand(I, i, zi).
13: else
14: Shrink(I, i).

15: Adjust(I).

Algorithm 4 Edge operations.

1: procedure Change(I, uv, p)
2: puv ← p.
3: for all i ∈ Iv do
4: P ← [[uv ∈ E(Hi)]], Q← [[xi(uv) < p]].
5: if ¬P ∧Q then . inactive → active
6: E(Hi)← E(Hi) ∪ {uv}.
7: Expand(I, i, u).

8: if P ∧ ¬Q then . active → inactive
9: E(Hi)← E(Hi) \ {uv}.

10: Shrink(I, i).

11: Adjust(I).

12: procedure AddEdge(I, uv, p)
13: puv ← 0.
14: Change(I, uv, p).

15: procedure DeleteEdge(I, uv)
16: Change(I, uv, 0).

DeleteVertex(I, v): Suppose that we have removed a ver-
tex v from the current graph. Then, for each i ∈ [|I|], we
check whether v is contained in Hi. If this is the case, then
we update the tuple (zi, xi, Hi) as follows: If zi = v, we
sample zi from V \ {v} uniformly at random and compute
Hi. Otherwise, we remove v and all edges incident to v from
Hi, and then we call Shrink(I, i) to shrink Hi.

Change(I, uv, p): Suppose that we have changed the prop-
agation probability of an edge uv from p′ to p. If the state
of uv with respect to xi changes, then we need to update
subgraphs in the index I. More specifically, we carry out
the following for each i ∈ [|I|]. If p′ < xi(uv) ≤ p, then we
expand Hi by calling Expand(I, i, u). If p < xi(uv) ≤ p′,
then we shrink Hi by calling Shrink(I, i).

AddEdge(I, uv, p): Suppose that we have added an edge uv
with propagation probability p to the current graph. First,
we add uv to the current edge set E and set puv = 0. Then,
for each sketch (zi, xi, Hi) ∈ I such that v ∈ V (Hi), we
define xi(uv) by choosing a value from [0, 1] uniformly at
random. Finally, we update the propagation probability puv
to p, by calling Change(I, uv, p).

DeleteEdge(I, uv): Suppose that we have deleted an edge
uv from the current graph. Then, we first update the edge
probability puv to zero, by calling Change(I, uv, 0), and
then remove uv from E. Then, we remove uv from the
domain of xi for each i ∈ [|I|]. We only examine the sketches
containing v, and thus the expected number of examined

sketches is σ({v})
n
|I|, which follows from Lemma 5.11.

5. THEORETICAL ANALYSIS
In this section, we will show the correctness of our index-

ing method and then proceed to analyze its time complexity.

5.1 Correctness
Now, we consider the correctness of our indexing method.

Note that our method is randomized. We first define IstaW (G)

and IdynW (G) as the distribution of indices in the case that
we apply our method to a static graph G and the sequence
of dynamic updates that results in G, respectively. Our goal
is to show that IstaW (G) = IdynW (G). If this is the case, then
queries on the index following dynamic updates will inherit
the same guarantees that furnish Theorems 4.1 and 4.2.

Given a graph G = (V,E, p), consider the following ran-
dom process that generates a sequence of pairs. For each
step, we sample a target vertex z ∈ V and an activation
function x : E → [0, 1] uniformly at random, and add the
pair (z, x) to the sequence. Let X∞(G) denote the distribu-
tion of (infinite) sequences of pairs obtained in this way. Let
H(z, x) be the subgraph consisting of vertices that can reach
z under x. Furthermore, let I∞(G) denote the distribution
of tuple sequences obtained from X∞(G) by replacing each
pair (z, x) by (z, x,H(z, x)).

We say that a distribution X of pair sequences is valid
for G if it can be obtained by sampling a random sequence
from X∞(G) uniformly at random and taking a prefix of it
(of arbitrary length). Similarly, we say that a distribution
I of tuple sequences is valid for G if it can be obtained
by sampling a random sequence from I∞(G) uniformly at
random and taking a prefix of it.

For a positive integer W , we define IW (G) as the distribu-
tion over prefixes of tuple sequences in I∞(G) that are ob-
tained as follows: We sample a tuple sequence (z1, x1, H1),
(z2, x2, H2), . . . from I∞(G) and take the minimum prefix
of it such that the total weight of the subgraphs is at least
W . We sample a tuple sequence (z1, x1, H1), (z2, x2, H2), . . .
from I∞(G) and take the minimum prefix of it such that
the total weight of the subgraphs is at least W . It is easy to
see that IW (G) = IstaW (G). We will establish that IstaW (G) =

IdynW (G) by showing that IdynW (G) = IW (G).

For the empty graphG, we clearly have IdynW (G) = IW (G).

We will show that, for any graph G with IdynW (G) = IW (G)
and a graph G′ obtained from G by a dynamic update, we
again have IdynW (G′) = IW (G′). Then, we are done by in-
duction on the number of updates.

The following auxiliary lemma states that we can change
the length of a valid distribution to W using Adjust(·).

Lemma 5.1. Let G be a graph, and let I be a valid distri-
bution of finite pair sequences for G. Then, I′ = Adjust(I)
is equal to IW (G), where W is a parameter used in Adjust.

Remark 5.2. By Adjust(I), we mean the distribution
of sequences obtained by applying Adjust to a sequence I
sampled from I. We will use similar conventions for other
procedures in the following.

Proof. We can obtain IW (G) from I as follows. Let
I = (z1, H1), (z2, H2), . . . , (z|I|, H|I|) be a pair sequences
sampled from I. Then, we repeat the following process.
If

∑
1≤i≤|I| w(Hi) < W , then we sample a target vertex z

and an activation function x : E → [0, 1] uniformly at ran-
dom. Then, we compute the corresponding subgraph H,
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and add the pair (z,H) to I. If
∑

1≤i≤|I|−1 w(Hi) ≥ W ,

then we remove the last element from I. This is exactly
corresponds to what is carried out in Adjust, and it follows
that I′ = IW (G).

In the following, we will show that our update routines
in Algorithms 3 and 4 transform a valid distribution for the
original graph to a valid distribution for the new graph.

Lemma 5.3. Let G be a graph, e ∈ E(G), and p ∈ [0, 1].
Let G′ be the graph obtained from G by changing the propaga-
tion probability of e to p. If I is a valid distribution of tuple
sequences for G, then the distribution I′ = Change(I, e, p)
is a valid distribution of tuple sequences for G′.

Proof. Let X and X ′ be the distributions of the pair
sequences corresponding to I and I′, respectively. Then, it
is clear that X = X ′. Because X is a valid sequence for G,
it follows that X ′ is also a valid sequence for G′. Hence, I′
is a valid distribution for G′.

Lemma 5.4. Let G be a graph and G′ be the graph ob-
tained from G by adding a new vertex v 6∈ V (G). If I is a
valid distribution for G, then I′ = AddVertex(I, v) is a
valid distribution for G′.

Proof. Let X and X ′ be the distributions of the pair
sequences corresponding to I and I′, respectively. Then, we
can obtain X ′ from X as follows. Let (z1, x1), (z2, x2), . . . be
a sequence sampled from X . Then, we replace each of zi by
v with probability 1 − 1/|V (G′)|. We can observe that X ′
is a valid sequence for G′, and it follows that I′ is a valid
distribution for G′.

Lemma 5.5. Let G be a graph and G′ be the graph ob-
tained from G by removing a vertex v ∈ V (G). If I is a
valid distribution for G, then I′ = DeleteVertex(I, v) is
a valid distribution for G′.

Proof. Let X and X ′ be the distributions of the pair
sequences corresponding to I and I′, respectively. Then, we
can obtain X ′ from X as follows. Let (z1, x1), (z2, x2), . . . be
a sequence sampled from X . If zi = v, then we again replace
zi from V (G)−v uniformly at random again. We can observe
that X ′ is a valid distribution for G′, and it follows that I′
is a valid distribution for G′.

Similarly, we obtain the following two lemmas. As the
proofs are quite similar to the ones of Lemmas 5.4 and 5.5,
we omit them due to the lack of space.

Lemma 5.6. Let G be a graph and G′ be a graph obtained
from G by adding a new edge uv 6∈ E(G). If I is a valid
distribution for G, then I′ = AddEdge(I, uv) is a valid
distribution for G′.

Lemma 5.7. Let G be a graph and G′ be the graph ob-
tained from G by removing an edge uv ∈ E(G). If I is a
valid distribution for G, then I′ = DeleteEdge(I, uv) is a
valid distribution for G′.

Theorem 5.8. IdynW (G) = IW (G).

Proof. From Lemmas 5.4, 5.5, 5.6, and 5.7, we have that
the distribution of indices obtained by our dynamic update
procedures is always a valid distribution of tuple sequences
for the current graph. Because we apply Adjust at the end
of each update, the distribution of indices is given exactly
by IW (G) by Lemma 5.1.

By Theorems 5.8, 4.1, and 4.2, we obtain the following.

Theorem 5.9. Let W = Θ( 1
ε3

(n+m) logn), and let I be
the index obtained by a sequence of dynamic updates. Then,
EstimateInfluence(I, S) estimates σ(S) with an additive
error of ε with probability at least 1 − 1

n
over the choice of

zi’s and xi’s.

Theorem 5.10. Let W = Θ( 1
ε3

(n + m) logn), and let I
be the index obtained by a sequence of dynamic updates.
MaximizeInfluence(I, k) returns a set S of size k, such
that σ(S) ≥ (1−1/e−ε)σ(S∗) with probability at least 1− 1

n
over the choice of zi’s and xi’s, where S∗ = argmaxS⊆V :|S|=k σ(S).

5.2 Time complexity
Now, we turn our focus to analyzing the time complexity

of our indexing method. We note that it is difficult to pre-
cisely bound the time complexity of dynamic update opera-
tions because it depends on the sizes of cascades and hence
the structure of the input graph. Instead, we will analyze
the number of sketches examined in each update operation.

To this end, we will apply the following lemma, the cor-
rectness of which is obvious from the construction of Hi.

Lemma 5.11. For a vertex set S and a randomly sampled

sketch (zi, xi, Hi), it holds that Pr[V (Hi) ∩ S 6= ∅] = σ(S)
n
,

where the probability is over the choice of zi and xi.

Theorem 5.12. AddVertex examines |I| sketches. De-
leteVertex, Change, AddEdge, and DeleteEdge ex-
amine σ({v})/n · |I| sketches on average.

Proof. The first claim is obvious, as the number of sketches
is |I|. Suppose that DeleteVertex(I, v), Change(I, uv, p),
AddEdge(I, uv, p), or DeleteEdge(I, uv, p) was called. Then,
we only examine the sketches containing v and thus the ex-

pected number of examined sketches is σ({v})
n
|I|, following

from Lemma 5.11.

6. TECHNIQUES FOR IMPROVING THE
PERFORMANCE

Here, we introduce several techniques to improve the per-
formance of our indexing method.

6.1 A reachability-tree-based pruning technique
Although we have demonstrated that the number of up-

dated sketches resulting from vertex deletions and update
operations on edges is small, naive implementations of these
are computationally expensive, because a whole subgraph is
scanned for each relevant sketch in the Shrink procedure.
In this section, we will address this issue by introducing a
technique, called the reachability-tree-based technique.

A key observation is that the removal of a single edge
or vertex rarely effects the reachability among the vertices
in a sketch, because real-world social networks are highly
connected. To exploit this observation, for each sketch we
will store a directed reachability tree Ti in Hi rooted at zi.
Therefore, each sketch is now a tuple (zi, xi, Hi, Ti).

6.1.1 Definition of reachability trees
Let us begin with the definition of the reachability tree.

The reachability tree for a sketch (zi, xi, Hi) is a directed tree
on the vertex set V (Hi) towards the root zi, constructed by
using active (directed) edges in E(Hi) with regard to xi.
Each vertex in V (Hi) is able to reach zi along with Ti.
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6.1.2 Speeding up the Shrink procedure
Next, we will explain how we can apply the reachability

tree to speed up the Shrink procedure.
Suppose that an edge uv is inactivated in the Change pro-

cedure. Then, we need to update each sketch (zi, xi, Hi, Ti)
with uv ∈ E(Hi) by calling the procedure Shrink(I, i) (Line 10).
Previously, we updated Hi by performing a reverse BFS
from zi. Because we now have Ti, we can update Hi more
efficiently. We present the details as follows.

If uv 6∈ E(Ti), then u can still reach zi along with Ti
after the removal of uv. Thus, we do nothing. Otherwise,
the vertices in V (Ti(u)) are the only candidates that may
no longer reach zi, where Ti(u) denotes the subtree rooted
at u. Thus, we check whether the vertices in V (Ti(u)) can
reach V (Hi) \ V (Ti(u)). With this aim, we first explicitly
compute the set V (Ti(u)). Then, we compute the set R of
vertices in V (Ti(u)) adjacent to V (Hi) \ V (Ti(u)). Finally,
we compute the set of vertices in V (Ti(u)) that can reach R,
using a reverse BFS from R. Then, we remove the vertices
that can no longer reach R from V (Hi) and update Hi and
Ti. The pseudocode is presented as Shrink-after-Edge-
Removal in Algorithm 5.

In addition, we can speed up Shrink(I, i) at Line 14 in the
DeleteVertex procedure in a similar manner. The pseu-
docode is presented as Shrink-after-Vertex-Removal in
Algorithm 5.

6.1.3 Maintaining reachability trees
Now, we discuss how we maintain reachability trees. First,

when creating a new sketch (zi, xi, Hi, Ti), Ti is a tree con-
sisting of a single vertex zi. When updating Ti in an existing
sketch (zi, xi, Hi, Ti), we have the following four cases.

Suppose that an edge uv with uv ∈ E(Hi) is inactivated.
Let H ′i be the new subgraph computed by calling Shrink-
after-Edge-Removal(I, i, uv). Note that the vertices in
R′ = V (H ′i) ∩ V (Ti(u)) are obtained by performing a re-
verse BFS from R (see Shrink-after-Edge-Removal for
the definitions of R and R′). Hence, by removing the sub-
tree V (Ti(u)) from Ti and concatenating the tree formed by
this reverse BFS, we obtain a new reachability tree for H ′i.
Suppose that an edge uv with v ∈ V (Hi) is activated. Then,
we perform a reverse BFS from u, and add the edge uv and
the obtained subtree rooted at u to Ti. When deleting a
vertex v with v ∈ V (Hi), we can update Ti, in a similar
manner as in the case where an edge is inactivated. When
adding a vertex, we are not required to do anything.

6.2 A skipping method for vertex addition
When adding a vertex, we are required to change the tar-

get vertex of each sketch with probability 1
n+1

. However,
running through all of the sketches in I is a costly procedure.
We can avoid this issue by applying the following technique.
Let k be the first index for which we change the target ver-
tex zk. Then, for each positive integer t, we have Pr[k =
t] = (1 − α)t−1α, where α = 1

n+1
. Hence, we can sample k

by first sampling x ∈ [0, 1] uniformly at random, and then
taking the minimum k such that

∑
t∈[k](1 − α)t−1α ≥ x.

This is equivalent to k ≥ log 1
1−x/ log 1

1−α . We choose min-
imum such k with these properties, and change the target
vertex of the k-th sketch to v. Then, we repeat the same
procedure for the remainder of the index. See AddVertex’
in Algorithm 5 for complete details.

Algorithm 5 Improved operations.

1: procedure Shrink-after-Edge-Removal(I, i, uv)
2: if uv 6∈ E(Ti) then return
3: T ′ ← the subtree rooted at u.
4: R← vertices in T ′ adjacent to V (Hi) \ T ′.
5: R′ ← the set of vertices in T ′ that can reach R.
6: for w ∈ T ′ \R′ do
7: Remove w and edges entering w from Hi and Ti, resp.

8: procedure Shrink-after-Vertex-Removal(I, i, v)
9: T ′ ← the subtree rooted at v.

10: R← vertices in T ′ adjacent to V (Hi) \ T ′.
11: R′ ← the set of vertices in T ′ that can reach R.
12: for w ∈ T ′ \R′ do
13: Remove w and edges entering w from Hi and Ti, resp.

14: procedure AddVertex’(I, v)

15: α← 1
n+1

, i← 0.

16: while i < |I| do
17: x←R [0, 1], k ← dlog 1

1−x/ log 1
1−α e, i← i+ k.

18: if i ≤ |I| then
19: Hi ← ∅, zi ← v.
20: Expand(I, i, zi).

21: Adjust(I).

Because we are only required to seeing sketches for which
we change the target vertex, the expected number of sketches

we look at is |I|
n+1

, which is much smaller than |I|.

6.3 Random number generators
We have assumed that each sketch (zi, xi, Hi, Ti) stores a

function xi : E → [0, 1]. This is undesirable because storing
xi requires O(m) space.

To address this issue, we use a pseudorandom generator
called Random123 [27]. Random123 is counter-based, that
is, it maps an integer to a (pseudo)random value. Instead
of explicitly storing xi(uv) for each i ∈ [|I|] and uv ∈ E,
for each time that we need xi(uv), we call Random123 with
an integer representation of the pair (i, uv), and we use the
obtained value after normalizing it to be in [0, 1].

7. EXPERIMENTS
In this section, we will demonstrate the efficiency and ef-

fectiveness of our indexing method by performing experi-
ments on real-world networks. We conducted the experi-
ments on a Linux server, with Intel Xeon E5-2690 2.90GHz
CPU and 256GB memory. All algorithms were implemented
in C++ and compiled using g++v4.6.3 with the -O2 option.

7.1 Experimental settings
Datasets: We selected seven real-world dynamic networks
with timestamps, from the Koblenz Network Collection.2

We ordered edges in ascending time order. The basic infor-
mation regarding each dataset is presented in Table 1 and
the degree distribution of each dataset is plotted in Figure 3.

Probability settings: As these networks do not contain in-
formation concerning the propagation probabilities of edges,
we assign an edge probability puv for each edge uv to a prob-
ability chosen from {0.1, 0.01, 0.001} uniformly at random
under the trivalency (TR) model [4], or 1/d−(v) under the
weighted cascade (WC) model [15].

2http://konect.uni-koblenz.de/networks/
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Table 1: Datasets.
Dataset n m Type

Digg 30,398 85,247 Communication (directed)
Enron 87,273 320,154 Communication (directed)
Epinions 131,828 840,799 Social (directed)
Facebook 63,731 1,634,070 Social (undirected)
DBLP 1,314,050 10,724,828 Coauthorship (undirected)
YouTube 3,223,585 18,750,748 Social (undirected)
Flickr 2,302,925 33,140,017 Social (directed)
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Figure 3: Degree distribution of each dataset.

Algorithms: Our method is parameterized by W , which
represents the threshold of the total weight. In order to
apply the same parameter for various networks, we introduce
the parameter β, which determines W in a manner such
that W = β(n+m) logn. Unless otherwise specified, we set
β = 32. This choice will be justified in Section 7.4 in terms
of accuracy.

For the purpose of our comparison, we use the following
algorithms in our experiments.

• RIS [3]: A reverse influence sampling method on which
our method is based. We set the total number of tra-
versed edges to be 32(n+m) logn.

• TIM+3 [29]: A sketch-based method with the two-phase
strategy. We set the parameters as ` = 1 and ε = 0.5.

• IMM4 [28]: A sketch-based method that uses martin-
gales. We set the parameters as ` = 1 and ε = 0.5.

• PMC5 [24]: A simulation-based method using pruned
Monte-Carlo simulations for the IC model. The num-
ber of subgraphs is set to 200, as in [24].

• IRIE6 [14]: A heuristic-based method that uses a linear
system. We set the parameters as α = 0.7 and θ = 1/320.

• Degree: A baseline method that chooses the topmost k
vertices in decreasing order of degrees.

• MC [15]: A simulation-based influence estimation method
that simulates the diffusion process 10,000 times, and
calculates the average number of activated vertices.

7.2 Index construction
For each network, we constructed our index using the en-

tire network. The indexing times and index sizes are pre-
sented in Table 2. From this, we can observe the scalability
and efficiency of our method. For the larger three networks,
which incorporate tens of millions of edges, it only requires

3http://sourceforge.net/projects/timplus/
4http://sourceforge.net/projects/im-imm/
5https://github.com/todo314/pruned-monte-carlo/
6The code is provided by Kyomin Jung, an author of [14].

a few hours to construct the index. However, we note that
without our dynamic method, this amount of time is re-
quired to estimate or maximize the influence spread. We
here note that the difference in the index size under the
WC model comes from the differences in the degree distri-
bution. For example, YouTube has more vertices with high
in-degree than DBLP. Thus, for each sketch construction,
the total weight of the index for YouTube increases faster
than DBLP. As a result, the obtained index for YouTube
has a small number of sketches (1 million), which requires
only 3.9GB, while the index for DBLP has a larger number
of sketches (37 millions) and consumes 34.8GB. Table 3 re-
ports the index sizes both with and without counter-based
random number generators introduced in Section 6.3. Note
that without random number generators, we need to store
all the edges incident to vertices in each of Hi’s. With ran-
dom number generators, the space consumption is reduced
by a factor from 4 to 50. Figure 4 depicts the change of the
indexing time and index size with the value of β from 2 to
2048. Both of these values are scaled to β.

7.3 Dynamic updates
In this section, we evaluate the efficiency of our methods

in terms of dynamic updates. Specifically, we have measured
the running time of each operation as follows.

• Vertex additions: The average running time for adding
1,000 new isolated vertices to the index constructed using
the whole network.

• Vertex deletions: The average running time for delet-
ing 1,000 uniformly chosen vertices from the index con-
structed using the whole network.

• Propagation probability updates: The average running
time for updating the propagation probabilities of 1,000
uniformly chosen edges of the index constructed using
the whole network. The update is conducted as follows.
Suppose that an edge e with propagation probability pe is
chosen. When using the TR model, we randomly choose
a probability from {0.1, 0.01, 0.001} \ {pe} as the new
edge probability of e. When using the WC model, we
randomly assign pe × 2 or pe/2 to e.

• Edge additions: The average running time for adding the
final 1,000 edges to the index constructed using all of the
edges except for the final 1,000 edges.

• Edge deletions: The average running time for deleting
1,000 edges in the reverse of the order that they were
added, from the index constructed using the whole net-
work.

Table 2 presents the average running times of the dynamic
update operations. Each vertex addition and edge deletion
is processed within a few milliseconds. An edge addition re-
quires several ten milliseconds for the three largest networks,
under the TR setting, and requires a few milliseconds under
the WC setting. The reason for this is that under the TR
model, sketches are likely to expand more following the ad-
dition of edges in comparison with the WC model. Vertex
deletion exhibits a similar tendency to edge addition, where
it becomes slower for the probability setting of TR. Figure 4
suggests that the average processing times of dynamic op-
erations are roughly proportional to the value of β, because
the expected size of I is proportional to β.
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Table 2: Indexing time, index size, and average processing times of dynamic updates.

Indexing Index Vertex Vertex Probability Edge Edge
Dataset Model time size addition deletion change addition deletion

Digg
TR 36.3 s 3.0 GB 2.6 ms 2.9 ms 0.59 ms 0.32 ms 0.39 ms
WC 20.3 s 1.4 GB 1.6 ms 4.0 ms 0.92 ms 0.81 ms 1.3 ms

Enron
TR 27.3 s 0.6 GB 0.46 ms 8.1 ms 3.4 ms 1.2 ms 1.2 ms
WC 16.5 s 0.6 GB 0.33 ms 4.6 ms 1.4 ms 0.39 ms 0.94 ms

Epinions
TR 89.1 s 1.4 GB 0.80 ms 14.8 ms 5.8 ms 4.1 ms 1.0 ms
WC 62.2 s 1.1 GB 0.69 ms 8.3 ms 1.7 ms 1.0 ms 1.8 ms

Facebook
TR 165.0 s 2.1 GB 2.7 ms 95.8 ms 11.1 ms 6.9 ms 0.75 ms
WC 135.2 s 1.6 GB 2.7 ms 61.0 ms 3.6 ms 1.2 ms 2.3 ms

DBLP
TR 2,965.9 s 27.7 GB 5.2 ms 124.0 ms 85.7 ms 42.5 ms 2.1 ms
WC 3,395.7 s 34.8 GB 4.0 ms 18.1 ms 2.7 ms 0.87 ms 1.3 ms

YouTube
TR 5,000.4 s 44.6 GB 0.01 ms 92.2 ms 236.2 ms 31.8 ms 0.26 ms
WC 1,985.5 s 3.9 GB 0.65 ms 5.7 ms 1.5 ms 0.14 ms 0.04 ms

Flickr
TR 5,467.6 s 31.3 GB 0.00 ms 459.0 ms 125.2 ms 89.6 ms 2.4 ms
WC 4,253.7 s 12.2 GB 2.1 ms 53.8 ms 4.8 ms 0.19 ms 0.08 ms

Table 3: Effectiveness of the proposed techniques compared to naive implementations.

Edge deletion Vertex deletion Vertex addition Index size

Dataset Model Sec. 6.1 Naive Sec. 6.1 Naive Sec. 6.2 Naive Sec. 6.3 Naive

Epinions
TR 1.0 ms 163.1 ms 14.8 ms 575.3 ms 0.80 ms 1.6 ms 1.4 GB 5.5 GB
WC 1.8 ms 1.4 ms 8.3 ms 7.4 ms 0.69 ms 6.4 ms 1.1 GB 7.0 GB

YouTube
TR 0.26 ms 597.9 ms 92.2 ms > 10,000.0 ms 0.01 ms 5.6 ms 44.6 GB 250.0 GB
WC 0.04 ms 0.05 ms 5.7 ms 4.4 ms 0.65 ms 5.9 ms 3.9 GB 179.7 GB

Flickr
TR 2.4 ms 1,705.5 ms 459.0 ms > 10,000.0 ms 0.00 ms 6.5 ms 31.3 GB ∗ ≈ 282.0 GB
WC 0.08 ms 0.10 ms 53.8 ms 41.2 ms 2.1 ms 33.6 ms 12.2 GB ∗ ≈ 292.1 GB

∗ We report twice the index size for β = 16 as an approximation of that for β = 32.
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Figure 4: The change of indexing time, index size, and average processing times of dynamic updates with
the increase of β on Epinions.

Next, we analyze the effectiveness of the proposed speed-
up techniques introduced in Section 6.1 and 6.2. Table 3
presents the average running times of dynamic updates both
with and without the proposed pruning techniques. The
proposed techniques improve the performances of edge dele-
tion, vertex deletion, and vertex addition, making them up
to 2,000, 100, and 500 times faster, respectively. Notice that
our techniques for deletion operations have more effective-
ness for larger networks.

7.4 Influence estimation
Now, we will show that our method efficiently and accu-

rately estimates the influence spread using the index con-
structed from a given graph. As the exact computation
of the influence spread is #P-hard, we regard the estimate

given using MC as the ground truth of the influence spread.
First, we focus on the influence estimation for a single ver-

tex. For each network, we randomly sampled 1,000 vertices,
and then estimated the influence spread for each vertex. Ta-
ble 4 presents the average estimation time for each method.
The average query time for our method is of the order of
a few microseconds, which is several orders of magnitude
faster than both RIS and MC. Therefore, once we construct
our index, we can perform efficient tracking of influential
vertices. Figure 5 indicates that the average estimation time
is robust against changes in β, because it requires only con-
stant time, as described in Section 4.3.1.

Figure 7 illustrates the accuracy of our method, where
each point corresponds to a seed set consisting of a single
vertex, and the x and y coordinates represent the influence
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Table 4: Average running time for estimating the
influence spread of a single vertex.

This work Static methods

Dataset Model Indexing Query MC RIS

Epinions
TR 89.1 s 0.97 µs 6.3 s 8.7 s
WC 62.2 s 0.96 µs 0.01 s 9.3 s

DBLP
TR 2,965.9 s 1.62 µs 48.0 s 267.1 s
WC 3,395.7 s 1.41 µs 0.02 s 298.1 s
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Figure 5: Average times
for estimating influence
of a single vertex with β
on Epinions.
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Figure 6: Average times
for estimating influence
of a vertex set of various
sizes on Epinions.

(a) Epinions (TR, β = 1) (b) Epinions (TR, β = 32)

Figure 7: Correlation between the ground truth and
influence estimation calculated by our method.

spreads computed by MC and our method, respectively. It
can be seen that as β increases, our method becomes more
accurate. Even when β = 1, our method is stable, in the
sense that all the points are close to the diagonal (i.e., the
line of y = x) and we do not have any outliers. This prop-
erty is desirable, because such outliers would result in huge
errors when we want to maximize the influence spread. We
here justify our choice of parameter β. We plotted the root
mean squared error and Spearman’s rank correlation coeffi-
cient between the influence estimations of our method with
various values of β and those from MC, as presented in Fig-
ure 8. Higher values of β yield more accurate influence es-
timations, but the improvements are limited when β > 32.
Because the efficiency of index construction and dynamic
updates depends on the value of β, we adopted β = 32 as a
sweet spot between accuracy and efficiency.

Next, we evaluate the efficiency of the influence estimation
for a set of multiple vertices. We randomly generated 1,000
vertex sets of a specific size, and then estimated the influence
spread for each vertex set. Figure 6 presents the average
estimation times for a vertex set of sizes ranging from 1 to
64. The estimation times are scaled to the seed set size, and
under one millisecond is required for a seed set of size 64,
which is 10–100 times faster than the required times without
our speed-up technique.
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Figure 8: Accuracy improvements of influence esti-
mation with the increase of β on Epinions.

7.5 Influence maximization
Finally, we will demonstrate that our method processes in-

fluence maximization queries efficiently and accurately using
the index constructed from a given graph.

Figure 9 summarizes the running times required to com-
pute seed sets of sizes 1, 10, 20, . . . , 100 after reflecting all
of the edges in each network. Note that the running times
do not include the times needed to read the input graph
from a secondary storage location. Both TIM+ and IMM
did not finish within two hours on Flickr (TR, k ≥ 1). Our
method returns a seed set within 20 seconds for all of the set-
tings, whereas other state-of-the-art static methods require
a time of at least one order of magnitude longer. It should
be noted that finding a seed set of the same quality that our
method delivers from scratch requires ten times longer, as
the performance of RIS demonstrates. We can also observe
the robustness of our method against the seed size k, while
TIM+, IMM, and IRIE become slower as k increases.

Figure 10 presents the influence spread for seed sets of
sizes 1, 10, 20, . . . , 100, as computed using each method. As
we can see, our method and RIS deliver almost the same
quality. This is not a coincidence, because we have a theo-
retical guarantee that both our method and RIS generate in-
dices sampled from the same distribution. TIM+, IMM, and
PMC also gave seed sets of a similar quality to our method,
and this is because they also have accuracy guarantees. IRIE
and Degree perform comparatively badly on Enron (TR).

8. CONCLUSIONS
In this paper, we proposed the first fully-dynamic index

data structure for influence analysis on an evolving network.
Our indexing method can instantly incorporate graph up-
dates of any kind, and it can efficiently answer the two kinds
of queries, influence estimation and influence maximization,
on the latest graph snapshot. Our thorough theoretical anal-
ysis guarantees the non-degeneracy of our update algorithms
and solution accuracy for our query algorithms. Moreover,
we developed several speed-up techniques that drastically
reduce both the time and space consumptions.

Experimental results on real dynamic networks demon-
strated that our method is able to update the index sev-
eral orders of magnitude faster than reconstructing an in-
dex from scratch owing to the proposed speed-up techniques.
Furthermore, comparing with existing static methods for in-
fluence estimation and influence maximization, we verified
the efficiency and accuracy of our query algorithms.
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Figure 9: Running times for extracting a seed set
of size from 1 to 100 for each algorithm.

 2600

 2800

 3000

 3200

 3400

 3600

 3800

 4000

 4200

 4400

 0  20  40  60  80  100

In
fl
u

e
n

c
e

 s
p

re
a

d

Seed size k

(a) Enron (TR)

 180000

 185000

 190000

 195000

 200000

 0  20  40  60  80  100

In
fl
u

e
n

c
e

 s
p

re
a

d

Seed size k

(b) Flickr (TR)

Figure 10: The influence spreads of a seed set of
size from 1 to 100 computed by each algorithm.
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