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ABSTRACT

Continuous outlier detection in data streams has important
applications in fraud detection, network security, and pub-
lic health. The arrival and departure of data objects in a
streaming manner impose new challenges for outlier detec-
tion algorithms, especially in time and space efficiency. In
the past decade, several studies have been performed to ad-
dress the problem of distance-based outlier detection in data
streams (DODDS), which adopts an unsupervised definition
and does not have any distributional assumptions on data
values. Our work is motivated by the lack of comparative
evaluation among the state-of-the-art algorithms using the
same datasets on the same platform. We systematically eval-
uate the most recent algorithms for DODDS under various
stream settings and outlier rates. Our extensive results show
that in most settings, the MCOD algorithm offers the superior
performance among all the algorithms, including the most
recent algorithm Thresh LEAP.

1. INTRODUCTION
Outlier detection in data streams [2] is an important task

in several domains such as fraud detection, computer net-
work security, medical and public health anomaly detection,
etc. A data object is considered an outlier if it does not con-
form to the expected behavior, which corresponds to either
noise or anomaly. Our focus is to detect distance-based out-
liers, which was first studied for static datasets [9]. By the
unsupervised definition, a data object o in a generic metric
space is an outlier, if there are less than k objects located
within distance R from o. Several variants of distance-based
outlier definition have been proposed in [4, 11, 12], by con-
sidering a fixed number of outliers present in the dataset [11],
a probability density function over data values [12], or the
sum of distances from the k nearest neighbors [4].

With data streams [2], as the dataset size is potentially
unbounded, outlier detection is performed over a sliding win-
dow, i.e., a number of active data objects, to ensure com-
putation efficiency and outlier detection in a local context.
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A number of studies [3, 5, 6, 8, 10, 12, 14, 15] have been per-
formed for Distance-based Outlier Detection in Data Streams
(DODDS). Among them, Subramaniam et al. [14] studied
outlier detection in a distributed setting, while the rest as-
sumed a centralized setting. Several demonstrations of the
proposed algorithms have been built [5, 8]. Finally, exact
and approximate algorithms have been discussed in [3].

The most recent exact algorithms for DODDS are exact

-Storm [3], Abstract-C [15], LUE [10], DUE [10], COD [10],
MCOD [10], and Thresh LEAP [6] in chronological order. Al-
though each paper independently evaluated its proposed
approach and offered some comparative results, a compre-
hensive evaluation has not been conducted. For instance,
four algorithms, namely exact-Storm, Abstract-C, COD, and
MCOD, were integrated into the MOA tool by Georgiadis et
al. [8], but their performance evaluation was not reported.
Cao et al. [6] did not compare Thresh LEAP with MCOD be-
cause “MCOD does not show clear advantage over DUE in most
cases”. However, in our evaluation, we observed that MCOD

is superior to all the other algorithms in most settings. Fur-
thermore, the most recent approximate DODDS solution,
i.e., approx-Storm [3], has not been compared with the most
efficient exact algorithms.
Moreover, a thorough evaluation of all the algorithms us-

ing the same datasets and on the same platform is necessary
to fairly compare their performances. For instance, the au-
thors of [3, 6, 15] considered both synthetic and real-world
datasets while in [10] only real-world datasets were consid-
ered. Thresh LEAP was implemented on the HP CHAOS
Stream Engine in [6] while Abstract-C in [15] was imple-
mented in C++. Moreover, by systematically setting the
parameters shared by all the algorithms, we gain insights
on their performances given the data stream characteristics
and the expected outlier rate. For instance, the default R
and k values for each dataset affect the outlier rate and in
return the algorithm performance. So far, this effect has not
been considered except in [10] only for COD, MCOD.

The contributions of our study are summarized as follows:
(1) We provide a comparative evaluation of five exact and
one approximate DODDS algorithms, including exact-Storm,
Abstract-C, DUE, MCOD, Thresh LEAP, and approx-Storm.
Note that we did not include the results for LUE or COD as
their performances are superseded by their optimized coun-
terparts DUE and MCOD in [10], correspondingly.
(2) We implement the algorithms systematically and make
our source code [1] available to the research community. The
performance metrics we use are CPU time and peak memory
requirement, which are consistent with the original studies.
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(3) We adopt representative real-world and synthetic datasets
with different characteristics in our evaluation (available
on [1]). We carefully choose default parameter values to
control the variables in each experiment and study each al-
gorithm thoroughly by changing data stream characteristics,
such as speed and volume, and outlier parameters.

This paper is structured as follows. In Section 2, we
present definitions and notions that are used in DODDS.
In Section 3, we briefly review and distinguish the six al-
gorithms under evaluation. In Section 4, we provide our
detailed evaluation results. Finally, we conclude the paper
with discussions and future research directions in Section 5.

2. PRELIMINARIES

2.1 Problem Definition
In this section, the formal definitions that are used in

DODDS are presented. We first define neighbors and out-
liers in a static dataset.

Definition 1 (Neighbor). Given a distance threshold
R (R > 0), a data point o is a neighbor of data point o′ if
the distance between o and o′ is not greater than R. A data
point is not considered a neighbor of itself.

We assume that the distance function between two data
points is defined in the metric space.

Definition 2 (Distance-based Outlier). Given a
dataset D, a count threshold k (k > 0) and a distance thresh-
old R (R > 0), a distance-based outlier in D is a data point
that has less than k neighbors in D.

A data point that has at least k neighbors is called an
inlier. Figure 1(a) shows an example of a dataset from [10]
that has two outliers with k = 4. o1, o2 are outliers since
they have 3 and 1 neighbors, respectively.

(a) Static Dataset (b) Data Stream

Figure 1: Static and Streaming Outlier Detection

Below we define the general notions used for data streams
and the DODDS problem.

Definition 3 (Data Stream). A data stream is a pos-
sible infinite series of data points ..., on−2, on−1, on, ..., where
data point on is received at time on.t.

In this definition, a data point o is associated with a time
stamp o.t at which it arrives and the stream is ordered by the
arrival time. As new data points arrive continuously, data
streams are typically processed in a sliding window, i.e., a
set of active data points. There are two window models in
data streams: count-based window and time-based window
which are defined as follows.

Definition 4 (Count-based Window). Given data
point on and a fixed window size W , the count-based window
Dn is the set of Wdata points: on−W+1, on−W+2, ..., on.

Definition 5 (Time-based Window). Given data
point on and a time period T , the time-based window D(n, T )
is the set of Wn data points: on′ , on′+1, ..., on with Wn =
n− n′ + 1 and on.t− on′ .t = T .

In this paper, we adopt the count-based window model
as in the previous works [3, 6, 10, 15]. It also enables us to
gain better control over the empirical evaluation, such as the
window size for scalability. We note that it is not challenging
to adapt the DODDS algorithms to the time-based window
model. An extension of our source code for the time-based
window model can be found on our online repository [1]. In
the rest of the paper, we use the term window to refer to
the count-based window. The window size W characterizes
the volume of the data stream. When new data points ar-
rive, the window slides to incorporate S new data points
in the stream. As a result, the oldest S data points will
be discarded from the current window. S denotes the slide
size which characterizes the speed of the data stream. Fig-
ure 1(b) shows an example of two consecutive windows with
W = 8 and S = 2. The x-axis reports the arrival time of
data points and the y-axis reports the data values. When
the new slide with two data points {o7, o8} arrives, the win-
dow D6 slides, resulting the expiration of two data points,
i.e., {o1, o2}.
As the data points in a stream are ordered by the arrival

time, it is important to distinguish between the following
two concepts: preceding neighbor and succeeding neighbor.
A data point o is a preceding neighbor of a data point o′

if o is a neighbor of o′ and expires before o′ does. On the
other hand, a data point o is a succeeding neighbor of a data
point o′ if o is a neighbor of o′ and o expires in the same
slide with or after o′. For example, in Figure 1(b), o8 has
one succeeding neighbor o7 and four preceding neighbors,
i.e., o3, o4, o5, o6. Note that an inlier which has at least k
succeeding neighbors will never become an outlier in the
future. Those inliers are thus called safe inliers. On the
other hand, the inliers which have less than k succeeding
neighbors are unsafe inliers, as they may become outliers
when the preceding neighbors expire.

The Distance-based Outlier Detection in Data Streams
(DODDS) is defined as follows.

PROBLEM 1 (DODDS). Given the window size W ,
the slide size S, the count threshold k, and the distance
threshold R, detect the distance-based outliers in every slid-
ing window ..., Dn, Dn+S , ....

The challenge of DODDS is that the neighbor set of an
active data point may change when the window slides: some
neighbors may expire and some new neighbors may arrive
in the new slide. Figure 2 from [3] illustrates how the slid-
ing window affects the outlierness of the data points. The
two diagrams represent the evolution of a data stream of
1-dimensional data points. The x-axis reports the time of
arrival of the data points and the y-axis reports the value of
each data point. With k = 3,W = 7 and S = 5, two consec-
utive windows D7 and D12 are depicted by dash rectangles.
In D7, o7 is an inlier as it has 4 neighbors, i.e., o2, o3, o4, o5.
In D12, o7 becomes an outlier because o2, o3, o4, o5 expired.
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A naive solution is to store the neighbors of every data
point and recompute the neighbors when the window slides,
which can be computationally expensive. Another approach
is to use incremental algorithms: each data point stores its
neighbors that can prove itself an inlier or outlier. When the
window slides, the neighbor information of those data points
which have at least one expired neighbor will be updated.

Figure 2: Example of DODDS from [3] with k = 3,
W = 7, and S = 5

2.2 Problem Variants
Distributed vs. Centralized. In distributed systems,
data points are generated at multiple nodes. These nodes
often perform some computations locally and one sink node
will aggregate the local results to detect outliers globally.
To date there has not been a distributed solution for the
DODDS problem. Authors of [13] and [14] studied outlier
detection in distributed sensor networks. However, those
studies are either inapplicable to data streams or incom-
plete for outlier detection. The study in [14] performed
distributed density estimation in a streaming fashion and
demonstrated its compatibility to multiple surveillance tasks.
However, there is not guarantee for distance-based outliers
detection when applied to the approximate data distribu-
tions. The study in [13] addressed distance-based outlier de-
tection in a sensor network and aimed to reduce the commu-
nication cost between sensor nodes and the sink. However,
the study assumed all data points are available at the time
of computation and thus is inapplicable to data streams.
Exact vs. Approximate. While the exact DODDS solu-
tions detect outliers accurately in every sliding window, an
approximate solution is faster in the CPU time but does not
guarantee the exact result. For example, approx-Storm [3]
only searches a subset of the current window to find neigh-
bors for each data point. As a result, it may yield false
alarms for those inliers having neighbors outside the chosen
subset. We will present the technical details as well as the
evaluation results in the following sections.

2.3 Evaluation Metrics
CPU time and peak memory requirement are the most im-

portant utility metrics for streaming algorithms. We adopt
both metrics for performance comparison, as in the original
papers [3, 6, 10, 15]. The CPU time records a DODDS algo-
rithm’s processing time for each window, including the time
for processing the new slide, the expired slide and outlier de-
tection. The peak memory consumption measures the high-
est memory used by a DODDS algorithm for each window

which includes the data storage as well as the algorithm-
specific structures to incrementally maintain neighborhood
information. Both metrics are studied in our evaluation by
varying a range of parameters, including the window size W ,
the slide size S, the distance threshold R, the count thresh-
old k, and the input data dimensionality D. In addition,
we study internal algorithm-specific details relevant to their
performance, such as the average length of the trigger list
for Thresh LEAP, and the average number of data points in
micro-clusters for MCOD.

3. DODDS ALGORITHMS
In this section, we briefly review the five exact and one ap-

proximate DODDS algorithms. We unify the notations used
in Table 1. With those notations, we summarize the time
and space complexities as well as other distinctive features
of each algorithm and provide a side-by-side comparison in
Table 2. Although adopting different data structures and
techniques, we find a common pattern among all DODDS
algorithms: when the window slides, each algorithm per-
forms three steps, i.e., processing the new slide, processing
the expired slide, reporting the outliers, and the first two
steps can be interchanged in order.

Symbol Interpretation

o A data point

o.pn
The list of preceding neighbors of o, equivalent to
o.nn before in [3] and P (o) in [10]

o.sn
The number of succeeding of o, equivalent to
o.count after in [3] and o.n+

p in [10]

o.ln cnt[]
The numbers of neighbors of o in every window that o
participates in, defined in [15]

o.evil[]
The numbers of neighbors of o in all the slides in a win-
dow, defined in [6]

PD
The list of data points that are not in micro-clusters,
defined in [10]

Table 1: Frequently Used Symbols

3.1 ExactStorm
Exact-Storm [3] stores data points in the current window

in an index structure which supports range query search,
i.e., to find neighbors within distance R of a given data
point o. Furthermore, for each data point o: o.pn stores up
to k preceding neighbors of o and o.sn stores the number of
succeeding neighbors of o.
Expired slide processing. Data points in the expired
slide are removed from the index but they are still stored in
the preceding neighbor list of other data points.
New slide processing. For each data point o′ in the new
slide, a range query is issued to find its neighbors in range
R. The result of the range query will be used to initialize
o′.pn and o′.sn. For each data point o in o′.pn, o.sn is
updated, i.e., o.sn = o.sn + 1. Then o′ is inserted to the
index structure.
Outlier reporting. After the previous two steps, the out-
liers in the current window are reported. Specifically, for
each data point o, the algorithm verifies if o has less than k
neighbors, including all succeeding neighbors o.sn and the
non-expired preceding neighbors in o.pn.
The advantage of exact-Storm is that the succeeding neigh-

bors of a data point o are not stored since they do not expire
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Algorithm
Time

Complexity
Space

Complexity
Neighbor Search Neighbor Store

Potential Outlier
Store

exact-Storm O(W log k) O(kW ) Index per window o.pn, o.sn No
approx-Storm O(W ) O(W ) Index per window o.frac before, o.sn No
Abstract-C O(W 2/S) O(W 2/S +W ) Index per window o.ln cnt[] No

DUE O(W logW ) O(kW ) Index per window o.pn, o.sn event queue

MCOD O((1− c)W log((1− c)W ) + kW log k) O(cW + (1− c)kW ) Micro-clusters
Micro-clusters;

o.pn, o.sn if o /∈ clusters
event queue

Thresh LEAP O(W 2 logS/S) O(W 2/S) Index per slide o.evil[] Trigger list per slide

Table 2: Comparison of DODDS Algorithms

before o does. However, the algorithm stores k preceding
neighbors for o without considering that omight have a large
number of succeeding neighbors and thus is a safe inlier. As
a result, it is not optimal in memory usage. In addition, be-
cause the expired preceding neighbors are not removed from
the list, retrieving the active preceding neighbors takes extra
CPU time.

3.2 AbstractC
Abstract-C [15] keeps the neighbor count for each object

in every window it participates in. It also employs an in-
dex structure for range query. Instead of storing a list of
preceding neighbors or number of succeeding neighbors for
each data point o, a sequence o.lt cnt[] is used to store the
number of neighbors in every window that o participates in.
The intuition of Abstract-C is that the number of windows
that each point participates in is a constant, i.e., W/S, if
W is divisible by S. For simplicity, we only consider the
case W/S is an integer. As a result, the maximum size of
o.ln cnt[] is W/S. For example, let’s consider o3 in Figure
2. If W = 3 and S = 1, o3 participates in three windows
D3, D4 and D5. In D3, o3 has one neighbor o2, and o2 is
still a neighbor in D4, o3.lt cnt[] = [1, 1, 0]. In D4, o3 has
two neighbors because of a new neighbor o4 and o4 is still a
neighbor in D5, o3.lt cnt[] = [2, 1]. And in the last window
D5, o3 has a new neighbor o5, o2 expired, o3.lt cnt[] = [2].
Expired slide processing. In addition to removing ex-
pired data points from the index, for each active data point
o, the algorithm removes the first element o.lt cnt[0] that
corresponds to the last window.
New slide processing. For each data point o′ in the new
slide, a range query in the index structure is issued to find
neighbors for it in range of R, o′.lt cnt[] is initialized based
on the result set of the range query. For each neighbor o,
o.ln cnt[] is updated to reflect o′ in those windows where
both o and o′ participate in. Then o′ is added to the index.
Outlier reporting. After the previous two steps, the algo-
rithm checks for every active data point o, if it has less than
k neighbors in the current window, i.e., o.ln cnt[0] < k.
One advantage of Abstract-C over exact-Storm is that

it does not spend time on finding active preceding neigh-
bors for each data point. However, the memory requirement
heavily depends on the input data stream, i.e., W/S. For
example, the space for storing ln cnt[] for each data point o
would be very high for small slide size S.

3.3 Direct Update of Events  DUE
The intuition of DUE [10] is that not all active data points

are affected by the expired slide: only those who are neigh-
bors with the expired data points need to be updated. DUE

also employs an index structure which supports range query
search to store data points. A priority queue called event

queue stores all the unsafe inliers. The data points in the
event queue are sorted in increasing order of the smallest
expiration time of their preceding neighbors. An outlier list
is created to store all outliers in the current window.
Expired slide processing. Once the expired data points
are removed from the index, the event queue is polled to up-
date the neighbor list of those unsafe inliers whose neighbors
expired. If an unsafe inlier becomes an outlier, it is removed
from the event queue and added to the outlier list.
New slide processing. For each data point o in the new
slide, a range query search is issued to find all neighbors
in range of R. The number of succeeding neighbors o.sn is
initialized from the result set and only k− o.sn most recent
preceding neighbors are stored in o.pn. Then o is added to
the index. If o is an unsafe inlier, it is added to the event
queue. On the other hand, if o has less than k neighbors,
it is added to the outlier list. For each neighbor o′, the
number of its succeeding neighbors o′.sn is increased by 1.
A neighbor o′ that is an outlier previously may become an
inlier in the current window as the number of its succeeding
neighbors increases and o′ will be removed from the outlier
list then added to the event queue.
Outlier reporting. After the new slide and the expired
slide are processed, the data points in the outlier list are
reported.

The event queue employed by DUE has an advantage for
efficient re-evaluation of the inlierness of the data points
when the window slides. On the other hand, it requires
extra memory and CPU time to maintain sorted.

3.4 MicroCluster Based Algorithm  MCOD
Range queries can be expensive, especially when carried

out on large datasets and for every new data point. MCOD [10]
stores the neighboring data points in micro-clusters to elimi-
nate the need for range queries. A micro-cluster is composed
of no less than k + 1 data points. It is centered at one data
point and has a radius of R/2. According to the triangular
inequality in the metric space, the distance between every
pair of data points in a micro-cluster is no greater than R.
Therefore, every data point in a micro-cluster is an inlier.
Figure 3 shows an example of three micro-clusters, and data
points in each cluster are represented by different symbols.
Some data points may not fall into any micro-clusters. They
can be either outliers or inliers, e.g., having neighbors from
separate micro-clusters. Such data points are stored in a
list called PD. MCOD also employs an event queue to store
unsafe inliers that are not in any clusters. Let 0 ≤ c ≤ 1
denote the fraction of the window stored in micro-clusters
then the number of data points in PD is (1− c)W .
Expired slide processing. When the current window
slides, the expired data points are removed from micro-
clusters and PD. The event queue is polled to update the
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unsafe inliers, similarly to DUE. If a micro-cluster has less
than k + 1 data points, it is dispersed and the non-expired
members are processed as new data points.
New slide processing. For each data point o, o may be
added to an existing micro-cluster, become the center of its
own micro-cluster, or added to PD and the event queue. If
o is within distance R/2 to the center of a micro-cluster, o is
added to the closest micro-cluster. Otherwise, MCOD searches
in PD for o′s neighbors within distance R/2. If at least k
neighbors are found in PD, these neighbors and o form a
new micro-cluster with o as the cluster center. Otherwise, o
is added to PD, and the event queue if it is an unsafe inlier.
Outlier reporting. After the new slide and expired slide
are processed, the data points in PD that have less than k
neighbors are reported as outliers.

One advantage of MCOD is that it effectively prunes the
pair-wise distance computations for each data point’s neigh-
bor search, utilizing the micro-clusters centers. The memory
requirement is also lowered as one micro-cluster can effi-
ciently capture the neighborhood information for each data
point in the same cluster.

Figure 3: Example micro-clusters with k = 4 [10]

3.5 Thresh LEAP
Thresh LEAP [6] mitigates the expensive range queries with

a different approach: Data points in a window are not stored
in the same index structure and each slide has a separate,
smaller index. As a result, this design reduces the range
search cost and facilitates the minimal probing principle.
Intuitively, the algorithm searches for the succeeding neigh-
bors first for each data point, and subsequently the preced-
ing neighbors per slide in a reverse chronological order. Each
data point o maintains the number of neighbors in every
slide in o.evil[] and the number of succeeding neighbors in
o.ns. Each slide has a trigger list to store data points whose
outlier status can be affected by the slide’s expiration.
New slide processing. For each data point o in the new
slide, Thresh LEAP adopts the minimal probing principle by
finding o’s neighbors in the same slide. If less than k neigh-
bors are found, the probing process continues to the previous
slide and so on, until k neighbors are found or all slides are
probed. o.evil[] and o.ns are updated after probing and o is
added to the trigger list of each probed slide. Figure 4 shows
an example of probing operation when o arrives in the new
slide. In order to find neighbors for data point o, the order
of slides that will be probed is S4, S3, S2, S1.
Expired slide processing. When a slide S expires, the
index of S is discarded and the data points in the trigger list
of S are re-evaluated. For each data point o in the trigger
list, the entry in o.evil[] corresponding to S is removed. If
it has less than k active neighbors, the algorithm probes

the succeeding slides which have not been probed before. It
is not needed to probe preceding slides which were skipped
in the initial probing for o as those slides already expired.
Figure 5 shows an example of re-probing operation for o
when slide S1, S2 expired. The order of slides that will be
probed is S5, S6.
Outlier reporting. After the previous two steps, each data
point o is evaluated by summing up its preceding neighbors
in o.evil[] and succeeding neighbors in o.sn.
Compared to non-cluster DODDS algorithms, one advan-

tage of Thresh LEAP is in CPU time, thanks to the minimal
probing principle and the smaller index structure per slide
to carry out range queries. However, it incurs memory inef-
ficiency when the slide size S is small, as Abstract-C.

Figure 4: Probing for new data point o.

Figure 5: Re-probing as preceding neighbors expire.

3.6 ApproxStorm
Approx-Storm [3] is an approximate algorithm for DODDS.

It adapts exact-Storm with two approximations. The first
approximation consists in reducing the number of data points
stored in each window. Up to ρW safe inliers are preserved
for each window, where ρ is a predefined value 0 < ρ < 1.
The second approximation consists in reducing the space for
neighbor store for each data point o, storing only a number,
i.e., o.frac before, which is the ratio between the number
of o’s preceding neighbors which are safe inliers to the num-
ber of safe inliers in the window. The assumption is that
the majority of the data points are safe inliers and they are
distributed uniformly within the window.
Expired slide processing. Similar to exact-Storm, ex-
pired data points are removed from the index structure.
New slide processing. For each new data point o′, a range
query is issued to find its neighbors in range R. The result
of the range query will be used to initialize o′.frac before
and o′.sn. For each o in the range query result, o.sn is
incremented. Then o′ is inserted to the index structure. The
number of safe inliers stored is controlled not to exceed ρW
by randomly removing safe inliers from the index structure.
Outlier reporting. After the previous two steps, the al-
gorithm verifies if the estimated number of neighbors for o,
i.e., o.frac before ∗ (W − t+ o.t) + o.sn, is less than k.

The advantage of approx-Storm is that it does not store
the preceding neighbors for each data point and only a por-
tion of safe inliers are stored for neighbor approximation.
Therefore, the time for processing the expired data points
is very small compared to the other algorithms.
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4. EXPERIMENTS

4.1 Experimental Methodology
Originally, the experiments in [3, 6, 10, 15] were carried

out with different programming languages and on different
platforms, e.g., Thresh LEAP [6] was implemented on HP
CHAOS Stream Engine, MCOD [10] and DUE [10] were imple-
mented in C++. For fair evaluation and reproducibility, we
implemented all the algorithms in Java and created an on-
line repository [1] for the source code and sample datasets.
Our experiments were conducted on a Linux machine with
a 3.47 GHz processor and 15 GB Java heap space. We use
M-Tree [7] to support range queries in all the algorithms
except for MCOD as in [10].
Datasets. We chose the following real-world and synthetic
datasets for our evaluation. Forest Cover (FC) contains
581, 012 records with 55 attributes. It is available at the UCI
KDD Archive1 and was also used in [10]. TAO contains
575, 648 records with 3 attributes. It is available at Trop-
ical Atmosphere Ocean project2. A smaller TAO dataset
was used in [3, 10]. Stock contains 1, 048, 575 records with
1 attribute. It is available at UPenn Wharton Research
Data Services3. A similar stock trading dataset was used
in [6]. Gauss contains 1 million records with 1 attribute.
It is synthetically generated by mixing three Gaussian dis-
tributions. A similar dataset was used in [3, 15]. HPC
contains 1 million records with 7 attributes, extracted from
the Household Electric Power Consumption dataset at the
UCI KDD Archive. EM contains 1 million records with 16
attributes, extracted from Gas Sensor Array dataset at the
UCI KDD Archive. We summarize our observations across
multiple datasets in the experiments below and refer readers
to our technical report [1] for detailed figures with the last
two datasets.

Dataset Size Dim. W S Outlier Rate
FC 581,012 55 10,000 500 1.00%
TAO 575,648 3 10,000 500 0.98%
Stock 1,048,575 1 100,000 5,000 1.02%
Gauss 1,000,000 1 100,000 5,000 0.96%

Table 3: Default Parameter Setting

Default Parameter Settings. There are four parameters:
the window size W , the slide size S, the distance threshold
R, and the neighbor count threshold k. W and S determine
the volume and the speed of data streams. They are the
major factors that affect the performance of the algorithms.
The default values of W and S are set accordingly for two
smaller datasets and two larger datasets, provided in Table
3. The values of k and R determine the outlier rate, which
also affect the algorithm performance. For example, mem-
ory consumption is related to k as all the algorithms store
information regarding k neighbors of each data point. For
fairness of measurement, the default value of k is set to 50
for all datasets. To derive comparable outlier rate across
datasets as suggested in [3, 10], the default value of R is set
to 525 for FC, 1.9 for TAO, 0.45 for Stock, and 0.028 for
Gauss. Unless specified otherwise, all the parameters take
on their default values in our experiments. Besides those

1http://kdd.ics.uci.edu
2http://www.pmel.noaa.gov
3https://wrds-web.wharton.upenn.edu/wrds/

parameters, we also vary the dimensionality of input data
streams for FC dataset. Because FC contains attributes
with different range of values, we randomly select a number
of attributes for each experiment and average the results
from 10 runs.
Performance Measurement. Wemeasured the CPU time
of all the algorithms for processing each window with Thread-
MXBean in Java and created a separate thread to monitor
the Java Virtual Machine memory. Measurements averaged
over all windows were reported in the results.

4.2 Varying Window Size
We first evaluate the performance of all the algorithms

by varying the window size W . Figure 6 and 9 depict the
resulting CPU time and memory, respectively. When W
increases, the CPU time and the memory consumption are
expected to increase as well.
CPU Time. As shown in Figure 6, when W increases,
the CPU time for each algorithm increases as well, due to
a larger number of data points to process in every window,
with an exception of MCOD with Gauss data. Exact-Storm,
Abstract-C, and DUE have similar performances across dif-
ferent datasets, while Thresh LEAP and MCOD are shown to
be consistently more efficient.
MCOD incurs the lowest CPU time among all the algo-

rithms, as a large portion of data, i.e., inliers, can be stored
in micro-clusters. Adding and removing data points from
micro-clusters are very efficient as well as carrying out range
queries, compared to index structures used by other algo-
rithms. We also observe that the CPU time of MCOD de-
creases when increasing W for Gauss dataset as in Fig-
ure 6(d) and it’s much higher compared to other datasets.
The reason is the data points in Gauss are sequentially, in-
dependently generated and hence tend to have fewer neigh-
bors when W is small, e.g., when W = 10K. As can be
seen in Figure 7, when W = 10K the majority of Gauss
data points of each window (over 99%) do not participate
in any micro-cluster. In that case, MCOD’s CPU time is dom-
inated by maintaining data points in the event queue and
linear neighbor search for each data point due to lack of
micro-clusters. Though DUE suffers from the event queue
processing as well, it shows a slight advantage over MCOD

when W = 10K in Figure 6(d) as M-Tree is used for neigh-
bor search. The advantage of micro-clusters can be clearly
observed when W increases to 50K and higher. As more
data points participate in micro-clusters, CPU time for MCOD
is reduced, enlarging the performance gap between MCOD and
other algorithms.

On the other hand, Thresh LEAP stores each slide in a M-
Tree and probes the most recent slides first for each incoming
data point. By leveraging a number of smaller trees, it in-
curs less CPU time than Abstract-C, exact-Storm, and DUE.
We observe in Figure 6 that the CPU time of Thresh LEAP

increases simultaneously with W for FC and Gauss but
stays stable for TAO and Stock datasets. The reason is that
for each slide Thresh LEAP maintains a trigger list contain-
ing data points whose inlier status needs to be re-evaluated
upon the slide’s expiration. As shown in Figure 8, the av-
erage length of trigger list per slide doesn’t grow with TAO
and Stock as much as it does with FC and Gauss, result-
ing higher re-evaluation cost for the latter two datasets. We
can also conclude from Figure 8 that TAO and Stock ex-
hibit high local continuity as on average each data point has
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Figure 8: Average Length of Trigger List for Thresh LEAP

- Varying Window Size W

sufficient neighbors after probing a small number of slides.
Peak Memory. Figure 9 reports the peak memory con-
sumption of the evaluated algorithms when varying the win-
dow size W . As every algorithm stores data points as well as
their neighborhood information in the current window, the
memory requirement increases with W consistently across
different datasets.

We observe that MCOD incurs lowest memory requirement
in comparison across all datasets, thanks to the memory effi-
cient micro-clusters. The benefit of the micro-cluster struc-
ture is that it stores a set of data points that participate
in a cluster of radius R/2 and can represent a lower bound
of the R neighborhood of every member data point. That
results in desirable memory saving as a large percentage of
data fall into clusters, as in Figure 7.

In contrast, all other algorithms explicitly store neigh-
borhood information for every data point, i.e., Abstract-C,
exact-Storm, and DUE, or every slide, i.e., Thresh LEAP, thus
higher dependency on the window size W . Abstract-C has
space complexity O(W 2/S) as the algorithm stores for each
data point the number of neighbors in every window it re-
sides. It is clearly confirmed in Figure 9(c) that Abstract-C
shows the fastest rate of growth in memory, quite low when

W = 10K and highest when W = 200K. Similar trend can
be observed in other datasets as well. Exact-Storm and DUE

have similar complexity O(kW ) and it can be seen that DUE
consistently incurs lower memory cost than exact-Storm.
The reason is exact-Storm stores k preceding neighbors for
every data point, while DUE stores only k− si, where si rep-
resents the number of succeeding neighbors of data point
i. We can also observe that exact-Storm demands more
memory than Abstract-C when the window size is small,
i.e., W/S < k, as in Figure 9(b). On the other hand,
Thresh LEAP stores a trigger list for every slide, where each
data point in the list should be re-evaluated when the slide
expires, yielding space complexity of O(W 2/S). However,
since the length of trigger list depends on the local continu-
ity of the input stream (Figure 8), the worst case complexity
doesn’t always hold in practice. As can be seen in Figure 9,
Thresh LEAP appears to be superior to Abstract-C for TAO
and Stock datasets, and performs similarly to Abstract-C

for FC and Gauss datasets.

4.3 Varying Slide Size
We further examined the algorithms’ performances when

varying the slide size S to change the speed of the data
streams, e.g., from 1% to 100% of the window size W as
in [15]. When S increases, more data points arrive and ex-
pire at the same time, while the number of windows that a
point participates in decreases. S = W is an extreme case,
in which every data point resides only in one window. All
data points within the current window are removed when
the window slides and none would affect the outlier status
of data points in adjacent windows, i.e., no preceding neigh-
bors. Figure 10 and 12 depict the results of CPU time and
memory requirement, respectively.
CPU Time. As shown in Figure 10, MCOD incurs low-
est CPU time in most cases, while exact-Storm, DUE and
Abstract-C incur highest CPU time and behave similarly
across all datasets; Thresh LEAP shows a different trend from
the other algorithms. When S increases from 1%W to 50%W ,
the CPU time of all the algorithms except Thresh LEAP in-
creases as there are more new data points as well as expired
data points to process when the window slides. When fur-
ther increasing S from 50%W to 100%W , we observe a drop
in CPU time for exact-Storm, Abstract-C, DUE, and MCOD in
most cases. That is because when S = W the M-Tree for the
entire window can be discarded as the window slides, instead
of sequentially removing expired data points one by one as is
done when S < W , thus reducing the processing time for ex-
pired data points. We notice that MCOD’s CPU time contin-
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Figure 9: Peak Memory - Varying Window Size W
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Figure 10: CPU Time - Varying slide size S

ues to grow between S = 50%W and S = 100%W for Stock
and Gauss datasets. We believe that when window size is
large, i.e., W = 100K, the CPU time needed for MCOD to pro-
cess 50% new data points outweighs the saving from discard-
ing expired data points. Based on the above observations,
we conclude that processing arriving data points in MCOD

does not scale as well as that of expired data points, which
can be further improved in future work. On the other hand,
Thresh LEAP behaves differently from the other methods.
For every dataset, Thresh LEAP’s CPU time first decreases
as S increases and starts to increase after a turning point,
e.g., when S = 10%W or 20%W . The reason is when the
slide size is small, more slides need to be probed in order to
find neighbors for each new data point, resulting in high pro-
cessing time for new data points as well as high re-evaluation
time when each slide expires, due to longer trigger list per
slide as in Figure 11. As S increases, fewer slides need
to be probed and the average trigger list becomes shorter,
thus reducing the overall CPU time. When S is further in-
creased beyond 10%W for FC, TAO, and Stock, and 20%W
for Gauss, the CPU performance of Thresh LEAP shows in-
efficiency caused by maintaining larger M-Trees (one per
slide). Eventually when S = W , Thresh LEAP yields similar
CPU time to exact-Storm, Abstract-C, and DUE.
Peak Memory. Figure 12 depicts the peak memory re-
quirements of all the algorithms. We observe that when S
increases, the memory cost of all the algorithms decreases.
When S = W , every data point does not have any preced-
ing neighbors and only participates in one window which is
why all the algorithms show similar memory consumptions.
MCOD continues to be superior to other algorithms in mem-
ory efficiency thanks to micro-clusters. It shows a decreasing
trend as S increases, as a result of fewer preceding neigh-
bors to store for each data point in the event queue, similar
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Figure 11: Average Length of Trigger List in
Thresh LEAP - Varying Slide Size S

to DUE. Exact-Storm shows stable memory consumption un-
til S is increased to 100%W , when the number neighbors
of each data point to store drops from k to 0. Abstract-C

and Thresh LEAP perform similarly, showing a high reduc-
tion in memory from S = 1%W to 10%W and slower re-
duction as S further increases. In FC and Gauss datasets,
Thresh LEAP shows a slightly higher memory consumption
than Abstract-C when S = 1%W . The reason is the trigger
list for each slide is long when S is small and Thresh LEAP

stores a neighbor map for each data point, i.e., the number
of neighbors in each slide, which is proportional to W/S.

4.4 Varying k

The neighbor count threshold k is also an important pa-
rameter affecting the outlier rate as well as the space re-
quired for neighbor store. Figure 13 and 14 depict the re-
sulting CPU time and peak memory, respectively. When k
increases, the memory consumption of all the algorithms ex-
cept Abstract-C is expected to increase as well. The CPU
time and memory consumption of Abstract-C is expected
to be stable because o.ln cnt only depends on W and S.
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Figure 12: Peak Memory - Varying Slide Size S
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Figure 13: CPU Time - Varying K

CPU Time. As shown in Figure 13, when k increases,
the CPU time of Abstract-C, DUE, and exact-Storm does
not show much variation, as expected. As described in the
previous sections, those algorithms do not heavily depend
on k. MCOD incurs the lowest CPU time among all the
algorithms consistently. The CPU time of MCOD increases
when k increases, as fewer data points fall in micro-clusters.
Thresh LEAP behaves differently across the 4 datasets. Its
CPU time is stable for TAO and Stock and increases for FC
and Gauss. With Gauss, when k ≥ 70, the CPU time of
Thresh LEAP is the highest among all the algorithms. As k
increases, Thresh LEAP needs to probe more slides to find k
neighbors for each data point. With TAO and Stock, the
additional probing due to the increase of k is not as signifi-
cant as in FC and Gauss, since more neighbors can be found
locally in these two datasets.
Peak Memory. Figure 14 depicts the peak memory re-
quirements of all the algorithms. We observe that the peak
memory of Abstract-C is stable as expected and the rest al-
gorithms show increasing memory requirements as the stor-
age for neighbors is dependent on k. DUE and exact-Storm

store a longer preceding neighbor list for each data point
when k increases. MCOD continues to be superior to all other
algorithms in memory efficiency. It shows an increasing
trend as k increases, due to a larger number of data points
which are not in any micro-clusters. Furthermore, in MCOD,
each data point in PD stores more preceding neighbors
when k increases. When k = 100 with FC, MCOD requires
more memory than Abstract-C. Thresh LEAP’s memory re-
quirement is stable with TAO and Stock, but increases with
FC and Gauss. The increase in the memory requirement
matches with the increase in CPU time with FC and Gauss
since each data point has a longer neighbor count list.

4.5 Varying R

The distance threshold R is also an important parameter
affecting the range query and the outlier rate. We vary R
with respect to its default values. Table 4 shows the cor-
responding outlier rates for each dataset when varying R.
When R increases, every data point has more neighbors,
therefore the number of outliers decreases. However, the
CPU time for range queries is expected to increase. Figure
15 and 16 depict the CPU time and peak memory require-
ment of all the algorithms.
CPU Time. As shown in Figure 15, when R increases, due
to expensive range queries, the CPU time of Abstract-C,
exact-Storm, and DUE increases. Unlike the previous al-
gorithms, the CPU time of MCOD and Thresh LEAP initially
increases and then decreases when R is large enough. The
initial increase of MCOD’s CPU time is due to sorting, adding,
and removing a larger number of neighbors for each data
point in PD. As shown in Table 4, the outlier rates when
R is less than 10% of its default value are very high. In
those cases, very few data points are in micro-clusters, and
the efficiency of micro-clusters is not utilized by the major-
ity of the data points within the current windows. As a
result, MCOD’s CPU time is even higher than the other al-
gorithms in those cases. When R is further increased, the
number of data points in micro-clusters increases. Because
of the efficiency in checking and maintaining inlier status
of the micro-clusters, the CPU time of MCOD decreases and
becomes superior to all the other algorithms. When R is fur-
ther increased, it takes more time to find all the neighbors
of a data point. That causes the increase in the CPU time
of MCOD with Stock, when R increases from 500% to 1000%
of the default value. Thresh LEAP behaves quite similarly
to MCOD. When R increases initially, each data point has a
larger number of preceding neighbors and each slide has a
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Figure 15: CPU Time - Varying R

R/Default R (%) FC(%) TAO (%) Stock(%) Gauss(%)
1 100.00 99.60 45.95 100.00
10 100.00 54.34 6.80 39.50
50 10.79 3.44 2.09 3.18
100 1.00 0.98 1.01 0.98
500 0.00 0.19 0.17 0.29
1000 0.00 0.11 0.08 0.23

Table 4: Outlier Rate - Varying R

longer trigger list, thus incurring the higher CPU time for
Thresh LEAP. When R is further increased, each data point
can find enough neighbors with a small number of probes,
which causes the trigger lists to be shorter. Therefore, the
CPU time of Thresh LEAP decreases.
Peak Memory. As shown in Figure 16, in most cases,
MCOD requires the lowest memory among all the algorithms.
The memory requirement of all the algorithms first increases
then becomes stable or decreases. Initially, when R in-
creases, because each data point has more neighbors, the
peak memory increases. When we further increase R, i.e.,
from 100% to 1000% with FC and TAO, from 50% to 1000%
with Stock andGauss of the default value, the result of range
queries does not expand much, which yields the memory of
exact-Storm and Abstract-C to be stable. For each data
point o in DUE, because the number of succeeding neighbors
o.sn increases, the number of stored preceding neighbors in
o.pn decrease. Therefore the memory requirement of DUE

decreases. Similarly, in Thresh LEAP, the trigger list of each
slide and the preceding neighbor counts of each data point,
i.e., o.evil[], are shorter, and therefore the memory require-
ment of Thresh LEAP decreases. When R increases, each
data point has a higher chance to have enough neighbors
within distance of R/2 to form a new micro-cluster. It causes

the increase in the number of data points in micro-clusters,
thus incurring the decrease in memory requirement of MCOD.

4.6 Varying Dimensionality
In addition, we also vary the input data dimensionality D

and analyze its impact on the performance of the algorithms.
With FC dataset, D is varied from 1 to 55. We run 10
times then average the results with D attributes that are
randomly selected each time. Figure 17 depicts the CPU
time and memory requirement of all the algorithms. When
D increases, the distance computation requires more time.
As the distances between data points are larger, the outlier
rate is expected to increase.
CPU Time. As shown in Figure 17(a), when D increases,
the CPU time of exact-Storm, Abstract-C, DUE decreases,
and that of MCOD and Thresh LEAP increases. MCOD is still su-
perior to all the other algorithms in CPU time in all cases.
Because each data point has fewer neighbors when D in-
creases, updating neighbor information when the window
slides takes less time. The decrease in CPU time for pro-
cessing neighbors overweights the increase in CPU time for
distance computations for Abstract-C, exact-Storm, and
DUE. MCOD has fewer data points in micro-clusters when D in-
creases because of larger distances between the data points,
and therefore its CPU time increases. Similarly, the CPU
time of Thresh LEAP increases whenD increases. One reason
is that each data point has to probe more slides to find neigh-
bors and computing pairwise distances takes more time.
Peak Memory. As shown in Figure 17(b), when D in-
creases, the memory consumption of all the algorithms in-
creases. When D is small, e.g., from 1 to 4, DUE requires
the lowest memory, and when D is further increased, MCOD
is the most efficient in memory. When D increases, the
storage for the attribute values of the data points increases
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Figure 16: Peak Memory - Varying R
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Figure 17: Varying Dimensionality D

linearly with D. In Abstract-C and exact-Storm, the mem-
ory consumption is mostly changed by the storage for at-
tribute values, therefore it increases along with the increase
inD. In MCOD, because the distances between the data points
increase, more data points are not in micro-clusters, thus
resulting larger CPU time. With D is from 1 to 4, DUE

consumes the lowest memory because each data point has
enough succeeding neighbors and has to store very few pre-
ceding neighbors. When D increases from 4 to 55, in DUE,
each data point stores more preceding neighbors and it is
not as efficient as the micro-clusters in MCOD.

4.7 Approximate Solution
We also evaluate the approximate solution for DODDS

by varying the parameter ρ in approx-Storm from 0.01 to
1, where ρ = 1 determines all safe inliers of the window are
stored. As only ρW of the total safe inliers in each window
are preserved and the algorithm assumes that data points
distributed uniformly within the window, approx-Stormmay
miss or falsely report some outliers in each window. With
TAO and Gauss datasets, we summarize the precision and
recall measures, with the ground truth provided by exact-

Storm, in Table 5. Results with other datasets are presented
in our technical report [1]. As is shown, the recall for both
datasets increases when increasing ρ. It is not surprising
that the safe inliers are not uniformly distributed within the
window in practice. The algorithm tends to overestimate
the number of preceding neighbors when only a subset of
the safe inliers are preserved for approximation. Similar to
the findings in [3], the precision initially increases and then
drops for both datasets. The reason is with larger sample
sizes the algorithm underestimates the number of neighbors
for those inliers. We find the dataset-specific ρ value that

ρ 0.01 0.05 0.1 0.5 1

TAO
Precision (%) 96 98 97 96 96
Recall (%) 68 73 77 80 80

Gauss
Precision (%) 36 56 75 56 50
Recall (%) 96 99 99 100 100

Table 5: Approx-Storm Precision and Recall
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Figure 18: Approx-Storm vs. Exact Algorithms

achieves the optimal estimation for the precision measure,
i.e., ρ = 0.05 for TAO and ρ = 0.1 for Gauss.
We further compare approx-Storm to the most efficient

exact algorithms, i.e., MCOD and Thresh LEAP. We set ρ = 0.1
for both of the datasets to reach above 75% precision and re-
call. As can be seen in Figure 18(a) and 18(b), the CPU time
of approx-Storm is superior to exact-Storm and is quite
comparable to that of MCOD and Thresh LEAP. It is expected
as approx-Storm does not have to update the neighbor in-
formation for each data point when the window slides. As
shown in Figure 18(c) and 18(d), the peak memory require-
ment of approx-Storm is consistently lower than MCOD and
Thresh LEAP as W increases. It is also expected as for each
data point o, only two numbers o.sn and o.frac before are
stored for neighbor information.
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5. CONCLUSION AND DISCUSSIONS
In this paper, we performed a comprehensive comparative

evaluation of the state-of-the-art algorithms for distance-
based outlier detection in data streams (DODDS). We re-
viewed the most recent exact and approximate algorithms
and systematically evaluated their performances in CPU
time and peak memory consumption with various datasets
and stream settings. Our results showed that MCOD [10] pro-
vides superior performance across multiple datasets in most
stream settings, outperforming the most recent algorithm
Thresh LEAP [6]. We found that MCOD benefits significantly
from the micro-cluster structure, which simultaneously sup-
ports both neighbor search and neighbor store. On the con-
trary, all the other algorithms utilize separate structures,
i.e., indices, preceding neighbor lists, etc., for different func-
tionalities. We also discovered that Thresh LEAP incurs the
lowest CPU time when the input data stream exhibits strong
local continuity, i.e., when each data point has many neigh-
bors within one slide. Furthermore, our results showed that
MCOD does not scale well for processing arriving data points
when the slide size is large. Considering the performance
across all datasets with different outlier rates, we concluded
that MCOD is more feasible and scalable than Thresh LEAP.

The following directions can be explored in future DODDS
research: 1) Storing several consecutive slides in Thresh LEAP

to achieve a tradeoff between minimal probing and shorter
trigger lists; 2) Considering the data expiration time in
micro-clusters in MCOD in order to minimize the number of
dispersed clusters when the window slides; 3) Designing a
hybrid approach which benefits from both the micro-clusters
in MCOD and the minimal probing in Thresh LEAP; 4) Design-
ing DODDS solutions in a decentralized setting to ensure
complete outlier detection while minimizing the communi-
cation cost between nodes, e.g., adapting MCOD to share the
local cluster centers across multiple nodes. In addition, the
processing of new/expired slides needs to be optimized when
the window slides.
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