
Effective Community Search for Large Attributed Graphs

Yixiang Fang, Reynold Cheng, Siqiang Luo, Jiafeng Hu
Department of Computer Science, The University of Hong Kong, Pokfulam Road, Hong Kong

{yxfang, ckcheng, sqluo, jhu}@cs.hku.hk

ABSTRACT
Given a graph G and a vertex q ∈ G, the community search query
returns a subgraph of G that contains vertices related to q. Commu-
nities, which are prevalent in attributed graphs such as social net-
works and knowledge bases, can be used in emerging applications
such as product advertisement and setting up of social events. In
this paper, we investigate the attributed community query (or AC-
Q), which returns an attributed community (AC) for an attributed
graph. The AC is a subgraph of G, which satisfies both structure
cohesiveness (i.e., its vertices are tightly connected) and keyword
cohesiveness (i.e., its vertices share common keywords). The AC
enables a better understanding of how and why a community is
formed (e.g., members of an AC have a common interest in mu-
sic, because they all have the same keyword “music”). An AC can
be “personalized”; for example, an ACQ user may specify that an
AC returned should be related to some specific keywords like “re-
search” and “sports”.

To enable efficient AC search, we develop the CL-tree index
structure and three algorithms based on it. We evaluate our so-
lutions on four large graphs, namely Flickr, DBLP, Tencent, and
DBpedia. Our results show that ACs are more effective and effi-
cient than existing community retrieval approaches. Moreover, an
AC contains more precise and personalized information than that
of existing community search and detection methods.

1. INTRODUCTION
Due to the recent developments of gigantic social networks (e.g.,

Flickr, Facebook, and Twitter), the topic of attributed graphs has
attracted attention from industry and research communities [29, 3,
6, 14, 16, 33, 17, 10]. An attributed graph is essentially a graph
associated with text strings or keywords. Figure 1 illustrates an at-
tributed graph, where each vertex represents a social network user,
and its keywords describe the interest of that user.

In this paper, we investigate the attributed community query (or
ACQ). Given an attributed graph G and a vertex q ∈ G, the ACQ
returns one or more subgraphs of G known as attributed commu-
nities (or ACs). An AC is a kind of community, which consists of
vertices that are closely related [26, 5, 4, 15, 22, 11]. Particularly,

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 12
Copyright 2016 VLDB Endowment 2150-8097/16/08.

Bob:{research, sports, yoga}

Tom:{fiction, film, game}{fi

Alice:{art, music, yoga}

Jack:{research, sports, tour}

Mike:{film, research, sports}

Anna:{art, cook, music}

Ada:{art, cook, music}
John:{research, sports, web}

Bob::{{{{{ earararcereseaarese

Tack:{researchh sposportst tour}

{{filfif milm,, , researchre , sports}

{ , p , } Alex:{chess, tour, research}

Figure 1: Attributed graph and AC (circled).

Table 1: Classification of works in community retrieval.
Graph
Type

Community
detection (CD)

Community
search (CS)

Non-attributed [22, 11] [26, 5, 4, 15, 18]

Attributed [34, 21, 20, 29, 23] ACQ (This paper)

an AC satisfies structure cohesiveness (i.e., its vertices are close-
ly linked to each other) and keyword cohesiveness (i.e., its vertices
have keywords in common). Figure 1 illustrates an AC (circled),
which is a connected subgraph with vertex degree 3; its vertices
{Jack, Bob, John, Mike} have two keywords (i.e., “research”
and “sports”) in common.

Prior works. The problems related to retrieving communities
from a graph can generally be classified into community detection
(CD) and community search (CS). In general, CD algorithms aim
to retrieve all communities for a graph [22, 11, 34, 21, 20, 29, 23].
These solutions are not “query-based”, i.e., they are not customized
for a query request (e.g., a user-specified query vertex). Moreover,
they can take a long time to find all the communities for a large
graph, and so they are not suitable for quick or online retrieval of
communities. To solve these problems, CS solutions have been re-
cently developed [26, 5, 4, 15]. These approaches are query-based,
and are able to derive communities in an “online” manner. Howev-
er, existing CS algorithms assume non-attributed graphs, and only
use the graph structure information to find communities. The ACQ
is a class of CS problem for attributed graphs. As we will show, the
use of keyword information can significantly improve the effec-
tiveness of the communities retrieved. Table 1 summarizes some
representative existing works in this area.

Features of ACs. We now present more details about ACs.
• Ease of interpretation. As demonstrated in Figure 1, an AC
contains tightly-connected vertices with similar contexts or back-
grounds. Thus, an ACQ user can focus on the common keywords
or features of these vertices (e.g., the vertices of the AC in this ex-
ample contain “research” and “sports”, reflecting that all members
of this AC like research and sports). We call the set of common

1233

keywords among AC vertices the AC-label. In our experiments, the
AC-labels facilitate understanding of the vertices that form the AC.

The design of ACs allows it to be used in setting up of social
events. For example, if a Twitter member has many keywords about
traveling (e.g., he posted a lot of photos about his trips, with key-
words), issuing an ACQ with this member as the query vertex may
return other members interested in traveling, because their vertices
also have keywords related to traveling. A group tour can then be
recommended to these members.
• Personalization. The user of an ACQ can control the semantic-
s of the AC, by specifying a set of S of keywords. Intuitively, S
decides the meaning of the AC based on the user’s need. If we let
q=Jack and S={“research”}, the AC is formed by {Jack, Bob,
John, Mike, Alex}, who are all interested in research. Let us
consider another example in the DBLP bibliographical network,
where each vertex’s attribute is represented by the top-20 frequent
keywords in their publications. Let q=Jim Gray. If S is the set
of keywords {transaction, data, management, system, research},
we obtain the AC in Figure 2(a), which contains six prominen-
t database researchers closely related to Jim. On the other hand,
when S is {sloan, digital, sky, survey, SDSS}, the ACQ yield-
s another AC in Figure 2(b), which indicates the seven scientists
involved in the SDSS project 1. Thus, with the use of different key-
word sets S, different “personalized” communities can be obtained.

Existing CS algorithms, which do not handle attributed graphs,
may not produce the two ACs above. For example, the CS algorith-
m in [26] returns the community with all the 14 vertices shown in
Figures 2(a) and (b). The main reasons are: (1) these vertices are
heavily linked with Jim; and (2) the keywords are not considered.
In contrast, the use of set S in the ACQ places these vertices into
two communities, containing vertices that are cohesive in terms of
structure and keyword. This allows a user to focus on the important
vertices that are related to S. For example, using the AC of Fig-
ure 2(a), a database conference organizer can invite speakers who
have a close relationship with Jim.

The personalization feature is also useful in marketing. Suppose
that Mary, a yoga lover, is a customer of a gym. An ACQ can
be issued on a social network, with Mary as the query vertex and
S={“yoga”}. Since members of the AC contain the keyword “yo-
ga”, they can be the gym’s advertising targets. On the other hand,
current CS algorithms may return a community that contains one or
more vertices without the keyword “yoga”. It is not clear whether
the corresponding user of this vertex is interested in yoga.
• Online evaluation. Similar to other CS solutions, we have devel-
oped efficient ACQ algorithms for large graphs, allowing ACs to be
generated quickly upon a query request. On the contrary, existing
CD algorithms [34, 23, 21, 20] that generate all communities for
a graph are often considered to be offline solutions, since they are
often costly and time-consuming, especially on very large graphs.

Technical challenges and our contributions. We face two im-
portant questions: (1) What should be a sound definition of an AC?
(2) How to evaluate ACQ efficiently? For the first question, we de-
fine an AC based on the minimum degree, which is one of the most
common structure cohesiveness metrics [22, 11, 26, 5]. This mea-
sure requires that every vertex in the community has a degree of k
or more. We formulate the keyword cohesiveness as maximizing
the number of shared keywords in keyword set S. The shared key-
words naturally reveal the common features among vertices (e.g.,
common interest of social network users). We can also use these
shared keywords to explain how a community is formed.

1URL of the SDSS project: http://www.sdss.org.

Jim Gray

Michael Stonebraker

Hector Garcia-Moina Stanley B. Zdonik

Gerhard WeikumBruce G. Lindsay

Michael L. Brodie

(a) S={transaction, data, man-
agement, system, research}

Jim Gray

Peter Z. Kunszt

Christopher Stoughton

Alexander S. Szalay

Jordan Raddick

Jan Vandenberg

Ani Thakar

Tanu Malik

(b) S={sloan, digital, sky, da-
ta, sdss}

Figure 2: Two ACs of Jim Gray.

The second question is not easy to answer, because the attribut-
ed graph G to be explored can be very large, and the (structure and
keyword) cohesiveness criteria can be complex to handle. A simple
way is first to consider all the possible keyword combinations, and
then return the subgraphs, which satisfy the minimum degree con-
straint and have the most shared keywords. This solution, which
requires the enumeration of all the subsets of q’s keyword set, has
a complexity exponential to the size l of q’s keyword set. In our
experiments, for some queries, l can be up to 30, resulting in the
consideration of 230 = 1, 073, 741, 824 subsets of q. The algorith-
m is impractical, especially when q’s keyword set is large.

We observe the anti-monotonicity property, which states that giv-
en a set S of keywords, if it appears in every vertex of an AC, then
for every subset S′ of S, there exists an AC in which every vertex
contains S′. We use this intuition to propose better algorithms. We
further develop the CL-tree, an index that organizes the vertex key-
word data in a hierarchical structure. The CL-tree has a space and
construction time complexity linear to the size of G. We have de-
veloped three different ACQ algorithms based on the CL-tree, and
they are able to achieve a superior performance.

We have performed extensive experiments on four large real graph
datasets (namely Flickr, DBLP, Tencent, and DBpedia). We found
that a large number of common keywords appear across vertices in
our graph datasets. In DBLP, for instance, an AC with one com-
mon keyword contains over 5,000 vertices on average; an AC with
two common keywords contains over 700 vertices. Hence, using
shared keywords among vertices as keyword cohesiveness makes
sense. We have also studied how to quantify the quality of a com-
munity, based on occurrence frequencies of keywords and similar-
ity between the keyword sets of two vertices. We conducted a de-
tailed case study on DBLP. These results confirm the superiority of
the AC over the communities returned by existing community de-
tection and community search algorithms, in terms of community
quality. The performance of our best algorithm is 2 to 3 order-of-
magnitude better than solutions that do not use the CL-tree. An-
other advantage of our approaches is that they organize and search
vertex keywords for ACs effectively, achieving a higher efficiency
than existing community search solutions (that do not use vertex
keywords in the community search process).

Organization. We review the related work in Section 2, and
define the ACQ problem formally in Section 3. Section 4 presents
the basic solutions, and Section 5 discusses the CL-tree index. We
present the query algorithms in Section 6. Our experimental results
are reported in Section 7. We conclude in Section 8.

2. RELATED WORK
Community detection (CD). A large class of studies aim to dis-

cover or detect all the communities from an entire graph. Table 1
summarises these works. Earlier solutions, such as [22, 11], em-
ploy link-based analysis to obtain these communities. However,

1234

they do not consider the textual information associated with graphs.
Recent works focus on attributed graphs, and use clustering tech-
niques to identify communities. For instance, Zhou et al. [34] con-
sidered both links and keywords of vertices to compute the vertices’
pairwise similarities, and then clustered the graph. Ruan et al. [23]
proposed a method called CODICIL. This solution augments the
original graphs by creating new edges based on content similarity,
and then uses an effective graph sampling to boost the efficiency of
clustering. We will compare ACQ with this method experimentally.

Another common approach is based on topic models. In [21,
20], the Link-PLSA-LDA and Topic-Link LDAmodels joint-
ly model vertices’ content and links based on the LDAmodel. In [29],
the attributed graph is clustered based on probabilistic inference.
In [24], the topics, interaction types and the social connections
are considered for discovering communities. CESNA [31] detect-
s overlapping communities by assuming communities “generate”
both the link and content. A discriminative approach [32] has also
been considered for community detection. As discussed before, CD
algorithms are generally slow, as they often consider the pairwise
distance/similarity among vertices. Also, it is not clear how they
can be adapted to perform online ACQ. In this paper, we propose
online algorithms for finding communities on attributed graphs.

Community search (CS). Another class of solutions aims to ob-
tain communities in an “online” manner, based on a query request.
For example, given a vertex q, several existing works [26, 5, 18,
4, 15] have developed fast algorithms to obtain a community for q.
To measure the structure cohesiveness of a community, the mini-
mum degree is often used [26, 5, 18]. Sozio et al. [26] proposed
the first algorithm Global to find the k-ĉore containing q. Cui
et al. [5] proposed Local, which uses local expansion techniques
to enhance the performance of Global. We will compare these
two solutions in our experiments. Other definitions, including k-
clique [4] and k-truss [15], have also been considered for searching
communities. A recent work [18] finds communities with high in-
fluence. These works assume non-attributed graphs, and overlook
the rich information of vertices that come with attributed graphs.
As we will see, performing CS on attributed graphs is better than
on non-attributed graphs.

Graph keyword search. Given an attributed graph G and a set
Q of keywords, graph keyword search solutions output a tree struc-
ture, whose nodes are vertices of G, and the union of these vertices’
keyword sets is a superset of Q [3, 6, 16]. Recent work studies the
use of a subgraph of G as the query output [17]. These works
are substantially different from the ACQ problem. First, they do
not specify query vertices as required by the ACQ problem. Sec-
ond, the tree or subgraph produced do not guarantee structure co-
hesiveness. Third, keyword cohesiveness is not ensured; there is no
mechanism that enforces query keywords to be shared among the
keyword sets of all query output’s vertices. Thus, graph keyword
search solutions are not designed to find ACs.

3. THE ACQ PROBLEM
We now discuss the attributed graph model, the k-core, and the

AC. In the CS and CD literature, most existing works assume that
the underlying graph is undirected [26, 18, 29, 23]. We also sup-
pose that an attributed graph G(V,E) is undirected, with vertex set
V and edge set E. Each vertex v ∈ V is associated with a set of
keywords, W (v). Let n and m be the corresponding sizes of V and
E. The degree of a vertex v of G is denoted by degG(v). Table 2
lists the symbols used in the paper.

A community is often a subgraph of G that satisfies structure co-
hesiveness (i.e., the vertices contained in the community are linked

Table 2: Symbols and meanings.
Symbol Meaning
G(V,E) An attributed graph with vertex set V and edge set E

W (v) The keyword set of vertex v

degG(v) The degree of vertex v in G

G[S′] The largest connected subgraph of G s.t. q ∈ G[S′],
and ∀v ∈ G[S′], S′ ⊆ W (v)

Gk[S
′]

The largest connected subgraph of G s.t. q ∈ Gk[S
′],

and ∀v ∈ Gk[S
′], degGk[S

′]v ≥ k and S′ ⊆ W (v)

to each other in some way). A common notion of structure cohe-
siveness is that the minimum degree of all the vertices that appear
in the community has to be k or more [26, 25, 2, 7, 5, 18]. This is
used in the k-core and the AC. Let us discuss the k-core first.

DEFINITION 1 (k-CORE [25, 2]). Given an integer k (k ≥
0), the k-core of G, denoted by Hk, is the largest subgraph of G,
such that ∀v ∈ Hk, degHk (v) ≥ k.

We say that Hk has an order of k. Notice that Hk may not be
a connected graph [2], and its connected components, denoted by
k-ĉores, are usually the “communities” returned by k-ĉore search
algorithms.

A:{w, x, y}

D:{x, y, z}
B:{x}

C:{x, y}
F:{y}

E:{y, z}
G:{x, y}

J:{x}

I:{x}

H:{y, z}

1
2 3

(a) graph

Core numberr Vertices
0 J
1 F, G, H, I
2 E
3 A, B, C, D

(b) core number

Figure 3: Illustrating the k-core and the AC.

EXAMPLE 1. In Figure 3(a), {A,B,C,D} is both a 3-core
and a 3-ĉore. The 1-core has vertices {A,B,C,D,E, F,G,H, I},
and is composed of two 1-ĉore components: {A,B,C,D,E, F,G}
and {H, I}. The number k in each circle represents the k-ĉore
contained in that ellipse.

Observe that k-cores are “nested” [2]: given two positive in-
tegers i and j, if i < j, then Hj ⊆ Hi. In Figure 3(a), H3 is
contained in H2, which is nested within H1.

DEFINITION 2 (CORE NUMBER). Given a vertex v ∈ V , its
core number, denoted by coreG[v], is the highest order of a k-core
that contains v.

A list of core numbers and their respective vertices for Example 1
are shown in Figure 3(b). In [2], an O(m) algorithm was proposed
to compute the core number of every vertex.

We now formally define the ACQ problem as follows.

PROBLEM 1 (ACQ). Given a graph G(V,E), a positive in-
teger k, a vertex q ∈ V and a set of keywords S ⊆ W (q), return a
set G of graphs, such that ∀Gq ∈ G, the following properties hold:

• Connectivity. Gq ⊆ G is connected and contains q;
• Structure cohesiveness. ∀v ∈ Gq , degGq (v) ≥ k;
• Keyword cohesiveness. The size of L(Gq, S) is maximal, where

L(Gq, S) = ∩v∈Gq (W (v)∩ S) is the set of keywords shared in S
by all vertices of Gq .

1235

We call Gq the attributed community (or AC) of q, and L(Gq, S)
the AC-label of Gq . In Problem 1, the first two properties are also
specified by the k-ĉore of a given vertex q [26]. The keyword co-
hesiveness (Property 3), which is unique to Problem 1, enables the
retrieval of communities whose vertices have common keyword-
s in S. We use S to impose semantics on the AC produced by
Problem 1. By default, S = W (q), which means that the AC gen-
erated should have keywords common to those associated with q.
If S ⊂ W (q), it means that the ACQ user is interested in forming
communities that are related to some (but not all) of the keywords
of q. A user interface could be developed to display W (q) to the
user, allowing her to include the desired keywords into S. For ex-
ample, in Figure 3(a), if q=A, k=2 and S={w, x, y}, the output of
Problem 1 is {A,C,D}, with AC-label {x, y}, meaning that these
vertices share the keywords x and y.

We require L(Gq, S) to be maximal in Property 3, because we
wish the AC(s) returned only contain(s) the most related vertices,
in terms of the number of common keywords. Let us use Fig-
ure 3(a) to explain why this is important. Using the same query
(q=A,k=2,S= {w, x, y}), without the “maximal” requirement, we
can obtain communities such as {A,B,E} (which do not share any
keywords), {A,B,D}, or {A,B,C} (which share 1 keyword).
Note that there does not exist an AC with AC-label being exact-
ly {w, x, y}. Our experiments (Section 7) show that imposing the
“maximal” constraint yields the best result. Thus, we adopt Prop-
erty 3 in Problem 1. If there is no AC whose vertices share one or
more keywords (i.e., |L(Gq, S)|=0), we return the subgraph of G
that satisfies Properties 1 and 2 only. 2

There are other candidates for structure cohesiveness (e.g., k-
truss, k-clique) and keyword cohesiveness (e.g., Jaccard similarity
and string edit distance). An AC can also be defined in different
ways. For example, an ACQ user may specify that an AC returned
must have vertices that contain a specific set of keywords. An in-
teresting direction is to extend ACQ to support for these criteria,
and study their effectiveness.

4. BASIC SOLUTIONS
For ease of presentation, we say that v contains a set S′ of key-

words, if S′ ⊆ W (v). We use G[S′] to denote the largest connect-
ed subgraph of G, where each vertex contains S′ and q ∈ G[S].
We use Gk[S

′] to denote the largest connected subgraph of G[S′],
in which every vertex has degree being at least k in Gk[S

′]. We
call S′ a qualified keyword set for the query vertex q on the graph
G, if Gk[S

′] exists.
Given a query vertex q, a straightforward method to answer ACQ

performs three steps. First, all non-empty subsets of S, S1, S2, · · · ,
S2l−1 (l=|S|), are enumerated. Then, for each subset Si(1≤ i ≤
2l−1), we verify the existence of Gk[Si] and compute it when it
exists (We postpone to discuss the details). Finally, we output the
subgraphs having the most shared keywords among all Gk[Si].

One major drawback of the straightforward method is that we
need to compute 2l − 1 subgraphs (i.e., Gk[Si]). For large values
of l, the computation overhead renders the method impractical, and
we do not further consider this method in the paper. To alleviate
this issue, we propose the following two-step framework.

4.1 Two-Step Framework
The two-step framework is mainly based on the following anti-

monotonicity property.

2In practice, the query user can be alerted by the system when there
is no sharing among the vertices.

LEMMA 1 (ANTI-MONOTONICITY). Given a graph G, a ver-
tex q ∈ G and a set S of keywords, if there exists a subgraph Gk[S],
then there exists a subgraph Gk[S

′] for any subset S′ ⊆ S.

All the proofs of lemmas studied in this paper can be found in the
full version [30]. The anti-monotonicity property allows us to stop
examining all the super sets of S′(S′ ⊆ S), once have verified that
Gk[S

′] does not exist. The basic solution begins with examining
the set, Ψ1, of size-1 candidate keyword sets, i.e., each candidate
contains a single keyword of S. It then repeatedly executes the
following two key steps, to retrieve the size-2 (size-3, . . .) qualified
keyword subsets until no qualified keyword sets are found.

• Verification. For each candidate S′ in Ψc (initially c=1), mark
S′ as a qualified set if Gk[S

′] exists.
• Candidate generation. For any two current size-c qualified

keyword sets which only differ in one keyword, union them as a
new expanded candidate with size-(c+1), and put it into set Ψc+1,
if all its subsets are qualified, by Lemma 1.

Among the above steps, the key issue is how to compute Gk[S
′].

Since Gk[S
′] should satisfy the structure cohesiveness (i.e., mini-

mum degree at least k) and keyword cohesiveness (i.e., every ver-
tex contains keyword set S′). Intuitively, we have two approaches
to compute Gk[S

′]: either searching the subgraph satisfying de-
gree constraint first, followed by further refining with keyword con-
straints (called basic-g); or vise versa (called basic-w). These
two algorithms form our baseline solutions. Their pseudocodes are
presented in the appendix of the full version [30].

5. CL-TREE INDEX
The major limitation of basic-g and basic-w is that they

need to find the k-ĉores and do keyword filtering repeatedly. This
makes the community search very inefficient. To achieve higher
query efficiency, we propose a novel index, called CL-tree (Core
Label tree), which organizes both the k-ĉores and keywords into a
tree structure. Based on the index, the efficiency of answering ACQ
and its variants can be improved significantly. We first introduce
the index in Section 5.1, and then propose two index construction
methods in Section 5.2.

5.1 Index Overview
The CL-tree index is built based on the key observation that cores

are nested. Specifically, a (k+1)-ĉore must be contained in a k-
ĉore. The rationale behind is, a subgraph has a minimum degree at
least k+1 implies that it has a minimum degree at least k. Thus, all
k-ĉores can be organized into a tree structure3. We illustrate this in
Example 2.

EXAMPLE 2. Consider the graph in Figure 3(a). All the k-
ĉores can be organized into a tree as shown in Figure 4(a). The
height of the tree is 4. For each tree node, we attach the core num-
ber and vertex set of its corresponding k-ĉore.

From the tree structure in Figure 4(a), we conclude that, if a
(k+1)-ĉore (denoted as Ck+1) is contained in a k-ĉore (denoted as
Ck), then there is a tree node corresponding to Ck+1 and its parent
node corresponds to Ck. Besides, the height of the tree is at most
kmax + 1, where kmax is the maximum core number.

The tree structure in Figure 4(a) can be stored compactly, as
shown in Figure 4(b). The key observation is that, for any internal
node p in the tree, the vertex sets of its child nodes are the subsets
of p’s vertex set, because of the inclusion relationship. To save s-
pace cost, we can remove the redundant vertices that are shared by

3We use “node” to mean “CL-tree node” in this paper.

1236

0

1 1

2

3
ABCD

ABCDE

ABCDEFG

ABCDE
FGHIJ

HI

(a) tree structure

w: A
x: A,B,C,D
y: A,C,D
z: D

y: E
z: E

x: G
y: F, G

x: I
y: H
z: H

0

1 1

2

3
ABCD

E

FG

J

HI
x:
y:

y:
z:

w
x:
y:
z:

x:
y:
z:

r1

r2

r3

x: Jx:

(b) CL-tree index

Figure 4: An example CL-tree index.

p’s child nodes from p’s vertex set. After such removal, we obtain a
compressed tree, where each graph vertex appears only once. This
structure constitutes the CL-tree index, the nodes of which are fur-
ther augmented by inverted lists (Figure 4(b)). For each keyword e
that appears in a CL-tree node, a list of IDs of vertices whose key-
word sets contain e is stored. For example, in node r3, the inverted
list of keyword y contains {A,C,D}. As discussed later, given a
keyword set T , these inverted lists allow efficient retrieval of ver-
tices whose keyword sets contain T . To summarize, each CL-tree
node contains four elements:

• coreNum: the core number of the k-ĉore;
• vertexSet: a set of graph vertices;
• invertedList: a list of <key, value> pairs, where the key is a

keyword contained by vertices in vertexSet and the value is the
list of vertices in vertexSet containing key;

• childList: a list of child nodes.
Figure 4(b) depicts the CL-tree index for the example graph in

Figure 3(a), the elements of each tree node are labeled explicitly.
Using the CL-tree, the following two key operations used by our
query algorithms (Section 6), can be performed efficiently.

• Core-locating. Given a vertex q and a core number c, find the
k-ĉore with core number c containing q, by traversing the CL-tree.

• Keyword-checking. Given a k-ĉore, find vertices which con-
tain a given keyword set, by intersecting the inverted lists of key-
words contained in the keyword set.

Remarks. The CL-tree can also support k-ĉore queries on gen-
eral graphs without keywords. For example, it can be applied to
finding k-ĉore in previous community search methods [26].

Space cost. Since each graph vertex appears only once and each
keyword only needs constant space cost, the space cost of keeping

such an index is O(l̂ ·n), where l̂ denotes the average size of W (v)
over V . Thus, the space cost is linear to the size of G.

5.2 Index Construction
To build the CL-tree index, we propose two methods, basic

and advanced, as presented in Section 5.2.1 and 5.2.2.

5.2.1 The Basic Method
As k-ĉores of a graph are nested naturally, it is straightforward

to build the CL-tree recursively in a top-down manner. Specifically,
we first generate the root node for 0-core, which is exactly the entire
graph. Then, for each k-ĉore of 1-core, we generate a child node
for the root node. After that, we only remain vertices with core
numbers being 0 in the root node. Then for each child node, we
can generate its child nodes in the similar way. This procedure is
executed recursively until all the nodes are well built.

Algorithm 1 illustrates the pseudocodes. We first do k-core de-
composition using the linear algorithm [2], and obtain an array

Algorithm 1 Index construction: basic

1: function BUILDINDEX(G(V,E))
2: coreG[] ← k-core decomposition on G;
3: k ←0, root ← (k, V);
4: BUILDNODE(root, 0);
5: build an inverted list for each tree node;
6: return root;
7: function BUILDNODE(root, k)
8: k ← k + 1;
9: if k ≤ kmax then

10: obtain Uk from root;
11: compute the connected components for the induced

graph on Uk;
12: for each connected component Ci do
13: build a tree node pi ← (k, Ci.vertexSet);
14: add pi into root.childList;
15: remove Ci’s vertex set from root.vertexSet;
16: BUILDNODE(pi , k);

coreG[](line 2), where coreG[i] denotes the core number of ver-
tex i in G. We denote the maximal core number by kmax. Then,
we initialize the root node by the core number k=0 and V (line
3). Next, we call the function BUILDNODE to build its child nodes
(line 4). Finally, we build an inverted list for each tree node and
obtain a well built CL-tree (lines 5-6).

In BUILDNODE, we first update k and obtain the vertex set Uk

from root.vertexSet, which is a set of vertices with core numbers
being at least k. Then we find all the connected components from
the subgraph induced by Uk (lines 8-11). Since each connected
component Ci corresponds to a k-ĉore, we build a tree node pi
with core number k and the vertex set of Ci, and then link it as a
child of root (lines 12-14). We also update root’s vertex set by
removing vertices (line 15), which are shared by Ci. Finally, we
call the BUILDNODE function to build pi’s child nodes recursively
until all the tree nodes are created (line 16).

Complexity analysis. The k-core decomposition can be done

in O(m). The inverted lists of each node can be built in O(l̂ ·
n). In function BUILDNODE, we need to compute the connected
components with a given vertex set, which costs O(m) in the worst
case. Since the recursive depth is kmax, the total time cost is O(m ·
kmax + l̂ · n). Similarly, the space complexity is O(m+ l̂ · n).

5.2.2 The Advanced Method
While the basic method is easy to implement, it meets effi-

ciency issues when both the given graph size and its kmax value
are large. For instance, when given a clique graph with n vertices
(i.e., edges exist between every pair of nodes), the value of kmax is
n–1. Therefore, the time complexity of the basic method could

be O((m+ l̂) ·n), which may lead to low efficiency for large-scale
graphs. To enable more efficient index construction, we propose
the advanced method, whose time and space complexities are
almost linear with the size of the input graph.

The advanced method builds the CL-tree level by level in a
bottom-up manner. Specifically, the tree nodes corresponding to
larger core numbers are created prior to those with smaller core
numbers. For ease of presentation, we divide the discussion into
two main steps: creating tree nodes and creating tree edges.

1. Creating tree nodes. We observe that, if we acquire the
vertices with core numbers at least c and denote the induced sub-
graph on the vertices as Tc, then the connected components of Tc

have one-to-one correspondence to the c-ĉores. A simple algorith-
m would be, searching connected components for Tc(0 ≤ c ≤
kmax) independently, followed by creating one node for each dis-

1237

tinct component. This algorithm apparently costs O(kmax · m)
time, as computing connected components takes linear time.

However, we can do better if we can incrementally update the
connected components in a level by level manner (i.e., maintain the
connected components of Tc+1 from those of Tc). We note that,
such a node creation process is feasible by exploiting the classi-
cal union-find forest [1]. Generally speaking, the union-find forest
enables efficient maintenance of connected components of a graph
when edges are incrementally added. Using union-find forest to
maintain connected components follows a process of edge exam-
ination. Initially, each vertex is regarded as a connected compo-
nent. Then, edges are examined one by one. During the examine
process, two components are merged together when encounters an
edge connecting them. To achieve an efficient merge of compo-
nents, the vertices in the component form a tree. The tree root acts
as the representative vertex of the component. As such, merging
two components is essentially linking two root vertices together.
To guarantee the CL-tree nodes are formed in a bottom-up manner,
we assign an examine priority to each edge. The priority is defined
by the larger value of the two core numbers corresponding to the
two end vertices of an edge. The edges associated to vertices with
larger core numbers are examined first.

2. Creating tree edges. Tree edges are also inserted during the
graph edge examination process. In particular, when we examine
a vertex v with a set, B, of its neighbors, whose core numbers are
larger than coreG[v], we require that the tree node containing v
should link to the tree node containing the vertex, whose core num-
ber is the smallest among all the vertices in B. Nevertheless, the
classical union-find forest is not able to maintain such information.
To address this issue, we thus propose an auxiliary data structure,
called Anchored Union-Find (details of AUF are in [30]), based
on the classical union-find forest. We first define anchor vertex.

DEFINITION 3 (ANCHOR VERTEX). Given a connected sub-
graph G′ ⊆ G, the anchor vertex is the vertex with core number
being min{coreG[v]|v ∈ G′}.

The AUF is an extension of union-find forest, in which each tree
has an anchor vertex, and it is attached to the root node. In CL-
tree, for any node p with corresponding k-ĉore Ck, its child nodes
correspond to the k-ĉores, which are contained by Ck and have core
numbers being the most close to the core number of node p. This
implies that, when building the CL-tree in a bottom-up manner, we
can maintain the anchor vertices for the k-ĉores dynamically, and
they can be used to link nodes with their child nodes. In addition,
we maintain a vertex-node map, where the key is a vertex and the
value is the tree node contains this vertex, for locating tree nodes.
The pseudocodes and analysis are reported in the full version [30].

Complexity analysis. With our proposed AUF, we can reduce
the complexity of CL-tree construction to O(m · α(n)), where
α(n), the inverse Ackermann function, is less than 5 for all re-
motely practical values of n [1].

EXAMPLE 3. Figure 5 depicts an example graph with 14 ver-
tices A, · · · , N . Vi denotes the set of vertices whose core number-
s are i. When k=3, we first generate two leaf nodes p1 and p2,
then update the AUF, where roots’ anchor vertices are in the round
brackets. When k=2, we first generate node p3, then link it to p1,
and then update the AUF forest. When k=1, we first generate nodes
p4 and p5. Specifically, to find the child nodes of p4, we first find
its neighbor A, then find A’s parent B using current AUF forest.
Since the anchor vertex of B is E and E points to p3 in the inverted
array, we add p3 into p4’s child List. When k=0, we generate p6
and finish the index construction.

C

D

A

F

E

G

B

HH
N

H M

EFG

ABCD

0

1 1

2

3

IJKL
J

K

L

I

MM

B(B)

CA D

k=3
K(K)

JI L

B(E)

CA D FE G

k=2 k=1
K(K)

JI L

B(H)

CA D FE G H

K(M)

JI L M

3

AAAA BBBB CCCCC DDDD EEEEE FFF GGGG H

NNN

HHH III JJJ KKKKK LLL MMMMMMM NVertex-node map:

k=22k 33

Anchored union-find forests:

Sets Vextex IDsSets
V0

extex ID
NVV00VVVV0

V1

NN
H, MVV11VV1

V2

HH, , MM,
E, F, GVV22VV2

V3

EE, , FF, , GG, ,
A, B, C, D, I, J, K, L

p1

p2p3

p4 p5

p6

Figure 5: An index built by advanced method.

Index maintenance. We now briefly discuss an incremental ver-
sion of the CL-tree construction algorithm, which can handle the
changes of keywords and graph edges, without rebuilding the CL-
tree from scratch. To insert (or remove) a keyword of a vertex, we
just need to update the invertedList of the CL-tree node contain-
ing the vertex. To insert (or remove) a graph edge, we can borrow
the results from [19], which discusses how to maintain a k-core.
We plan to investigate this issue more extensively in the future.

6. QUERY ALGORITHMS
In this section, we present three query algorithms based on the

CL-tree index. Based on how we verify the candidate keyword sets,
we divide our algorithms into incremental algorithms (from exam-
ining smaller candidate sets to larger ones) and decremental algo-
rithm (from examining larger candidate sets to smaller ones). We
propose two incremental algorithms called Inc-S (Incremental
Space efficient) and Inc-T (Incremental Time efficient), to trade
off between the memory consumption and the computational over-
head. The decremental algorithm is called Dec (Decremental). Our
interesting finding is that, while Dec seems not intuitive, it ranks
as the most efficient one. Inc-S and Inc-T are presented in Sec-
tion 6.1. Dec is introduced in Section 6.2.

6.1 The Incremental Algorithms
While the high-level idea of incremental algorithms resembles

the basic solutions (see Section 4), Inc-S and Inc-T advance
them with the exploitation of the CL-tree. Specifically, they can al-
ways verify the existence of Gk[S

′] within a subgraph of G instead
of the entire graph G. More interestingly, the subgraph for such
verifications shrinks when the candidate set S′ expands. Therefore,
a large sum of redundant computation is cut off during the verifica-
tion. We present Inc-S and Inc-T in Sections 6.1.1 and 6.1.2.

6.1.1 Inc-S Algorithm
We first introduce a new concept, called subgraph core num-

ber, which is geared to the main idea of Inc-S.

DEFINITION 4 (SUBGRAPH CORE NUMBER). The core num-
ber of a subgraph G′ of G, coreG[G′], is defined as min{coreG[v]|
v ∈ G′}.

Inc-S follows the two-step framework (verification and can-
didate generation) introduced in Section 4. With the CL-tree, we
improve the verification step as follows.

• Core-based verification. For each newly generated size-
(c+1) candidate keyword set S′ expanded from size-c sets S1

and S2, mark S′ as a qualified set if Gk[S
′] exists in a sub-

graph of core number max{coreG[Gk[S1]], coreG[Gk[S2]]}.

1238

The core-based verification guarantees that, with the expansion
of the candidate keyword sets, the verification becomes faster as
it only needs to examine the existence of Gk[S

′] in a smaller k-
ĉore (Recall that cores with large core numbers are nested in the
cores with small core numbers). The correctness of such shrunk
verification range is guaranteed by the following lemma.

LEMMA 2. Given two subgraphs Gk[S1] and Gk[S2] of a graph
G, for a new keyword set S′ generated from S1 and S2 (i.e., S′ =
S1∪S2), if Gk[S

′] exists, then it must appear in a k-ĉore with core
number at least

max{coreG[Gk[S1]], coreG[Gk[S2]]}. (1)

The verification process can be further accelerated by checking
the numbers of vertices and edges, as indicated by Lemma 3.

LEMMA 3. Given a connected graph G(V,E) with n=|V | and
m=|E|, if m− n < k2−k

2
− 1, there is no k-ĉore in G.

This lemma implies that, for a connected subgraph G′, whose

edge and vertex numbers are m and n, if m− n < k2−k
2

− 1, then
we cannot find Gk[S

′] from G′.
We present Inc-S in Algorithm 2. The input is a CL-tree rooted

at root, a query vertex q, a positive integer k and a keyword set S.
We apply core-locating on the CL-tree to locate the internal
nodes whose corresponding k-ĉores contain q (line 2). Note that
their core numbers are in the range of [k, coreG[q]], as required by
the structure cohesiveness. Then, we set l=0, indicating the sizes
of current keyword sets, and initialize a set Ψ of <S′, c> pairs,
where S′ is a set containing a keyword from S and c is the ini-
tial core number k (line 3). Note that we skip those keywords,
which are in S, but not in W (q). In the while loop (lines 4-18), for
each <S′, c> pair, we first perform keyword-checking to find
G[S′] using the keyword inverted lists of the subtree rooted at node
rc. If we cannot ensure that G[S′] does not contain a k-ĉore by
Lemma 3, we then find Gk[S

′] from G[S′] (lines 8-9). If Gk[S
′]

exists, we put S′ with its core number into the set Φl (lines 10-11).
Next, if Φl is nonempty, we generate new candidates by calling
GENECAND(Φl), which is detailed in the full version [30]. For
each candidate S′ in Ψ, we compute the core number using Lem-
ma 2 and update it as a pair in Ψ (lines 12-17); otherwise, we stop
(line 18). Finally, we output the communities of the latest verified
keyword sets (line 19).

Algorithm 2 Query algorithm: Inc-S

1: function QUERY(G, root, q, k, S)
2: find subtree root nodes rk, rk+1, · · · , rcoreG[q];
3: initialize l=0, Ψ using S;
4: while true do
5: l ← l + 1; Φl ← ∅;
6: for each <S′, c> ∈ Ψ do
7: find G[S′] under the root rc;
8: if G[S′] is not pruned by Lemma 3 then
9: find Gk[S

′] from G[S′];
10: if Gk[S

′] exists then
11: Φl.add(<S′, coreG[Gk[S

′]]>);

12: if Φl �= ∅ then
13: Ψ ← GENECAND(Φl);
14: for each S′ in Ψ do
15: if S′ is generated from S1 and S2 then
16: c ← max{coreG[Gk[S1]], coreG[Gk[S2]]};
17: Ψ.update(S′, <S′, c>);

18: else break;
19: output the communities of keyword sets in Φl−1;

EXAMPLE 4. Consider the graph in Figure 3(a) and its index
in Figure 4(b). Let q=A, k=1 and S={w, x, y}. By Algorithm 2,
we first find 3 root nodes r1, r2 and r3. In the first while loop, we
find 2 qualified keyword sets {x}and{y} with core numbers being
3 and 1. By Lemma 2, we only need to verify the new candidate
keyword set {x, y} under node r3.

6.1.2 Inc-T Algorithm
We begin with a lemma which inspires the design of Inc-T.

LEMMA 4. Given two keyword sets S1 and S2, if Gk[S1] and
Gk[S2] exist, we have

Gk[S1 ∪ S2] ⊆ Gk[S1] ∩Gk[S2]. (2)

This lemma implies, if S′ is generated from S1 and S2, we can
find Gk[S

′] from Gk[S1] ∩ Gk[S2] directly. Since every vertex
in Gk[S1] ∩ Gk[S2] contains both S1 and S2, we do not need to
consider the keyword constraint again when finding Gk[S

′].
Based on Lemma 4, we introduce a new algorithm Inc-T. Dif-

ferent from Inc-S, Inc-T maintains Gk[S
′] rather than coreG[

Gk[S
′]] for each qualified keyword set S′. As we will demonstrate

later, Inc-T is more effective for shrinking the subgraphs con-
taining the ACs, and thus more efficient. As a trade-off for better
efficiency, Inc-T consumes more memory as it needs to store a
list of subgraph Gk[S

′] in memory.
Algorithm 3 presents Inc-T. We first apply core-locating

to find the k-ĉore containing q from the CL-tree (line 2). Then, we
set l=0, indicating the sizes of current keyword sets, and initialize

a set Ψ of < S′, Ĝ > pairs, where S′ is a set containing a keyword

from S and Ĝ is the k-ĉore. The while loop (lines 4-18) is simi-
lar with that of Inc-S. The main differences are that: (1) for each
qualified keyword set S′, Inc-T keeps Gk[S

′] in memory (line
11); and (2) for each candidate keyword set S′ generated from S1

and S2, Inc-T finds Gk[S
′] from Gk[S1]∩Gk[S2] directly with-

out further keyword verification (lines 6-9, 16).

Algorithm 3 Query algorithm: Inc-T

1: function QUERY(G, root, q, k, S)
2: find the k-ĉore, which contains q;
3: initialize l=0, Ψ using S;
4: while true do
5: l ← l + 1; Φl ← ∅;

6: for each < S′, Ĝ > ∈ Ψ do
7: find G[S′] from Ĝ;
8: if G[S′] is not pruned by Lemma 3 then
9: find Gk[S

′] from G[S′];
10: if Gk[S

′] exists then
11: Φl.add(< S′, Gk[S

′] >);

12: if Φl �= ∅ then
13: Ψ ← GENECAND(Φl);
14: for each S′ ∈ Ψ do
15: if S′ is generated from S1 and S2 then
16: Ĝ ← Gk[S1] ∩Gk[S2];

17: Ψl.update(S′,< S′, Ĝ >);

18: else break;
19: output the communities of keyword sets in Φl−1;

EXAMPLE 5. Continue the graph and query (q=A, k=1, S={w,
x, y}) in Example 4. By Inc-T, we first find G1[{x}] and G1[{y}],
whose vertex sets are {A,B,C,D} and {A,C,D, E,F,G}. Then
to find G1[{x, y}], we only need to search it from the subgraph, in-
duced by the vertex set {A,C,D}.

1239

6.2 The Decremental Algorithm
The decremental algorithm, denoted by Dec, differs from previ-

ous query algorithms not only on the generation of candidate key-
word sets, but also on the verification of candidate keyword sets.

1. Generation of candidate keyword sets. Dec exploits the
key observation that, if S′ (S′ ⊆ S) is a qualified keyword set,
then there are at least k of q’s neighbors containing set S′. This
is because every vertex in Gk[S

′] must has degree at least k. This
observation implies, we can generate all the candidate keyword set-
s directly by using the query vertex q and q’s neighbors, without
touching other vertices.

Specifically, we consider q and q’s neighbor vertices. For each
vertex v, we only select the keywords, which are contained by S
and at least k of its neighbors. Then we use these selected key-
words to form an itemset, in which each item is a keyword. After
this step, we obtain a list of itemsets. Then we apply the well s-
tudied frequent pattern mining algorithms (e.g., Apriori [12] and
FP-Growth [13]) to find the frequent keyword combinations, each
of which is a candidate keyword set. Since our goal is to gener-
ate keyword combinations shared by at least k neighbors, we set
the minimum support as k. In this paper, we use the well-known
FP-Growth algorithm [13].

Q:{v,x,y,z}

A:{v,x,y,z}

B:{v,x}

D:{x,y,z}

E:{w,x,y,z}

C:{v,y}

F:{v, w}

(a) a query vertex

k=3

Set Keyword setsSet
Ψ1

Keyword setsy
{v},{x},{y},{z}Ψ11

Ψ2

{v},{x},{y},{z}{ },{ },{y},{ }
{x,y},{x,z},{y,z}Ψ22

Ψ3

, }{ ,,y},{x,z},{y,y},{ , },{y
{x,y,z}

(b) candidates

Figure 6: An example of candidate generation.

EXAMPLE 6. Consider a query vertex Q (k=3, S={v, x, y, z})
with 6 neighbors in Figure 6(a), where the selected keywords of
each vertex are listed in the curly braces. By FP-Growth, 8 can-
didate keyword sets) are generated, as shown in Figure 6(b). Ψi

denotes the set of keyword sets with sizes being i.

2. Verification of candidate keyword sets. As candidates can
be obtained using S and q’s neighbors directly, we can verify them
either incrementally as that in Inc-S, or in a decremental manner
(larger candidate keyword sets first and smaller candidate keyword
sets later). In this paper, we choose the latter manner. The rationale
behind is that, for any two keyword sets S1 ⊆ S2, the number
of vertices containing S2 is usually smaller than that of S1, which
implies S2 can be verified more efficiently than S1.

Based on the above discussions, we design Dec as shown in Al-
gorithm 4. We first generate candidate keyword sets using S and
q’s neighbors by FP-Growth algorithm (line 2). Then, we apply
core-locating to find the root (with core number k) of the sub-
tree from CL-tree, whose corresponding k-ĉore contains q (line 3).
Next, we traverse the subtree rooted at rk and find vertices which
share keywords with q (line 4). Ri denote the sets of vertices shar-
ing i keywords with q. Then, we initialize l as h (line 5), as we
verify keyword sets with the largest size h first. We maintain a set

R̂ dynamically, which contains vertices sharing at least l keywords
with q (line 6). In the while loop, we examine candidate keyword
sets in the decremental manner. For each candidate S′ ∈ Ψl, we
first try to find G[S′], then find Gk[S

′], and put Gk[S
′] into Q if it

exists (lines 8-11). Finally, if we have found at least one qualified
community, we stop at the end of this loop and output Q; otherwise,
we examine smaller candidate keyword sets in next loop.

Algorithm 4 Query algorithm: Dec

1: function QUERY(G, root, q, k, S)
2: generate Ψ1,Ψ2, · · · ,Ψh using S and q’s neighbors;
3: find the subtree root node rk;
4: create R1, R2, · · · , Rh′ by using subtree rooted at rk;
5: l ← h; Q ← ∅;

6: R̂ ← Rh ∪ · · · ∪Rh′ ;
7: while l ≥ 1 do
8: for each S′ ∈ Ψl do
9: find G[S′] from the subgraph induced on R̂;

10: find Gk[S
′] from G[S′];

11: if Gk[S
′] exists then Q.add(Gk[S

′]);
12: if Q=∅ then
13: l ← l − 1;

14: R̂ ← R̂ ∪Rl;
15: else break;
16: output communities in Q;

7. EXPERIMENTS
We now present the experimental results. Section 7.1 discusses

the setup. We discuss the results in Sections 7.2 and 7.3.

7.1 Setup
We consider four real datasets. For Flickr 4 [27], a vertex repre-

sents a user, and an edge denotes a “follow” relationship between
two users. For each vertex, we use the 30 most frequent tags of its
associated photos as its keywords. For DBLP 5, a vertex denotes
an author, and an edge is a co-authorship relationship between two
authors. For each author, we use the 20 most frequent keywords
from the titles of her publications as her keywords. In the Tencent
graph provided by the KDD contest 2012 6, a vertex is a person, an
organization, or a microblog group. Each edge denotes the friend-
ship between two users. The keyword set of each vertex is extracted
from a user’s profile. For the DBpedia 7, each vertex is an entity,
and each edge is the relationship between two entities. The key-
words of each entity are extracted by the Stanford Analyzer and
Lemmatizer. Table 3 shows the number of vertices and edges, the

kmax value, a vertex’s average degree d̂, and its keyword set size l̂.

Table 3: Datasets used in our experiments.
Dataset Vertices Edges kmax d̂ l̂

Flickr 581,099 9,944,548 152 17.11 9.90

DBLP 977,288 3,432,273 118 7.02 11.8

Tencent 2,320,895 50,133,369 405 43.2 6.96

DBpedia 8,099,955 71,527,515 95 17.66 15.03

To evaluate ACQs, we set the default value of k to 6. The input
keyword set S is set to the whole set of keywords contained by the
query vertex. For each dataset, we randomly select 300 query ver-
tices with core numbers of 6 or more, which ensures that there is a
k-core containing each query vertex. Each data point is the average
result for these 300 queries. We implement all the algorithms in
Java, and run experiments on a machine having a quad-core Intel
i7-3770 processor, and 32GB of memory, with Ubuntu installed.

7.2 Results on Effectiveness
4https://www.flickr.com/
5http://dblp.uni-trier.de/xml/
6http://www.kddcup2012.org/c/
kddcup2012-track1
7http://dbpedia.org/datasets

1240

We now study the effectiveness of ACQ, and compare it with
existing CD and CS methods. We then discuss a case study.

7.2.1 ACQ Effectiveness
We first define two measures, namely CMF and CPJ, for evaluat-

ing the keyword cohesiveness of the communities. Let C(q)={C1,
C2, · · · , CL} be the set of L communities returned by an algorithm
for a query vertex q ∈ V (Note that S=W (q)).

• Community member frequency (CMF): this is inspired by
the classical document frequency measure. Consider a keyword x
of q’s keyword set W (q). If x appears in most of the vertices (or
members) of a community Ci, then we regard Ci to be highly cohe-
sive. The CMF uses the occurrence frequencies of q’s keywords in
Ci to determine the degree of cohesiveness. Let fi,h be the number
of vertices of Ci whose keyword sets contain the h-th keyword of

W (q). Then,
fi,h
|Ci| is the relative occurrence frequency of this key-

word in Ci. The CMF is the average of this value over all keywords
in W (q), and all communities in C(q):

CMF (C(q)) =
1

L · |W (q)|
L∑

i=1

|W (q)|∑
h=1

fi,h
|Ci| (3)

Notice that CMF (C(q)) ranges from 0 to 1. The higher its value,
the more cohesive is a community.

• Community pair-wise Jaccard (CPJ): this is based on the
similarity between the keyword sets of any pair of vertices of com-
munity Ci. We adopt the Jaccard similarity, which is commonly
used in the IR literature. Let Ci,j be the j-th vertex of Ci. The CPJ
is then the average similarity over all pairs of vertices of Ci, and all
communities of C(q):

CPJ(C(q)) =
1

L
L∑

i=1

⎡
⎣ 1

|Ci|2
|Ci|∑
j=1

|Ci|∑
k=1

∣∣W (Ci,j) ∩W (Ci,k)
∣∣

∣∣W (Ci,j) ∪W (Ci,k)
∣∣

⎤
⎦ (4)

The CPJ(C(q)) value has a range of 0 and 1. A higher value of
CPJ(C(q)) implies better cohesiveness.

1. Effect of common keywords. We examine the impact of
the AC-label length (i.e., the number of keywords shared by all
the vertices of the AC) on keyword cohesiveness. We collect ACs
containing one to five keywords, and then group the ACs according
to their AC-label lengths. The average CMF and CPJ value of each
group is shown in Figure 7. For all the datasets, when the AC-label
lengths increase, both CMJ and CPJ value rises. This justifies the
use of the maximal AC-label length as the criterion of returning an
AC in our ACQ Problem.

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

the nubmer of shared keywords

C
M

F

Flickr
DBLP

Tencent
DBpedia

(a) CMF

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

the nubmer of shared keywords

C
P

J

Flickr
DBLP

Tencent
DBpedia

(b) CPJ

Figure 7: AC-label length.

2. Comparison with existing CD methods As mentioned a-
head, the existing CD methods for attributed graph can be adapt-
ed for community search. We choose to adapt CODICIL [23] for
comparison. The main reasons are: (1) it has been tested on the
ever reported largest attributed graph (vertex number:3.6M); (2) it

(a) Keyword (CMF) (b) Keyword (CPJ)

(c) Structure (Avg. degree) (d) Structure (degree ≥ 6)

Figure 8: Comparing with community detection method.

identifies communities of comparable or superior quality than those
of many existing methods like [21, 32]; and (3) it runs faster than
many existing methods. Since CODICIL needs users to specify the
number of clusters expected, we set the numbers as 1K, 5K, 10K,
50K and 100K. The corresponding adapted algorithms are named
as Cod1K, · · · , Cod100K respectively. Other parameter settings
are the same as those in [23]. We first run these algorithms offline
to obtain all the communities. Given a query vertex q, they return
communities containing q as the results.

We consider both keyword and structure for evaluating commu-
nity quality. (1) Keyword: Figures 8(a) and (b) show that ACQ
(implemented by Dec) always performs the best, in terms of CMF
and CPJ. (2) Structure: As CODICIL has no guarantee on vertices’
minimum degrees, it is unfair to compare them using this metric.
We intuitively compare their structure cohesiveness by reporting
the average degree of the vertices in the communities and the per-
centage of vertices having degrees of 6 or more. When the number
of clusters in CODICIL is too large or too small, the structure co-
hesiveness becomes weak, as shown in Figures 8(c) and (d). ACQ
always performs better than CODICIL, even when its number of
cluster is well set (e.g., Cod10K and Cod50K on DBLP dataset).

3. Comparison with existing CS methods. The existing meth-
ods mainly focus on non-attributed graphs. We implement two
state-of-the-art methods: Global [26] and Local [5]. Both of
them use the metric minimum degree, we thus focus on the key-
word cohesiveness. Figure 9 shows the CMF and CPJ values for
the four datasets. We can see that the keyword cohesiveness of
ACQ is superior to both Global and Local, because ACQ con-
siders vertex keywords, while Global and Local do not.

(a) CMF (b) CPJ

Figure 9: Comparing with community search methods.

7.2.2 A Case Study
We next perform a case study on the DBLP dataset, in which we

consider two renowned researchers in database and data mining:

1241

Jim Gray and Jiawei Han. We use k = 4 here. We use Cod50K to
represent CODICIL for further analysis. We mainly consider the
input query keyword set S, keywords and sizes of communities.

1. Effect of S. Figure 10 shows two ACs of Jiawei (AC-labels
are shown in the captions), where the query keyword set S are set
as {analysis, mine, data, information, network} and {mine, data,
pattern, database} respectively. These two groups of Jiawei’s col-
laborators are involved in graph analysis (Figure 10(a)) and pattern
mining (Figure 10(b)). Although these researchers all have close
co-author relationship with Jiawei, the use of the input keyword
set S enables the identification of communities with different re-
search themes. For Jim, we can obtain similar results as discussed
in Section 1 (Figure 2). While for CODICIL, it is not clear how to
consider the keyword set S, and we thus do not show the results.

Jiawei Han

Xifeng Yan

Philip S. YuYizhou Sun

Tianyi Wu

(a) {analysis, data, infor-
mation, network}

Jiawei Han

Jeffrey Xu Yu

Philip S. YuJianyong Wang

Jian Pei

Guozhu Dong

(b) {mine, data, pattern,
database}

Figure 10: Jiawei Han’s ACs.

10 20 30
0

0.2

0.4

0.6

0.8

1

M
F

Cod50K
Global
Local
ACQ

(a) Jim Gray

10 20 30
0

0.2

0.4

0.6

0.8

1

M
F

Cod50K
Global
Local
ACQ

(b) Jiawei Han

Figure 11: Frequency distribution of keywords.

Table 4: # distinct keywords of communities.
Researcher Cod50K Global Local ACQ

Jim Gray 134 139,881 60 44

Jiawei Han 140 139,881 58 54

2. Keyword analysis. We analyze the frequency distribution of
keywords in their communities. Specifically, given a keyword wh,
we define the member frequency (MF) of wh as: MF (wh, C(q)) =

1
L

L∑
i=1

fi,h
|Ci| . The MF measures the occurrence of a keyword in

C(q). For each Cq generated by an algorithm, we select 30 key-
words with the highest MF values. We report the MF of each key-
word in descending order of their MF values in Figure 11. We see
that ACQ has the highest MF values for the top 20 keywords. Thus,
the keywords associated with the communities generated by ACQ
tend to repeat among the community members.

The number of distinct keywords of ACQ communities is also
the fewest, as shown in Table 4. For example, the k-ĉore returned
by Global has over 139K distinct keywords, about 2,300 times
more than that returned by ACQ (less than 60 keywords). While the
semantics of the k-ĉore can be difficult to understand, the small
number of distinct keywords of AC makes it easier to understand
why the community is so formed. We further report the keywords

with the 6 highest MF values in Jiawei’s communities in Table 5.
We can see that, the top-6 keywords of ACQ are highly related to the
input query keyword set, while keywords of Global and Local
tend to be less related to the query keyword set, and thus they can-
not be used to characterize the communities specifically related to
Jiawei. The overall results show that, ACQ performs better than
other methods.

Table 5: Top-6 keywords (Jiawei Han).
Algo. Keywords

Cod50K information, mine, data, cube, text, network

Global use, system, model, network, analysis, data

Local scalable, topical, text, phrase, corpus, mine

ACQ mine, analysis, data, information, network, heterog

3. Effect of k on community size. We vary the value of k and re-
port the average size of communities in Figure 12. We can see that
the communities returned by Global are extremely large (more
than 105), which can make them difficult for a query user to ana-
lyze. The community size of Local increases sharply when k=8.
In this situation, Local returns the same community as Global.
The size of an AC is relatively insensitive to the change of k, as AC
contains around a hundred vertices for a wide range of values of k.

4 5 6 7 8

102

104

106

k

co
m

m
un

ity
 s

iz
e

Global
Local
ACQ

(a) Jim Gray

4 5 6 7 8

102

104

106

k

co
m

m
un

ity
 s

iz
e

Global
Local
ACQ

(b) Jiawei Han

Figure 12: Community size.

7.3 Results on Efficiency
For each dataset, we randomly select 20%, 40%, 60% and 80%

of its vertices, and obtain four subgraphs induced by these vertex
sets. For each vertex, we randomly select 20%, 40%, 60% and 80%
of its keywords, and obtain four keyword sets.

1. Index construction. Figures 13(a)-13(d) compare the ef-
ficiency of Basic and Advanced. We study their main parts,
which build the tree without considering keywords. We denote
them by Basic- and Advanced-. Notice that Advanced per-
forms consistently faster, and scales better, than Basic. When the
subgraph size increases, the performance gap between Advanced
and Basic is enlarged. Similar results can be observed between
Advanced- and Basic-. In addition, we also run the CD method
CODICIL, which takes 32 mins, 2 mins, 1 day, and 3+ days (we
stop it after runing 3 days) to cluster the vertices of Flickr, DBLP,
Tencent and DBpedia offline respectively.

2. Efficiency of CS methods. Figures 14(a)-14(d) compares our
best algorithm Dec with existing CS methods. We see that Local
performs faster than Global for most cases. Also, Dec, which
uses the CL-tree index, is the fastest.

3. Effect of k. Figures 14(e)-14(h) compare the query efficiency
under different k. A lower k renders a larger subgraph, so as the
time costs, for all the algorithms. Note that basic-g performs
faster than basic-w, but are slower than index-based algorithms.
Inc-T performs better than Inc-S, and Dec performs the best.
The performance gaps decrease as k increases.

1242

20% 40% 60% 80% 100%
0

2000

4000

6000

8000

10000

12000

percentage of vertices

tim
e

(m
s)

Basic
Basic−
Advanced
Advanced−

20% 40% 60% 80% 100%
0

0.5

1

1.5

2

2.5

3
x 104

percentage of vertices

tim
e

(m
s)

Basic
Basic−
Advanced
Advanced−

20% 40% 60% 80% 100%
0

1

2

3

4

x 105

percentage of vertices

tim
e

(m
s)

Basic
Basic−
Advanced
Advanced−

20% 40% 60% 80% 100%
0

5

10

15

x 104

percentage of vertices

tim
e

(m
s)

Basic
Basic−
Advanced
Advanced−

(a) Flickr (index scalability) (b) DBLP (index scalability) (c) Tencent (index scalability) (d) DBpedia (index scalability)

Figure 13: Efficiency results of index construction.

4 5 6 7 8
0

200

400

600

800

1000

k

tim
e

(m
s)

Global
Local
Dec

4 5 6 7 8
0

200

400

600

k

tim
e

(m
s)

Global
Local
Dec

4 5 6 7 8
0

2000

4000

6000

8000

k
tim

e
(m

s)

Global
Local
Dec

4 5 6 7 8
0

5000

10000

15000

k

tim
e

(m
s)

Global
Local
Dec

(a) Flickr (efficiency) (b) DBLP (efficiency) (c) Tencent (efficiency) (d) DBpedia (efficiency)

4 5 6 7 8

102

103

104

k

tim
e

(m
s)

basic−g
basic−w

Inc−S
Inc−T
Dec

4 5 6 7 8

102

104

106

k

tim
e

(m
s)

basic−g
basic−w

Inc−S
Inc−T
Dec

4 5 6 7 8

102

104

k

tim
e

(m
s)

basic−g
basic−w

Inc−S
Inc−T
Dec

4 5 6 7 8
102

104

106

k

tim
e

(m
s)

basic−g
basic−w

Inc−S
Inc−T
Dec

(e) Flickr (effect of k) (f) DBLP (effect of k) (g) Tencent (effect of k) (h) DBpedia (effect of k)

20% 40% 60% 80% 100%
0

50

100

150

200

percentage of keywords

tim
e

(m
s)

Inc−S
Inc−T
Dec

20% 40% 60% 80% 100%
0

500

1000

1500

percentage of keywords

tim
e

(m
s)

Inc−S
Inc−T
Dec

20% 40% 60% 80% 100%
0

200

400

600

800

1000

1200

percentage of keywords

tim
e

(m
s)

Inc−S
Inc−T
Dec

20% 40% 60% 80% 100%
0

200

400

600

800

1000

percentage of keywords

tim
e

(m
s)

Inc−S
Inc−T
Dec

(i) Flickr (keyword scalability) (j) DBLP (keyword scalability) (k) Tencent (keyword scalability) (l) DBpedia (keyword scalability)

20% 40% 60% 80% 100%
0

50

100

150

200

percentage of keywords

tim
e

(m
s)

Inc−S
Inc−T
Dec

20% 40% 60% 80% 100%
0

500

1000

1500

percentage of keywords

tim
e

(m
s)

Inc−S
Inc−T
Dec

20% 40% 60% 80% 100%
0

200

400

600

800

1000

1200

percentage of keywords

tim
e

(m
s)

Inc−S
Inc−T
Dec

20% 40% 60% 80% 100%
0

200

400

600

800

1000

percentage of keywords

tim
e

(m
s)

Inc−S
Inc−T
Dec

(m) Flickr (vertex scalability) (n) DBLP (vertex scalability) (o) Tencent (vertex scalability) (p) DBpedia (vertex scalability)

1 3 5 7 9

102

103

104

the number of keywords in S

tim
e

(m
s)

basic−g
basic−w
Dec

1 3 5 7 9
101

102

103

104

105

the number of keywords in S

tim
e

(m
s)

basic−g
basic−w
Dec

1 3 5 7 9

102

104

the number of keywords in S

tim
e

(m
s)

basic−g
basic−w
Dec

1 3 5 7 9

102

104

106

the number of keywords in S

tim
e

(m
s)

basic−g
basic−w
Dec

(q) Flickr (set S) (r) DBLP (set S) (s) Tencent (set S) (t) DBpedia (set S)

Figure 14: Efficiency results of community search.

1243

4. ACQ scalability w.r.t. keyword. Figures 14(i)-14(l) exam-
ine scalability over the fraction of keywords for each vertex. All
the vertices are considered. The running times of the algorithms
increase as more keywords are involved. Dec performs the best.

5. ACQ scalability w.r.t. vertex. Figures 14(m)-14(p) report
the scalability over different fraction of vertices. All the keywords
of each vertex are considered. Again, Dec scales the best.

6. Effect of size of S. For each query vertex, we randomly select
1, 3, 5, 7 and 9 keywords to form the query keyword set S. As Dec
performs better than Inc-S and Inc-T, we mainly compare Dec
with the baseline solutions. Figures 14(q)-14(t) show that the cost
of all algorithms increase with the |S|. Also, Dec is 1 to 3 order-
of-magnitude faster than basic-g and basic-w.

4 5 6 7 8
103

104

105

k

tim
e

(m
s)

Inc−S
Inc−T

Inc−S*
Inc−T*

4 5 6 7 8
0

5000

10000

15000

k

tim
e

(m
s)

Local
Dec

(a) InvertedList (b) Dec vs. Local

Figure 15: More experimental results on DBpedia.

Next, we present additional results about DBpedia, the largest
dataset used in our experiments. Results for other datasets are sim-
ilar, and are reported in our report [30] due to space constraints.

7. Effect of invertedList. We implement Inc-S* and Inc-T*,
which are respective variants of Inc-S and Inc-T, without the in-
vertedList on each CL-tree node. Figure 15(a) shows that Inc-S
(Inc-T) is 2 orders of magnitude faster than Inc-S* (Inc-T*).
The keyword-checking operation, which uses the invertedList, is
frequently performed. The use of invertedList thus improves the
performance of our algorithms significantly.

8. Non-attributed graphs. We also test Dec and Local on
non-attributed graphs, by ignoring the keywords of the graph dataset.
Figure 15(b) shows that Dec is always faster than Local. In Dec,
the cores are organized into the CL-tree, and since its height is lim-
ited, the core-locating operation is efficient.

8. CONCLUSIONS
An AC is a community that exhibits structure and keyword co-

hesiveness. To facilitate ACQ evaluation, we develop the CL-tree
index and its query algorithms. Our experimental results show that
ACs are easier to interpret than those of existing community detec-
tion/search methods, and they can be “personalized”. Our solutions
are also faster than existing community search algorithms.

We will study the use of other measures of structure cohesive-
ness (e.g., k-truss, k-clique) and keyword cohesiveness (e.g., Jac-
card similarity and string edit distance) in the ACQ definition. We
will also investigate how the directions of edges will affect the for-
mation of an AC. We will examine how graph pattern matching
techniques [28, 8, 9] can be extended to find ACs. An interest-
ing research direction is to study how to automatically generate a
meaningful graph pattern that reflects a real community, and how
to use these patterns to find ACs.

Acknowledgments
Reynold Cheng, Yixiang Fang, Siqaing Luo, and Jiafeng Hu were
supported by the Research Grants Council of Hong Kong (RGC
Project HKU 17205115) and HKU (Project 104004129).

9. REFERENCES
[1] https://en.wikipedia.org/wiki/Disjoint-set data structure.

[2] V. Batagelj and M. Zaversnik. An o(m) algorithm for cores
decomposition of networks. arXiv, 2003.

[3] G. Bhalotia et al. Keyword searching and browsing in databases
using banks. In ICDE, 2002.

[4] W. Cui, Y. Xiao, H. Wang, Y. Lu, and W. Wang. Online search of
overlapping communities. In SIGMOD, 2013.

[5] W. Cui, Y. Xiao, H. Wang, and W. Wang. Local search of
communities in large graphs. In SIGMOD, 2014.

[6] B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin. Finding
top-k min-cost connected trees in databases. In ICDE, 2007.

[7] S. N. Dorogovtsev et al. K-core organization of complex networks.
Physical review letters, 2006.

[8] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu. Graph pattern
matching: from intractable to polynomial time. PVLDB, 2010.

[9] W. Fan, X. Wang, Y. Wu, and J. Xu. Association rules with graph
patterns. PVLDB, 8(12):1502–1513, 2015.

[10] Y. Fang, H. Zhang, Y. Ye, and X. Li. Detecting hot topics from
twitter: A multiview approach. Journal of Information Science,
40(5):578–593, 2014.

[11] S. Fortunato. Community detection in graphs. Physics Reports,
486(3):75–174, 2010.

[12] J. Han, M. Kamber, and J. Pei. Data mining: concepts and
techniques. Elsevier, 2011.

[13] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In SIGMOD, 2000.

[14] H. He, H. Wang, J. Yang, and P. S. Yu. Blinks: ranked keyword
searches on graphs. In SIGMOD, 2007.

[15] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu. Querying k-truss
community in large and dynamic graphs. In SIGMOD, 2014.

[16] V. Kacholia et al. Bidirectional expansion for keyword search on
graph databases. In VLDB, 2005.

[17] M. Kargar and A. An. Keyword search in graphs: Finding r-cliques.
PVLDB, 4(10):681–692, 2011.

[18] R.-H. Li, L. Qin, J. X. Yu, and R. Mao. Influential community search
in large networks. In PVLDB, 2015.

[19] R.-H. Li, J. X. Yu, and R. Mao. Efficient core maintenance in large
dynamic graphs. TKDE, 2014.

[20] Y. Liu, A. Niculescu-Mizil, and W. Gryc. Topic-link lda: joint
models of topic and author community. In ICML, 2009.

[21] R. M. Nallapati, A. Ahmed, E. P. Xing, and W. W. Cohen. Joint latent
topic models for text and citations. In KDD, 2008.

[22] M. Newman et al. Finding and evaluating community structure in
networks. Physical review E, 2004.

[23] Y. Ruan, D. Fuhry, and S. Parthasarathy. Efficient community
detection in large networks using content and links. In WWW, 2013.

[24] M. Sachan et al. Using content and interactions for discovering
communities in social networks. In WWW, 2012.

[25] S. B. Seidman. Network structure and minimum degree. Social
networks, 5(3):269–287, 1983.

[26] M. Sozio and A. Gionis. The community-search problem and how to
plan a successful cocktail party. In KDD, 2010.

[27] B. Thomee et al. The new data and new challenges in multimedia
research. arXiv:1503.01817, 2015.

[28] H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rad. Fast
best-effort pattern matching in large attributed graphs. In KDD, 2007.

[29] Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng. A model-based
approach to attributed graph clustering. In SIGMOD, 2012.

[30] Y. Fang et al. Effective community search for large attributed graphs
(technical report). http://www.cs.hku.hk/research/
techreps/document/TR-2016-01.pdf.

[31] J. Yang, J. McAuley, and J. Leskovec. Community detection in
networks with node attributes. In ICDM, 2013.

[32] T. Yang, R. Jin, Y. Chi, and S. Zhu. Combining link and content for
community detection: a discriminative approach. In KDD, 2009.

[33] J. X. Yu, L. Qin, and L. Chang. Keyword search in databases.
Synthesis Lectures on Data Management, 2009.

[34] Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering based on
structural/attribute similarities. VLDB, 2009.

1244

