
Using Domain-Specific Languages For Analytic Graph
Databases

Martin Sevenich
Oracle Labs

martin.sevenich@oracle.com

Sungpack Hong
Oracle Labs

sungpack.hong@oracle.com

Oskar van Rest
Oracle Labs

oskar.van.rest@oracle.com

Zhe Wu
Oracle

alan.wu@oracle.com

Jayanta Banerjee
Oracle

jayanta.banerjee@oracle.com

Hassan Chafi
Oracle Labs

hassan.chafi@oracle.com

ABSTRACT
Recently graph has been drawing lots of attention both as a natu-
ral data model that captures fine-grained relationships between data
entities and as a tool for powerful data analysis that considers such
relationships. In this paper, we present a new graph database sys-
tem that integrates a robust graph storage with an efficient graph
analytics engine. Primarily, our system adopts two domain-specific
languages (DSLs), one for describing graph analysis algorithms
and the other for graph pattern matching queries. Compared to the
API-based approaches in conventional graph processing systems,
the DSL-based approach provides users with more flexible and in-
tuitive ways of expressing algorithms and queries. Moreover, the
DSL-based approach has significant performance benefits as well,
(1) by skipping (remote) API invocation overhead and (2) by ap-
plying high-level optimization from the compiler.

1. INTRODUCTION
In recent years, the data management community as well as the

data mining community, both in academia and industry, have been
paying a lot of attention to the graph-based approaches in which
graphs are used as fundamental representation for data modeling
and data analysis. These approaches are very promising as model-
ing the data as a graph allows to capture arbitrary and dynamic re-
lationships between data entities without the need of a predefined,
rigid schema. Also by applying analysis algorithms on the graph
data, non-immediate and non-obvious relationships can be discov-
ered which could provide insights into the original data set.

Interestingly, two different types of graph processing systems
have emerged with focuses on different aspects of graph process-
ing. The first, Graph Databases [6, 9, 15] focus mainly on man-
aging the dataset, modeled as a graph, in a persistent storage with
some consistency guarantees. Graph databases usually define an
API which allows users to conveniently access the graph data from
the storage. However, it is the users who should come up with ef-
ficient implementations for their custom graph analysis algorithms

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 13
Copyright 2016 VLDB Endowment 2150-8097/16/09.

out of such a low-level API. Furthermore, some studies observed
performance issues in such implementations [34, 44].

The second type of systems are Graph Analytics Engines, frame-
works that are specifically designed for fast execution of graph
analysis algorithms [2, 29, 31, 33, 35]. When using such a frame-
work, the user first needs to encode these graph algorithms as small
computation kernels; the framework takes charge of running those
kernels in parallel or distributed manners. Note that most of these
engines load up the graph into the (distributed) memory before the
analysis begins, due to performance reasons. Moreover, these en-
gines assume that the original data remains static during the analy-
sis, i.e. they do not consider consistency of the original data.

Both graph databases and analytic engines do not have a stan-
dardized way of implementing analytic algorithms. They expose
an API to the users that they should use to implement their custom
algorithms. This can be a non-intuitive task as the abstract descrip-
tion of the algorithm might be very different from the programming
model the API uses. Also using an API can come with a significant
runtime overhead as we will show in this paper. Furthermore the
code is not portable as a different execution engine is likely to use
a different API or even a different programming model.

In this paper, we present a new graph database system that is
capable of both consistent management and efficient analysis of
graph data.1 We achieve this by tightly coupling a consistent Graph
Storage Engine with an efficient in-memory Graph Analytics En-
gine (PGX – Parallel Graph analytiX). Our system provides two
different domain-specific languages (DSLs) to deal with the short-
comings of an API based interface. We use Green-Marl [24] for
graph analytic algorithms and PGQL (Property Graph Query Lan-
guage) for pattern matching queries. Each language is specifically
designed for its particular use case, therefore offering users an in-
tuitive way of implementing their programs. As a result, this in-
creases the overall usability of our system and the users productiv-
ity. The DSL programs are compiled inside our system, where the
compiler can take advantage of the graph-specific semantics of the
language and apply high-level optimizations. These optimizations
- combined with the fact that the compiled DSL code avoids the
overhead of an API - provides our approach with a superior perfor-
mance compared to a purely API-based solution. Additionally the
DSL programs can easily be ported to different platforms with no
changes to the source code.

1The paper describes the design of a prototype implementation of
the graph database system. Not all the features discussed here may
be exposed in the final product.

1257

Our specific contributions in this paper are as follows:

• We illustrate the basic architecture of our graph database sys-
tem which is a tight integration of a graph analytics engine
and a graph storage system. (Section 3)

• We adopt two domain-specific languages – one for impera-
tive analytic algorithms, the other for declarative queries. We
discuss how the users can make use of two languages syner-
gistically in intuitive ways. (Section 4)

• We explain performance benefits from using DSLs. Partic-
ularly, we explicate various compiler optimizations that are
enabled by high-level semantic information available from
the DSL. We also show how this approach avoids the high
performance overhead of an API-based implementation of
analytic algorithms. (Section 5 & 6)

• We discuss the ongoing extension of our graph database sys-
tem where we adopt different analytic engines (e.g. dis-
tributed processing). We also delineate how using DSLs al-
lows a transparent migration. (Section 7)

2. BACKGROUND AND RELATED WORK

Graph Databases
There are two different types of commercial and open-source

graph databases: First, there are graph databases [1, 11, 16] that
adopt the classic Resource Description Framework (RDF) data mo-
del. The RDF model regularizes the graph representation as set of
triples (or edges). In addition, when combined with semantic in-
formation, RDF is capable of applying powerful inference rules to
the data. However, full-scale graph analyses, e.g. spectral analysis,
have rarely been applied to RDF graphs. In the RDF model, even
constant literals are encoded as graph vertices, and such artificial
vertices can induce undesired noise to the outcome of the graph
analysis.

Second, there are graph databases [6, 9, 15] that adopt the Prop-
erty Graph (PG) data model in which vertices and edges in a graph
can be associated with arbitrary properties as key-value pairs. Many
of these PG databases tend to focus on providing a data access API
while offering limited graph analysis support. Furthermore, graph
algorithms implemented on top of such an API, may perform sig-
nificantly worse than a direct in-memory implementation [34, 44].

Our current system adopts the PG data model, providing efficient
in-memory analyses on it. However, we are also investigating ways
to apply such graph analyses on the RDF data model.

Domain-Specific Languages for Graphs
There is no standardization for graph languages yet and so there

are multiple graph specific DSLs.
Our system adopts two DSLs – Green-Marl [24] and PGQL – as

front-ends with which users describe their custom graph algorithms
or pattern-matching queries. Note that a few other DSLs have been
proposed for graph processing.

There are other languages designed for querying patterns in the
graph: For example Cypher [5] for the PG model and SPARQL [12]
for the RDF model. These languages allow the user to specify a
graph pattern of interest; the graph database then finds matching
subgraphs or matching graph elements. However, these languages
are not suitable for graph analysis algorithms as those algorithms
are more than a simple graph pattern – they are complex proce-
dures.

Gremlin [14] is a language designed for graph traversal. Al-
though it is possible to do so, Gremlin has certain issues when it

comes to implement graph analysis algorithms and we think that
Green-Marl is more intuitive for describing graph algorithms, due
to its imperative programming style and the ability to apply graph
specific optimizations such as the ones presented in this paper.

Graph Libraries and Graph Processing Frameworks
There are some systems that focus on the fast execution of graph

analysis algorithms. First, there exist many different graph libraries
for different programming languages. Examples include NetworkX
[10] (Python), Jung [8] (Java), SNAP [13], Stinger [20] and the
Boost Graph Library [4] (C++). Essentially, these libraries provide
their own graph data structures; for custom graph algorithms the
users have to create their own parallel implementation on top of the
library’s data structures.

Second, there are graph processing frameworks which consider
parallel or distributed execution of graph algorithms [2, 29, 31, 33,
35]. Galois [35] allows fast propagation of vertex-oriented events
in parallel, shared-memory environments, while GraphLab [31] im-
plements a similar concept in distributed environments. Giraph [2],
Pregel [33] and Pegasus [29] are scalable graph processing systems
based on a Map-Reduce environment.

Note that each of the above frameworks requires a special, re-
stricted programming model, to perform parallel or distributed ex-
ecution. Therefore, users have to redesign their graph algorithms
accordingly, which can be a daunting task for complicated algo-
rithms. Our approach, however, allows the user to write an in-
tuitive, high-level DSL program and leaves it to the compiler to
parallelize it.

More importantly, neither these graph libraries nor the graph pro-
cessing frameworks concern consistent data management at all. In
this paper, we show that by tightly coupling a graph database with
a graph analytic engine, one can get the best of both systems.

TinkerPop [3] is an open-source graph computing framework,
providing different interfaces and frameworks for graph analytic
systems and graph databases. This includes Blueprints, an API for
the property graph model, Pipes, a data flow framework, the Grem-
lin graph traversal language, the Frames object-to-graph mapper,
the graph algorithms package Furnace and Rexter - a graph server.
Many graph databases such as Neo4j [9] and Titan [15] comply to
APIs defined by TinkerPop which allows using its capabilities on
top of the database. The DSL based approach in our system offers
a more intuitive way to implement graph analytic algorithms com-
pared to such an API since it is not bound to the Pregel computation
model. Also it provides better performance as it allows high-level
compiler optimizations while avoiding the overhead of repetitive
calls to a system API.

Graph Processing in Relational Databases
Several systems advocate the use of relational database systems

(RDBMS) instead of a specialized graph processing system to ben-
efit from the fact that RDBMS are already widely used for analytic
purposes and are well understood and optimized. Grail [21] for
example stores the vertex and edge data in tables in a relational
database while offering a vertex-centric API to the user for writing
queries. These are translated into SQL and then executed by the
RDBMS.

SQLGraph [40] also uses a relational database to store the graph
data but it only stores the graph topology in the relational storage.
The vertex and edge data is kept separately in a JSON storage. The
system uses Gremlin [14] as a language to let users describe graph
queries that are transformed into SQL before being executed by the
system. Grail and SQLGraph rely on the RDBMS alone to optimize
the generated SQL statements, but due to the nature of SQL this

1258

Trans-

actional

Client

Property Graph Storage

(Oracle RDBMS, NoSQL)

In-Memory Graph

Analytic Engine (PGX)

Analytic

Client

Analytic

ClientTrans-

actional

Client

Trans-

actional

Clients

Bulk

Load
Update stream

Figure 1: The overall design of our system

does not include optimizations that use graph-specific knowledge.
The compiler in PGX on the other hand uses the graph-specific
knowledge of the DSL semantics to optimize the generated code.

3. GRAPH DATABASE SYSTEM: THE AR-
CHITECTURE

3.1 System Overview
In a nutshell, our graph database system is a tight integration of

a graph storage and a graph analytics engine. The graph storage
enables robust management of large graph data sets under highly
concurrent transactional workloads, while the graph analytics en-
gine enables fast parallel execution of analytic algorithms on the
graph data. Figure 1 illustrates the overall architecture of our graph
database system.

Our graph storage provides the Property Graph [3] data model
on top of industry-proven data management systems, including Or-
acle RDBMS, Oracle NoSQL and Apache HBase. This approach
saves us from re-inventing the wheel, or we do not need to build
whole new database engine specialized for the graph data model;
complex enterprise requirements such as security, access control,
transactions and scalability have already been addressed in these
RDBMSs [44].

PGX, our graph analytic engine focuses on in-memory parallel
execution of graph analytics algorithms, exploiting the large mem-
ory capacity and multiple CPU cores in modern server systems.
Even though the graph data is maintained in tabular forms in the
storage, PGX utilizes a more specialized data structure for its in-
memory representation that keeps explicit edge lists.

Note that graph analysis algorithms typically perform a lot of
neighborhood iterations and traversals, which naturally induces nu-
merous non-sequential data accesses. Therefore, running graph al-
gorithms directly on top of an in-memory graph data structure pro-
vides significant performance benefits over other approaches like
repeated computation of joins on a tabular representation [21], fre-
quent (random) accesses to block storage [37], and exchanging
many short messages with remote machines [31]. Section 7 dis-
cusses on-going extensions of our system for handling very large
graph instances that do not fit in a single memory.

Overall, by combining a robust graph storage and a fast graph an-
alytics engine, our graph database system provides the users with
the best of both worlds: maintaining large data sets using an intu-
itive graph data model and applying graph analytics on them in an
efficient manner.

3.2 Features and Interfaces
Graph Loading and Delta Update

In order to apply analytic algorithms on the graph data, the data
in the storage first needs to be loaded into the analytic engine,
as illustrated in Figure 1. Our graph database system provides a
fast bulk loading mechanism for this large data movement – even
graphs with billions of edges can be loaded in tens of minutes.

In addition, our graph database system provides an optional fea-
ture of delta updates. That is, once the large graph data is loaded
into the analytic engine (PGX), subsequent changes to the data in
the storage are tracked by the analytic engine. Either by the user’s
explicit requests or by predetermined periodic events, a new graph
instance is created by applying these changes to the previously
loaded graph instance.

Finally, we provide various options for loading only the relevant
subset of the large data into memory. For instance, the user can
provide a list of properties that are to be loaded into memory, al-
lowing to keep other properties in the storage as the analysis would
not require them. The user can also specify a short filter expression
for defining a subgraph to be loaded into memory. For example, the
following edge-filter expression defines a subgraph where all edges
contain at least one RED vertex on either side:

src.color = ’RED’ or dst.color = ’RED’

Concurrent Clients, Snapshot Consistency and Mutation
Our graph database system supports multiple concurrent clients

in a scalable manner. First of all, transactional clients are separated
from analytic clients and served by different engines (see Figure 1).
Therefore, a small number of long-running computation-heavy an-
alytic workloads are handled very differently than a large number
of short and frequent IO-intensive transactional workloads.

Moreover, the PGX graph analytic engine provides an isolated,
consistent snapshot view of the graph data to each analytic client.
That means, each client can work on a graph instance that is con-
sistent to a certain version of the data in the storage. For the sake
of analysis, the client can define its own additional properties and
modify their values. The client can even mutate the graph itself,
i.e. add or remove vertices and edges. All these changes, how-
ever, are not visible to other concurrent clients that are working on
the same graph instance. To make changes permanent, the client
has to commit them to the graph storage; the changes will be only
visible to other clients when they choose to fetch a more recent
graph instance from the storage, potentially through the delta up-
date mechanism.

When there are multiple concurrent analytic clients, it is possible
to deploy multiple PGX analytic engines with a single graph stor-
age. Again, our design guarantees that each PGX instance holds a
consistent snapshot of the graph data, as the data storage becomes
the reliable source of truth.

Execution Modes and Interface Layers
PGX provides two different modes of execution for analytic clie-

nts: remote execution mode and embedded execution mode. In re-
mote mode, the PGX analytic engine is wrapped in a web container
and deployed as a web service. Each remote client can make a con-
nection and submit remote requests to the server. Typically, the
PGX engine resides in a server-class machine exploiting its large
memory capacity and high computation power. In embedded mode,
on the other hand, the client application runs in the same process
space as PGX. Essentially, PGX becomes a graph library in this
mode.

PGX makes it trivial to switch between remote execution and
embedded execution through its careful API design. While both
a remote client and a local client would invoke exactly the same

1259

Web Container
(e.g. WebLogic)

PGX
Internal Implementation

(Data Structure, Thread-pool,
Built-in Operators, ..)

PGX API
(remote)

Remote Client

Network

Embedded Client
PGX API
(local)

Figure 2: Remote and local execution modes and PGX API lay-
ers

interface methods, the remote ones are transparently mapped into
server-side REST API invocation. As a matter of fact, all the meth-
ods in the PGX API support asynchronous execution (e.g. using
Future in Java7) in addition to their synchronous counterparts.
Consequently, a local PGX client can seamlessly run remote as
well, just by linking it to a different API implementation. Figure 2
illustrates the execution modes and the API layers.

The PGX API itself consists of two layers. The first one is the
high-level API package which provides a set of fixed functionali-
ties including built-in analysis algorithms, graph mutation opera-
tors, and graph loading/exporting mechanisms. In other words, the
methods in this package initiate big computations in the server side.
The second one is the low-level API package which provides fine-
grained control over each vertex and edge of the graph. Basically,
this API is designed as convenient methods for small and short in-
teractions between client and server. For instance, after identifying
the top 10 Pagerank vertices, the user may look up additional prop-
erties of them.

The challenge is, however, when the user wants to execute a cus-
tom graph algorithm which is not pre-built in the package. Al-
though users can always implement their custom algorithm using
the low-level API (i.e. vertex and edge), this approach may intro-
duce a significant performance problem because the (remote) API
overhead gets accumulated over each vertex and edge access. Note
that even the embedded clients could suffer from this performance
overhead, because PGX internal graph representation is indeed dif-
ferent from the convenient object-oriented one in the low-level API.

Instead, we adopt a Domain-Specific Language (DSL)-based ap-
proach in PGX. More specifically, users can write up their graph al-
gorithms in a DSL and submit them to the server, while the server
compiles and executes them efficiently without any API overhead.
Note that this approach certainly follows an important design prin-
ciple in modern computing systems: move computation instead of
data. Section 4 explains our DSLs while Section 6 shows the per-
formance improvements from using DSLs instead of an API. As a
final note, all the built-in algorithms in our release packages are in
fact compiled from DSL code.

4. DOMAIN-SPECIFIC LANGUAGES
In this section we discuss the two domain specific languages that

we adopted – Green-Marl for graph analysis and PGQL for graph
queries and pattern matching – and how both languages can be used
together.

4.1 Green-Marl
Green-Marl [24] is a domain specific language designed specifi-

cally to express graph analysis algorithms. The language supports

1 procedure pagerank(G: graph, e,d: double, max: int;
2 pg_rank: nodeProp<double>) {
3 double diff;
4 int iter = 0;
5 double N = G.numNodes();
6 G.pg_rank = 1 / N;
7 do {
8 diff = 0.0;
9 foreach (t: G.nodes) {

10 double val = (1 - d) / N + d *
11 sum(w: t.inNbrs) {w.pg_rank / w.degree()};
12 diff += | val - t.pg_rank |;
13 t.pg_rank <= val;
14 }
15 iter++;
16 } while (diff > e && iter < max);
17 }

Figure 3: Pagerank algorithm implemented in Green-Marl [24]

1 SELECT friend.name, friend.age
2 FROM friendshipGraph
3 WHERE
4 (m WITH name = ’Mario’) -[:likes]->(friend),
5 (l WITH name = ’Luigi’) -[[:likes]*1..2]->(friend),
6 friend.age >= m.age + 2
7 ORDER BY friend.name

Figure 4: Example PGQL query, returning the friends of
Mario that are also friends, or friends of friends, of Luigi.
Friends that are at least two years older than Mario are filtered
out.

graph-specific data entities as intrinsic data types: graph, vertex,
edge as well as vertex property and edge property. It also provides
languages constructs for different graph traversals and iterations,
such as Breadth-First Search (BFS), Depth-First Search (DFS), in-
coming neighbor iteration, outgoing neighbor iteration, etc.

Like most mainstream languages, Green-Marl is an imperative
language that assumes a global shared memory. Combined with
the high-level graph-specific language constructs, this allows users
to implement a graph analysis algorithm in a straightforward man-
ner, since the Green-Marl code resembles the algorithm descrip-
tion; the users need not rewrite their algorithms with certain artifi-
cial constraints such as in vertex-centric programming models. As
an example, Figure 3 shows the Green-Marl implementation of the
Pagerank algorithm.

The high-level language constructs in Green-Marl expose the in-
herent parallelism to the compiler which is then able to generate
a highly parallel executable. Moreover, the DSL compiler can ap-
ply very specialized optimizations that a general purpose compiler
cannot do, because the DSL compiler understands the specific se-
mantics of the language constructs. We present some of these opti-
mizations in Section 5.

Note that the compiler applies these optimizations automatically;
the user only focuses on the high-level implementation of algo-
rithms while the compiler provides the performance via paralleliza-
tion and optimization. Furthermore, whenever new optimizations
are added to the compiler, existing algorithms get performance ben-
efits automatically, if the new optimizations are applicable to them.
Section 5 discusses how the same optimizations are applied to dif-
ferent algorithms.

4.2 PGQL
PGQL (Property Graph Query Language) is our proposal of a

pattern-matching query language tailored for Property Graphs. A
graph pattern-matching query is a query to find all instances in the

1260

given data graph that match to the specified graph pattern. The
detailed syntax and semantics of PGQL are outside the scope of this
paper as we are preparing a separate publication about it. Instead,
we give a short introduction to PGQL here.

There is the need for a new query language as there does not
exist a theoretically sound, yet feature-complete declarative query
language for the PG data model at the moment. Cypher for exam-
ple is missing fundamental graph querying functionality. It sup-
ports subgraph isomorphic queries, but not the more general class
of the subgraph homomorphic queries. Also it does not allow for
the well-studied class of the regular path query (RPQ). Finally, al-
though Cypher allows for updating of graphs, it does not support
constructing new graphs, which is essential for graph transforma-
tion applications and typical database functionality such as SQL-
like Views. PGQL overcomes these limitations.

The syntax structure of PGQL resembles that of SQL. Basically,
a PGQL query is composed of three clauses (SELECT, FROM, WHERE)
followed by optional solution modifier clauses such as ORDER BY,
GROUP BY, and LIMIT. The FROM clause can be omitted when there
is only one graph instance. Additionally, PGQL includes special
operators for graph pattern matching: vertex matching, edge match-
ing, path matching, etc. These matching operators are placed in the
WHERE clause along with other expressions to construct predicates.

Figure 4 shows an example PGQL query which finds patterns
from a data graph named friendshipGraph (line 2). In the WHERE

clause, the query matches a vertex m that has a property name with
value ’Mario’. The vertex m has an edge whose label is ’likes’.
The destination vertex of this edge is referred as vertex friend

(line 4). Similarly, the query matches another vertex l with its name
being ’Luigi’. The vertex l is also connected to the vertex friend

but through a path; the path is composed only of edges whose label
is ’likes’ and the (hop-)length of the path is between 1 and 2

inclusively (line 5). Line 6 dictates that the value of property age

in vertex friend is larger than or equal to that of vertex m by two.
All the instances that match with this pattern are first sorted by
name values of friend vertices (line 7), before the name and age

property values of friend vertex are returned (line 1).
Note that the above example query contains a path matching op-

erator. In general, PGQL supports regular path queries (RPQs),
while the path matching operator can be used differently for find-
ing reachability vertices or for enumerating all (shortest) paths.
More specifically, PGQL supports the class of extended conjunc-
tive RPQs (ECRPQs) [18] but with arbitrary expressions over edges
(not just over edge labels) and optional restrictions on path lengths.

Just like in SQL, the result of a PGQL query forms a tabular
“result set” with variables and their bindings. However, PGQL
also has intrinsic data types for graph-specific entities like Vertex,
Edge, Path and Graph – the binding can be any of these graph-
specific types. In addition, PGX also provides aggregate methods
that merge matches in the result set into another graph instance.

4.3 Combined Usage of Two Languages
As discussed so far, PGX adopts not one but two DSLs. This is to

give users the most intuitive programming model for each use case:
imperative for analysis and declarative for queries. Imperative lan-
guages provide constructs for fine-grained control flows and (in-
termediate) value computation and management, which is essential
for writing algorithmic procedures. Declarative languages on the
other hand, make it very easy to specify a pattern to be matched on,
even complicated ones; the execution engine can make intelligent
choices to map the query into a sequence of predefined operators.
Consider the analysis example in Figure 3 and the query example
in Figure 4. Even with these simple examples, it is not obvious

how to re-write the analysis in Figure 3 with a query language like
PGQL, and vice versa.

However, despite their many differences, both languages share
a lot of common parts in the runtime implementation. Both lan-
guages work on the same graph data representation at least. All
PGX system resources (thread-pools, scheduler, memory manage-
ment) are naturally shared as well. More importantly, two run-
time systems share a single implementation for many performance-
critical operations: breadth-first traversal, common-neighbor itera-
tion, top-k value finding, etc.

Furthermore, the combined usage of two languages can provide
the users with more benefits than each individual language. Users
can first use PGQL to extract a sub-graph from the original data and
then run a Green-Marl analysis on the result. For instance, the who-
to-follow analysis from Twitter [23] can be performed in following
manner:

1. Given a vertex v0, do Personalize Pagerank (with a Green-
Marl program) starting from the vertex.

2. Use PGQL to identify the top T closest vertices to v0.
3. Create a bipartite sub-graph using those T vertices as left-

hand-side (LHS) vertices and their neighbors as right-hand-
side (RHS) vertices. PGX provides an API for this.

4. Run the SALSA algorithm (another Green-Marl program) to
compute relative importance scores on each type of vertex.

5. Use PGQL to identify the top K1 LHS vertices and the top
K2 RHS vertices.

6. The RHS vertices become a recommendation list.

Of course this also works the other way – a PGQL query can in-
clude the values computed by a Green-Marl program in the search.
As an example, consider the following scenario which tries to find
low-centrality vertices that bridge two high-centrality vertices:

1. Run Pagerank on the graph and compute the 5 percentile and
95 percentile Pagerank values t5 and t95 (Green-Marl pro-
grams).

2. Use PGQL to find each vertex v such that the Pagerank value
of v is less than t5. However, v is connected to w and u both
of which have Pagerank values larger than t95. Also there is
no edge between w and u.

5. COMPILER OPTIMIZATIONS
The Green-Marl compiler uses program analysis and knowledge

specific to the graph domain to perform a variety of optimizations
on given Green-Marl code. In this section we present and describe
a number of these optimizations. Section 5.1 and 5.2 are based on
previous work, while the following sections focus on new contribu-
tions. Table 1 contains a variety of algorithms and the optimizations
presented in this paper that can be applied to the code. Note that of-
ten applying a single optimization has only a small or even negative
impact on the performance, but combining multiple optimizations
can lead to significant performance improvements. See Section 6.3
for an evaluation on their impact on the performance.

5.1 Basic Graph Optimizations
The Green-Marl compiler applies several graph specific opti-

mizations presented in previous work [24]. This includes system
and architecture independent optimizations (e.g. loop merging) and
optimizations that are specific to the architecture the program is ex-
ecuted on (e.g. selection of parallel regions).

5.2 Common Neighbor Iteration
In our previous work [38] we presented an optimization where

the compiler identifies iterations over common neighbors of two

1261

Algorithm MB DS PM DP CI
Adamic Adar [17] X
Betweenness-Centrality [32] X
Closeness-Centrality [22] X
Dijkstra [19] X
Fattest-Path [28] X
Kosaraju [19] X
PageRank [36] X X
Soman and Narang [39] X X
Tarjan [42] X X
Triangle Counting [41] X

Table 1: Graph analysis algorithms and applicable optimiza-
tions. MB: Multi-Source-BFS, DS: Data Structure Specializa-
tion, PM: Property Merging, DP: Degree Precomputation (in-
cluding Inverse-Degree Precomputation), CI: Common Neigh-
bor Iteration.

vertices and uses a specialized algorithm to perform this iteration.
Depending on the results of a program analysis, it also generates
code to prune the search space for these common neighbors which
significantly reduces the work to be done. The combination of these
two optimization steps significantly improves the performance of
certain algorithms like Triangle Counting.

5.3 Multi-Source-BFS Transformation
Multi-Source Breadth-First Search (MS-BFS) is a technique de-

veloped by Then et al. [43] to perform multiple BFS traversals at
the same time, starting from several different roots. These BFSs
will be packed together in a so called batch and share common
parts of the traversal, therefore reducing the overall amount of ran-
dom memory accesses while making better use of the memory
prefetcher and SIMD instructions. It has been shown, that MS-BFS
can greatly increase the performance, especially on small-world
graphs as they can be often found in social networks.

The downside of using MS-BFS is an increased code complex-
ity since the program has to make sure that each BFS iteration in a
batch behaves as if it ran independently. Also MS-BFS can signif-
icantly increase the memory consumption of the program - namely
by a factor up to the size of one batch - since copies of certain vari-
ables have to be created which can be very costly for properties.
This extra memory consumption can easily exceed the available
system memory, even for mid-sized graphs. Dealing with these is-
sues can be a challenging and error prone task.

In the following we describe how the Green-Marl compiler can
address these problems in an automatic and transparent way.

MS-BFS Auto-Transformation
The Green-Marl compiler can automatically transform code to

use MS-BFS. That means the user can write the code using the
normal BFS iteration that is built into Green-Marl, and the com-
piler identifies whether MS-BFS can be used and if this is the case
it takes care of all the code adjustments needed to use MS-BFS
correctly. This gives the user the benefits of MS-BFS without the
burden of having to deal with the implications it has to the code.

Consider the example code below:
foreach (s: G.nodes) {
long bfsSum = 0;
nodeProp<double> prop;

foreach(n: G.nodes) {
n.prop = 0;

}
inBFS(v: G.nodes from s) {

v.prop++;
bfsSum = bfsSum + 1;

}
}

The compiler searches for a pattern with a foreach loop where
the iterator is used as source vertex for a BFS iteration. The itera-
tion can be over all vertices in the graph or just a subset. This code
is then transformed to use MS-BFS where each BFS in the batch
is identified using an index variable. Note that the syntax below is
not part of the Green-Marl language and is just used for illustration
purposes.

ms_bfs_foreach (s: G.nodes) {
...
in_ms_bfs(v: G.nodes from s | batchIndex) {
...

}
}

The next step is to identify all scalar variables that are visible to
each BFS and therefore have to be protected - e.g. bfsSum from
the example. For each BFS in the batch a copy of these variables
is created and stored in an array. Outside of the BFS, writes to
these variables are turned into a loop where the value for each BFS
is written. Inside the BFS, the batch index is used for reads and
writes. Property variables are treated slightly differently. Instead
of creating a copy for each BFS, the size of the property will be
multiplied by the batch-size to ensure that the data lies packed in
memory.

ms_bfs_foreach (s: G.nodes) {
long bfsSum[batchSize];
nodeProp<double * batchSize> prop;

for (0 ≤ batchIndex < batchSize) {
bfsSum[batchIndex] = 0;

}

foreach(n: G.nodes) {
for (0 ≤ batchIndex < batchSize) {

n[batchIndex].prop = 0;
}

}

in_ms_bfs(v: G.nodes from s | batchIndex) {
v[batchIndex].prop++;
bfsSum[batchIndex] = bfsSum[batchIndex] + 1;

}
}

Auto-Memory Tuning
Memory consumption can become a problem when using MS-

BFS as multiple MS-BFS instances might run concurrently and a
copy of each property might be necessary per thread and per item
in the batch. Depending on the graph size, this can easily exceed
the available memory of a machine, even for mid-sized graphs.

There are two ways to deal with this issue that can be applied
automatically by the Green-Marl compiler: reducing the number of
threads or reducing the batch-size. In the following we will discuss
how to reduce the batch-size, but reducing the number of threads
works similarly. Note that each approach has its own advantages
and disadvantages and decisions have to be made based on the tar-
get system and its requirements. For example reducing the number
of threads while using an optimal batch-size can be advantageous
if the idle threads can be used for other tasks while reducing the
batch-size might be beneficial to utilize all system resources.

The compiler analyzes the code to determine copies for which
properties have to be created. It then adds code that - at runtime -
computes the maximum batch-size for which the required memory
will still fit in the memory currently available to the system. The
memory required by all vertex properties is the sum of the products
of the type-size, the number of vertices, the number of threads and
the batch-size. The memory for all edge properties can be com-
puted accordingly. The batch-size will be set to the minimum of
the computed batch-size and the size of the SIMD registers of the
machine.

1262

5.4 Data Structure Specialization
Traditional object oriented languages provide abstract data struc-

tures such as list or set, but they leave it to the programmer to
select the actual implementation for example a linked-list or a
hash-set. This choice can be crucial for the program performance
as different implementations perform better or worse in different
use cases. Green-Marl provides abstract data structures as well,
but the compiler chooses the implementation using code analysis
and different optimization techniques that also allow the compiler
to rewrite parts of the code to leverage the benefits of the particular
implementation. In the following we describe two such optimiza-
tions that are based on selecting specialized data structure imple-
mentations.

Priority Map Selection
Green-Marl provides a map type that uses a hash-map as de-

fault implementation. The Green-Marl map offers the getKeyWith

SmallestValue() and getKeyWithLargestValue() functions to
retrieve the key associated with the smallest or largest value in the
map. In the following we will describe the optimization for keys
associated with the smallest value, but it works identically for the
largest value.

We implemented a different, heap-based, priority-map that has
a O(1) runtime guarantee for getKeyWithSmallestValue() and
getKeyWithLargestValue(). It also provides a function remove

Smallest() and removeLargest() for deleting the smallest or
largest value; running in O(logn). Note this function is not avail-
able to the user as it is not part of the language itself, but the com-
piler uses it for optimization purposes.

To determine whether to use a priority-map implementation,
the compiler looks at all variables that are used as keys to read or
remove values. If all these variables are being assigned by using the
getKeyWithSmallestValue() or getKeyWithLargestValue()

function - i.e. we only read or remove the smallest value in the map
- then we choose the priority-map implementation. Additionally
the code can be rewritten to call removeSmallest() or remove

Largest() directly instead of remove(key) which often allows
to optimize away the call to getKeyWithSmallestValue() alto-
gether. The following Green-Marl code example illustrates that:

map<node, double> m;
...
node n = m.getKeyWithSmallestValue();
m.remove(n);

becomes

map<node, double> m;
...
m.removeSmallest();

This optimization can significantly improve the performance and
scalability (see Section 6.3) as it reduces the worst-case runtime
of operations like getKeyWithSmallestValue() from O(n) to a
constant factor.

Stack Selection
nodeSeq and edgeSeq in Green-Marl allow to store vertices or

edges while preserving the insertion order. Their default imple-
mentation is based on a linked-list as it provides good perfor-
mance for most use cases. In some cases the compiler can choose
an array-list based implementation instead which - in practice -
provides better performance for read operations and writes to the
end of the list due to the data being stored aligned in memory.
Also array-lists tends to generate fewer objects compared to a
linked-list.

The compiler finds sequence variables where all modifications
only occur to the back via pushBack() or popBack(), i.e. the
sequence is used as a stack. Note that sequences do not support
modification to locations other than the front or back. For example
the compiler will choose an array-list for the sequence in the
following snippet.

nodeSeq seq;
for (n: G.nodes) {
seq.pushBack(n);

}

Additionally the compiler finds sequences where only the front
is modified using pushFront() or popFront(). It then rewrites
the code to modify the back of the sequence instead (e.g. replace
pushFront() with pushBack()) and changes reads at the front to
reads at the back and vice versa. Also the direction of all iterations
over the sequence are inverted.

nodeSeq seq;
for (n: G.nodes) {
seq.pushFront(n);
node m = seq.back();

}
for (n: seq.items) { // forward iteration
...

}

becomes

nodeSeq seq;
for (n: G.nodes) {
seq.pushBack(n);
node m = seq.front();

}
for (n: seqˆ.items) { // reverse iteration
...

}

This transformation then allows applying the same optimization
described above without changing the semantics of the program.

5.5 Property Merging
PGX implements vertex (edge) properties column wise as an ar-

ray of lengthO(N) (O(E)) which provides excellent performance
when iterating over the values in a single property. Because arrays
of different properties are stored in different memory locations, ac-
cessing multiple properties at once - e.g. in the same expression
- can have a negative impact on the performance due to the two
reads/writes required in different locations in memory due to an in-
creased number of cache misses. In such a case, the compiler can
transform the code from a column-oriented property representation
to a row-based representation, i.e. the values of multiple properties
will be stored consecutively in memory for one vertex (edge).

Since this optimization adds runtime overhead, the compiler has
to use a heuristic to determine whether and to which properties it
will be applied. Note that this optimization is performed twice,
once for vertex properties and a second time for edge properties as
they cannot be merged together due to the different dimensions.

Merge Heuristic
First the compiler identifies all sets of properties that are used to-
gether - i.e. in the same expression including sub-expressions.
These sets represent the candidates for being potentially merged
into a single property. One property can appear in multiple sets, but
usually the number of sets is small since typical graph algorithms
use only a small number of properties.

These candidate sets are then ranked according to a cost value
λ that is calculated by the compiler. In the following we list the
factors that influence the cost value. How each of these factors
influence λ is platform and system specific.

1263

• A larger set size will increase λ since the benefits from merg-
ing are smaller while increasing the overhead.

• Properties in the set that are input- or output-arguments of
the procedure will increase λ because they require extra code
that copies the values from the input into the merged prop-
erty and the values from the merged property into the output.
Also they consume extra memory while local properties can
be replaced entirely by the merged property.

• Sets that would require the merged property to include data
padding increase λ due to the additional memory consump-
tion.

• Each occurrence of an expression that involves all properties
of a candidate set will decrease λ by a certain value. This
value is multiplied by a factor depending on whether the ex-
pression is nested inside of one or multiple loops such as
foreach or while loops. The more expressions involving
the set, the more potential benefit is promised by merging it.

The compiler will then perform the following until there are no
candidate sets left or the top-ranked candidate set has a positive λ
value: Remove the top-ranked candidate set and merge its proper-
ties; then remove all other candidate sets that contain at least one
property from this set. This step is necessary because one property
cannot be part of multiple merged properties.

Code Transformation:
When merging a candidate set, the compiler will first create a

new type with a member for each property in the set. Consider the
following Green-Marl code snippet:

nodeProperty<double> p1;
nodeProperty<int> p2;
foreach (n: G.nodes) {

n.p1 = 2.0 * n.p2;
}

Assuming p1 and p2 are selected for merging, then the following
type would be created.

type p1_p2_type {
double p1;
int p2;

}

The compiler then rewrites the original code, creating a new
property of the merged type, replacing the original properties and
also rewriting all reads and writes to the original property.

nodeProperty<p1_p2_type> merged;
foreach (n: G.nodes) {

n.merged.p1 = 2.0 * n.merged.p2;
}

Note that if the original properties are an input or output of the
procedure, then they cannot be replaced. Instead code will be gen-
erated that for inputs copies the values from the input into the
merged property at the beginning of the procedure and for outputs
copies the values from the merged property to the output before the
procedure returns. See the following code snippets for an example:

procedure foo(G: graph, in: nodeProperty<double>
; out: nodeProperty<int>) {

...
}

Assuming in and out are merged, then the code becomes
type in_out_type {

double in;
int out;

}

procedure foo(G: graph, in: nodeProperty<double>
; out: nodeProperty<int>) {

nodeProperty<in_out_type> merged;
foreach (n: G.nodes) {
n.merged.in = n.in; // copy from input

}
...
foreach (n: G.nodes) {
n.out = n.merged.out; // copy into output

}
}

Precomputation of Vertex Degree
Computing the degree (i.e. the number of neighbors) of a ver-

tex requires two memory lookups in the CSR structure we use
for graphs and subtracting the values. The Green-Marl compiler
can generate code to precompute these values for every vertex and
store the results in a new property. Since this introduces overhead
at runtime for creating and initializing the property, the compiler
will only perform this code transformation if the resulting prop-
erty would be subject to merging. This benefits the performance -
and thus offsets the extra overhead - because it is only applied if
the degree and other properties are frequently used together in the
same expressions. So instead of having to access different memory
locations for the degree and the properties, the values are stored
adjacent in memory.

The transformation works as follows: First a new vertex property
of type int is generated and initialized with the degree of each ver-
tex. Then all degree lookups in the code are replaced by a lookup in
the new property. Note that we only do this if the original expres-
sion was using floating point semantics for the division to prevent
altering the semantics of the code. See the following Green-Marl
code snippet for an example:

...
foreach (n: G.nodes) {
int i = 5 + n.degree();

}
...

becomes

nodeProperty<int> degree;
foreach (n: G.nodes) {
n.degree = n.degree();

}
...
foreach (n: G.nodes) {
int i = 5 + n.degree;

}
...

Inverting the Degree
Under certain conditions the above transformation is applied dif-

ferently, namely if the degree-lookup only appears in expressions
of the form X / node.degree(). In that case the new property is
generated to be of type double and the values are initialized with
the inverse of the degree.

nodeProperty<double> inv_degree;
foreach (n: G.nodes) {
n.inv_degree = 1.0 / n.degree();

}

Instead of just replacing the degree lookups with lookups in the
property, the original expression will be transformed from a divi-
sion into a multiplication. For example consider the following code
snippet

foreach (n: G.nodes) {
double d = 1.0 + e / n.degree();

}

becomes

1264

foreach (n: G.nodes) {
double d = 1.0 + e * n.inv_degree;

}

This improves the performance by reducing the number of float-
ing point division operations as they are more computational expen-
sive than floating point multiplications [45]. But more importantly
it can reduce contention in the system and therefore make better
use of the systems threads. Many modern multicore CPUs have
one floating point unit per core - but not all of them are capable
of performing divisions [7] so multiple threads share the ones that
are able to perform divisions. This can lead to congestion if the
program performs many floating point divisions concurrently.

6. EVALUATION
In this section we present the performance experiments we con-

ducted using different algorithms and real-world graph data sets.
First we will discuss our methodology before we compare algo-
rithms implemented using our API versus algorithms implemented
and compiled in the Green-Marl DSL. Finally we show the perfor-
mance impact of the compiler optimization presented in Section 5.

6.1 Methodology
We ran all our experiments on Intel Xeon E5-2699 (Haswell)

machines with 36 2.30 GHz cores on 2 sockets. The machines con-
tained 384GB of RAM and were running 64bit SMP Linux 2.6.32.
The Java programs were compiled using Java version 1.7 and exe-
cuted on the 64bit HotSpot Server VM.

We ran the code once to trigger the JIT optimizations before we
measured the time using the average of 5 iterations.

Table 2 contains the real-world graph data sets used in the exper-
iments including a short description, its origin and some character-
istics.

6.2 API vs Compilation
In this section we show the performance overhead introduced by

using different layers of API and compare it with the performance
of compiled Green-Marl code. For this purpose we implemented
the well known Pagerank algorithm in multiple ways to use dif-
ferent layers of the API to show the overhead introduced by them.
Note that an operation like accessing a vertex becomes a request
within the underlying API layer. This is necessary for PGX to sup-
port the features we described in Section 3.2. Figure 5 gives a brief
overview of the different API layers in PGX. The Green-Marl code
we used for Pagerank in these experiments is the same as in Fig-
ure 3.

• Frontend: This implementation of Pagerank uses the stan-
dard API and runs on top of the Frontend layer of PGX.

• API: This is basically the same implementation as Frontend,
except that all API layers that deal with scheduling and con-
sistency were stripped off.

• Green-Marl: This implementation of the Pagerank algo-
rithm uses the Green-Marl DSL and submits the program to
PGX where it gets compiled and executed inside the system.
The compiled code can bypass all API layers and access the
in-memory data directly.

• Remote: The Remote implementation uses the exact same
code as the one using the Frontend layer, except that it is
running in a server-client setting.

 0.1

 1

 10

 100

 1000

 10000

Remote

Frontend

API
Green-Marl

Compilation

R
u
n
ti
m

e
 i
n
 s

e
c
o
n
d
s
 (

lo
g
 s

c
a
le

) Epinions
LiveJournal48,500

Figure 6: Absolute runtime of different Pagerank implemen-
tations on Epinions and LiveJournal graph data. The time for
Green-Marl includes the compilation time. All numbers are
from single-threaded execution.

Figure 5: Overview of PGX API Structure

All experiments were executed single-threaded to avoid having
different scaling behaviors interfere with the results. Figure 6 shows
the absolute runtime of the different implementations on the Epin-
ions and the LiveJournal graph. The Green-Marl numbers include
the compilation time from the Green-Marl and Java compiler; all
other numbers are runtime only. For reference we show the compi-
lation time of the Green-Marl code separately in Figure 6. To avoid
any network latency, we ran the client and server instance on the
same machine for the remote implementation. We ran this version
on the Epinions graph for a few iterations only and extrapolated
the total runtime - also we only used the Epinions graph for this
version.

As can be seen, the Green-Marl program outperforms all other
implementations - for larger graph instances like LiveJournal by
several orders of magnitude. It does so despite the fact that com-
piling the program makes up a significant portion of the runtime;
for the smaller Epinions graph it even takes longer than the actual
execution of the program. This clearly shows that the one-time cost
of compiling the DSL program outweighs the accumulated runtime
cost introduced by repeated API calls as they happen in the other
implementations. The results also show how each extra layer of
API introduces a certain overhead which basically slows down the
program by at least one order of magnitude per layer - even more
when adding the remote overhead.

1265

Graph Number of Vertices Number of Edges Description Source
Epinions 75,879 508,837 Who-trusts-whom network of epinions.com [13]
LiveJournal 4,848,571 68,993,773 Social relations in an online community [13]
Twitter-2010 41,652,230 1,468,365,182 Twitter user profiles and social relations [30]

Table 2: Graph datasets used in the experiments

The performance difference grows for larger graph instances as
the numbers for the LiveJournal graph show where the Green-Marl
program outperforms the other implementation by three to four or-
ders of magnitude. This is due to the fact that the compilation time
is a constant cost, while the aggregated cost of the API overhead
grows with the size of the graph.

These results make it quite apparent that an approach based on
using a compiled DSL program has superior performance over us-
ing an API due to the significantly lower overhead.

6.3 Impact of Compiler Optimizations
In Figure 7 we show the relative performance improvement that

is achieved by applying the optimizations we presented in Section 5
on different algorithms. Table 1 contains the optimizations we used
for the individual algorithms. We let them run for 120 minutes and
extrapolated the total runtime if they did not finish in that time-
frame to prevent them from running for days on larger graph in-
stances. All experiments were executed using 36 threads except for
Dijkstra, Fattest-Path and Tarjan which ran single-threaded since
these algorithms are sequential in nature.

One can see that the effects on the performance depend on the
optimization applied and on the algorithm itself. Closeness-Centra-
lity and Betweenness-Centrality for example both benefit from MS-
BFS but to a different extent. Closeness-Centrality only maintains a
minimal context inside the BFS and can therefore use the maximum
batch-size as it requires no extra memory. As a result it benefits
the most from using MS-BFS. Betweenness-Centrality on the other
hand requires a quite large context in the BFS which leads to an
increased memory consumption. Consequently the system has to
scale down the batch-size which decreases the benefit of MS-BFS.
For example when running on the Twitter graph, the batch-size is
reduced to 2 which has almost no benefit over using a regular BFS
traversal.

Dijkstra and Fattest-Path have a very high speedup over the un-
optimized version because the default map implementation used
scales poorly for the getKeyWithSmallestValue() function which
is crucial for these algorithms. Therefore the priority-map used
in the optimized code not only results in faster code, but also in
much better scaling regarding the graph size. This shows that the
automatic selection of a better data-structure can save an unaware
user from making the wrong choice which might not always be as
obvious as in this case.

The moderate speedup for Tarjan and Kosaraju comes from re-
placing the linked-list by an array-list. The numbers are not
as high as for Dijkstra due to the small difference in efficiency be-
tween the implementations and also the fact that the list is not as
important for the performance in these two algorithms. This is an-
other example how an automated optimization can provide better
performance with no effort or interaction needed from the user.

The property merging performed for Pagerank and the Soman-
and-Narang algorithm together with the precomputation of an in-
versed degree lead to a 1.3-2x speedup of the code due to fewer
cache misses and a reduced contention in the floating point units.

Core operation in Adamic-Adar and Triangle-Counting is iter-
ating over the common neighbors of two vertices. Using the im-
proved common neighbor iteration as part of the optimization from

Section 5.2 leads to an increased performance by 2.5-3.8x. Twitter
shows a higher speedup than the other graphs because its data con-
tains more skew which is handled better by the optimized version.

These results show the potential of graph specific optimizations
when applied to Green-Marl procedures. Users benefit from these
optimizations without having to implement them on their own as
they are applied automatically and transparently. In addition, with-
out sacrificing any performance, complexity of the code is reduced
and potential sources of errors are removed.

7. FUTURE EXTENSIONS
In this section we describe our plans to extend PGX to tackle dif-

ferent challenges and to support different systems for graph analy-
sis while keeping these details transparent from the user by using
Green-Marl and PGQL.

7.1 Distributed Backend
Graph instances can grow to sizes where the data exceeds the

capacity of the main memory of a single machine. We want to sup-
port such data sets and want to enable PGX to scale out in addition
to scaling up. Therefore we have been developing a new backend
for PGX [25] that allows distributed graph processing and analysis
on a cluster of machines where the size of the graph can exceed the
main memory of a single machine as long as it fits the combined
memory. Implementing graph analytic algorithms for distributed
systems is often hard due to their programming paradigms which
have to accommodate the distributed model rather than offering an
intuitive approach to graph algorithms [27]. The Green-Marl and
PGQL DSLs on the other hand offer an intuitive way of implement-
ing graph analysis and query algorithms. Previous work has shown
that compiling imperative Green-Marl code for a distributed frame-
work is possible and feasible without sacrificing performance [26].

Our plan is to extend the Green-Marl compiler to be able to
generate code for the distributed backend to allow users to reuse
their existing Green-Marl programs. This way users can run their
graph analysis code both in shared-memory and a distributed en-
vironment without having to implement the same algorithm multi-
ple times for different systems. Usually distributed systems such
as GraphLab [31] support running programs on a single machine
instead of a cluster, but this includes a significant amount of perfor-
mance overhead since the programming paradigm was designed for
a distributed system rather than a shared-memory environment [25].
Our system on the other hand allows using the same source code
while having programs that are optimized for the specific system
they are running on. Therefore the users benefit from an intuitive
programming language for graph analysis algorithms while their
programs are still portable and produce highly optimized code.

7.2 Database Backend
PGX stores the graph data in a relational database which en-

forces ACID properties for modifications on the graph, while graph
analysis is performed in a main-memory runtime. This design al-
lows high performance analysis but it comes with a certain over-
head of loading and converting the graph data from the database
into the in-memory representation. Previous work has shown that

1266

Figure 7: Relative speedup of optimized Green-Marl code using different data-sets.

graph analysis can be performed inside a database by implement-
ing the algorithms in SQL or by using a different language such as
Gremlin that is transformed into SQL statements [21, 40]. Perform-
ing graph analysis inside the database removes the cost of trans-
ferring the data to an external system while utilizing the highly
optimized SQL query engine. This takes advantage of relational
databases that have been around for decades and many have been
highly optimized. Moreover, relational databases are well under-
stood and are widely used in enterprise settings for both trans-
actional and analytic workloads. Unfortunately the systems that
implement this approach rely on the database optimizer alone to
optimize their graph analysis programs, leaving out all optimiza-
tions that can be applied when using graph domain specific knowl-
edge, such as the ones presented in this work. Hence, we plan to
extend the Green-Marl compiler to be able to generate SQL code
out of graph analysis programs. This will leverage graph specific
optimizations as well as optimizations performed by the database
optimizer that are specialized for the relational data model. We
believe that this approach can help us achieve a performance supe-
rior to other systems that perform graph analysis inside a relational
database.

8. CONCLUSION
In this paper we introduced our new graph database system which

allows consistent management of graph data and fast in-memory
analytics. Our system allows users to write their analysis algo-
rithms and graph queries in an intuitive and flexible way and so
improve their productivity. We use Green-Marl whose imperative
model makes it an intuitive language for analytic algorithms and
PGQL with its declarative model for queries and pattern matching.
We showed how using a DSL enables the compiler to apply opti-
mizations using the language’s high-level semantics and that these
optimizations can significantly improve the performance. Com-
piling and running DSL programs inside PGX avoids the runtime
overhead of an API and we demonstrated how this can speed up
graph analysis by several orders of magnitude compared to an im-
plementation that uses the system API.

9. ACKNOWLEDGMENTS
We thank Felix Kaser, Jinha Kim, Korbinian Schmid and Alexan-

der Weld (Oracle Labs) for their work and contributions to PGX,
the PGQL and Green-Marl language and for reviewing this paper.
We also thank Manuel Then (TU Munich) who - during his intern-
ship at Oracle Labs - implemented MS-BFS support in PGX and
the Green-Marl compiler and who gave much valuable input to our
project.

10. REFERENCES
[1] AllegroGraph. http://franz.com/agraph/allegrograph/.
[2] Apache Giraph Project. http://giraph.apache.org.
[3] Apache TinkerPop. http://tinkerpop.incubator.apache.org.
[4] Boost Graph Library (BGL).

http://www.boost.org/doc/libs/1 55 0/libs/graph/doc/
index.html.

[5] Cypher - the Neo4j query Language.
http://www.neo4j.org/learn/cypher.

[6] InfiniteGraph. http://www.objectivity.com/infinitegraph.
[7] Intel 64 and IA-32 Architectures Optimization Reference

Manual.
http://www.intel.com/content/www/us/en/architecture-and-
technology/64-ia-32-architectures-optimization-
manual.html,2016.

[8] Java universal network/graph framework.
http://jung.sourceforge.net.

[9] Neo4j graph database. http://www.neo4j.org/.
[10] NetworkX. https://networkx.github.io.
[11] Oracle Spatial and Graph, RDF Semantic Graph,.

http://www.oracle.com/technetwork/database/
options/spatialandgraph/overview/rdfsemantic-graph-
1902016.html.

[12] SPARQL Query Language for RDF.
http://www.w3.org/TR/rdf-sparql-query/.

[13] Stanford network analysis library.
http://snap.stanford.edu/snap.

[14] Tinkerpop, Gremlin.
https://github.com/tinkerpop/gremlin/wiki.

1267

[15] Titan Distributed Graph Database.
http://thinkaurelius.github.io/titan/.

[16] Virtuoso Universal Server. http://virtuoso.openlinksw.com/.
[17] Lada A. Adamic and Eytan Adar. Friends and neighbors on

the web. Social Networks, 25(3):211–230, 2001.
[18] Pablo Barceló, Leonid Libkin, Anthony W. Lin, and Peter T.

Wood. Expressive languages for path queries over
graph-structured data. ACM Transactions on Database
Systems (TODS), 37(4):31, 2012.

[19] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and
Charles E. Leiserson. Introduction to Algorithms.
McGraw-Hill Higher Education, 2nd edition, 2001.

[20] David Ediger, Robert McColl, E. Jason Riedy, and David A.
Bader. STINGER: High performance data structure for
streaming graphs. In High Performance Extreme Computing
(HPEC), pages 1–5. IEEE, 2012.

[21] Jing Fan, Adalbert Gerald Soosai Raj, and Jignesh M. Patel.
The case against specialized graph analytics engines. In
CIDR 2015, Seventh Biennial Conference on Innovative
Data Systems Research, Asilomar, CA, USA, January 4-7,
2015, Online Proceedings, 2015.

[22] L. C. Freeman. Centrality in social networks: Conceptual
clarification. Social Networks, 1(3):215–239, 1979.

[23] Pankaj Gupta, Ashish Goel, Jimmy Lin, Aneesh Sharma,
Dong Wang, and Reza Zadeh. Wtf: The who to follow
service at twitter. In Proceedings of the 22nd international
conference on World Wide Web, pages 505–514. International
World Wide Web Conferences Steering Committee, 2013.

[24] Sungpack Hong, Hassan Chafi, Edic Sedlar, and Kunle
Olukotun. Green-Marl: A DSL for Easy and Efficient Graph
Analysis. In ASPLOS, pages 349–362. ACM, 2012.

[25] Sungpack Hong, Siegfried Depner, Thomas Manhardt, Jan
Van Der Lugt, Merijn Verstraaten, and Hassan Chafi. Pgx.d:
A fast distributed graph processing engine. In Proceedings of
the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’15,
pages 58:1–58:12, New York, NY, USA, 2015. ACM.

[26] Sungpack Hong, Semih Salihoglu, Jennifer Widom, and
Kunle Olukotun. Simplifying scalable graph processing with
a domain-specific language. In Proceedings of Annual
IEEE/ACM International Symposium on Code Generation
and Optimization, CGO ’14, pages 208:208–208:218, New
York, NY, USA, 2014. ACM.

[27] Sungpack Hong, Jan Van Der Lugt, Adam Welc, Raghavan
Raman, and Hassan Chafi. Early experiences in using a
domain-specific language for large-scale graph analysis. In
First International Workshop on Graph Data Management
Experiences and Systems, page 5. ACM, 2013.

[28] Volker Kaibel and Matthias A. F. Peinhardt. On the
bottleneck shortest path problem, technical report,
ZIB-Report, 2006.

[29] U Kang, Charalampos E Tsourakakis, and Christos
Faloutsos. Pegasus: A peta-scale graph mining system
implementation and observations. In IEEE International
Conference on Data Mining (ICDM), pages 229–238, 2009.

[30] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue
Moon. What is Twitter, a social network or a news media? In
Proceedings of the 19th International Conference on World
Wide Web, WWW ’10, pages 591–600. ACM, 2010.

[31] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and

J. Hellerstein. Distributed graphlab: a framework for
machine learning and data mining in the cloud. Proc. VLDB
Endow., 5(8):716–727, 2012.

[32] Kamesh Madduri, David Ediger, Karl Jiang, David A. Bader,
and Daniel Chavarria-Miranda. A faster parallel algorithm
and efficient multithreaded implementations for evaluating
betweenness centrality on massive datasets. In Proceedings
of the 2009 IEEE IPDPS, IPDPS ’09, pages 1–8,
Washington, DC, USA, 2009. IEEE Computer Society.

[33] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik,
James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz
Czajkowski. Pregel: A System for Large-scale Graph
Processing. In SIGMOD. Proceedings of the 2010
international conference on Management of data, pages
135–146. ACM, 2010.

[34] R. C. McColl, D. Ediger, J. Poovey, D. Campbell, and D. A.
Bader. A performance evaluation of open source graph
databases. In Proceedings of the First Workshop on PPAA,
PPAA ’14, pages 11–18, New York, NY, USA, 2014. ACM.

[35] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A
lightweight infrastructure for graph analytics. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, pages 456–471. ACM, 2013.

[36] L. Page. Method for node ranking in a linked database,
September 4 2001. US Patent 6,285,999.

[37] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-stream:
Edge-centric graph processing using streaming partitions. In
Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, pages 472–488. ACM, 2013.

[38] Martin Sevenich, Sungpack Hong, Adam Welc, and Hassan
Chafi. Fast in-memory triangle listing for large real-world
graphs. In Proceedings of the 8th Workshop on Social
Network Mining and Analysis, SNAKDD’14, pages 2:1–2:9,
New York, NY, USA, 2014. ACM.

[39] Jyothish Soman and Ankur Narang. Fast community
detection algorithm with gpus and multicore architectures. In
IPDPS, pages 568–579. IEEE, 2011.

[40] Wen Sun, Achille Fokoue, Kavitha Srinivas, Anastasios
Kementsietsidis, Gang Hu, and Guotong Xie. Sqlgraph: An
efficient relational-based property graph store. In
Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’15, pages
1887–1901, New York, NY, USA, 2015. ACM.

[41] S. Suri and S. Vassilvitskii. Counting triangles and the curse
of the last reducer. In Proceedings of the 20th international
conference on World wide web, pages 607–614. ACM, 2011.

[42] Robert Endre Tarjan. Depth-first search and linear graph
algorithms. SIAM J. Comput., 1(2):146–160, 1972.

[43] M. Then, M. Kaufmann, F. Chirigati, T. Hoang-Vu, K. Pham,
A. Kemper, T. Neumann, and H. T. Vo. The more the
merrier: Efficient multi-source graph traversal. Proc. VLDB
Endow., 8(4):449–460, December 2014.

[44] Adam Welc, Raghavan Raman, Zhe Wu, Sungpack Hong,
Hassan Chafi, and Jay Banerjee. Graph analysis: do we have
to reinvent the wheel? In First International Workshop on
Graph Data Management Experiences and Systems, page 7.
ACM, 2013.

[45] M. Wittmann, T. Zeiser, G. Hager, and G. Wellein. Short
note on costs of floating point operations on current x86-64
architectures: Denormals, overflow, underflow, and division
by zero. CoRR, abs/1506.03997, 2015.

1268

	Introduction
	Background and Related Work
	Graph Database System: The Architecture
	System Overview
	Features and Interfaces

	Domain-Specific Languages
	Green-Marl
	PGQL
	Combined Usage of Two Languages

	Compiler Optimizations
	Basic Graph Optimizations
	Common Neighbor Iteration
	Multi-Source-BFS Transformation
	Data Structure Specialization
	Property Merging

	Evaluation
	Methodology
	API vs Compilation
	Impact of Compiler Optimizations

	Future Extensions
	Distributed Backend
	Database Backend

	Conclusion
	Acknowledgments
	References

