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ABSTRACT
In this paper we introduce LDBC Graphalytics, a new in-
dustrial-grade benchmark for graph analysis platforms. It
consists of six deterministic algorithms, standard datasets,
synthetic dataset generators, and reference output, that en-
able the objective comparison of graph analysis platforms.
Its test harness produces deep metrics that quantify multiple
kinds of system scalability, such as horizontal/vertical and
weak/strong, and of robustness, such as failures and perfor-
mance variability. The benchmark comes with open-source
software for generating data and monitoring performance.
We describe and analyze six implementations of the bench-
mark (three from the community, three from the industry),
providing insights into the strengths and weaknesses of the
platforms. Key to our contribution, vendors perform the
tuning and benchmarking of their platforms.

1. INTRODUCTION
Responding to increasingly larger and more diverse

graphs, and the need to analyze them, both industry and
academia are developing and tuning graph analysis soft-
ware platforms. Already tens of such platforms exist, among
them PowerGraph [21], GraphX [41], and PGX [4], but their
performance is often difficult to compare. Moreover, the
random, skewed, and correlated access patterns of graph
analysis, caused by the complex interaction between input
datasets and applications processing them, expose new bot-
tlenecks on the hardware level, as hinted at by the large
differences between Top500 and Graph500 rankings. Ad-
dressing the need for fair, comprehensive, standardized com-
parison of graph analysis platforms, in this work we propose
the LDBC Graphalytics benchmark.
The Linked Data Benchmark Council (ldbcouncil.org,

LDBC), is an industry council formed to establish standard
benchmark specifications, practices and results for graph
data management systems. Its goal is to inform IT profes-
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sionals on the properties of the various solutions available
on the market; to stimulate academic research in graph data
storage, indexing, and analysis; and to accelerate the matur-
ing process of the graph data management space as a whole.
LDBC organizes a Technical User Community (TUC) that
gathers benchmark input and feedback, and as such has
investigated graph data management use cases across the
fields of marketing, sales, telecommunication, production,
publishing, law enforcement and bio-informatics. LDBC
previously introduced the Social Network Benchmark [17]
(SNB), which models a large social network but targets
database systems (graph, SQL or SPARQL) that provide
interactive updates and query answers. However, the LDBC
scope goes beyond such database workloads: it also includes
graph analysis frameworks that facilitate complex and holis-
tic graph computations which may not be easily modeled as
database queries, but rather as (iterative) graph algorithms,
such as global metrics (e.g., diameter, triangle count) or
clustering. Algorithmically analyzing large graphs is an im-
portant class of problems in “Big Data” processing, with ap-
plications such as the analysis of human behavior and pref-
erences in social networks, root cause analysis in large-scale
computer and telecommunication networks, and interactions
between biological compounds and genetic structures.

In this paper, LDBC introduces Graphalytics, a bench-
mark for evaluating graph analysis platforms, that builds on
the data generators from LDBC SNB and Graph500, mak-
ing the following original contributions:

1. The first industrial-grade graph analysis benchmark
specification. We carefully motivate the choice of algo-
rithms in the benchmark, using the LDBC TUC and
literature surveys to ensure good coverage of scenarios.
Graphalytics consists of six core algorithms: breadth-
first search, PageRank, weakly connected components,
community detection using label propagation, local
clustering coefficient, and single-source shortest paths.
The workload includes real and synthetic datasets,
which are classified into intuitive “T-shirt” sizes (e.g.,
XS, S, M, L, XL). The benchmarking process is made
future-proof, through a renewal process.

2. A detailed process for running the benchmark. Our
test harness characterizes performance and scalability
with deep metrics (vertical vs. horizontal and strong
vs. weak scaling), and also characterizes robustness by
measuring SLA compliance, performance variability,
and crash points.
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3. A comprehensive tool-set developed using modern soft-
ware engineering practices released as open-source
benchmarking software, including a harness capable
of supporting many types of target-systems, the scal-
able LDBC social-network generator Datagen, and
the versatile Granula performance evaluation tool.

4. An extensive experimental evaluation of six state-of-
the-art graph analysis systems: three community-
driven (Giraph, GraphX, and PowerGraph) and
three industry-driven (PGX, GraphMat, and OpenG).
Benchmarking and tuning of the industry-driven sys-
tems in our evaluation has been performed by their
respective vendors.

We describe the first three contributions, which combine
the conceptual and technical specification of Graphalytics,
in Section 2. The experimental evaluation is split among
Section 3, which introduces the tested platforms and the
benchmarking hardware, and Section 4, which presents and
analyzes the real-world benchmarking results. We cover re-
lated work in Section 5, before concluding in Section 6.

2. Graphalytics
Graphalytics tests a graph analysis framework, consist-

ing of a software platform and underlying hardware system.
Graphalytics models holistic graph analysis workloads, such
as computing global statistics and clustering, which run on
the entire dataset on behalf of a single user.

2.1 Requirements
A benchmark is always the result of a number of design

choices, responding to a set of requirements. In this sec-
tion we discuss the main requirements addressed by LDBC
Graphalytics:

(R1) Target platforms and systems: benchmarks must
support any graph analysis platform operating on any hard-
ware system. For platforms, we do not distinguish between
programming models and support different models, includ-
ing vertex-centric, gather-apply-scatter, and sparse matrix
operations. For systems, we target the following environ-
ments: distributed systems, multi-core single-node systems,
many-core GPU systems, hybrid CPU-GPU systems, and
distributed hybrid systems. Without R1, a benchmark could
not service the diverse industrial following of LDBC.

(R2) Diverse, representative benchmark elements:
data model and workload selection must be representative
and have good coverage of real-world practice. In particu-
lar, the workload selection must not only include datasets
or algorithms because experts believe they cover known sys-
tem bottlenecks (e.g., they can stress real-world systems),
but also because they can be shown to be representative
of the current and near-future practice. Without represen-
tativeness, a benchmark could bias work on platforms and
systems towards goals that are simply not useful for improv-
ing current practice. Without coverage, a benchmark could
push the LDBC community into pursuing cases that are
currently interesting for the industry, but not address what
could become impassable bottlenecks in the near-future.

(R3) Diverse, representative process: the set of exper-
iments conducted by the benchmark automatically must be
broad, covering the main bottlenecks of the target systems.

In particular, the target systems are known to raise various
scalability issues, and also, because of deployment in real-
world clusters, be prone to various kinds of failures, exhibit
performance variability, and overall have various robustness
problems. The process must also include possibility to vali-
date the algorithm output, thus making sure the processing
is done correctly. Without R3, a benchmark could test very
few of the diverse capabilities of the target platforms and
systems, and benchmarking results could not be trusted.

(R4) Include a renewal process: unlike many other
benchmarks, benchmarks in this area must include a re-
newal process, that is, not only a mechanism to scale up
or otherwise change the workload to keep up with increas-
ingly more powerful systems (e.g., the scale parameters of
Graph500), but also a process to automatically configure
the mechanism, and a way to characterize the reasonable
characteristics of the workload for an average platform run-
ning on an average system. Without R4, a benchmark could
become less relevant for the systems of the future.

(R5) Modern software engineering: benchmarks must
include a modern software architecture and run a modern
software-engineering process. They must make it possible
to support R1, provide easy ways to add new platforms
and systems to test, and allow practitioners to easily access
the benchmark and compare their platforms and systems
against those of others. Without R5, a benchmark could
easily become unmaintainable or unusable.

2.2 Specification of Benchmark Elements
Addressing requirement R2, the key benchmarking ele-

ments in Graphalytics are the data model, the workload se-
lection process, and the resulting algorithms and datasets.

2.2.1 Data Model
The Graphalytics benchmark uses a typical data model

for graphs; a graph consists of a collection of vertices, each
identified by a unique integer, and a collection of edges, each
consisting of a pair of vertex identifiers. Graphalytics sup-
ports both directed and undirected graphs. Edges in directed
graphs are identified by an ordered pair (i.e., the source and
destination of the edge). Edges in undirected graphs consist
of unordered pairs. Every edge must be unique and connect
two distinct vertices. Optionally, vertices and edges have
properties, such as timestamps, labels, or weights.

To accommodate requirement R2, Graphalytics does not
impose any requirement on the semantics of graphs. That
is, any dataset that can be represented as a graph can be
used in the Graphalytics benchmark if it is representative of
real-world graph-analysis workloads.

2.2.2 Two­Stage Workload Selection Process
To achieve both workload representativeness and work-

load coverage, we used a two-stage selection process to se-
lect the workload for Graphalytics. The first stage identifies
classes of algorithms and datasets that are representative for
real-world usage of graph analysis platforms. In the second
stage, algorithms and datasets are selected from the most
common classes such that the resulting selection is diverse,
i.e., the algorithms cover a variety of computation and com-
munication patterns, and the datasets cover a range of sizes
and a variety of graph characteristics.

1318



Table 1: Results of surveys of graph algorithms.
Graph Class (selected candidates) # %

Unweighted Statistics (PR, LCC) 24 17.0%
Traversal (BFS) 69 48.9%
Components (WCC, CDLP) 20 14.2%
Graph Evolution 6 4.2%
Other 22 15.6%

Weighted Distances/Paths (SSSP) 17 34%
Clustering 7 14%
Partitioning 5 10%
Routing 5 10%
Other 16 32%

Table 2: Mapping of dataset scale ranges to labels
(“T-shirt sizes”) in Graphalytics.
Scale < 7 [7, 7.5) [7.5, 8) [8, 8.5) [8.5, 9) [9, 9.5) ≥ 9.5
Label 2XS XS S M L XL 2XL

2.2.3 Selected Algorithms
Addressing R1, according to which Graphalytics should

allow different platforms to compete, the definition of the
algorithms of Graphalytics is abstract. For each algorithm,
we define its processing task and provide a reference imple-
mentation and reference output. Correctness of a platform
implementation is defined as output equivalence to the pro-
vided reference implementation.
To select algorithms which cover real-world workloads for

graph analysis platform, we have conducted two compre-
hensive surveys of graph analysis articles published in ten
representative conferences on databases, high-performance
computing, and distributed systems (e.g., VLDB, SIGMOD,
SC, PPoPP). The first survey (conducted for our previous
paper [24]) focused only on unweighted graphs and resulted
in 124 articles. The second survey (conducted for this paper)
focused only on weighted graphs and resulted in 44 articles.
Table 1 summarizes the results from these surveys. Because
one article may contain multiple algorithms, the number of
algorithms exceeds the number of articles. In general, we
found that a large variety of graph analysis algorithms are
used in practice. We have categorized these algorithms into
several classes, based on their functionality, and quantified
their presence in literature.
Based on the results of these surveys, with expert advice

from LDBC TUC we have selected the following five core
algorithm for unweighted graphs, and a single core algorithm
for weighted graphs, which we consider to be representative
for graph analysis in general:

Breadth-first search (BFS): For every vertex, determines
the minimum number of hops required to reach the vertex
from a given source vertex.

PageRank (PR) [34]: Measures the rank (“popularity”) of
each vertex by propagating influence between vertices using
edges.

Weakly connected components (WCC): Determines
the weakly connected component each vertex belongs to.

Community detection using label propagation
(CDLP): Finds “communities” in the graph, i.e.,
non-overlapping densely connected clusters that are weakly
connected to each other. We select for community detection
the label propagation algorithm [36], modified slightly to be
both parallel and deterministic [28].

Table 3: Real-world datasets used by Graphalytics.
ID Name |V | |E| Scale Domain
R1(2XS) wiki-talk [5] 2.39M 5.02M 6.9 Knowledge
R2(XS) kgs [22] 0.83M 17.9M 7.3 Gaming
R3(XS) cit-patents [5] 3.77M 16.5M 7.3 Knowledge
R4(S) dota-league [22] 0.06M 50.9M 7.7 Gaming
R5(XL) com-friendster [5] 65.6M 1.81B 9.3 Social
R6(XL) twitter mpi [13] 52.6M 1.97B 9.3 Social

Table 4: Synthetic datasets used by Graphalytics.
ID Name |V | |E| Scale
D100(M) datagen-100 1.67M 102M 8.0
D100’(M) datagen-100-cc0.05 1.67M 103M 8.0
D100”(M) datagen-100-cc0.15 1.67M 103M 8.0
D300(L) datagen-300 4.35M 304M 8.5
D1000(XL) datagen-1000 12.8M 1.01B 9.0
G22(S) graph500-22 2.40M 64.2M 7.8
G23(M) graph500-23 4.61M 129M 8.1
G24(M) graph500-24 8.87M 260M 8.4
G25(L) graph500-25 17.1M 524M 8.7
G26(XL) graph500-26 32.8M 1.05B 9.0

Local clustering coefficient (LCC): Computes the de-
gree of clustering for each vertex, i.e., the ratio between the
number of triangles a vertex closes with its neighbors to the
maximum number of triangles it could close.

Single-source shortest paths (SSSP): Determines the
length of the shortest paths from a given source vertex to
all other vertices in graphs with double-precision floating-
point weights.

2.2.4 Selected Datasets
Graphalytics uses both graphs from real-world applica-

tions and synthetic graphs which are generated using data
generators. Table 3 summarizes the six selected real-world
graphs. By including real-world graphs from a variety of
domains, Graphalytics covers users from different commu-
nities. Our two-stage selection process led to the inclusion
of graphs from the knowledge, gaming, and social network
domains. Within the selected domains, graphs were chosen
for their variety in sizes, densities, and characteristics.

The real-world graphs in Graphalytics are complemented
by two synthetic dataset generators, to enable performance
comparison between different graph scales. The synthetic
dataset generators are selected to cover two commonly used
graphs: power-law graphs generated by Graph500, and so-
cial network graphs generated using LDBC Datagen (see
Section 2.5.1). The graphs generated for the experiments
are listed in Table 4.

To facilitate performance comparisons across datasets, we
define the scale of a graph in Graphalytics as a function
of the number of vertices (|V |) and the number of edges
(|E|) in a graph: s(V,E) = log10(|V |+ |E|), rounded to one
decimal place. To give its users an intuition of what the scale
of a graph means in practice, Graphalytics groups dataset
scales into classes. We group scales in classes spanning 0.5
scale units, e.g., graphs in scale from 7.0 to 7.5 belong to
the same class. The classes are labelled according to the
familiar system of “T-shirt sizes”: small (S), medium (M),
and large (L), with extra (X) prepended to indicate smaller
and larger classes to make extremes such as 2XS and 3XL
possible.

The reference point is class L, which is intuitively defined
by the Graphalytics team to be the largest class such that
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the BFS algorithm completes within an hour on any graph
from that class in the Graphalytics benchmark using a state-
of-the-art graph analysis platform on a single common-off-
the-shelf machine. The resulting classes used by Graphalyt-
ics are summarized in Table 2.

2.3 Process
Addressing R3, the goal of the Graphalytics benchmark

is to objectively compare different graph analysis platforms,
facilitating the process of finding their strengths and weak-
nesses, and understanding how the performance of a plat-
form is affected by aspects such as dataset, algorithm, and
environment. To achieve this, the benchmark consists of
a number of different experiments. In this section, we in-
troduce these experiments, which we detail and conduct in
Section 4.
The baseline experiments measure how well a platform

performs for different workloads on a single machine. The
core metric for measuring the performance of platforms is
run-time. Graphalytics breaks down the total run-time into
several components:

• Upload time: Time required to preprocess and con-
vert the graph into a suitable format for a platform.

• Makespan: Time required to execute an algorithm,
from the start of a job until termination.

• Processing time (Tproc): Time required to execute
an actual algorithm as reported by the Graphalytics
performance monitoring tool, Granula (Section 2.5.2).
This does not include platform-specific overhead, such
as allocating resources, loading the graph from the file
system, or graph partitioning.

In our experiments we focus on Tproc as a primary indica-
tion of the performance of a platform. We complement this
metric with two user-level throughput metrics:

• Edges per second (EPS): Number of edges in a
graph divided by Tproc in seconds. EPS is used in
other benchmarks, such as Graph500.

• Edges and vertices per second (EVPS): Num-
ber of edges plus number of vertices (i.e., 10scale, see
Section 2.2.4), divided by Tproc in seconds. EVPS is
closely related to the scale of a graph, as defined by
Graphalytics.

To investigate how well a platform performs when scal-
ing the amount of available resources, the size of the input,
or both, Graphalytics includes scalability experiments.
We distinguish between two orthogonal types of scalabil-
ity: strong vs. weak scalability, and horizontal vs. vertical
scalability. The first category determines whether the size
of the dataset is increased when increasing the amount of
resources. For strong scaling, the dataset is kept con-
stant, whereas for weak scaling, the dataset is scaled. The
second category determine how the amount of resources is
increased. For horizontal scaling, resources are added as
additional computing machines, whereas for vertical scal-
ing the added resources are cores within a single machine.
Graphalytics expresses scalability using a single metric:

• Speedup (S): The ratio between Tproc for scaled and
baseline resources. We define the baseline for each
platform and workload as the minimum amount of re-
sources needed by the platform to successfully com-
plete the workload.

Finally, Graphalytics assesses the robustness of graph
analysis platforms using two metrics:

• Stress-test limit: The scale and label of the small-
est dataset defined by Graphalytics that the system
cannot process.

• Performance variability: The coefficient of varia-
tion (CV) of the processing time, i.e., the ratio be-
tween the standard deviation and the mean of the re-
peatedly measured performance. The main advantage
of this metric is its independence of the scale of the
results.

For all experiments, Graphalytics defines a service-level
agreement (SLA): generate the output for a given algorithm
and dataset with a makespan of up to 1 hour. A job breaks
this SLA, and thus does not complete successfully, if its
makespan exceeds 1 hour or if it crashes (e.g., due to insuf-
ficient resources).

Auto-validation: After each job, its output is validated
by comparing it against the reference output. The output
does not have to be exactly identical, but is must be equiva-
lent under an algorithm-specific comparison rule (for exam-
ple, for PageRank we allow a 0.01% error).

2.4 Renewal Process
Addressing requirement R4, we include in Graphalytics a

renewal process which leads to a new version of the bench-
mark every two years. This renewal process updates the
workload of the benchmark to keep it relevant for increas-
ingly powerful systems and developments in the graph analy-
sis community. This results in a benchmark which is future-
proof. Renewing the benchmark means renewing the algo-
rithms as well as the datasets. For every new version of
Graphalytics, we follow the same two-stage workload selec-
tion process as presented in Section 2.2.2.

The algorithms of Graphalytics have been selected based
on their representativeness. However, over time, graph algo-
rithms might lose or gain popularity in the community. For
example, community detection is an active field of graph
research nowadays, even though our label propagation al-
gorithm [36] was only introduced less than a decade ago.
To ensure that algorithms stay relevant, for every version of
the benchmark, we will select a new set of core algorithms
using the same process as presented in Section 2.2.3. We
will perform a new comprehensive survey on graph analy-
sis in practice to determine new algorithm classes and se-
lect new algorithms from these classes using expert advice
from LDBC TUC. If a new algorithm is found to be relevant
which was not part of the set of core algorithms, it will be
added. If an older core algorithm is found to be no longer
relevant, it is marked as obsolete and will be removed from
the specification in the next version.

The datasets of Graphalytics have been selected based on
their variety in size, domain, and characteristics [24, 5]. Us-
ing the same process as described for algorithms, the Graph-
alytics team will introduce additional real-world datasets
and synthetic dataset generators as they become relevant to
the community. This may include graphs from new appli-
cation domains if they are not yet represented by similar
graphs from other domains. In addition, with every new
version of the specification the notion of a ”large” graph is
reevaluated. In particular, class L is redefined as the largest
class of graphs such that at a state-of-the-art platform can
complete the BFS algorithm within one hour on all graphs
in class L using a single common-off-the-shelf machine. The
selection of platforms used to determine class L is limited
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Figure 1: Graphalytics architecture, overview.

to platforms implementing Graphalytics that are available
to the Graphalytics team when the new specification is for-
malized.

2.5 Design of the Graphalytics Architecture
The Graphalytics architecture, depicted in Figure 1, con-

sists of a number of components, including the system under
test and the testing system.
As input for the benchmark, the Graphalytics team pro-

vides a benchmark description (1). This description includes
definitions of the algorithms, the datasets, and the algo-
rithm parameters for each graph (e.g., the root for BFS or
number of iterations for PR). In addition, the system cus-
tomer, developer, or operator can configure the benchmark
(2). The benchmark user may select a subset of the Grapha-
lytics workload to run, or they may tune components of the
system under test for a particular execution of the bench-
mark.
The workload of Graphalytics is executed on a specific

graph analysis platform (3), as provided by the user. This
platform is deployed on user-provided infrastructure, e.g.,
on machines in a self-owned cluster or on virtual machines
leased from IaaS clouds. The graph analysis platform and
the infrastructure it runs on form the system under test (4).
The graph analysis platform may optionally include policies
to automatically tune the system under test for different
parts of the benchmark workload.
At the core of the testing system are the Graphalytics

harness services (5). The harness processes the benchmark
description and configuration, and orchestrates the bench-
marking process. Two components of the workload, datasets
(6) and algorithm implementations (i.e., driver code (10)),
must be provided by the benchmark user. Datasets can
be obtained through public workload archives, or generated
using a workload generator, such as LDBC Datagen. Ref-
erence drivers can be provided by platform vendors or ob-
tained from public repository. The Graphalytics team also
offers the drivers for a number of platforms (7).
A platform can be integrated with the Graphalytics har-

ness through a platform-specific driver (10). The driver
must implement a well-defined API consisting of several
operations, including uploading a graph to the system un-
der test (this may include pre-processing to transform the
provided dataset into a format compatible with the target
platform), executing an algorithm with a specific set of pa-
rameters on an uploaded graph, and returning the output of
an algorithm to the harness for validation. Additionally, the
driver may provide a detailed performance model of the plat-

Figure 2: Datagen graphs with a target average clus-
tering coefficient of 0.05 (l) and 0.3 (r). Communi-
ties (colors) detected using the Louvain algorithm.

form to enable detailed performance analysis using Granula
(described in Section 2.5.2).

The final component of the testing system is responsible
for monitoring and logging (8) the system under test, and
storing the obtained information in a results database (9).
Raw monitoring information is gathered using Granula (see
Section 2.5.2), and can be analyzed after each run or offline
to extract rich information about the performance of the
system under test (11). Finally, the results are validated,
the SLA is checked and the results are stored in a repository
to track benchmark results across platforms.

To address the requirement for modern software engineer-
ing practices (R5), all components of the Graphalytics archi-
tecture provided by the Graphalytics team are developed on-
line as open source software. To maintain the quality of the
Graphalytics software, continuous integration is used and
contributions are peer-reviewed by the Graphalytics main-
tainers. Through its development process, Graphalytics also
invites collaboration with platform vendors, as evidenced by
the contributions already made to Graphalytics drivers.

2.5.1 LDBC Datagen: Graph Generation
Graphalytics relies not only on real but also on syn-

thetically generated graphs. Synthetic graph generators
provide a means of testing data configurations not always
available in the form of real datasets (e.g., due to pri-
vacy concerns). Thus, Graphalytics adopts the LDBC So-
cial Network Benchmark Data generator (Datagen) [17]1,
a scalable, synthetic social network generator, whose out-
put preserves many realistic graph features: correlated data
(i.e., persons with similar characteristics are more likely to
be connected), skewed degree distribution (it generates a
Facebook-like friendship distribution), non-uniform activity
volume, etc. However, the static nature of Datagen did not
allow for the generation of graphs with different degree dis-
tributions or structural characteristics. Thus, as envisioned
previously [12], we have extended for this work Datagen to
generate graphs with these characteristics. Moreover, we
have optimized the critical execution path of Datagen, to
improve its performance and scalability. We summarize this
two-fold contribution as follows:

Tunable Clustering Coefficient: Besides supporting dif-
ferent degree distributions [12], we now also allow changing
the friendship generation algorithm. With the goal of gener-
ating realistic yet diverse graphs, we have implemented an
edge generator which allows tuning the average clustering
coefficient of the resulting friendship graph. The method
relies on constructing a graph with a core-periphery com-
munity structure. Such communities are ubiquitous in so-
cial networks and their presence is strongly related to other

1Available at github.com/ldbc/ldbc snb datagen
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Figure 3: Datagen: old vs new execution flow.

real-world graph properties, such as a small diameter and
a large connected component. Figure 2 shows two small
graphs generated with Datagen, with two different target
average clustering coefficients of 0.05 (left) and 0.3 (right).
Both graphs exhibit a community structure (shown in dif-
ferent colors, detected by the Louvain method), but we see
that the right one is clearly better defined than the one in
the left, a consequence of the larger average clustering coef-
ficient.
Datagen generates friendships between persons falling in

the same block. For details on how blocks are constructed
please refer to LDBC SNB [17]. Given a block of persons
and their expected degree, the new goal set for this work is to
build communities including these persons, while maintain-
ing the correlated nature of the produced graph (consecutive
persons in a block must have a larger probability to connect)
and achieving a given average clustering coefficient.

Optimization of execution flow: Figure 3 shows the old
versus the new execution flow implemented for the Person-
Person graph generation in Datagen. In the old flow, the
output produced by step i (Persons and all edges generated
in steps from 0 to i) is read by i + 1, which sorts it by
the corresponding correlation dimension and produces new
edges. Thus, the cost of running a step grows as more edges
are produced in previous steps, because more data needs to
be sorted. This is exemplified in the figure with the lengths
of the steps. This design guarantees that no duplicate edges
are generated. In the new flow, each edge generation step
is independent of the rest, and its output is written into
a different file. Later, all files are merged to remove the
duplicates. This approach is more efficient because the cost
of executing a step remains constant, as does the amount of
I/O required for the sorting. As we will see in Section 4.8,
the performance improvements are significant.

2.5.2 Granula: Fine­grained Evaluation
Performance evaluation is a critical part in developing a

graph analysis platform, as it helps developers gain a better
understanding of the platform’s performance. However, the
comprehensive evaluation of graph-analysis platforms still
faces many challenges: using a coarse-grained “black-box”
approach does not provide sufficient insight into the plat-
form performance; using a fine-grained approach is too time-
consuming and requires in-depth knowledge of the platform
architecture; and finally it is difficult for users to apply the
results of empirical performance studies for their specific use
cases.
To extend Graphalytics with fine-grained performance

evaluation, we developed Granula [33]2, a performance eval-
uation framework consisting of three main modules: the
modeler, the archiver, and the visualizer.

Modeler: Fine-grained evaluation of graph-analysis plat-
forms requires domain-specific expertise and can be time-
consuming. The Granula modeler allows experts to explic-

2Available at github.com/tudelft-atlarge/granula

itly define once their evaluation method for a graph analysis
platform, such that the evaluation process can be fully au-
tomated. This includes defining phases in the execution of a
job (e.g., graph loading), and recursively defining phases as a
collection of smaller, lower-level phases (e.g., graph loading
includes reading and partitioning), up to the required level
of granularity. The performance model may also include
other information, such as the number of vertices processed
in a phase.

Archiver: The Granula archiver uses the performance
model of a graph analysis platform to collect and archive
detailed performance information for a job running on the
platform. Such information is either gathered from log files
produced by the platform, or derived using rules defined in
the performance model. The archiver produces a perfor-
mance archive which encapsulates the comprehensive set of
performance information captured for each job. The archive
is complete (i.e., all observed and derived results are in-
cluded), descriptive (i.e., all results are described to non-
experts) and examinable (i.e., all results are derived from a
traceable source).

Visualizer: While a performance archive is sufficiently in-
formative, it is not the most natural way of examining per-
formance results. The Granula visualizer presents the per-
formance archive in a human-readable manner and allows
efficient navigation through the performance results at vary-
ing levels of granularity using an interactive Web interface.
Results presented using the Granula visualizer can be eas-
ily communicated and shared among performance analysts
with different levels of expertise.

In this work, we use Granula to build comprehensive perfor-
mance models for several graph processing platforms, e.g.,
Apache Giraph (see detailed analysis in our technical re-
port [28]). And for each platform, we have developed a basic
performance model which allow us to define, capture, and re-
port fine-grained performance breakdown metrics, e.g., pro-
cessing time (See Section 2.3).

3. EXPERIMENTAL SETUP
A major contribution of this work is the evaluation and

comparison of graph analysis platforms whose development
is industry-driven, and of other, community-driven, plat-
forms. In this section, we present the setup of our experi-
ments.

3.1 Selected Platforms
We evaluate and compare in this work six different graph

analysis platforms, three community-driven (C) and three
industry-driven (I), see Table 5. These platforms are based
on six different programming models, spanning an important
design space for real-world graph analysis.

Table 5: Selected graph analysis platforms.
Acronyms: C, community-driven; I, industry-
driven; D, distributed; S, non-distributed.
Type Name Vendor Lang. Model Vers.

C, D Giraph [1] Apache Java Pregel 1.1.0
C, D GraphX [41] Apache Scala Spark 1.6.0
C, D PowerGraph [21] CMU C++ GAS 2.2
I, S/D GraphMat [39, 8] Intel C++ SpMV May ’16
I, S OpenG [32] G.Tech C++ Native code May ’16
I, S/D PGX [4, 27] Oracle Java/C++ Push-pull May ’16
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Table 6: Experiments used for benchmarks.
Category Sec. Experiment Algorithms Datasets #nodes #threads Metric

Baseline 4.1 Dataset variety BFS, PR All, up to L 1 - Tproc, E(V)PS
4.2 Algorithm variety All R4(S), D300(L) 1 - Tproc

Scalability 4.3 Vertical BFS, PR D300(L) 1 1-32 Tproc, S
4.4 Strong/Horizontal BFS, PR D1000(XL) 1-16 - Tproc

4.5 Weak/Horizontal BFS, PR G22(S)-26(XL) 1-16 - Tproc

Robustness 4.6 Stress test BFS All 1 - SLA
4.7 Variability BFS D300(L), D1000(XL) 1, 16 - CV

Self-Test 4.8 Data Generation - - - - Tgen

The platforms can be categorized into two classes: dis-
tributed (D) and non-distributed (S) platforms. Dis-
tributed platforms use when analyzing graphs multiple ma-
chines connected using a network, whereas non-distributed
platforms can only use a single machine. Distributed sys-
tems suffer from a performance penalty because of network
communication, but can scale to handle graphs that do not
fit into the memory of a single machine. Non-distributed
systems cannot scale as well because of the limited amount
of resources of a single machine.

Apache Giraph [1] uses an iterative vertex-centric pro-
gramming model similarly to Google’s Pregel. Giraph is
open source and built on top of Apache Hadoop’s MapRe-
duce.

Apache GraphX [41] is an extension of Apache Spark, a
general platform for big data processing. GraphX extends
Spark with graphs based on Spark’s Resilient Distributed
Datasets (RDDs).

PowerGraph [21], developed by Carnegie Mellon Univer-
sity, is designed for real-world graphs which have a skewed
power-law degree distribution. PowerGraph uses a program-
ming model known as Gather-Apply-Scatter (GAS).

GraphMat [39, 8], developed by Intel, maps Pregel-like
vertex programs to high-performance sparse matrix opera-
tions, a well-developed area of HPC. GraphMat supports
two different backends which need to be selected manu-
ally: a single-machine shared-memory backend [39] and a
distributed MPI-based backend [8].

OpenG [32] consists of handwritten implementations for
many graph algorithms. OpenG is used by GraphBIG, a
benchmarking effort initiated by Georgia Tech and inspired
by IBM System G.

PGX [4], developed by Oracle, is designed to analyze large
scale graphs on modern hardware systems. PGX has two dif-
ferent runtimes: a single-machine shared memory runtime
implemented in Java and a distributed runtime [27] imple-
mented in C++. Both runtimes share the same user facing
API and are part of the Oracle Big Data Spatial and Graph
product [3].

For GraphMat and PGX, we report single-machine results
using the single-machine backend, and horizontal scalabil-
ity results using the distributed backend. For the single-
machine horizontal scalability experiments we report re-
sults for both backends. Processing times reported for PGX
shared memory exclude its integrated warm up procedure.
Cold processing times are additionally reported in our tech-
nical report [28].

Table 7: Hardware specifications.
Component Name

CPU 2 × Intel Xeon E5-2630 @ 2.40 GHz
Cores 16 (32 threads with Hyper-Threading)
Memory 64 GiB
Disk 2 × 4 TB
Network 1 Gbit/s Ethernet, FDR InfiniBand

3.2 Environment
Experiments have been performed on the DAS-5 [2] (Dis-

tributed ASCII Supercomputer), consisting of 6 clusters
with over 200 dual 8-core compute nodes. DAS-5 is funded
by a number of organizations and universities from the
Netherlands and is actively used as a tool for computer sci-
ence research in the Netherlands. We use individual clusters
for the experiments and we test all platforms on the same
hardware. The hardware specifications of the machines in
the clusters are listed in Table 7.

4. EXPERIMENTAL RESULTS
Graphalytics conducts automatically the complex set of

experiments summarized in Table 6. The experiments are
divided into four categories: baseline, scalability, and
robustness (all introduced in Section 2.3); and self-test.
Each category consists of a number of experiments, for which
Table 6 lists the parameters used for the benchmarks (algo-
rithm, dataset, number of machines, and number of threads)
and the metrics used to quantify the results.

4.1 Dataset Variety
For this experiment, Graphalytics reports the processing

time of all platforms executing BFS and PageRank on a
variety of datasets using a single node. Key findings:

• GraphMat and PGX significantly outperform their
competitors in most cases.

• PowerGraph and OpenG are roughly an order of mag-
nitude slower than the fastest platforms.

• Giraph and GraphX are consistently two orders of
magnitude slower than the fastest platforms.

• Across datasets, all platforms show significant variabil-
ity in performance normalized by input size.

The workload consists of two selected algorithms and all
datasets up to class L. We present the processing time
(Tproc) in Figure 4, and the processed edges per second
(EPS) and processed edges plus vertices per second (EVPS)
in Figure 5. The vertical axis in both figures lists datasets,
ordered by scale (results for missing datasets are available
in our technical report [28]).

Figure 4 depicts the processing time of BFS and PageR-
ank for all platforms on a variety of datasets. For both algo-
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Figure 4: Dataset variety: Tproc for BFS and PR.

rithms, GraphMat and PGX are consistently fast, although
PGX has significantly better performance on BFS. Giraph
and GraphX are the slowest platforms and both are two
orders of magnitude slower than GraphMat and PGX for
most datasets. Finally, OpenG and PowerGraph are gener-
ally slower than both PGX and GraphMat, but still signifi-
cantly faster than Giraph and GraphX. A notable exception
is OpenG’s performance for BFS on dataset R3(XS). The
BFS on this graph covers approximately 10% of the vertices
in the graph, so OpenG’s queue-based BFS implementation
results in a large performance gain over platforms that pro-
cess all vertices using an iterative algorithm.
To better understand the sensitivity of the tested plat-

forms to the datasets, we present normalized processing
times for the BFS algorithm in Figure 5. The left and right
subfigures depict EPS and EVPS, respectively. Ideally, a
platform’s performance should be proportional to graph size,
thus the normalized performance should be constant. As
evident from the figure, all platforms show signs of dataset
sensitivity, as EPS and EVPS vary between datasets.
Besides Tproc, it is also interesting to look at the makespan

(i.e., time spent on the complete job for one algorithm). This
includes platform-specific overhead such as resource alloca-
tion and graph loading. Table 8 lists the makespan, Tproc,
and their ratio for BFS on D300(L). The percentages show
that the overhead varies widely for the different platforms
and ranges from 66% to over 99% of the makespan. However,
we note that the platforms have not been tuned to minimize
this overhead and in many cases it could be significantly re-
duced by optimizing the configuration. In addition, we ob-
serve that the majority of the runtime for all platforms is
spent in loading the input graph, indicating that algorithms
could be executed in succession with little overhead.

Table 8: Tproc and makespan for BFS on D300(L).
Time Giraph GraphX P’Graph G’Mat(S) OpenG PGX(S)

Makespan 277.9 s 278.4 s 216.5 s 23.3 s 5.7 s 14.3 s
Tproc 23.4 s 97.9 s 2.1 s 0.3 s 1.9 s 0.05 s

Ratio 8.4% 35.2% 1.0% 1.3% 33.3% 0.3%

BFS

D300(L)

G23(M)

R4(S)

R3(XS)

R2(XS)
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100 101 102 103 104 105 106 107

1k 1m

Edges per second

100 101 102 103 104 105 106 107

1k 1m

Edges and vertices per second

Giraph
GraphX
P'Graph

G'Mat(S)
OpenG

PGX(S)

Figure 5: Dataset variety: EPS and EVPS for BFS.

4.2 Algorithm Variety
The second set of baseline experiments focuses on the

algorithm variety in the Graphalytics benchmark, and on
how the performance gap between platforms varies between
workloads.

• Relative performance between platforms is similar for
BFS, WCC, PR, and SSSP.

• LCC is significantly more demanding than the other
algorithms, Giraph and GraphX are unable to com-
plete it without breaking the SLA.

• GraphX is unable to complete CDLP. The perfor-
mance gap for the remaining platforms for CDLP is
smaller than for the other algorithms.

SSSP

LCC

PR

CDLP

WCC

BFS

10-2 10-1 100 101 102 103 104

10ms 200ms 2s 30s 5m 30m

R4(S)

F
F

F
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D300(L)

F
F

F

Processing time (s)

Giraph
GraphX
P'Graph

G'Mat(S)
OpenG

PGX(S)

Figure 6: Algorithm variety: Tproc.
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Figure 6 depicts Tproc for the core algorithms in Grapha-
lytics on two graphs with edge weights: R4(S), the largest
real-world graph in Graphalytics with edge-weights; and
D300(L). BFS, WCC, PR, and SSSP all show similar results.
PGX and GraphMat are the fastest platforms. Giraph,
GraphX and PowerGraph are much slower, with GraphX
showing the worst performance, especially on D300(L).
OpenG’s performance is close to that of PGX and GraphMat
on WCC, and up to an order of magnitude worse for BFS,
PR, and SSSP. CDLP requires more complex computation
which results in longer processing times for all platforms,
reducing the performance impact of the chosen platform, es-
pecially on smaller graphs like R4(S). GraphX is unable to
complete CDLP on both graphs. LCC is also very demand-
ing; Giraph and GraphX break the SLA for both graphs.
The complexity of the LCC algorithm depends on the de-
grees of vertices, so longer processing times are expected on
dense graphs. Because of the high density of R4(S), process-
ing times are larger on this graph than on D300(L), despite
it being an order of magnitude smaller.

4.3 Vertical Scalability
To analyze the effect of adding additional resources in a

single machine, we use Graphalytics to run the BFS and
PageRank algorithms on D300(L) with 1 up to 32 threads
on a single machine. Key findings:

• All platforms benefit from using additional cores, but
only PowerGraph exceeds a speedup of 10 on 16 cores.

• Most platforms experience minor or no performance
gains from Hyper-Threading.

Figure 7 depicts the processing time for this experiment.
The majority of tested platforms show increasing perfor-
mance as threads are added up to 16, the number of cores.
Adding additional threads up to 32, the number of threads
with hardware support through Hyper-Threading, does not
appear to improve the performance of GraphX, GraphMat,
or PGX. PowerGraph benefits most from the additional 16
threads; it achieves an additional 1.5x speedup on BFS. The
maximum speedup obtained by each platform is summarized
in Table 9. Overall, PowerGraph scales best with a maxi-
mum speedup of 12.5.

4.4 Strong Horizontal Scalability
We use Graphalytics to run BFS and PR for all dis-

tributed platforms on D1000(XL) while increasing the num-
ber of machines from 1 to 16 in powers of 2 to measure
strong scalability. Key findings:

• PGX and GraphMat show a reasonable speedup.
• Giraph’s performance degrades significantly when

switching from 1 machine to 2 machines, but improves
significantly with additional resources.

• PowerGraph and GraphX scale poorly; GraphX shows
no performance increase past 4 machines.

The processing times for this experiment are depicted in
Figure 8. Ideally, Tproc halves when the amount of re-
sources (i.e., the number of machines) is doubled given a
constant workload. Giraph suffers a large performance hit

Table 9: Vertical scalability: speedup on D300(L)
for 1–32 threads on 1 machine.)
Alg. Giraph GraphX P’Graph G’Mat(S) OpenG PGX(S)

BFS 5.6 4.6 12.5 7.2 6.9 9.5
PR 8.5 3.1 10.5 11.2 6.3 7.7
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Figure 7: Vertical scalability: Tproc vs. #threads.
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when switching from 1 machine to a distributed setup with
2 machines. For PR, this results in an SLA failure on 2 ma-
chines, even though it succeeds on 1 machine. At least 4–8
machines are required for Giraph to improve in performance
over the single-machine setup. GraphX also scales poorly
for the given workload. It requires 2 machines to complete
BFS, and 4 machines to complete PR. GraphX achieves a
speedup of 1.9 using 8 times as many resources on BFS, and
a speedup of 1.2 with 4 times as many resources on PR.
PowerGraph is able to process the D1000(XL) graph on any
number of nodes, but scales poorly for both BFS and PR.
Both PGX and GraphMat show significant speedup. How-
ever, for PR both platforms show super-linear speedup when
using 2 machines, possibly due to resource limitations on a
single machine. In our environment, GraphMat crashed on
4 machines due to an unresolved issue in the used MPI im-
plementation.

For comparison, results for the single-machine backends
are included. Distributed GraphMat on two machines per-
forms on-par with the single-machine backend. PGX shared
memory was unable to complete either algorithm due to
memory limitations.

4.5 Weak Horizontal Scalability
To measure weak scalability, Graphalytics runs BFS

and PR for all distributed platforms on Graph500 G22(S)
through G26(XL) while increasing the number of machines
from 1 to 16 in powers of 2. The amount of work per ma-
chine is approximately constant, as each graph in the series
generated using Graph500 is twice as large as the previous
graph. As the workload per machine is constant, Tproc is
ideally constant. Key findings:

• None of the tested platforms achieve optimal weak
scalability.
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Table 10: Stress Test: the smallest dataset that
failed to complete BFS successfully on one machine.
Platform Giraph GraphX P’graph G’Mat(S) OpenG PGX(S)

Dataset G26(XL) G25(L) R5(XL) G26(XL) R5(XL) G25(L)
Scale 9.0 8.7 9.3 9.0 9.3 8.7

• Giraph’s performance degrades significantly on 2 ma-
chines, but scales well from 4 to 16 machines.

• GraphX and PowerGraph scale poorly, whereas Graph-
Mat scales best.

In Figure 9, GraphX and PowerGraph show increasing
processing times as the number of machines increases, peak-
ing at a maximum slowdown (i.e., inverse of speedup) of 15.5
and 8.2, respectively. Similar to the strong scalability exper-
iments, Giraph’s performance is worst with two machines
and shows a slowdown of 15.5 on PR. Performance improves
slightly as more machines are added, for a slowdown of 4.7
with 16 machines on PR. GraphMat shows the best scal-
ability with a maximum slowdown of 2.1. Although PGX
outperforms GraphMat on a single machine, GraphMat’s
better scalability allows it outperform PGX when using 2 or
more machines.

4.6 Stress Test
To test the maximum processing capacity of each plat-

form, we use Graphalytics to run the BFS algorithm on all
datasets, and report the scale of the smallest dataset that
breaks the SLA (Section 6) on a single machine. Key find-
ings:

• GraphX and PGX fail to process the largest class L
graph on a single machine.

• Most platforms fail on a Graph500 graph, but suc-
ceed on a Datagen graph of comparable scale. This in-
dicates sensitivity to graph characteristics other than
graph size.

• PowerGraph and OpenG can process the largest graphs
on a single machine, up to scale 9.0.

Table 10 lists the smallest graph, by scale, for which each
platform fails to complete. The results show that both
GraphX and PGX are unable to complete the BFS algo-
rithm on Graph500 scale 25, a class L graph. PGX is specif-
ically optimized for machines with large amount of cores
and memory, and thus exceeds the memory capacity of our
machines. Like GraphX and PGX, Giraph and GraphMat
fail on a Graph500 graph. Both platforms successfully pro-
cess D1000 with scale 9.0, but fail on G26 of the same scale.
This suggests that characteristics of the graphs affect the
performance of graph analysis platforms, an issue not re-
vealed by the Graph500 benchmark. Finally, PowerGraph
and OpenG fail to complete BFS on the Friendster graph, a
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Table 11: Variablity: Tproc mean and coefficient of
variation. BFS on 1 (S) and 16 (D) nodes, n = 10.

Giraph GraphX P’graph G’Mat OpenG PGX

S Mean 22.3s 101.5s 2.1s 0.4s 2.0s 49ms
CV 5.0% 2.6% 1.5% 13.6% 5.8% 8.6%

D Mean 36.4s 326.9s 6.6s 0.4s - 0.6s
CV 8.0% 4.3% 3.3% 4.2% - 28.5%

scale 9.3 graph and among the largest graphs currently used
by Graphalytics.

4.7 Variability
To test the variability in performance of each platform,

Graphalytics runs BFS 10 times on D300(L) with 1 machine
for all platforms, and on D1000(XL) with 16 machines for
the distributed platforms.

• Most platforms have a CV of at most 10%, i.e., their
standard deviation is at most 10% of the mean Tproc.

• GraphMat (S) and PGX show higher than average
variability. However, due to their much smaller mean,
the absolute variability is small.

The mean and CV for Tproc are reported in Table 11. In
both S and D configurations, PowerGraph shows the least
variability in performance. GraphX has similarly low vari-
ability, but due to its significantly longer mean processing
time it can deviate by tens of seconds between runs. Con-
versely, GraphMat and PGX show much larger variability
between runs, but in absolute values their deviation is lim-
ited to tens of milliseconds.

4.8 Data Generation
We also evaluate the performance and scalability of Data-

gen with the new execution flow presented in Section 2.5.1.
We compare the new version of Datagen (v0.2.6) against the
latest version not including these performance optimization
(v0.2.1). For these experiments, we used Hadoop 2.4.1 on
the DAS-4 (dual Intel Xeon E5620, 24 GiB RAM, spinning
disks, 1 Gbit/s Ethernet) to perform the experiments, which
leads to conservative results. For each run, one machine is
reserved as a master while the others are workers. The num-
ber of mappers is controlled by Hadoop, and depends on the
size of the input files. The number of reducers per worker is
set to 16 (one per core).

Figure 10 (l) shows the execution time (Tgen) of the two
versions, running on 16 machines, for five different scale fac-
tors. The scale factor reflects the approximate number of
edges in millions. For the five scale factors (30, 50, 300, 500,
3000), the new version improves the execution time by a
factor of between 1.16 and 2.9, where the speedup increases
with the scale factor. This indicates an increase in scalabil-
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Figure 10: Execution time vs. #edges in the gen-
erated graph for Datagen: (left) v0.2.6 (new in this
this work) vs v0.2.1 (old), for 16 machines; (right)
4 vs. 8 vs. 16 machines on v0.2.6.
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Table 12: Summary of related work. (Acronyms: Reference type: S, study, B, benchmark. Target system, structure:

D, distributed system; P, parallel system; MC, single-node multi-core system; GPU, using GPUs. Input: 0, no

parameters; S, parameters define scale; E, parameters define edge properties; +, parameters define other graph

properties, e.g., clustering coefficient. Datasets/Algorithms: Rnd, reason for selection not explained; Exp, selection

guided by expertise; 1-stage, data-driven selection; 2-stage, 2-stage data- and expertise-driven process. Scalability tests:

W, weak, S, strong, V, vertical, H, horizontal.)
Reference (chronological order) Target System (R1) Design (R2) Tests (R3) (R4)
Name [Publication] Structure Programming Input Datasets Algo. Scalable? Scalability Robustness Renewal

B
CloudSuite [19],
only graph elements

D/MC PowerGraph S Rnd Exp — No No No

S Montresor et al. [16] D/MC 3 classes 0 Rnd Exp — No No No
B HPC-SGAB [10] P — S Exp Exp — No No No
B Graph500 P/MC/GPU — S Exp Exp — No No No
B GreenGraph500 P/MC/GPU — S Exp Exp — No No No
B WGB [7] D — SE+ Exp Exp 1B Edges No No No

S Own prior work [24, 25, 12] D/MC/GPU 10 classes S Exp 1-stage 1B Edges W/S/V/H No No

S Özsu et al. [26] D Pregel 0 Exp,Rnd Exp — W/S/V/H No No

B
BigDataBench [31, 40],
only graph elements

D/MC Hadoop S Rnd Rnd — S No No

S Satish et al. [37] D/MC 6 classes S Exp,Rnd Exp — W No No
S Lu et al. [30] D 4 classes S Exp,Rnd Exp — S No No
B GraphBIG [32] P/MC/GPU System G S Exp Exp — No No No
S Cherkasova et al. [15] MC Galois 0 Rnd Exp — No No No

B LDBC Graphalytics (this work) D/MC/GPU 10+ classes SE+ 2-stage 2-stage Process W/S/V/H Yes Yes

ity. Overall, the new version takes just 44 minutes to gen-
erate a billion-edge graph using 16 machines, a significant
improvement over the 95 minutes of the old version.
Figure 10 (r) shows the execution time of the new version

for different cluster sizes and scale factors. We see that Data-
gen scales very well. For example, increasing the scale factor
by a factor of ten (from 1000 to 10000) increases the execu-
tion time by 10.6. This means a 10 billion edge graph can be
generated in less than 8 hours, using commodity hardware
from 2010. The poor scalability observed for smaller scales is
due to the constant overhead incurred by Hadoop, which is
negligible for large scale factors. We also observe very good
horizontal scalability. For example, the speedup from 4 to
16 machines is 3.0 for scale factor 1000. This means more
hardware can be added to generate larger datasets faster.
We conclude that Datagen can generate large and complex
graphs on small-sized clusters of commodity hardware in
reasonable amounts of time.

5. RELATED WORK
Table 12 summarizes and compares Graphalytics with

previous studies and benchmarks for graph analysis systems.
R1–R5 are the requirements formulated in Section 2.1. As
Table 12 indicates, there is no alternative to Graphalytics
in covering requirements R1–R4. We also could not find
evidence of requirement R5 being covered by other systems
than LDBC. While there have been a few related benchmark
proposals (marked “B”), these either do not focus on graph
analysis, or are much narrower in scope (e.g., only BFS for
Graph500). There have been comparable studies (marked
“S”) but these have not attempted to define—let alone
maintain—a benchmark, its specification, software, testing
tools and practices, or results. Graphalytics is not only
industry-backed but also has industrial strength, through
its detailed execution process, its metrics that characterize
robustness in addition to scalability, and a renewal process
that promises longevity. Graphalytics is being proposed to
SPEC as well, and BigBench [20, 35] explicitly refers to
Graphalytics as its option for future benchmarking of graph
analysis platforms.

Previous studies typically tested the open-source plat-
forms Giraph [1], GraphX [41], and PowerGraph [21], but
our contribution here is that vendors (Oracle, Intel, IBM) in
our evaluation have themselves tuned and tested their imple-
mentations for PGX [27], GraphMat [39] and OpenG [32].
We are aware that the database community has started to
realize that with some enhancements, RDBMS technology
could also be a contender in this area [18, 29], and we hope
that such systems will soon get tested with Graphalytics.

Graphalytics complements the many existing efforts fo-
cusing on graph databases, such as LinkedBench [9],
XGDBench [14], and LDBC SNB [17]; efforts focusing on
RDF graph processing, such as LUBM [23], the Berlin
SPARQL Benchmark [11], SP2Bench [38], and WatDiv [6]
(targeting also graph databases); and community efforts
such as the TPC benchmarks. Whereas all these prior ef-
forts are interactive database query benchmarks, Grapha-
lytics focuses on algorithmic graph analysis and on different
platforms which are not necessarily database systems, whose
distributed and highly parallel aspects lead to different de-
sign trade-offs.

6. CONCLUSION
Responding to an increasing use of large-scale graphs, in-

dustry and academia have proposed a variety of distributed
and highly-parallel graph analysis platforms. To compare
these platforms, but also to tune them and to enable fu-
ture designs, the Linked Data Benchmark Council (LDBC)
has been tasked by its industrial constituency to develop an
offline (batch) graph analysis workload—the LDBC Graph-
alytics benchmark, which is the focus of this work. Graph-
alytics3 brings both conceptual and technical contributions,
and is used to compare three main community-driven and
three vendor-tuned graph analysis platforms.

3Acknowledgements: This research is supported by the
Dutch NWO through projects Vidi MagnaData, KIEM
KIESA, COMMIT COMMIssioner, and by LDBC (ldbcoun-
cil.org), originally funded by EU project FP7-317548. This
work is also partially supported by a donation from Oracle
Research Labs.
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The Graphalytics workload was designed through a two-
stage selection incorporating the concept of choke-point
(expertise-driven) design, and a data-driven selection of rel-
evant algorithms and input datasets. The specification of
Graphalytics is innovative: its metrics go beyond the tra-
ditional performance metrics, and in particular enable deep
studies of two key features of distributed and highly-parallel
systems, scalability and robustness. Graphalytics is the first
graph benchmark to cover stress-testing and performance
variability. The benchmarking process is managed by an
advanced harness, which includes flexible and scalable tools
for data collection, analysis, and sharing, and for distributed
generation of synthetic yet realistic graph datasets. In par-
ticular, the data generator tool Datagen is the first to gen-
erate graphs with a pre-specified clustering coefficient for
benchmarking. Graphalytics also specifies a novel process
for renewing its core parameters, to withstand the test of
time while still being understandable for non-experts.
We present here the open-source implementation of the

harness4, which is able to conduct over ten different exper-
iments, collect in-depth data that can be further used for
tuning, and then extract the relevant benchmarking metrics.
We also provide reference implementations of the drivers and
algorithms for six target systems, which differ widely in dis-
tribution and programming model. Three of the systems
originate from industry: PGX from Oracle, GraphMat from
Intel, and OpenG from IBM. We hope and believe Graph-
alytics to be interesting for academics, IT practitioners, in-
dustry engineers, and system designers.
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