
Consistent Regions:

Guaranteed Tuple Processing in IBM Streams

Gabriela Jacques-Silva

�⇤
, Fang Zheng

�
, Daniel Debrunner

‡
, Kun-Lung Wu

�
,

Victor Dogaru

‡
, Eric Johnson

‡
, Michael Spicer

‡
, Ahmet Erdem Sarıy¨uce

⇧†

�
IBM T. J. Watson Research Center,

‡
IBM Analytics Platform,

⇧
Sandia National Labs

Abstract
Guaranteed tuple processing has become critically impor-
tant for many streaming applications. This paper describes
how we enabled IBM Streams, an enterprise-grade stream
processing system, to provide data processing guarantees.
Our solution goes from language-level abstractions to a run-
time protocol. As a result, with a couple of simple anno-
tations at the source code level, IBM Streams developers
can define consistent regions, allowing any subgraph of their
streaming application to achieve guaranteed tuple process-
ing. At runtime, a consistent region periodically executes
a variation of the Chandy-Lamport snapshot algorithm to
establish a consistent global state for that region. The cou-
pling of consistent states with data replay enables guaran-
teed tuple processing.

1. INTRODUCTION
Stream processing systems have become one of the basic

building blocks for tackling big data problems [3, 16, 22,
25]. With such systems, developers can write their applica-
tions as explicit data flow graphs, where each node of the
graph is a stream operator and each edge is a stream con-

nection. Stream operators can generate tuples from external
sources, or apply transformations on incoming tuples and
further submit them downstream via their output stream
connections. A stream processing platform is responsible
for deploying and managing the execution of such a data
flow graph in a distributed environment.

Most streaming systems focus primarily on achieving
high-throughput and low latency. Moreover, as many
streaming applications are able to handle approximate re-
sults, several of the fault tolerance techniques designed for
streaming applications favor the timeliness of the output
over the guaranteed processing of every tuple [11, 17, 19,
20, 22, 27]. We call such techniques partially fault-tolerant.
However, as developers are applying the streaming paradigm
⇤This work was done while the author was an RSM at IBM.
†This work was done while the author was an intern at IBM.

This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International License. To view a copy

of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For

any use beyond those covered by this license, obtain permission by emailing

info@vldb.org.

Proceedings of the VLDB Endowment, Vol. 9, No. 13

Copyright 2016 VLDB Endowment 2150-8097/16/09.

to more application domains, guaranteed tuple processing
has become a primary concern. For example, in many health
care and telecommunication applications, it is important
that every tuple is processed.

In this paper, we describe how we enabled IBM Streams,
an enterprise-grade stream processing system originally de-
signed to be partially fault-tolerant, to provide guaranteed
tuple processing. Our technique, called consistent regions,
enables developers to select subsets of streaming operators in
an application to process tuples at-least-once, and in some
cases exactly-once. A consistent region consists of a sub-
graph of operators in a streaming application. At runtime,
the region executes a variation of the Chandy-Lamport al-
gorithm [14] for establishing a consistent distributed snap-
shot for the operators’ state. The periodic establishment of
consistent states coupled with data replay provides at-least-
once processing and enables exactly-once semantics with ad-
ditional constraints.

In IBM Streams, applications can be non-deterministic,
have arbitrary topologies (including cycles), have multi-
threaded stream operators and implement any data pro-
cessing logic. In this scenario, the distributed snapshot al-
gorithm is a good fit, as it does not rely on any of these
characteristics for correctness.

Although conceptually simple to understand, implement-
ing the distributed snapshot protocol in an enterprise-grade
system is a significant challenge. From a streaming platform
perspective, we must consider (i) the performance impact of
the protocol on applications that do not require guaranteed
processing, (ii) the code complexity of the implementation,
(iii) existing framework concepts and APIs, and (iv) the
ease of adapting legacy applications. From an application
developer’s perspective, the primary concerns are to easily
configure the application to use the protocol, and the overall
overhead of the solution.

To tackle the platform challenges, we have done the follow-
ing: (i) minimal changes to the main tuple processing path,
so that applications that do not need guaranteed processing
can run at full speed; (ii) a variation of the distributed snap-
shot protocol by adding a drain stage, which ensures that
all in-flight tuples are processed before establishing a consis-
tent state. This stage forces any in-flight tuples for a stream
connection (channel state) to be processed and reflected in
the operator state (process state). This eliminates the com-
plexity and cost of persisting in-flight data and playing this
data after the checkpoint is complete; (iii) leveraging the
existing concept of a stream punctuation to represent the
tokens used in the original distributed snapshot protocol.

1341

This enables the reuse of all the machinery for punctuation
processing and to more easily integrate the protocol into
the platform; and (iv) addition of a state management in-
terface, which enables operator state persistence, and a new
synchronization primitive, which allows multi-threaded op-
erators to establish logical boundaries on the code in which
it is safe to establish a consistent state. With these new
APIs, operators can be adapted to work with the protocol.

For application developers, we o↵er two language-level ab-
stractions, so that with simple annotations at the source-
code level, application subgraphs can achieve guaranteed
tuple processing. The first annotation adds an application
subgraph to a consistent region. The second one removes
operators that do not require guaranteed tuple processing
from a region. As a result, only operators in the region are
required to coordinate during the establishment of a consis-
tent state, reducing the overall cost of the protocol. The
overall overhead of consistent regions for an application is
proportional to how often the protocol executes. This is con-
figurable directly by the developer by parameterizing the an-
notation with a period or an operator logical boundary (e.g.,
at every fully processed file). Allowing fine-grained selection
also gives developers flexibility to specify di↵erent policies
for di↵erent subgraphs of the application. For example, sub-
graphs with large in-memory state can be checkpointed less
often than other parts of the application.

The key contributions of this paper are: (i) a variation
of the distributed snapshot algorithm for streaming applica-
tions which includes a drain stage to force any channel state
to be reflected as operator state. While running the drain
stage, the application is still doing useful work towards its
progress; (ii) language-level abstractions that enable an ap-
plication to do fine-grained selection of the subgraphs that
run with a tuple processing guarantee. This reduces the
number of operators required to do coordination during the
establishment of a consistent state; (iii) runtime APIs that
expose the stages of the protocol to a streaming operator
and enable multi-threaded operators to participate in con-
sistent regions. We have adapted over 70 commonly-used
operators to use the APIs so that they can be used in con-
sistent regions. To the best of our knowledge, this is the
first fault tolerance solution that allows fine-grained config-
uration of tuple processing guarantee within a streaming ap-
plication, supports non-deterministic processing logic, and
handles multi-threaded operators.

2. OVERVIEW
As described in Section 1, consistent regions provide both

at-least-once and exactly-once guaranteed tuple processing.
We define the guarantee in terms of the application output.
When referring to at-least-once, we mean that the applica-
tion produces correctly computed output – as if no failures
had happened, but tuples may show up more than once on
the application output. For exactly-once, we mean that the
application produces correctly computed output and that
tuples do not appear duplicated in the output, regardless of
failures. The application output is always correct because
we implement a variant of the Chandy-Lamport algorithm
for establishing a distributed snapshot [14], where operator
states are persisted by default.

The establishment of a consistent state has two stages:
the drain stage and the checkpoint stage. During a drain,
operators in a region are allowed to submit any pending

tuples (e.g., bu↵ered data). Once the drain finishes, no new
tuple submission is allowed. After a drain, the checkpoint
stage starts. In this stage, the operator persists its state
to the checkpoint backend store. After all operators in a
consistent region complete both stages, the consistent state
is successfully established.

To guarantee that all in-flight tuples are either fully pro-
cessed by the region or reflected in operator state, the estab-
lishment of a consistent state happens in topological order
of the consistent region subgraph. The process begins at
the start operators of a consistent region. In general, these
are the source operators (operators without any incoming
streams). Once both the drain and checkpoint stages com-
plete, an operator submit a drain marker to all its output
streams1. The drain marker is a special punctuation that
flows through the stream connections of the consistent re-
gion2. Any tuple submitted prior to or during the drain
stage is guaranteed to be processed before the completion
of the current consistent state. Similar to the original dis-
tributed snapshot protocol [14], the correctness of our pro-
tocol relies on all stream connections enforcing FIFO order.

When a non-start operator in the region receives a drain
marker from all of its incoming streams, the drain stage
starts followed by the checkpoint stage. Drain markers are
then forwarded to its output streams. For each operator, the
checkpoint stage happens only after all input streams of the
operator are fully processed. This ensures that the stream
connections are empty and that no persistence of channel
state is required. Once all operators in the region finish both
the drain and checkpoint stages, a central consistent region
controller notifies the start operators that they can resume
processing new data. Note that even though the region stops
processing new tuples while the consistent state is being
established, useful work is still being performed while the
drain stage executes. This is because tuples submitted prior
to or during the drain stage are still being processed by
downstream operators.

In addition to maintaining the di↵erent stages of the pro-
tocol, the consistent region controller is responsible for de-
tecting failures. It relies on the IBM Streams platform in-
frastructure to continuously monitor the health of processes
and connections in a consistent region. When the controller
detects a failure in a region or the controller itself fails, it
resets the region to the last consistent state. The restoration
has a single stage called reset. In this stage, each operator
retrieves its state from the checkpoint backend store. Once
all operators in the region reset their state, the start opera-
tors of the region can start replaying tuples.

The restoration propagates a special punctuation called
reset marker through the region to clear up the stream con-
nections from tuples submitted prior to the reset notifica-
tion. When all input stream connections of an operator are
cleared, the state reset takes place. This ordering ensures
that intermediate operators of a consistent region do not
need to deal with duplicate tuples.

3. LANGUAGE-LEVEL ABSTRACTIONS
In IBM Streams, developers write their streaming appli-

cations using the Streams Processing Language (SPL). An

1Section 4.2.3 describes further protocol optimizations.
2Special drain marker propagation rules are used in cyclic
topologies.

1342

application is composed of operators that can consume input
streams and generate output streams.

SPL has two kinds of operators. The first kind are primi-
tive operators, which can be written in C++, Java, or SPL
itself (also called Custom). Primitive operators written in
C++ can leverage a code-generation framework to gener-
ate specialized code depending on the operator configura-
tion. The second kind of operators are composite opera-
tors. Composites enable modularization and code reuse by
encapsulating subgraphs of primitive and other composite
operators. The SPL compiler is responsible for invoking the
code-generation framework, expanding the composite oper-
ators to create the application topology, and generating the
application binaries.

In SPL, an operator can have multiple input ports and
multiple output ports. An input port can have multiple in-
put stream connections. In general, when processing tuples
from an input port, the operator generates a new tuple that
is submitted to one of its output ports. These ports are
called data ports. If the processing logic of an input port
does not generate tuple submissions, the input port is called
a control port. It is safe for the SPL compiler to close a
feedback loop on a control port. Feedback loops are useful
when changing the runtime behavior of an operator (e.g., a
filtering condition) based on downstream processing.

During runtime, operators are deployed in processing ele-

ments (PEs), which run as operating system processes. Op-
erators in the same PE communicate to each other via func-
tion calls. Optionally, the application can gain pipeline par-
allelism by configuring an operator input port as threaded.
This results in a queue being added between two operators.
The queue is read by a new thread, which picks up the tuple
processing from that point of the graph onwards. Operators
in di↵erent PEs communicate via TCP connections.

One of the key aspects we chose to support for consis-
tent regions is the fine-grained selection of one or more sub-
graphs of an application requiring guaranteed tuple process-
ing. This is because di↵erent parts of an application can
have di↵erent requirements regarding tuple processing guar-
antees. For example, a streaming application can correlate
banking transactions with information derived from Twitter
feeds to find marketing opportunities in real time. While the
application requires the subgraph processing banking trans-
actions and doing the correlation to process every tuple, it is
acceptable for the subgraph processing the Twitter stream
to lose some of its tuples. As a result, there is no need to
enforce the Twitter subgraph to be coordinated with the
banking transactions and correlation subgraph.

Another motivation for enabling fine-grained subgraph se-
lection is to not give false promises to an application devel-
oper. Some operators cannot easily participate in a consis-
tent region, as it does not naturally support a checkpointing
or tuple replay scheme. One example is an operator con-
suming data from a UDP socket and submitting it as tuples
downstream. If the operator fails, it cannot replay tuples
without extra machinery, as a UDP socket is not replayable.
Another example is an operator that has in-memory state
but is not capable of persisting its state. The SPL compiler
can forbid such operators to be used in a consistent region,
so that the application developer does not expect that such
operators will be made consistent during runtime.

In SPL, a consistent region is specified using annotations.
The @consistent annotation defines a consistent region,

and the @autonomous annotation can be then used to re-
duce the scope of a region.

3.1 Consistent Annotation
The @consistent annotation is placed on an operator of

the application. The SPL compiler then automatically iden-
tifies the consistent region by computing the reachability
graph of the annotated operator. The annotated operator is
the start operator of the region. All operators in the reacha-
bility graph that do not have any downstream operators are
identified as the end of the region. When the annotation is
placed on a composite operator, the compiler automatically
identifies the start operators of the composite and computes
the reachability graph from those operators. A consistent
region can have multiple start and end operators.

An application can have multiple consistent regions. This
means that each region establishes consistent states indepen-
dently. Furthermore, the failure of an operator in one region
does not cause the reset of operators in other regions. When
annotations are placed on two di↵erent operators and their
reachability graphs have a common operator, the compiler
merges the two consistent regions into one.

For example, Figure 1(a) shows an application with a sin-
gle consistent region. In this example, op1 is annotated with
@consistent and is identified by the compiler as the start
operator of the region. As a result, all operators in its down-
stream are included in the region. As operators op5 and op6

have no output streams, the compiler identifies them as the
end of the consistent region. Figure 1(b) shows a case in
which @consistent is placed on two operators: op1 and op3.
The reachability graphs of both of them have operators op5
and op6, so the regions are merged by the compiler.

In addition to selecting the region, the @consistent an-
notation is used to configure the runtime behavior of the re-
gion. The main parameter of the annotation is the trigger
parameter. The trigger indicates how to start the estab-
lishment of a consistent state. It can be either periodic

or operator-driven. A periodic consistent region establishes
consistent states according to a specified period. This kind
of region can have multiple start operators. An operator-
driven region establishes consistent states according to the
logical boundary specified by the start operator of the re-
gion. For example, consider an operator called Directo-
ryScan that scans a directory, reads its current contents, and
submits a tuple with a file name attribute for every file found
in the directory. This operator is frequently used together
with an operator that reads the file and submits its contents
downstream. When in an operator-driven consistent region,
the DirectoryScan operator can choose to establish a consis-
tent state after submitting every tuple (i.e., every file). This
ensures that a consistent state is established after fully pro-
cessing a file. This is a powerful abstraction, as it enables
the establishment of consistent states at points that make se-
mantic sense to the application. Currently, operator-driven
regions can only have a single start operator.

In addition to trigger, the @consistent annotation has
the following parameters:

1. period - specifies how often to establish a consistent
state. This is valid only for periodic consistent regions.

2. drainTimeout - specifies when to timeout on the es-
tablishment of a consistent state. If the establishment
times out, the region is assumed to have failed, and a
reset attempt is made.

1343

end

@consistent !
op1

op2

op3

op4

op5

op6 start

end

(a)

@consistent !

op1 op2

op4

op5 op6
start

end

op3

start

@consistent !

(b)

op1 op2

op4

op5
start

op3

@consistent ! end

op6

op7

@autonomous !

start

(c)

Figure 1: Example definitions of a consistent region. Figure 1(a) shows an application with a single consistent
region with a single start operator and two end operators. Figure 1(b) shows a single consistent region with
two start operators and one end operator. Figure 1(c) shows a single consistent region and two autonomous
regions (Operator op5 has a consistent and an autonomous input port).

3. resetTimeout - specifies when to timeout when reset-
ting the region to a consistent state. If the reset times
out, a new reset attempt is made.

4. maxConsecutiveResetAttempts - indicates how many
consecutive attempts are made to reset the region to
a consistent state. If the region still cannot be reset,
the region is assumed to have failed and administrator
intervention is required to reset the region.

Figure 2 shows the SPL program for Figure 1(a). Ex-
cept for trigger and its conditionally dependent parameter
period, all other parameters have default values.

00: composite Main {
01: graph
02: @consistent(trigger=periodic, period=10.0)
03: stream<int a> Op1 = Beacon() {}
04: stream<int a> Op2 = Functor(Op1) {}
05: stream<int a> Op3 = Functor(Op1) {}
06: stream<int a> Op4 = Functor(Op2, Op3) {}
07: () as Sink1 Op5 = Custom(Op4) {}
08: () as Sink2 Op6 = Custom(Op4) {}
09: }

Figure 2: Sample SPL program equivalent to the ap-
plication graph in Figure 1(a). is placed
as an annotation to the source operator ().

3.2 Autonomous Annotation
An operator that is not in a consistent region is called

autonomous. This means that during runtime the output
streams and the state of these operators are not coordi-
nated with any other operator in the application. Inter-
connected autonomous operators are considered to be in an
autonomous region. Operators are autonomous by default.

Autonomous source operators do not replay tuples on a
failure. When in the upstream of operators in a consistent
region, autonomous operators process tuples at-most-once.
When in the downstream of a consistent region, autonomous
operators may receive duplicate tuples. This is because start
operators of a consistent region replay tuples on a failure.

The @autonomous annotation works similarly to
@consistent. Once placed on an operator, all the operators
in its reachability graph are considered autonomous. If an
operator is in the reachability graph of both an autonomous
and a consistent annotation, then the consistent annotation
takes precedence, and the operator is considered to be in
the consistent region. An operator can consume output
streams from both autonomous and consistent operators as
long as the streams are connected to di↵erent input ports.
When this situation occurs, input ports consuming streams
from consistent operators are called consistent input ports

and input ports consuming streams from autonomous
operators are called autonomous input ports. When a
consistent operator has an autonomous input port, it means
that the operator can be made consistent independently of
that stream.

Figure 1(c) shows an example of an application that uses
both @consistent and @autonomous. When placing the
@consistent annotation in op1, operators op2, op5, op6 and
op7 would be included on the consistent region. As op7 has
an autonomous annotation, it starts a new autonomous re-
gion. If this operator had downstream operators, they also
would be in the autonomous region. Operators op3 and op4

have no annotations and are by default autonomous. This
results in op5 having an autonomous input port.

3.3 Code Generation
We leverage the SPL code generation framework to en-

able the generation of code specific to consistent regions only
when an operator is indeed in a consistent region. This is
important to reach the goal of having near zero performance
impact on applications that do not require guaranteed tuple
processing. By using the code generation framework, C++
primitive operators can query a consistent region context

to discover if the operator is in a consistent region, among
other information. One important use case of the consis-
tent region context is to enforce compile-time checks. In
this way, developers can enforce that only certain operators
and configurations are allowed in a consistent region. The
SPL compiler also leverages the context to check if a Cus-
tom operator is used in consistent regions and automatically
generates serialization and de-serialization code for stateful
Custom operators to checkpoint and reset its state.

4. RUNTIME
In this section, we detail the runtime implementation of

consistent regions. We first describe the consistent region
controller, which is responsible for failure detection and the
protocol coordination. We then present the protocol at the
operator level, detailing the rules for punctuation propaga-
tion and for persisting/restoring operator state. Finally, we
describe how to ensure FIFO order in stream connections.

4.1 Consistent Region Controller
The consistent region controller is the central component

for coordination. The controller is responsible for notifying
the start operators of the region to begin the establishment
of a consistent state. It also tracks which operators of the
region have completed the drain and checkpoint stages. On
completion, the controller notifies start operator(s) that the
region can resume tuple processing. The controller is also

1344

responsible for notifying a region that it must reset when
PE or controller failures occurs. Each consistent region has
a dedicated consistent region controller.

The controllers reside in a special operator called Job Con-

trol Plane (JCP). The JCP operator is a general purpose
component in SPL that enables operators to exchange out-
of-band control information. The underlying architecture
is the standard Java Management Extensions (JMX) [23].
Operators can create services implemented as management
beans (MBeans) in the JCP and interact with them using
JMX. The JCP hosts a set of pre-installed services. The con-
sistent region controller subscribes to one such service called
Region Monitor to get notifications regarding PE health.

The Region Monitor service is the core component for
associating application failures to a consistent region and
triggering a reset. The Region Monitor is not responsible
for detecting failure itself, but it listens to all application
health related notifications from various IBM Streams in-
frastructure services and emits those notifications that are
related to the PEs hosting operators in consistent regions.
It reports two types of failures that can lead to tuple loss:
PE crashes (e.g., process crash or host crash) and PE inter-
connection failures (e.g., a socket disconnects).

The controller maintains information to track the progress
of establishing or restoring of a consistent state. Upon
any transition of the protocol (e.g., when the region fin-
ishes checkpointing), the controller persists its state to the
Zookeeper service in the IBM Streams infrastructure. This
allows the controller itself to restart from crash.

The controller is not involved in restarting PEs, relo-
cating PEs on host failures, or mending broken PE inter-
connections. These actions are performed by the Streams
platform. The controller is responsible only for coordinat-
ing consistent state establishment and restoration.

4.2 Protocol
The establishment and restoration of consistent states

use a token-based protocol, where special punctuations flow
through the stream processing graph of a consistent region.
In this section, we provide more details on how punctuations
are propagated among operators and how cycles in topology
and autonomous regions are handled as part of the protocol.

4.2.1 Establishing a Consistent State
The process of establishing a consistent state has two main

stages, namely drain and checkpoint. These stages have a
local e↵ect (i.e., in a single operator) and a global e↵ect (i.e.,
for the whole region).

Drain. Locally, the drain stage enables an operator to
submit any pending tuples to its output streams or external
systems. During drain stage, the operator is still performing
useful work towards its progress, as the operator performs
actions that are related to its semantic. For example, an
operator that writes tuples to an output file (FileSink), can
flush the current output stream it is writing to. On the other
hand, a Filter operator, which does all its filtering decision
as it receives a tuple, does not need to take any action dur-
ing the drain stage, as it has no pending tuples. After the
drain stage finishes, operators can no longer submit new tu-
ples. Globally, the drain stage enforces that the region stops
producing new tuples and that in-flight tuples get processed.
In-flight tuples are tuples currently being processed by op-
erators (e.g., in the middle of a transformation), tuples in

the SPL runtime bu↵ers (e.g., thread queues), and tuples
flowing through PE inter-connections (e.g., TCP sockets).

Checkpoint. Locally, operators serialize and persist their
state in the checkpoint stage. A checkpoint always occurs
after a drain. FileSink can checkpoint the file position of the
output file stream, whereas a stateless Filter has no data to
checkpoint. Globally, a consistent state is achieved when all
operators in the region complete the checkpoint stage.

These two stages are triggered as a result of notifications
from the consistent region controller and the flow of the spe-
cial punctuations. The protocol begins at the start opera-
tors of the region. In a periodic region, the consistent region
controller sends a notification to start operator(s) according
to the configured period. Once a start operator receives the
notification, it executes the drain stage, stops submitting
new tuples, and executes the checkpoint stage. After that,
the SPL runtime submits DrainMarkers to all output stream
connections of the start operator. In an operator-driven re-
gion, the process is the same, except that the establishment
of the consistent state starts as a result of a direct request
from the start operator to the consistent region controller.

For non-start operators, the drain and checkpoint stages
occurs only after processing a specific number of markers.
The number of expected markers depends on the kinds of in-
put ports of an operator and the number of incoming stream
connections to each input port.

There are two kinds of input ports in SPL: data ports and
control ports. When processing tuples from data ports, an
operator can change internal state and submit tuples to its
output streams. When processing tuples from control ports,
an operator can only change internal state. When in a con-
sistent region, an operator input port can also be qualified
as consistent and autonomous. Consistent input ports are
ports in which all its stream connections come from opera-
tors that are also part of the consistent region. Autonomous
input ports are those in which all incoming stream connec-
tions come from operators that are autonomous. Data ports
and control ports can be either autonomous or consistent.

An operator enters drain stage when it receives a Drain-

Marker in all its input stream connections of all its consis-

tent data ports. When a DrainMarker is processed by an op-
erator in a given stream connection, it implies that all tuples
prior to the DrainMarker were processed. As a result, the
stream connection is empty and all the state of that stream
connection is reflected as operator internal state and/or new
tuples on the output streams of the operator. DrainMark-
ers from consistent control ports are not required. At this
moment, the operator is free to further submit any pending
tuples. Once that is complete, no new tuples are submitted
downstream. If any tuple arrives from an autonomous data

or autonomous control port, its processing is blocked and
is not allowed to proceed until the protocol has finished its
execution. If the operator has no consistent control ports,
the operator proceeds to the checkpoint stage. If any control
port is present, then the DrainMarker is submitted down-
stream without the completion of the checkpoint stage.

The checkpoint stage starts after the drain stage com-
pletes and the operator processes DrainMarkers from con-
sistent control ports. As control ports do not generate fur-
ther tuple submission, it is guaranteed that processing its
tuples only changes operator internal (process) state and
not output stream connection (channel) state. This special
rule regarding control ports allows our protocol to reach a

1345

consistent state even in regions that have cycles. This is be-
cause the drain stage can complete before processing markers
from connections that might be cyclic, and the checkpoint
completes only after processing markers from these same
connections. This ensures that all tuples flowing through
the cycle are processed and reflected as operator state.

Figure 3 shows an example graph with operators op1�5

in a consistent region and operator op6 being autonomous.
Operator op3 has 3 input ports: one consistent data port
consuming data from op1 and op2, an autonomous port con-
suming data from op6, and one consistent control port con-
suming data from op4. After processing 2 DrainMarkers
from the first port, it drains and submits the marker down-
stream. As its second input port is autonomous, no Drain-
Markers are expected. After op4 drains and submits the
DrainMarker to its output ports, op3 processes it and starts
its checkpoint stage.

op1

op6

op2 op3 op4 op5

Figure 3: Operator op3 starts the drain stage af-
ter processing markers coming from op1 and op2.
Its checkpoint stage starts only after processing the
marker coming from op4.

The protocol ends when all operators in the region have
completed both stages. The end of the protocol is detected
by the consistent region controller. Operators indicate they
have completed the protocol by invoking a method in the
consistent region controller service. To reduce contention at
the consistent region controller, operator notifications back
to the controller are batched on a PE basis.

The controller assigns each consistent state a strictly in-
creasing sequence identifier, starting at 1. DrainMarkers
carry the sequence identifiers to enable the SPL runtime to
group the persisted state of individual operators to a global
state. The sequence number of 0 represents the application
initial state, prior to the processing of any tuple.

4.2.2 Restoring a Consistent State
Restoring a consistent state has a single stage called re-

set. In this stage, each operator fetches its state from the
checkpoint backend store and de-serializes it, replacing the
current values of its variables among other actions. The
FileSink operator can restore its current position on its out-
put file, seek for that position, and truncate the file. For
Filter, no action is needed on a reset. Globally, the col-
lection of states restored by all operators in the region are
guaranteed to be consistent.

The protocol to restore a consistent region is similar to the
one for establishing a consistent state. A restoration is trig-
gered by the consistent region controller after the detection
of a failure. Once start operators receive the notification
from the controller, the SPL runtime stops the submission
of new tuples. After the operator is paused, the reset stage
starts, and a ResetMarker punctuation is submitted to all
output ports of the operator. The ResetMarker goes through
the operator stream connections after all tuples previously
submitted by the operator.

For operators that do not start the region, the reset is
triggered after receiving one ResetMarker per input stream

connection. The condition to trigger a reset is the same as
the condition to trigger a checkpoint. While resetting the
consistent region, tuples sent prior to ResetMarkers are still
processed by operators. Although this design decision may
increase the recovery time, it avoids the need to add extra
thread synchronization primitives in the main tuple process-
ing path. As a result, we favor faster tuple processing during
normal operations over faster recovery times, as recovery is
expected to be far less frequent.

The only situation in which the SPL runtime explicitly
drops submitted tuples while resetting is when tuples are
submitted through an output PE connection that has been
broken and reestablished. This happens when the down-
stream PE crashes or the TCP connection breaks. If such
tuples were to go through, downstream operators would pro-
cess tuples from an incomplete stream or while its state
is not yet consistent. This explicit tuple drop takes place
within an already synchronized code section, so the only ex-
tra cost during normal operation is a conditional statement.

Similar to DrainMarkers, a ResetMarker carries a se-
quence number that identifies the last successfully estab-
lished consistent state. It is used by the runtime to fetch the
correct operator state from the checkpoint backend store.
ResetMarkers also carry a reset attempt which is used to
handle failures that occur while the region is being reset.

When a region cannot complete a reset within the time-
out specified in the annotation, the consistent region con-
troller attempts a new reset. If resets fail consecutively
and reaches the maxConsecutiveResetAttempts specified in
@consistent annotation, the region halts and administrator
intervention is required.

4.2.3 Protocol Optimizations
We apply several optimizations to improve protocol per-

formance. The first is to do early marker forwarding and
to dispatch operator state serialization and persistence to
background threads. When establishing consistent states,
the SPL runtime forwards DrainMarkers right after it fin-
ishes the drain stage. During restoration, ResetMarkers are
forwarded once the stream connections are cleaned up and
before starting the reset stage. This enables operators in
a serial chain to checkpoint and reset concurrently. The
second optimization is for the background threads to batch
checkpoint persistence requests of di↵erent operators. This
reduces the number of I/Os needed to checkpoint multiple
operators. The third optimization is o↵ering non-blocking

checkpoint for operators that implement user-level copy-

on-write. Such operators are provided with a prepare-to-

checkpoint stage which is executed after the drain stage. The
operator can impelement logic to prepare itself to be check-
pointed later (e.g., making a copying of the state). Once this
prepare state finishes, DrainMarkers are forwarded down-
stream and some background thread starts checkpointing
the operator (e.g., persisting the copied state). Tuple pro-
cessing can resume while the background checkpointing is
still ongoing. Operators can implement various copy-on-
write schemes [12] as needed. Blocking and non-blocking
operators can co-exist in the same consistent region. This
optimization reduces the blocking time of checkpointing.

4.3 Enforcing FIFO in Stream Connections
As described in Section 4.2.1, our protocol strictly relies

on DrainMarkers to ensure that a given set of tuples were

1346

processed by the consistent region. The first key require-
ment for the correctness of our protocol is that stream con-
nections must be First-in, First-out (FIFO). This applies
to both failure-free and failure scenarios. The second key
requirement is that DrainMarkers cannot be forwarded by
operators when failures occur. This ensures that consistent
states are not successfully established when in fact tuple
processing has failed and tuples must be replayed.

At the language level, SPL provides a uniform way to ex-
press stream connections between operators. During appli-
cation execution, there are three di↵erent implementations
for those connections. The first two kinds are used when op-
erators are in the same PE. In such cases, a tuple submission
maps to a function call or to a tuple copy in a queue. Such
queue is then consumed by a di↵erent thread to increase
pipeline parallelism. The third kind of connection is TCP
connections between operators residing in di↵erent PEs.

For intra-PE connections, FIFO is naturally established as
the SPL runtime fully finishes the execution of a function or
the enqueuing of a tuple in a synchronized queue before act-
ing on the next tuple 3. In these cases, a marker is guaran-
teed to be consumed after the tuples that submitted prior to
it. A failed execution occurs when an operator throws an ex-
ception (e.g., operator cannot access a database). The SPL
runtime catches the exception and ensures that no other tu-
ple or DrainMarker is processed. The exception is re-thrown
and the PE is gracefully shutdown and restarted.

For inter-PE connections, we can rely on TCP/IP to guar-
antee FIFO in failure-free scenarios. In failure scenarios, we
have di↵erent TCP connections for the same logical connec-
tion. This means we must enforce FIFO across TCP con-
nections: the old connection (before a failure) and the new
connection (after a reconnection). If no action is taken, the
receiver operator may end up consuming tuples from both
connections at the same time, up until the error is detected
in the old connection. To solve this problem, our inter-PE
connections have a special handshake that checks the incar-
nation of a given logical connection. Once a new connection
request is established, any pre-existing connection from that
same logical connection is closed, and only tuples from the
new incarnation of the connection are consumed.

As described in Section 4.2.2, the SPL runtime proactively
drops tuples (and DrainMarkers) when it detects that a PE
connection breaks. This ensures that no new consistent state
is established if there was the possibility of tuple loss. If a
failure happens right after a DrainMarker submission, the
establishment of the consistent state can still complete. Al-
lowing this situation is correct, as TCP guarantees FIFO
within a single connection. As a result, if the downstream
operator consumes the DrainMarker, it is because it has
consumed all tuples before it.

5. OPERATOR PROGRAMMING MODEL
Most of the time, SPL developers compose an applica-

tion by using pre-existing operators. When new logic is
required, developers can write new operators by implement-
ing callback handlers which are invoked when a new tuple is
available for processing in one of the operator’s input ports.
The handler applies a transformation on the input tuple

3This behavior is slightly di↵erent for multi-threaded oper-
ators. Details on how such cases are addressed can be found
in Section 5.1.

(e.g., filtering, modification of internal state) and optionally
generate a new output tuple as a result. The output tuple
is submitted to one of the operator’s output ports.

Developers can also write multi-threaded operators. In
this case, the SPL runtime creates as many threads as spec-
ified by the operator and lets each thread execute a user-
defined callback, giving full control of the thread to the op-
erator. This is commonly used by source operators to control
data ingestion and tuple submission. Non-source operators
can also be multi-threaded. This can be for performance
reasons or to execute tasks asynchronously to tuple process-
ing (e.g., a time-based window).

Operators can be written in C++, Java, and SPL itself.
When using C++, developers can leverage a code genera-
tion framework to generate specialized code depending on
the operator configuration. Java and SPL operators (also
called Customs) must use runtime APIs to customize op-
erator behavior. To fully leverage the power of consistent
regions, developers must adapt operators that are stateful
or that interact with an external system (e.g., database, file
system). To enable operators for consistent regions, we have
added a new interface named StateHandler. The interface
exposes directly to operators the di↵erent stages of the pro-
tocol, namely drain, checkpoint, and reset. This empow-
ers operator developers to clearly define how a given oper-
ator behaves when in a consistent region, and even achieve
exactly-once application output in certain situations.

Figure 4 shows an example of a C++ operator that counts
the number of processed tuples and sends the result down-
stream. As this operator does all its transformations and
tuple submissions when processing the tuple (lines 02-09),
no drain logic is needed (line 11). At the checkpoint stage,
the operator serializes and persists its state to the check-
point backend store (lines 13-16). At the reset stage, the
operator deserializes the state from the checkpoint backend
(lines 18-21). The resetToInitialState callback is a spe-
cial case of the reset stage, so that an operator can reset to
its initial state after the execution of the constructor. This
is used when there is an operator failure prior to the success-
ful establishment of the first consistent checkpoint. For all
StateHandler methods, developers must use a lock guard
(AutoMutex) when accessing state, as the callbacks might
be invoked by a runtime thread.

Figure 5 shows an operator coded in SPL with the same
functionality as the one in Figure 4. This operator produces
an output stream named TupleCounter with two attributes
(line 0). When a tuple comes in through the Input stream
(line 1), it increments the counter and submit a new tuple
to the output stream (lines 4-8). When a Custom operator
is in a consistent region, the SPL compiler generates extra
code to serialize and deserialize operator state (line 3). As
a result, developers do not need to take any special action
and can avoid the boilerplate code of C++ operators.

5.1 Multi-Threaded Operators
A key requirement to achieve consistency is for the check-

pointed operator state to be coordinated with the state of
the stream connections. If the operator changes its internal
state and submits a tuple as a result, we must ensure that if
we save the operator state after the change, then the tuple
must indeed be submitted to downstream operators. This
means that there must be a point in the operator code in
which it gives the SPL runtime the opportunity to do state

1347

00: MY_OPERATOR::MY_OPERATOR() : numTuples_(0) { }
01:
02: void MY_OPERATOR::process(Tuple const & tuple,
03: uint32_t port) {
04: AutoMutex am(mutex_);
05: numTuples_++;
06: OPort0Type otuple(tuple.getAttributeValue(0),
07: numTuples_);
08: submit(otuple, 0);
09: }
10:
11: void MY_OPERATOR::drain() { }
12:
13: void MY_OPERATOR::checkpoint(Checkpoint & ckpt) {
14: AutoMutex am(mutex_);
15: ckpt << numTuples_;
16: }
17:
18: void MY_OPERATOR::reset(Checkpoint & ckpt) {
19: AutoMutex am(mutex_);
20: ckpt >> numTuples_;
21: }
22:
23: void MY_OPERATOR::resetToInitialState() {
24: AutoMutex am(mutex_);
25: numTuples_ = 0;
26: }

Figure 4: Operator implemented in C++ can spec-
ify its behavior in consistent regions by implement-
ing the drain, checkpoint, reset, and resetToInitial-

State callbacks.

00: stream<int32 id, int32 counter> TupleCounter =
01: Custom(Input) {
02: logic
03: state: { mutable int32 count = 0; }
04: onTuple Input: {
05: count++;
06: submit({id = Input.id, counter = count},
07: TupleCounter);
08: }
09: }

Figure 5: Operator implemented in SPL. Implemen-
tation of consistent region callbacks are automati-
cally generated by the compiler.

serialization and the drain marker propagation.
In operators that do processing only as a result of an in-

coming tuple (Figures 4 and 5), a natural point in which the
runtime can do the checkpoint is right after fully processing
the tuple (process() and onTuple). After the method ex-
ecutes, the operator has done internal state change (if any)
and optionally submitted tuples downstream.

When the operator has full control of the submission
thread, defining the correct point becomes problematic. For
example, a source operator commonly has a loop that con-
sumes data from an external source, creates a tuple and
submits it downstream. The only opportunity that the SPL
runtime has to checkpoint the operator state is when the
operator code interacts with the runtime, such as submit-
ting a tuple. However, checkpointing operator state right
before or right after submitting a tuple downstream is not
necessarily correct. This is because the developer is free to
write any code before and after the submission, including
doing multiple tuple submissions. As a result, the runtime
cannot correctly infer the semantically correct point to stop
the operator and checkpoint its state.

To solve this problem, we introduce the concept of con-
sistent region permits, which enable an operator to bundle

state changes and tuple submissions in a single transaction.
Permits are essentially a semaphore with extra logic for han-
dling the stages of the consistent region protocol. With
them, developers can ensure that the serialized internal state
correctly reflects the state of the channels. To start a bun-
dled state change and tuple submission, operator code must
acquire a permit. Once the operator successfully acquires a
permit, it can do state changes and submit resulting tuples
to the operator’s output ports. It is illegal for an operator
to submit a tuple without holding a permit.

While the operator is holding permits, the SPL runtime
cannot start the establishment or the reset of a consistent
state. When the SPL runtime receives a notification from
the controller that it must establish a consistent state, it will
indicate that the operator must drain. While draining, the
operator can continue to submit new tuples. Once the drain
callback returns, the runtime no longer gives out new per-
mits and waits until all existing permits are released. When
attempting to acquire a new permit, the operator blocks un-
til it is safe to resume tuple processing. When the operator
is not holding any permits, the SPL runtime can checkpoint
and reset state. When the permit acquisition is granted to
an operator thread after a checkpoint, the thread continues
its normal operation and can submit the next tuple. When
the permit is granted after a reset, the operator might have
changed its state to an older state. The next tuple it will
submit will be using the recovered state.

Figure 6 shows a code segment of a source operator that
submits tuples with strictly increasing values. This thread
only exits when the job is about to shutdown (line 2). At
every loop iteration, the operator acquires a permit, creates
and submits a tuple, and update its internal state. The
permit bundles the tuple submission and the state change
(lines 6-7). The permit is acquired at every loop iteration.
This gives the SPL runtime an opportunity to do a check-
point or a reset at every tuple. Permit acquisitions involve
locking, which might be costly for some operators. This can
be easily addressed by doing multiple tuple submissions in
a single permit acquisition. The code for checkpointing and
resetting the state of this operator is identical to Figure 4.

00: void MY_OPERATOR::process(int32_t threadId) {
01: ProcessingElement & pe = getPE();
02: while(!pe.getShutdownRequested()) {
03: ConsistentRegionPermit crp(_crContext);
04: AutoMutex am(mutex_);
05: OPort0Type tuple(numTuples_);
06: submit(tuple, 0);
07: numTuples_++;
08: }
09: }

Figure 6: Source operator doing a consistent region
permit acquisition to bundle tuple submission and
state change on a free running thread.

In general, permits can be used by any operator that is
multithreaded and do tuple submission from the threads
(e.g., a time-based aggregator). Permits are also used by
the SPL runtime when an operator in the consistent region
has an autonomous input port (Figure 1(c)). During com-
pilation, the SPL compiler automatically generates permit
acquisition code for the autonomous input port. In this way,
we can guarantee that no tuples flow through the input ports
while the region is checkpointing and resetting.

1348

5.2 Operator Adaptation
SPL allows developers to reuse and share analytics via

toolkits. A toolkit contains pre-built analytics which can be
used by any SPL application. SPL has a standard toolkit,
which has general-purpose operators (aggregation, join, fil-
tering, data ingestion, parsing, and data exporting), and
several specialized toolkits, which include special purpose
operators (e.g., time-series analytics). Currently, 73 oper-
ators in the standard and specialized toolkits support con-
sistent regions. With respect to consistent regions, toolkit
operators can be split into two categories: (i) operators with
in-memory state only, and (ii) operators with external state.

5.2.1 Operators with In-Memory State
Operators with in-memory state can be further divided

in three categories: (i) operators with state in serializable
variables, (ii) operators with part of its state in libraries, and
(iii) operators with blocking calls when handling tuples.

Operators in category (i) are trivial to adapt. Developers
just need to serialize and deserialize its member variables.
Examples are our operators that do aggregation and join.

Operators in category (ii) require libraries to have support
for serialization and deserialization. If they don’t, we limit
the conditions which we do checkpointing for. One exam-
ple is the operator for stream decompression (Decompress),
which uses the Boost libraries for decompression. Establish-
ing consistent states is allowed only when Decompress fin-
ishes decompressing a complete stream, which is when the
library holds no state. This condition can be easily achieved
with consistent regions, as we enable operators to define the
boundaries in which consistent states are established.

Operators in category (iii) are those that block while pro-
cessing a tuple, and are unblocked only by processing an-
other tuple through a di↵erent thread. One example is the
Gate operator that only submits a new tuple once it receives
an acknowledgment tuple corresponding to the previously
submitted tuple. Under failures, there is no guarantee that
such tuple will come and cause the main processing thread
to unblock. As a result, the process() method will not fin-
ish, and the condition to establish a consistent checkpoint
will not be met. The standard toolkit has 2 such operators
and they are are not supported in consistent regions.

5.2.2 Operators with External State
Operators with external state are any operators that in-

teract with an external system. In general, they are source
and sink operators, which are used to ingest data into the
application or to externalize the application result. They
can also be intermediate operators that interact with, for
example, a database or a key-value store to do lookups.

For input adapter operators, only operators that ingest
data from a replayable streams were adapted for consistent
regions. Examples include a directory scanner, a file source,
and a database reader. Operators from non-replayable
streams, like a TCP socket reader and a UDP socket reader,
do not support consistent regions. Alternatively, we pro-
vide an operator named ReplayableStart that bu↵ers input
streams and replays them, if necessary, during a consistent
region reset.

For operators that write data to an external system, only
those that can control the state of the external system were
adapted to consistent regions. For example, operators that
write tuples to TCP or UDP sockets cannot retract their

write. On a failure and data replay, these operators end up
writing duplicate data. Operators interacting with external
systems that expose su�cient interfaces for retracting writes
were adapted for consistent regions and, in many use cases,
achieve exactly-once tuple processing semantic. Examples
include the operator to write tuples to files (FileSink) and
the database writer operator (ODBCAppend).

6. CHECKPOINT BACKEND STORE
Operators’ checkpoints are stored in a remote persistent

key-value store. An operator writes multiple checkpoints
throughout its life cycle. Each checkpoint consists of serial-
ized variables. We organize checkpoints in a key-value store
through a two-level data model mapping.

We first represent the checkpoint data in an abstract key-
value store data model, and then map this abstract model
to the underlying data store’s specific data model and data
structures. In this abstract model, a key-value store provides
a two-level hierarchical namespace. There are one or more
Data Store Entries in the store. A Data Store Entry has
a unique name and contains a collection of key-value pairs.
For each key-value pair, the key is a byte string and is unique
within the scope of the Data Store Entry; the value is also
a byte string whose size is no larger than a configured size
limit. The model requires that the key-value store provides
interfaces to (1) create, delete, and test existence of a Data
Store Entry; (2) put, get, delete, and test existence of a key-
value pair within a Data Store Entry. This abstract key-
value store data model is general and can be implemented
on top of popular key-value stores. For example, the Data
Store Entry abstraction can be implemented as a hash table
in Redis [8] or a database instance in LevelDB [7] which
holds all key-value pairs in the Data Store Entry.

Each operator stores its checkpoints in a Data Store Entry
that is uniquely named by a concatenation of application’s
job ID and operator’s index within the application. Both
application job ID and operator index are assigned by the
system. Within an operator’s Data Store Entry, each check-
point is stored as a number of key-value pairs. The serialized
checkpoint data are broken into fix-sized chunks (except the
last chunk which may be smaller), and each chunk is as-
signed a key that is a concatenation of checkpoint sequence
ID plus a chunk index. The chunk size is set to accommo-
date the underlying key-value store’s value size limit.

We provide both C++ and Java checkpointing API for
operator developers. As described earlier, an operator in a
consistent region should implement the checkpoint() and
reset() callbacks. Both callbacks take a Checkpoint in-
stance as parameter. The Checkpoint class provides an in-
terface to write data from and read data to the checkpoint
backend store (see Figure 4 for example).

The SPL runtime implements the abstract key-value store
model in the form of client adapters to specific key-value
stores, and handles serialization, chunking, I/O batching,
data transfer, sharding and replication under the hood of
the checkpointing API. We currently support using Redis
and LevelDB as a checkpoint backend store.

7. EXPERIMENTAL EVALUATION
In this section, we describe tests that are continually

conducted for validating the functionality of consistent re-
gions. We then present performance experiments to show

1349

the impact of consistent regions on application performance.
Those performance experiments are conducted with 4 ma-
chines. Each machine has a Intel Xeon E5-2680 processor
with 16 cores at 2.70GHz, 64KB L1 cache, 256KB L2 cache,
and 20MB shared L3 cache, and 250GB DRAM, and con-
nected with 1Gigabit Ethernet. We use Redis as the check-
point backend store. Redis version 2.8.9 is used with snap-
shotting and write-ahead-logging enabled.

7.1 Implementation Validation
The first question we investigate is, Do consistent regions

provide guaranteed tuple processing? For that, we have two
sets of tests. The first set validates whether the protocol can
correctly establish and restore consistent states in topolo-
gies composed only of simple operators (e.g., filtering, tu-
ple counting). The second set is to validate each adapted
toolkit operator (e.g., aggregate, join) and make sure it can
correctly reset its state from a checkpoint upon failure.

The first test set covers a variety of topologies, includ-
ing those with (i) cycles, (ii) multiple source operators, (iii)
multiple sink operators, (iv) multiple consistent regions, and
(v) operators with consistent and autonomous input ports,
among other variations. This set also exercises a variety
of failure modes, such as (i) operator crashes during nor-
mal data processing, checkpointing, and reset, (ii) controller
crashes during its di↵erent state transitions, (iii) crashes of
di↵erent IBM Streams infrastructure components, including
the checkpoint backend, (iv) operator crashes due to ex-
ception throwing, and (iv) operator crashes concurrently to
crash of infrastructure components. For a test to be con-
sidered successful, the output must always be complete and
the values of produced tuples must be the exact same as if
the application had not fail (golden run).

The second test set validates the correct recovery of an
application when using a given operator and all its di↵erent
configurations. Taking as an example the Aggregate oper-
ator in the SPL standard toolkit, it can be configured with
many di↵erent windowing options (e.g., sliding, tumbling,
punctuation-based tuple eviction). All must be validated
under failure conditions and checked against the golden run
output. This process is repeated for all operators that sup-
port consistent regions (73 operators in version 4.1).

These two sets total over 200 tests that run as part of
the continuous IBM Streams build. For every release, both
automated tests and additional QA tests must pass.

7.2 Impact on Application Throughput
Impact on stateful applications. The second question

we investigate is, What is the impact of consistent regions

on the throughput of an application with stateful operators?

In general, such impact depends on the frequency of estab-
lishing consistent states and the total size of checkpointed
state. We run two sets of tests to quantify it.

The first set of tests run five applications and vary the
frequency of establishing consistent states. The applications
are: (i) Enron-DS, (ii) Enron-FS, (iii) LogWatch, (iv) Vwap,
and (v) Lois. Both Enron-DS and Enron-FS process the En-
ron email dataset [6] and do word counting, but they ingest
data di↵erently. Enron-DS uses a directory scanner to scan
file names for file data ingestion. Enron-FS uses 5 di↵erent
file sources to read files in parallel. LogWatch detects secu-
rity attacks by analyzing the system messages from a Linux
host. Vwap calculates the volume weighted average price of

stocks on incoming trades and quotes feeds. Lois is a ra-
dioastronomy application, analyzing radio signals. For each
application we measure its performance without consistent
region to establish a baseline, and then measure performance
with the whole application in a consistent region. Table 1
shows more detailed information about the applications.

Figure 7(a) shows the impact on throughput when us-
ing consistent regions on the applications as described in
Table 1. For Enron-DS, we use an operator-driven consis-
tent region, where a consistent state is established after fully
processing a file. For all others, we use periodic consistent
regions, and configure the periods to vary from 2, 4, 8, 32,
to 64 seconds. We run each configuration 10 times. The
throughput is normalized to the average throughput of the
application running without consistent regions.

As expected, the impact on throughput decreases as the
frequency of establishing consistent states decreases. The
impact goes from 27% on average for LogWatch, to 0.01%
on Enron-DS. The impact on Enron-DS is negligible, as the
application only establishes consistent states after fully pro-
cessing a file. Although it has a larger state than the other
applications, it only persists it infrequently. Furthermore,
when it does so, it only takes 0.18 seconds. When Enron-FS
establishes consistent states at every 2 seconds, the appli-
cation throughput decreases by 14%. In this case, the total
elapsed time for taking a consistent state is 1.03 seconds.
During this time, the application is still processing data in
the drain stage, but no new data is being pushed down the
pipeline. As the period of the consistent region increases,
the impact on the average application throughput becomes
negligible. For Vwap, the state is small (2.3MB), and the
drain and checkpoint stages take only 0.07 seconds on aver-
age. Hence the impact on Vwap throughput is small (9.1%
to 4.7%). The impact on the Lois application is interesting.
Even with a period of 2 seconds, the impact on throughput
is only 4%. This is because the computation cost per tuple
is high, so most of the time spent during a consistent state
is in the drain stage, when the application is still processing
tuples. Once the consistent state is established, the appli-
cation queues are empty. However, the impact of an empty
queue is diminished because once there is any tuple in the
queue, that tuple takes a long time to process.

The second set of tests run a synthetic application and
vary the total size of checkpointed state. The synthetic ap-
plication has one source operator sending tuples to a chain of
64 downstream operators. One of the downstream operators
maintains a sliding window for incoming tuples. We imple-
ment two versions of this operator: (i) the blocking check-

point version persists the sliding window in checkpoint stage;
whereas (ii) the non-blocking checkpoint version makes a
copy of the window in prepare-to-checkpoint stage and per-
sists the copy in the background after tuple processing re-
sumes (as described in Section 4.2.3). We run the applica-
tion without consistent regions to form a baseline. We then
set the whole application in a consistent region and run the
blocking and non-blocking checkpoint versions, respectively.
We vary the sliding window size but fix the consistent region
period to 8 seconds. Figure 7(b) shows the throughputs with
blocking and non-blocking checkpoint, both normalized to
the same baseline throughput.

With blocking checkpoint, the throughput degrades more
severely with larger checkpoint sizes (from 4% with 8MB
checkpoint to 40% with 512MB). This is because the tuple

1350

Application
Number Number Max. Max. graph Average global Average baseline Average time

of operators of PEs fan-out length state size (MB) throughput (tuples/sec) of a drain (sec)
Enron-DS 20 3 5 6 12.00 (+-0.00) 11781.82 (+- 244.85) 0.18 (+- 0.04)
Enron-FS 22 3 5 5 12.06 (+-0.07) 25445.40 (+- 188.82) 1.03 (+-0.46)
LogWatch 29 7 7 13 7.1 (+-3.6) 192494.56 (+- 9717.08) 1.16 (+-0.28)

Vwap 26 6 4 6 2.37 (+-0.14) 384245.91 (+- 4729.49) 0.07 (+-0.01)
Lois 22 1 3 16 1.4 (+-0.0) 1855.71 (+- 18.18) 1.14 (+-0.096)

Table 1: Application characteristics in terms of number of operators, number of PEs, maximum fan-out and
graph length in toplogy, average size of checkpointed global state, baseline throughput, and average time to
establish a consistent state. The last two measurements include the 95% confidence interval.

(a) (b) (c)

Figure 7: E↵ect of consistent regions on application throughput. Figure 7(a) shows the normalized throughput
on stateful applications when varying the period. Figure 7(b) shows the normalized throughput when varying
checkpoint sizes. Figure 7(c) shows the normalized throughput when scaling a stateless application topology.

processing is paused until the checkpoint stage completes
(i.e., until checkpoint is written to backend store). On the
other hand, non-blocking checkpoint resumes tuple process-
ing shortly after the prepare-to-checkpoint stage finishes. In
this test case, the prepare-to-checkpoint stage makes a copy
of the sliding window, which takes much less time than per-
sisting the data to backend store. As a result, non-blocking
checkpoint can sustain high normalized throughput even
with large checkpoints (e.g., 94% with 512MB checkpoint).

Impact on stateless applications. The third question
we investigate is, What is the impact of consistent regions

on the throughput of an application with stateless operators

only? This question is of interest because the impact re-
flects the overhead of marker propagation. To answer this,
we use a synthetic application consisting of a source oper-
ator, a sink operator, and multiple stateless operators in
between. These stateless operators are organized as a num-
ber of parallel chains. The source operator sends tuples to
those parallel chains in a round-robin manner. All the par-
allel chains are connected to the sink oprator which drops all
tuples it receives. This synthetic application emulates the
data parallel and pipeline parallel patterns. We vary the
number of operators in a parallel chain from 8, 16, 32, to
64. Every 8 operators are fused in a single PE. The source
and sink operators are in two other PEs. Adjacent PEs are
placed on di↵erent machines. We also vary the number of
parallel chains to be 1 or 4. We measure throughput when
the application is in a consistent region with a 8-second pe-
riod, and normalize the throughput to the baseline in which
the application runs without consistent regions.

As shown in Figure 7(c), when the topology has one par-
allel chain, the impact on throughput of stateless applica-
tions is at most 3%, with little variation among the di↵erent
chain lengths. The drain times vary from 38ms, for 8 op-
erators, to 67ms for 64 operators. As expected, the drain
time increases as the topology increases. Still, the through-
put does not show much variation among the di↵erent chain

lengths, as there is still tuple processing occurring concur-
rently with tuple drain. Similar results are observed when
there are 4 parallel chains, although the impact on through-
put is slightly larger (around 4.6%) than the single chain
case. This is because the tuple flow is blocked until the
sink operator receives drain markers from all parallel chains.
More parallel chains lead to longer blocking times.

8. RELATED WORK
Many of the earlier works in stream processing consid-

ered low-latency to be a key requirement. This was one of
the primary drivers for approaches such as the one in Bore-
alis [10], where tuples with tentative results were generated
when an application would experience failures and later cor-
rected after recovery. Other techniques supported partial
fault-tolerance [11, 17, 19, 20, 22, 27] and sacrificed applica-
tion output precision for lower runtime costs. In [19], we pro-
posed using language-level abstractions to annotate which
operators in a stream processing graph do checkpointing.
With this approach, operators checkpoint independently, so
no tuple processing guarantee is provided.

Apache Storm [3] by default provides operator restarts
without data processing guarantees. Storm has a tuple ac-
knowledging scheme for processing tuples at-least-once [4].
This scheme enables developers to explicitly describe the
provenance of a tuple. This acknowledgment scheme does
not support applications requiring in-order tuple processing.
Storm’s higher level Trident API [5] enables exactly-once tu-
ple processing. With this API, the application can associate
operator state to a batch of processed tuples. A batch in Tri-
dent is equivalent to a set of tuples processed between two
consistent states. In IBM Streams, users are free to define
batch sizes according to a period or to be operator-specific
(operator-driven). Furthermore, we allow any user-defined
operator to be used in consistent regions, including oper-
ators that use external systems. One such example is the
RScript operator [1], which can use stateful R scripts to do

1351

tuple transformations and participate in a consistent region
by implementing the drain, checkpoint and reset callbacks.
Heron [21], Twitter’s reimplementation of Storm, does not
support exactly-once tuple processing.

Spark [25] provides fault tolerance via immutable RDDs
and lineage tracking, but limits the applications to deter-
ministic and rollbackable operators. In comparison, IBM
Streams allows more general application logic. Furthermore,
we provide API that enables operators to take specific ac-
tions during di↵erent stages of the protocol. This allows
applications to interact with external systems and integrate
complex behavior into the consistent region protocol.

Meteor shower [24] also uses Chandy-Lamport for estab-
lishing consistent states of a distributed streaming applica-
tion. Unprocessed tuples are persisted together with op-
erator state. Our implementation propagate tokens from
sources and does a drain stage to ensure that any pending
tuples are fully processed. This has an advantage when tu-
ples contain data that reference external resources and such
resources must be periodically recycled. For example, a tu-
ple can reference a file name which can be opened and read
by an operator downstream. If the protocol guarantees that
a given tuple has been fully processed, it means that the
file can be deleted when a checkpoint retires, as there is the
guarantee that it has been fully processed.

MillWheel [9] has both exactly-once and at-least-once pro-
cessing guarantees, similar to IBM Streams. MillWheel,
however, takes a di↵erent approach, as all its processed
records have identifiers which are used in a deduplication
step. Such technique is unsuitable for Streams, as records
can’t always be uniquely identified deterministically.

Apache Flink [2] also uses a variation of Chandy-Lamport
to support guaranteed processing [13], similar to what is
available since IBM Streams 4.0 [1, 18]. Some key di↵erences
in Streams are that we provide programming language ab-
stractions which enable developers to do fine-grained selec-
tion of which parts of the topology require guaranteed data
processing, lowering the cost of providing fault tolerance.
We also provide APIs to support multi-threaded operators
to participate in a consistent state.

The sweeping checkpointing technique [15] persists both
internal operator state and tuples in output queues. As
described above, our method does not persist queue state.
Similar to sweeping checkpointing, our method can tolerate
multiple operator failures, as tuples are fully processed and
checkpoint state is stored in a persistent backend store.

9. CONCLUSIONS
In this paper, we describe how we achieve at-least-once

and exactly-once tuple processing in IBM Streams by ap-
plying a variation of the classic Chandy-Lamport distributed
snapshot algorithm. Such endeavor was non-trivial, as IBM
Streams applications can be partially fault-tolerant, be non-
deterministic, have cycles in topology, have multi-threaded
operators, have several legacy operators, and can directly ac-
cess external components (e.g., files, databases). Consistent
regions have been available in IBM Streams since version
4.0. Since version 4.1, we have implemented incremental
checkpointing for windowed operators [26]. In the future,
we plan to release the support for non-blocking checkpoint-
ing and evaluate the impact of persisting stream connections
versus fully draining them.

Acknowledgments
We thank Howard Nasgaard and Ankit Pasricha for the help
throughout the development of consistent regions.

10. REFERENCES
[1] IBM InfoSphere Streams Version 4.0. https://www-

01.ibm.com/support/knowledgecenter/SSCRJU_4.0.0/,
March 2015.

[2] Apache Flink. http://flink.apache.org, 2016.
[3] Apache Storm. http://storm.apache.org, 2016.
[4] Apache Storm. Guaranteeing Message Processing.

https://storm.apache.org/documentation/Guaranteeing-
message-processing.html, 2016.

[5] Apache Storm. Trident State. https:
//storm.apache.org/documentation/Trident-state.html,
2016.

[6] Enron Email Dataset. http://www.cs.cmu.edu/~./enron/,
2016.

[7] Google’s Leveldb. https://github.com/google/leveldb,
2016.

[8] Redis Key-Value Store. http://redis.io/, 2016.
[9] T. Akidau et al. Millwheel: Fault-tolerant stream

processing at internet scale. In VLDB, 2013.
[10] M. Balazinska et al. Fault-tolerance in the borealis

distributed stream processing system. ACM Trans.
Database Syst., 33(1):3:1–3:44, Mar. 2008.

[11] N. Bansal et al. Towards optimal resource allocation in
partial-fault tolerant applications. In INFOCOM, 2008.

[12] T. Cao et al. Fast checkpoint recovery algorithms for
frequently consistent applications. In SIGMOD, 2011.

[13] P. Carbone et al. Lightweight asynchronous snapshots for
distributed dataflows. CoRR, abs/1506.08603, 2015.

[14] K. M. Chandy and L. Lamport. Distributed snapshots:
determining global states of distributed systems. ACM
Transactions on Computer Systems (TOCS), 3(1):63–75,
1985.

[15] Y. Gu et al. An empirical study of high availability in
stream processing systems. In Middleware, 2009.

[16] M. Hirzel et al. IBM streams processing language:
Analyzing big data in motion. IBM Journal of Research
and Development, 57(3/4):7, 2013.

[17] J.-H. Hwang et al. High-availability algorithms for
distributed stream processing. In ICDE, 2005.

[18] G. Jacques-Silva. Guaranteed tuple processing in
InfoSphere Streams v4 with consistent regions. https://
developer.ibm.com/streamsdev/2015/02/20/processing-
tuples-least-infosphere-streams-consistent-regions/,
February 2015.

[19] G. Jacques-Silva et al. Language level checkpointing
support for stream processing applications. In DSN, 2009.

[20] G. Jacques-Silva et al. Fault injection-based assessment of
partial fault tolerance in stream processing applications. In
DEBS, 2011.

[21] S. Kulkarni et al. Twitter Heron: Stream processing at
scale. In SIGMOD, 2015.

[22] L. Neumeyer et al. S4: Distributed stream computing
platform. In ICDMW, 2010.

[23] Oracle. Java Management Extensions.
http://docs.oracle.com/javase/8/docs/technotes/
guides/jmx/index.html, 2015.

[24] H. Wang et al. Meteor shower: A reliable stream processing
system for commodity data centers. In IPDPS, 2012.

[25] M. Zaharia et al. Discretized streams: fault-tolerant
streaming computation at scale. In SOSP, 2013.

[26] F. Zheng et al. Adaptive incremental checkpointing for
high-performance data streaming applications. In Under
submission.

[27] Q. Zhu et al. Supporting fault-tolerance in streaming grid
applications. In IPDPS, 2008.

1352

