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ABSTRACT
Data partitioning is an indispensable ingredient of database
systems due to the performance improvement it can bring
to any given mixed workload. Data can be partitioned hor-
izontally or vertically. While some commercial proprietary
and open source database systems have one flavor or mixed
flavors of these partitioning forms, Teradata Database of-
fers a unique hybrid row-column store solution that seam-
lessly combines both of these partitioning schemes. The
key feature of this hybrid solution is that either row, col-
umn, or combined partitions are all stored and handled in
the same way internally by the underlying file system stor-
age layer. In this paper, we present the main characteris-
tics and explain the implementation approach of Teradata’s
row-column store. We also discuss query optimization tech-
niques applicable specifically to partitioned tables. Further-
more, we present a performance study that demonstrates
how different partitioning options impact the performance
of various queries.

1. INTRODUCTION
Data partitioning is a principal factor in query optimiza-

tion and processing [17]. It allows access to a subset of data
if and when possible, which can improve the overall perfor-
mance considerably by reducing I/O cost, boosting system
throughput, increasing query parallelism, maximizing local-
ity of joins and aggregations [29], and giving the opportunity
for finer locking granularity [15].
Data can generally be partitioned by row or by column.

Row partitioning divides a table horizontally. Each row par-
tition clusters together a subset of the rows. With row par-
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titioning, only a subset of rows is accessed for queries that
specify a single value or a range of values on the partition-
ing column(s). Consider the example in Figure 1 in which
a Sales table is partitioned by row on the transaction date.
With row partitioning, the following query that retrieves
“ItemNo” for the date of “05-29-2011” needs to access and
read only one row partition instead of the whole entire table.

SELECT ItemNo
FROM Sales
WHERE TxnDate = ‘05-29-2011’

Figure 1: Example of Row Partitioning

Column partitioning divides a table vertically into disjoint
sets of columns [26]. Each column or group of columns in
a table becomes a partition containing the column partition
values of that column partition. With column partition-
ing, a query needs to access only the column partition(s)
that contain the columns referenced in the query. Consider
the example in Figure 2. In this example, the Sales table
is partitioned by column such that each column is placed
in a separate column partition. The query that retrieves
“ItemNo” for items sold on “05-29-2011” needs to access
only 2 columns of the table.

It is evident that both row and column partitioning can
improve query performance in different ways. If the two
partitioning forms can be combined together, the improve-
ment on query performance can be substantial. Consider
the example with a mix of row and column partitioning as
shown in Figure 3. With this hybrid partitioning, retrieving
“ItemNo” for items sold on “05-29-2011” requires access to
only two columns of only two rows.
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Figure 2: Example of Column Partitioning

Figure 3: Example of Row-Column Partitioning

In this paper, we present Teradata’s hybrid row-column
store that allows for row and column partitioning and a
mixed storage of both. First, we describe the Teradata
Database parallel architecture and its main components.
Then we discuss the key features and explain the implemen-
tation approach of data partitioning in Teradata. We also
discuss several query optimization techniques applicable to
partitioned tables. Lastly, we show the results of a perfor-
mance study conducted to examine the impact of different
partitioning choices.
Teradata Database is a shared-nothing architecture [25]

that can be deployed toMassively ParallelProcessing (MPP)
systems1 [7]. The architecture contains two types of multi-
threaded virtual processing units: Parsing Engines (PE)
and Access Module Processors (AMP). A PE executes the
database software and communicates between client systems
and AMPs. Each AMP owns part of the data on the physical
disk space and manages the database interactions between
PEs and virtual disks. The communication between PEs
and AMPs is carried through a virtual layer of an interpro-
cessor network known as BYNET.
In Teradata, all tables are partitioned by nature through

a multitier partitioning mechanism. The first tier of par-
titioning is implicit. It establishes the distribution of data
across AMPs. It is determined based on whether a table
has a Primary Index (PI), Primary AMP Index (PA), or no
Primary Index (NoPI). A table with either a PI or PA is par-
titioned over AMPs by being hash-distributed on the value
of PI/PA columns. A NoPI table is partitioned randomly.
The middle tier is defined explicitly using the PARTITION
BY clause and applies to rows distributed to an AMP. Rows
can be partitioned by row or by column or both. There can
be multiple levels of row partitioning but at most one level
of column partitioning. All partitions are stored and han-
dled by the underlying file system in the same way. The file

1MPP systems consist of one or more Symmetric Multi
Processing (SMP) systems.

system is not row-based or column-based and is agnostic to
the partitioning scheme. The last tier of partitioning deter-
mines whether data is further partitioned based on rowhash,
and it applies only to PI tables.

We discuss various optimization techniques that pertain
to partitioned tables. Teradata’s query optimizer considers
different optimizations that are applicable over partitioned
tables for single-table access and join queries. Some opti-
mization techniques such as partition elimination are com-
mon for different kind of partitioning, while other techniques
such as late materialization are specific for tables partitioned
by column.

We present a performance study conducted based on the
TPC-H benchmark [28]. The purpose of the experiments is
to analyze the trade-offs and examine the impact of dif-
ferent partitioning options. Performance metrics include
I/O count, CPU time, and elapsed time. Metrics are re-
ported for nonpartitioned, row partitioned, column parti-
tioned, and row-column partitioned tables. Queries used
in experiments include simple full-table scans, aggregation
queries, join queries, and rollup queries. The results show
that some partitioning forms can result in significantly smaller
table sizes and can improve the performance of some queries
considerably.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview of Teradata Parallel Database. Sec-
tion 3 explains data partitioning in Teradata. Section 4
discusses different query optimization techniques over par-
titioned tables. Section 5 presents performance study. Sec-
tion 6 discusses related work. Finally, Section 7 concludes
the paper.

2. TERADATA PARALLEL DATABASE
Teradata is a parallel database [6] with a shared-nothing

architecture that inherently enables horizontal scalability.
The architecture has four main components: PE, AMP,
VDisk, and BYNET (see Figure 4).

Figure 4: Teradata Shared-Nothing Architecture

A PE is a multithreaded virtual processor responsible for
controlling sessions, validating and enforcing security rules,
parsing requests, optimizing queries, and dispatching pro-
cessing steps to AMPs. An AMP is also a multithreaded vir-
tual processor. It executes database operations (e.g., lock-
ing, journaling, updates, and retrieves) on a portion of data
on virtual disks (VDISKs). A VDISK is a physical space
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of the storage allocated and assigned by the virtual storage
subsystem to each AMP. The virtual storage subsystem au-
tomatically puts hot data on faster storage resources (includ-
ing in memory) and cold data on slower storage resources.
PEs and AMPs exchange messages via BYNET, which is
a logical layer of communication. In multinode systems,
BYNET communication across nodes is done by means of a
physical network such as InfiBand or Ethernet. In a single-
node system, BYNET is just a virtual layer. BYNET im-
plements bidirectional, multicast, and point-to-point com-
munications between processes.
The building blocks of parallelism in Teradata Database

are PE and AMP. A PE is the unit of parallelism at the ses-
sion level. It handles multiple sessions that run concurrently
within a node and across nodes. It consists of Syntaxer, Re-
solver, Security, Query Rewrite, Query Optimization, Steps
Generation, and Dispatcher subsystems.
Syntaxer parses SQL text, builds a skeleton tree, and

reports syntax errors. Resolver retrieves dictionary infor-
mation, annotates the skeleton tree, and reports semantic
errors. Security subsystem verifies access rights and per-
forms requested access logging. Query Rewrite subsystem
applies rewrite rules and generates semantically-equivalent
queries. Query optimizer optimizes queries and parallelizes
steps. Step Generation subsystem builds execution steps
and sends steps to Dispatcher. The Dispatcher collects all
messages of a request and dispatches steps to AMPs.
A PE does not access database storage directly. It receives

requests from client applications, resolves and optimizes re-
quests, and generates steps to execute requests. Then it
dispatches steps to AMPs, receives response messages back
from AMPs, processes response, and returns the final re-
sponse to client system.
An AMP is the unit of parallelism for data processing and

is not associated to a specific session. Its functions include
accounting, journaling, locking, and data conversion.
An AMP is a collection of worker tasks, which are threads

that process database requests. A worker task performs the
actual work requested by a particular step such as sort-
ing, aggregation, and joins. It picks up a request from a
queue of requests according to their priorities, services the
request, and then waits for another request to arrive from
PEs. AMPs can be grouped to form AMP clusters which
are vital for fault tolerances.
With PEs and AMPs, parallel processing takes place at

different levels. A PE manages multiple sessions at the same
time.2 A step is parallelized across all the AMPs with one
worker task (i.e., thread) per AMP working concurrently on
behalf of the query. Multiple steps with no inter-dependency
are also parallelized. The system automatically manages the
number of parallel steps that run concurrently for a query
to avoid worker task exhaustion and concurrency conflicts.3

Parallel processing is driven by the database parallel-aware
query optimizer. Query optimization in Teradata is rule-
based and cost-based. Rule-based optimizations are nor-
mally in the form of query rewrites and are performed by the
Query Rewrite subsystem [11]. Examples of query rewrites
include projection pushdown, predicate pushdown, join elim-
ination, outer-to-inner join conversion, set operation branch
elimination, and view folding. Cost-based optimizations are

2Up to 128 sessions per PE.
3Default is 80 worker tasks per AMP.

done by the Optimizer subsystem and involve cardinality
estimation, selectivity estimation, indexes selection, derived
statistics, and data redistribution and duplication. Exam-
ples of cost-based optimizations include single-table access
path selection, join indexes planning, local vs. global aggre-
gations, and single-AMP vs. all-AMP steps.

Teradata supports UDT, LOB, JSON, and Period data
types. It also supports temporal query processing [4] and
geospatial databases.

3. HYBRID DATA PARTITIONING
There are generally two forms of data partitioning. Row

partitioning breaks up a table horizontally based on expres-
sions defined on partitioning columns of interest. Column
partitioning divides a table vertically by grouping one or
more columns together. Teradata Database natively sup-
ports row and column partitioning and a hybrid of both.

3.1 Example
Figure 5 shows an example of how a table can be parti-

tioned on an AMP in the context of the following simple
aggregation query that calculates the average on column F
in table T for rows that have the value of column B between
4 and 7.

SELECT avg(F)
FROM T
WHERE B between 4 and 7

There are different ways to access data to answer this
query depending on partitioning of data:

• With no partitioning (option 1), the whole table is
accessed.

• With row partitioning on column B (option 2), all
columns of only 3 rows are accessed.

• If the table is partitioned by column such that each
column is in a separate column partition (option 3),
then all rows of only 2 columns are accessed.

• With a mix of row and column partitioning (option 4),
only 2 columns of only 3 rows need to be accessed to
answer the query.

3.2 Rowidbased File System
Hybrid data partitioning in Teradata Database is achieved

primarily by means of its file system, which is agnostic to
the specifics of partitioning scheme. The file system is not
row-based or column-based. It is rowid-based. A rowid is a
fixed-length 16-byte key value that uniquely identifies a row
(or part of a row) in a table. It is used by the file system to
position to a specific row using an optimized 2-level B* tree
[8]. Rows (or parts of rows) are always maintained on AMP
in the order of their rowids.

The rowid of a row is constructed when the row is inserted
in a table. The generation and structure of the rowid de-
pends on whether the table has a Primary Index (PI tables),
Primary Amp Index (PA tables), or neither (NoPI tables).

For a PI table4, the rowid is generated based on hash
value calculated on the primary index columns. It consists
of 8-byte internal partition number, 4-byte row hash, and

4PI tables can be defined with a UPI (Unique Primary In-
dex) or with a NUPI (Non-Unique Primary Index).
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Figure 5: Partitioning Options in Teradata’s Hybrid Store

4-byte uniqueness. The internal partition number may be
compressed on disk to 0 bits if there is no actual partitioning
on the table or to 16 bits for 2-byte partitioned tables. The
high-order 20 bits of the row hash define the hash bucket.
The hash bucket, in turn, determines the AMP to which
the row is distributed. Within each internal partition and
row hash, uniqueness is a sequence that starts at the value
1 and is incremented by 1 for each row added with the same
partition number and row hash. Figure 6 illustrates the
structure of rowid for PI tables.

Figure 6: rowid of PI Tables

For PA and NoPI tables, rowid also has 8-byte internal
partition number. But unlike PI tables, there is no row hash.
Therefore, the high-order 20 bits define the hash bucket and
the uniqueness uses the remaining 44 bits. The hash bucket
assigned to a row of a PA and NoPI table is chosen as the
first hash bucket owned by the AMP that receives the row.
That 44 bits allows for a total of ∼ 1712 unique values. If
the uniqueness is exhausted, the next hash bucket owned by
the AMP can be used and the uniqueness is reset back to 1.
Figure 7 illustrates the structure of rowid for PA and NoPI
tables.

Figure 7: rowid of PA and NoPI Tables

Table 1 further illustrates the difference between PI, PA,
and NoPI tables in terms of row distribution and ordering.
Rows of PI and PA tables are hash-distributed to AMPs.
Rows of NoPI tables are randomly distributed to AMPs.
Once rows land on an AMP, they are always kept in the
order of their rowid. Since the partition number is the first
part of a rowid, rows that belong to the same partition are
stored together. Within each partition, rows of a PI table
are ordered by their row hash and rows of PA and NoPI
tables are simply assigned the next available uniqueness and
inserted in that order.

Table 1: Rows Distribution and Ordering

PI
Tables

PA Ta-
bles

NoPI
Tables

Hash-distribution to AMP X X X
Row-hash Ordering on AMP X X X

3.3 PARTITION BY Clause
Partitioning is effectively done at different levels. The

distribution of rows to AMPs establishes the level 0 of par-
titioning and is implied from table definition. The middle
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level specifies additional levels (1 to n) of partitioning by
row, column, or both. There can be multiple levels of row
partitioning but only one level of column partitioning. The
partitioning is the same for each AMP. There is an addi-
tional implied level of partitioning based on the row hash
at the lowest level n + 1. This implicit partitioning applies
only to PI tables.
The middle level partitions a table by row, column, or

both explicitly using the PARTITION BY clause to specify
levels 1 to n of partitioning. PARTITION BY clause has the
following syntax, which can be used when a table is created
or altered.

where 62 is the maximum number of additional partitioning
expressions.

3.4 Partitioning Expressions
Row partitioning can be specified by RANGE N and/or

CASE N expressions using the following syntax, respectively.

RANGE_N(test-value BETWEEN
range [, range]...)

CASE_N(conditional-expr1,
...,
conditional-exprn)

Conditions are evaluated left to right until a condition
results in true, unknown, or all conditions have been evalu-
ated. If the last evaluated condition is true, the partitioning
expression function returns the number of the corresponding
condition, with numbering starting at 1. For range expres-
sions, ranges must be ascending and non-overlapping.
The following is an example of defining partitions using

RANGE N that defines 84 partitions (1 to 84) based on
month.

PARTITION BY(
RANGE_N(
order_date BETWEEN
DATE ’2014-01-01’ AND
DATE ’2020-12-31’
EACH INTERVAL ’1’ MONTH)

)

An example of defining partitions using CASE N is as
follows. This example defines 6 partitions (1 to 6). The
UNKNOWN partition is used assuming that the value of v
can be NULL.

PARTITION BY(
CASE_N(v<=0,

v=1 ,
v=2 ,
v=3 ,
v>=4,
UNKNOWN)

)

A partitioning expression may have multiple column ref-
erences and a column may be referenced in multiple parti-
tioning expressions. Nevertheless, in practice, partitioning

expressions are normally more useful when they have a sin-
gle reference to a column that is not referenced in the other
partitioning expressions of the PARTITION BY clause.

A table is defined as column partitioned using the follow-
ing syntax.

COLUMN [[NO] AUTO COMPRESS]
[[ALL BUT] (column_groupings)]

A column partitioned table can be defined with autocom-
pression enabled or disabled. Without columns grouping,
each column forms a separate column partition. For exam-
ple, the following partitioning creates a column partitioned
table with autocompression enabled and with each column
in a separate column partition.

PARTITION BY(
COLUMN
)

The system offers the flexibility of altering tables to add,
drop, or modify partitions.

3.5 Teradata Columnar
The column partitioning feature in Teradata Database is

known as Teradata Columnar. This feature allows group-
ing columns of a table into disjoint sets of columns. Each
column partition is assigned a partition number. A column
partition (CP) can be single-column or multicolumn.

The physical format in which a CP is stored can be either
COLUMN or ROW format. COLUMN format means CP
values are packed in containers. In other words, each con-
tainer stores a series of column partition values of a column
partition. ROW format means each column partition value
goes in its own subrow. A subrow is similar to a regular
table row, but it is a subset of the columns in that row.
The format of each CP can be specified when a CP table is
created or altered. If the format is not specified explicitly,
the system determines which format to use. The baseline
assumption is that narrow CPs use COLUMN format and
wide CPs use ROW format.

3.5.1 Column Format
Using COLUMN format, CP values from multiple logical

rows (i.e., table rows) are packed together into a physical
row. This format is particularly useful if many CP values
can be packed into container. Values can be packed into con-
tainer only if they have the same internal partition number
and hash value (PI)/hash bucket (PA/NoPI).

COLUMN format enables row header compression and
autocompression. With row header compression, it is possi-
ble to store one row header for a container instead of storing
a row header for each CP value. Only the first CP value of
a container row has a rowid stored in the row header. With
autocompression, data is automatically compressed by the
system as CP values (which can be multicolumn) are in-
serted into a container. Initially, CP values are appended
without any autocompression until a container is full. Then
the form of autocompression is determined for the container
and the container is compressed. Compression is one of the
powerful attributes of column partitioning to take advan-
tage of [1]. Compression techniques implemented include
null compression, run-length compression, value-list (dictio-
nary) compression, and trim compression.
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3.5.2 Row Format
ROW format means that each CP value is stored into

a physical row with regular row format. A series of sub-
rows with increasing rowids represent a CP. This format
makes row header compression and autocompression inef-
fective. ROW format is usually preferable over COLUMN
format for PI tables since only a few values can be packed
into a container. For ROW format, each CP value has a
rowid stored with it in the row header of a physical row
containing the CP value. This provides direct rowid access
to CP values.

3.5.3 CP with PI, PA, and NoPI
A CP table can be defined with a PI, PA, or NoPI. For CP

PI tables, one common scenario is to partition the table into
two partitions. One partition is for frequently used (hot)
columns and the other is for rarely used (cold) columns. A
CP PI table may also be partitioned into three CPs in order
to put columns referenced frequently in predicates in one CP,
columns frequently used for projection in another CP, and
other columns in a third CP. ROW format is appropriate
for this kind of wide CPs.
CP PI tables provide most of the advantages of a tradi-

tional PI table (e.g., single-AMP access and local joins and
aggregations) while it reduces the I/O for a wide range of
queries. Autocompression is not effective in this case. There
is also no row header compression for CP PI tables. In fact,
there is row header expansion. If a CP PI table is parti-
tioned into two partitions with ROW format, the number
of row headers doubles. For wide rows, this overhead may
be negligible. But as more CPs are added, the increase in
row headers may become excessive, especially if PI values
are roughly unique.
A CP with a PA is similar to PI tables in terms of row

redistribution. Rows are distributed to AMPs based on hash
value of PA columns. But once a row lands on an AMP, it
is appended to a partition/hash bucket.
Both CP PI and CP PA tables can do a single-AMP access

when the value of the PI/PA columns is specified. They can
also be performant for aggregations queries with GROUP
BY on PI/PA columns columns. They also allow for effi-
cient join processing with dynamic hash join or product join
when there is an equality join on PI/PA columns and the
other table has the same PA/PI columns. If the other ta-
ble does not have the same PA/PI columns, that table can
be redistributed to AMPs instead of being duplicated on all
AMPs.
A CP NoPI table does not have the aforementioned ad-

vantages of CP PA/PI tables. However, it provides faster
data loading which can be further enhanced using block-
level distribution. CP NoPI tables can also be useful when
there is no good choice of a PI or PA column(s) in the table.

3.5.4 Rowid for CP tables
For CP tables, there is a logical and physical rowid. Log-

ical rowid is a system-wide unique value that identifies and
corresponds to a logical row (i.e., table row) in the CP table.
Each CP value has the logical rowid of the corresponding
logical row. The CP number in logical rowid is always 1.
The physical rowid is the actual rowid of the physical row

stored in the file system. It is similar to the logical rowid
except that it has the actual CP number. In other words, in
order to position to a specific CP value, physical rowid can

be derived from its logical counterpart by modifying the CP
number in a logical rowid to be the actual CP number of
that CP value.

3.6 Multilevel Partitioning
A table can be defined with multilevel partitioning. At

any given partitioning level, the corresponding partitioning
expression determines the partition number and defines how
data is partitioned at that level. The subsequent partition-
ing expression defines how each of these partitions is sub-
partitioned.

The following is an example of multilevel table defined
with column partitioning at the first level and row parti-
tioning using RANGE N at the second level.

CREATE TABLE Sales(TxnNo INTEGER,
TxnDate DATE,
ItemNo INTEGER,
Quantity INTEGER)

NO PRIMARY INDEX,
PARTITION BY(
COLUMN,
RANGE_N(TxnDate BETWEEN

DATE ’2011-01-01’ AND DATE ’2011-12-31’
EACH INTERVAL ’1’ DAY))

To add a new level of partitioning n, the following prop-
erty must be preserved.

n∏
i=1

di <
(
263 − 1

)
where di is the number of partitions defined at level i. 263

is maximum number of partitions that can be represented
using 8-byte internal partition number. If the product of the
number of partitions at all levels is less than 216, the rowid
of the partitioned table can be compressed to use 2 bytes
for the internal partition number.

Multilevel partitioning has a direct impact on query per-
formance because it typically defines a large number of parti-
tions. If there is a large number of small nonempty partitions
per AMP, the performance may be degraded. The order of
partitioning levels is also influential. Hence, it is generally
better to put a partitioning level that is more likely to get
partition elimination for queries at a higher level.

Multilevel partitioning can also result in overpartitioning,
which can have a negative impact on performance. Overpar-
titioning occurs in the presence of fine granularity in parti-
tioning expressions. This can result in a very large number
of partitions that have a small number of data blocks per
AMP. For queries with coarse granularity conditions on the
partitioning columns, full-table scan may be more perfor-
mant over partitioning in this case.

3.7 Combined Partition Number
It is irrelevant for the file system whether a table has single

level, multilevel, row, column, or hybrid partitioning. All
the file system deals with as far as partitioning is concerned
is the partition number in the rowid of a row. This number
is referred to as the combined partition number (CPN)
due to the fact that it can represent a partition with any
format and at any level. The main property of CPN is that
if rows are maintained in the order of CPN, it would be
the same order resulting from ordering on the value of the
first partitioning expression, then on the value of second
partitioning expression, etc.
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Figure 8: An Illustration of Combined Partition Number

The CPN of partition p at level n is calculated as follows:

(
n−1∑
i=1

(
(pi − 1)×

n∏
j=i+1

dj

))
+ pn

where pi is the number assigned to the partition at level i
and di is the number of partitions defined at level i.
Consider an example with 2 partitions for the first level, 3

partitions for the second level, and 4 partitions for the third
level. The CPN of partition (2,3,1) highlighted in Figure 8
is calculated as (1× 12) + (2× 4) + 1 = 21.
As mentioned above in Section 3.2, rows are stored in the

order of rowid. Since the internal partition number comes
first in a rowid (recall Figure 6 and Figure 7), all physical
rows within the same combined partition are stored together
in the same or adjacent data blocks.
An empty combined partition is not assigned any data

blocks and it takes no space in the system. However, it may
be required to access and read one data block to determine
that a partition does not actually have any rows.

4. QUERY OPTIMIZATION
Data partitioning gives the opportunity for partition-based

optimizations. In this section, we discuss optimization tech-
niques implemented in Teradata’s query optimizer. Some
optimizations are applicable to any form of partitioning while
others pertain specifically to either row or column partition-
ing.
The basic optimization over partitioned tables is Static

Partition Elimination (SPE), which is widely implemented
in database systems [13, 18, 20]. It determines the set of
partitions that need to be accessed in order to answer a
specific query with the smallest overall cost. SPE applies
to row and column partitioning. For row partitions, SPE is
based on a single-point, range, or in-list conditions specified
on the partitioning column(s). For column partitions, it is
based on columns referenced in query. SPE is applied to
each level independently and the result is combined into a
single partition elimination list to further reduce the size of
data that need to be scanned. For an index access that uses
a secondary index, SPE can be applied to rowids of the index
rows if there are equality, range, or in-list conditions on the
partitioning columns. SPE can also be useful for other DML
operations such as deletes by enabling full partition deletes.

4.1 Optimizations for Rowlevel Partitioning
This section presents optimization techniques that are ap-

plicable to row partitions.

4.1.1 Dynamic Partition Elimination
If the range or list of values that defines the partitions

of interest are not explicitly specified, but can be indirectly

implied via a join condition with another table, Dynamic
Partition Elimination (DPE) is considered. DPE is an opti-
mization technique that determines the relevant partition(s)
to join at run time when value of the join column(s) in the
other table is known.

4.1.2 Partitionaware Merge Join
If the primary index column(s) is not the same or is not

part of the row partitioning column(s), rows with same PI
values can be scattered across multiple partitions. Even
though rows within each partition are ordered by hash of
the PI, traditional merge join with the PI of such row-
partitioned table would require the table to be materialized
first so that the rows can be in one sorted order of the PI
hash. To address this cases, Teradata supports partitioning-
aware flavors of merge join.

• Sliding-window merge join: This variation does not re-
quire the extra spooling and sorting. Sliding-window
merge join manages the join with multiple partitions
at a time. A partitioned read that allocates one file
context per partition is used to read across the multi-
ple partitions so that join processing returns rows in
one sorted order of the PI hash. An additional pass of
sliding-window join is done if the number of partitions
to join with exceeds the maximum number of file con-
texts. While sliding-window joins can be done (with
SPE or DPE) in one or very few passes and can be
effective with a small number of partitions, they may
not be favorable when there is a large number of small
combined partitions.

• Rowkey-based merge join: Teradata’s optimizer also
supports another partition-to-partition flavor of merge
join referred to as rowkey-based merge join. This tech-
nique is applicable when there is equality binding con-
ditions on PI and partitioning columns of two row-
partitioned tables that have the same PI and parti-
tioning expression(s). Rowkey refers to the internal
partition number and the rowhash part of a rowid.
Rowkey-based merge join can still be used if one of the
tables is not bound on PI and partitioning columns.
In this case, that table is spooled and sorted into a
partitioned spool based on the PI and partitioning ex-
pression of the other table.

4.2 Optimizations for Columnlevel Partition
ing

In this section, we discuss optimization techniques on CP
tables.

4.2.1 Late Materialization
This optimization technique is inherent in Teradata Colum-

nar implementation. A column value is not materialized
until it is needed.
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Consider the following simple query:

SELECT Col1, Col2
FROM CPTbl
WHERE Col3 > 20 and Col4 = 10

Let’s say the two predicates are evaluated in the order
they are specified in and assume the CPTbl is read using
the equivalence of a full-table read. First, the CP containing
Col3 is scanned for the first column value that qualifies the
predicate “Col3> 20”. A logical rowid is computed based on
position of the qualified value. Col4 of the qualified logical
row is then read to evaluate the predicate “Col4 = 10”. This
means Col4 values of those rows that do not satisfy “Col3
> 20” are not read. Similarly, only those Col1 values and
Col2 values that correspond to the rows that satisfy both
predicates are read.

4.2.2 Predicate Ordering
When there are multiple predicates involving multiple CP,

the optimizer uses a one-lookahead algorithm to find a pred-
icates evaluation order that yield the smallest CPU + IO.
The CPU cost of a predicate CP depends on the complexity
of the associated predicate while the IO cost depends on col-
umn size and compression ratio. Both depend on selectivity
of the previous predicate CP which determines the number
of values to read in a subsequent CP.

4.2.3 Singletable Access Path
Optimizer supports different access methods. One exam-

ple is scanning each predicate CP independently to produce
a bitmap of the qualified rows and then construct the con-
junction or disjunction of the multiple bitmaps. The final
bitmap serves as an index to the qualified rows.

4.2.4 CP Joins
A logical join step involving a CP table can be decomposed

into semantically-equivalent multiple physical join steps. We
explain the CP join technique using the following table def-
initions and example query.
Table cpt1 is a CP table with single column partitioning

(i.e., each column is in a column partition), specified with
PARTITION BY COLUMN.

CREATE TABLE cpt1(a1 INTEGER,
b1 INTEGER,
c1 INTEGER,
d1 INTEGER,
e1 INTEGER)

NO PRIMARY INDEX
PARTITION BY COLUMN

Table t2 is a regular table with a primary index on a2
and a secondary index on c2. Rows in t2 are distributed
to different AMPs based on a2 values (unlike cpt1, whose
rows are distributed randomly). The secondary index on c2
defines an access path to the base table.

CREATE SET TABLE t2(a2 INTEGER,
b2 INTEGER,
c2 INTEGER,
d2 INTEGER,
e2 INTEGER)

PRIMARY INDEX (a2),
INDEX (c2)

The following example query projects all columns with a
join condition on c1 from cpt1 and c2 from t2 :

SELECT *
FROM cpt1, t2
WHERE c1=c2;

The above query can be executed with one of the following
methods:

• 1-Step CP Join: The baseline is to join cpt1 and t2
in one step. Because the join condition is not on pri-
mary index, in preparation of the join step, one table
must be duplicated to all AMPs or both tables need to
be redistributed based on the hash of the join column.
Assuming both table are redistributed, the join plan
looks as show in Figure 9. All columns are spooled
from cpt1 and t2 into spool1 and spool2, respectively.5

Then both spools are redistributed by the hash code
of the join column and joined with a join condition of
“c1=c2”.

Figure 9: 1-Step Join

• 2-Step CP Join: The downside of the 1-step CP
join is in the cost of spooling and redistributing all
column partitions (for columns a1, b1, c1, d1, and e1 )
from the CP table, although only one column partition
(for column c1 ) need to be consumed in the join step.
This cost becomes more significant as the number and
size of column partitions increase. This overhead can
be avoided by breaking down the join step into two
steps as illustrated in Figure 10. Initially, only CPs
containing join columns are spooled from cpt1 into
spool1. In the first join step, spool1 and spool2 are
joined with a join condition of “c1=c2” producing a
rowid spool3 that contains the rowid of qualifying rows
from cpt1. Then in the second join step, the rowid
spool3 is joined back to the remaining four column
partitions directly from the CP table using a rowid
join.6

• 3-Step CP Join: The first join step of the 2-step CP
join can be decomposed further into two join steps re-
sulting in a sequence of three join steps as shown in Fig-
ure 11. Table t2 has an index on c2. In Teradata, this
index is physically stored as an index subtable that con-
tains the index value along with corresponding rowids.
With 3-step CP join, the first join step is to join spool1
to the index subtable with a join condition of “c1=c2”.
In Teradata terminology, this join method is referred
to as nested join. The outcome of the nested join is a
rowid spool2. The second join step joins spool2 back
to t1 to retrieve qualifying rows in their entirety using

5Spools are intermediate/buffer tables.
6The rowid join uses the rowid from the spool to locate
matching row from the base table directly in the file system.
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Figure 10: 2-Step Join

a rowid join. The outcome of this rowid join is yet
another rowid spool3. The third join step joins spool3
back to the rest of column partitions from the CP base
table using a rowid join.

Figure 11: 3-Step Join

5. EXPERIMENTS
This section presents a performance study on partitioned

tables. The main purpose of the experiments is to observe
the impact of different column options. The performance
impact of different optimization techniques such as DPE and
CP joins is an interesting point to examine but it is beyond
the scope of this paper.

5.1 Experiments Setup
We ran experiments on Teradata 6650 Enterprise Data

Warehouse (EDW) platform. The system has 3 nodes (+1
standby) and each node has 42 AMPs. We used the TPC-H
benchmark [28] database of 1 TB size. Experiments were
executed against Orders and Lineitems tables using five dif-
ferent variations of table design as shown in Table 2.
Experiments results are reported for I/O counts, CPU

time, and elapsed times. The values of these metrics were
captured by Terdata’s DBQL (DataBase Query Log). I/O
count is the total logical I/O. CPU time is the total (i.e.,

Table 2: Design of Tables Used in Experiments

PI Regular PI table with no partitioning
RPPI Partitioned primary index table with 84

monthly row partitions
CP NoPI Single-column CP table with COLUMN

format and autocompression
CRP Multilevel partitioned table with column par-

titioning at the first level and row partitioning
(by month) at the second level

RCP Multilevel partitioned table with row parti-
tioning (by month) at the first level and col-
umn partitioning at the second level

sum) CPU time of all AMPs and is measured in seconds.
Elapsed time is the duration between the start time of a
query and its first response time and is also measured in
seconds.

5.2 Experiments Results

5.2.1 Table Size
Figures 12 and 13 show the total size of Lineitems and

Orders tables, respectively. Results show that column parti-
tioned tables (with and without row partitioning) are about
50% smaller in size on average. This result is attributed
to autocompression and row header compression that help
reduce the space required to store the data.

The small additional reduction in the size of CRP and
RCP tables is because row partitioning sorts and stores data
based on the date column of Lineitems and Orders tables,
which makes that column benefits from run-length compres-
sion. Run-length is a compression technique that compresses
the same values that appear consecutively in a CP container.
It is most effective for CP tables if CP values are ordered by
the column(s) of the CP.

The size of RPPI tables is somewhat larger than the size
of PI tables. This is because the row header of RPPI tables
has extra bytes to store internal partition number. Since PI
tables are not partitioned, the internal partition number in
row header is compressed to 0 bytes.

Figure 12: Size of Lineitems Table

5.2.2 FullTable Scan
This test uses a simple query that retrieves all the rows

of all columns of the Lineitems. Table 3 shows the result of
this experiment. While CP tables have smaller I/O count,
they have significantly larger CPU time (and elapsed time
accordingly). The additional CPU consumption comes from
the process of bringing all CPs together to reconstruct each
row in the result set.
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Figure 13: Size of Orders Table

This test suggests that these kind of queries are not suited
to column partitioning because there is no CP elimination.
This is particularly true on CPU-bound systems. On an
I/O-bound system, however, the decreased I/O may be ben-
eficial to reduce the overall elapsed time.

Table 3: Full-Table Scan Comparison

Table I/O Count CPU Time Elapsed Time
PI 32,771,499 26,417 562

RPPI 32,957,752 26,476 558
CP 24,205,741 46,736 812
CRP 24,082,499 46,574 856
RCP 24,494,340 45,718 844

5.2.3 Aggregation
In this experiment, we ran an aggregation query on the

Lineitems table with 2 GROUP BY columns. The query
has three variations. In the first variation, only 3 of the 16
columns in the table are accessed. In the second variation,
9 columns are accessed. In the third variation, 15 columns
are accessed.
Figure 14 shows elapsed time. Results show that for PI

and RPPI tables, the elapsed time is nearly the same re-
gardless the number of columns accessed. This is expected
because with these table formats, the whole row is always
accessed. For CP, CRP, and RCP tables, however, there is
longer elapsed time as more columns are accessed.

Figure 14: Elapsed Time for Aggregation

Tables 4, 5, and 6 list the breakdown of performance met-
ric for all variations of the aggregation query.

5.2.4 Joins
In this test, the Orders and Lineitems tables are joined on

the PI column of the PI and RPPI tables. Results in Figure

Figure 15: Elapsed Time for Join

Table 4: First Variation of Aggregation Query

Table I/O Count CPU Time Elapsed Time
PI 13,578,067 2,597 111

RPPI 13,764,320 2,629 113
CP 173,833 5,941 86
CRP 180,117 5,900 86
RCP 250,996 5,953 86

15 demonstrate that this kind of query performs better on
tables with a PI. Since the CP tables in the experiments are
NoPI tables, they are not suitable for this query. Adding
a PI/PA on the join column can help CP tables perform
better in this case.

Tables 7 show the breakdown of performance metrics for
join query.

One interesting observation is that the I/O count is about
the same for PI table as well as for CP, CRP, and RCP ta-
bles, whereas the CPU is almost 4 times higher for the CP
tables. The overhead in CPU time is due to row redistribu-
tion and sorting required on NoPI tables prior to perform
joins.

The high I/O count for the RPPI case is due to the pres-
ence of too many row partitions that does not honor sliding-
window merge join directly between the Orders and Items
tables. In this case, both tables are spooled, the spools
sorted on the join columns, and a merge join is done be-
tween the spools.

5.2.5 Rollup Operation
This experiment runs a complex rollup query against the

Lineitems table. The query includes many functions in the
SELECT clause, such as KURTOSIS and SKEW functions.
The query is executed with 4 different variations. First vari-
ation “Few columns, all rows” references 4 columns and all
rows qualify. Second variation “Few columns, 1 month” is
similar to the first one but only one month out of 7 years of
data is requested. The third variation “Many columns, all
rows” accesses 14 out of the 16 columns in the table with all
rows qualify. The last variation “Many columns, 1 month”
is similar to the third one but only one month of out of 7
years of data is requested.

Table 8 understandably shows that with only 4 columns
accessed, CP, CRP, and RCP tables overall perform better
than PI and RPPI tables. As concluded in full-table scan
comparison, PI and RPPI tables incur the overhead of read-
ing all the columns even if they are not used in the query.

Table 9 shows that query that references few columns
for one month runs significantly faster with CRP and RCP
tables because of column and row partition eliminations.
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Table 5: Second Variation of Aggregation Query

Table I/O Count CPU Time Elapsed Time
PI 13,578,067 2,787 111

RPPI 13,764,320 2,827 113
CP 1,388,846 10,679 156
CRP 1,632,828 10,560 156
RCP 1,858,108 10,143 161

Table 6: Third Variation of Aggregation Query

Table I/O Count CPU Time Elapsed Time
PI 13,578,067 5,096 114

RPPI 13,764,320 5,116 116
CP 2,697,405 18,491 266
CRP 2,541,000 18,458 270
RCP 2,924,652 18,465 269

RPPI table also runs fast due to row partition elimination.
Results of the other two variations of the rollup query in

Table 10 and Table 11 can be explained similarly. In all
these variations, the increase in CPU time for CP tables is
due to the overhead of reconstructing table row in the result
set.

6. RELATED WORK
All major database proprietary support row partitioning,

including IBM DB2 [13], Microsoft SQL Server [18], and
Oracle [20]. Some other commercial systems offer column-
oriented solutions [2]. Sybase IQ [27] is one of the first com-
mercially available columnar relational database manage-
ment systems. Vertica [16] is an MPP analytical database
engine with columnar storage features. It is the commercial-
ization of the C-Store project [26]. SAP HANA [10] is an in-
memory database that is particularly optimized for column-
based storage. Infobright [14] is yet another database sys-
tem with columnar architecture, which comes with advanced
compression capabilities in its Brighthouse [24] data ware-
housing analytical platform. Some open-source database
systems like Druid [9] and MonetDB [19] are even built as
column-store platforms. PostgreSQL [22] also has columnar
store extension. While some of the aforementioned systems
have a mix of row and column solutions (e.g., SAP HANA),
Teradata extends a native and unique spectrum for data
partitioning starting with traditional row-partitioned tables
from one end to a true columnar database on the other end.
A great deal and long history of work on query opti-

mization that pertains to row-partitioned tables have been
proposed and presented. In a recent work from academia,
Herodotou et al. in [12] introduced partition-aware multi-
way join techniques over partitioned tables. The proposed
algorithms were implemented in the query optimizer of Post-
greSQL as a proof of concept. The recent work from indus-
try in [5] introduced an algebraic representation of parti-
tioned tables and operations applicable to them, which can
be used for SPE and DPE in a unified framework. Main opti-
mization techniques discussed in [5] address multilevel parti-
tioning and they are primarily based on the DPE paradigm.
While Teradata employs some of the optimization techniques
discussed in [12] and [5] like SPE and DPE, it has some dis-
tinctive partitioning-based optimizations such as multistep
CP joins.

Table 7: Join Query

Table I/O Count CPU Time Elapsed Time
PI 25,709,671 8,804 252

RPPI 39,411,626 15,900 337
CP 24,419,299 35,757 693
CRP 25,147,819 37,440 711
RCP 25,341,401 37,457 717

Table 8: Rollup Query with Few Columns and All Rows

Table I/O Count CPU Time Elapsed Time
PI 13,578,001 1,141 111

RPPI 13,764,254 1,153 113
CP 1,371,560 2,890 42
CRP 754,132 2,858 42
RCP 876,867 2,775 42

7. CONCLUSIONS & FUTURE WORK
In this paper, we introduced a unique hybrid row-column

store solution implemented in the Teradata Parallel Database.
We explained how hybrid partitioning is achieved seamlessly
using the underlying file system. We discussed various op-
timization techniques that takes advantage of different par-
titioning alternatives. Finally, we presented the result of a
performance study the shows the impact of different parti-
tioning options.

Part of our plan for future work is to examine other per-
formance attributes of different partitioning combinations.
This includes deeper study on tables with PA and CP ta-
bles with ROW format. We also plan to enhance SPE, DPE,
and CP joins with new optimizations. Another avenue for
future work is designer tools for picking the best partitioning
for tables used in a workload, which is an important issue
for physical database design [3, 17] that becomes even more
challenging in shared-nothing architecture [21, 23, 30].
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