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ABSTRACT

HERE’s traffic-aware services enable route planning and traf-
fic visualisation on web, mobile and connected car appli-
cations. These services process thousands of requests per
second and require efficient ways to access the information
needed to provide a timely response to end-users. The char-
acteristics of road traffic information and these traffic-aware
services require storage solutions with specific performance
features. A route planning application utilising traffic con-
gestion information to calculate the optimal route from an
origin to a destination might hit a database with millions
of queries per second. However, existing storage solutions
are not prepared to handle such volumes of concurrent read
operations, as well as to provide the desired vertical scalabil-
ity. This paper presents TrafficDB, a shared-memory data
store, designed to provide high rates of read operations, en-
abling applications to directly access the data from memory.
Our evaluation demonstrates that TrafficDB handles mil-
lions of read operations and provides near-linear scalability
on multi-core machines, where additional processes can be
spawned to increase the systems’ throughput without a no-
ticeable impact on the latency of querying the data store.
The paper concludes with a description of how TrafficDB
improved the performance of our traffic-aware services run-
ning in production.

1. INTRODUCTION

Traffic congestion is one of the plagues of modern life in
big cities and it has an enormous impact on our society to-
day [8, 1, 2]. Experienced by millions of commuters every
day, traffic is probably the number one concern when plan-
ning a trip [28]. Smart route guidance and information sys-
tems inform drivers about the real-time traffic conditions
and how they are going to impact their journey, helping
them to avoid any delays caused by traffic congestion.
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Figure 1: HERE Location Cloud is accessible world-
wide from web-based applications, mobile devices
and connected cars.

HERE is a leader in mapping and location-based services,
providing fresh and highly accurate traffic information to-
gether with advanced route planning and navigation tech-
nologies that helps drivers reach their destination in the
most efficient way possible.

We process billions of GPS data points from a variety of
sources across the globe including smartphones, PNDs (Per-
sonal Navigation Devices), road sensors and connected cars.
This data is then used to generate real-time or predictive
traffic information for 58 countries and historical speed pat-
terns for 82 countries *. Our road network database contains
approximately 200 million navigable road segments with a
total coverage of 50 million kilometres. From these, approxi-
mately 40 million road segments are covered with real-time,
predictive or historical traffic, with a total coverage of 8
million kilometres. Every day, millions of users world-wide
request this traffic data from web-based applications, mobile
devices or vehicles connected to the HERE Location Cloud
(Figure 1).

Our traffic-aware services need to be enabled with the
most efficient methods to access this data. For instance,
given a route planning algorithm that calculates a long con-
tinental route to a destination, it needs to be aware of how
traffic incidents and congestion levels will affect the selected
route. Since this calculation must be rapidly processed in or-
der to return the result to the user immediately, the database
must be able to handle high volumes of read operations with
minimal access latency as route planning applications will

"http://company.here.com/automotive/traffic/here-traffic



hit the database with millions of queries per second. Addi-
tionally, other services such as Traffic Data Servers or Tile
Rendering Servers demand for a database with geospatial
features. The database must scale over multi-core architec-
tures in order to use the available resources efficiently, and
furthermore, to process thousands of requests per second.

At HERE, we face the challenge of how to methodically
store this data to ensure that it is available to our appli-
cations in the most efficient manner. On the one hand we
need an in-memory key-value store, able to process millions
of reads per second, with geospatial features as well as opti-
mised to scale on modern multi-core architectures, where
several application processes can be spawned to increase
the systems’ throughput without impacting the latency of
queries. On the other hand, we envision a single, common
database that can be shared by all our traffic-related ser-
vices. This has an enormous impact on new feature devel-
opment, testing, consistency across different services, archi-
tecture simplification and ultimately costs.

After careful investigation and testing of possible solu-
tions, we chose to design a new database from the ground
up specifically optimised to solve the requirements of our
traffic-enabled services. We present TrafficDB, a shared-
memory key-value data store with geospatial features, op-
timised for traffic data storage, very high throughput with
minimal memory access latency and near-linear vertical scal-
ability. TrafficDB can also be considered as a database due
to the organised structure in which the data is stored.

Today, TrafficDB is running in production at HERE in five
continental regions on hundreds of nodes world-wide, with
successful results in terms of performance improvements, ef-
ficient use of machine resources through better scalability,
and a large reduction on infrastructure costs.

The remaining content of this paper is organised as fol-
lows: Section 2 explores related work in the field of in-
memory database technology. In section 3 we describe the
motivation behind the design of a new database at HERE,
including the main features such a database should have
in order to cover our service needs. Section 4 provides an
overview on the database architecture, its functionality and
design goals, as well as the details of the shared-memory
implementation and its modes of operation. In section 5,
we perform a set of experiments to evaluate the database
performance and section 6 concludes the paper.

2. RELATED WORK

Although main-memory databases have been available since
the early 1990s [7, 14], only over the last few years they
are being conceived as primary storage instead of a caching
mechanism to optimise disk based access. Current multi-
core machines provide fast communication between proces-
sor cores via main memory; with the availability of large and
relatively inexpensive memory units [3], it is now possible to
use them to store large data sets. Relational databases were
probably the first database systems to be implemented as in-
memory solutions. Oracle TimesTen [17] is one of the first
in-memory relational database systems with persistence and
recoverability. Other systems [20, 10, 23] allow the database
object to be stored in columnar format in the main mem-
ory, highly optimised to break performance barriers in an-
alytic query workloads. VoltDB [27] is another effort to
modernise and rewrite the processing of SQL based entirely
on an in-memory solution. SQLite [22] is a software library

that implements a self-contained, serverless, transactional
SQL database engine that also supports in-memory storage.

However, today’s cloud-based web and mobile applica-
tions created a new set of requirements with different levels
of scalability, performance and data variability, and in some
cases, traditional relational database systems are unable to
meet those requirements. With the beginning of the NoSQL
movement [4, 6, 18], other systems with alternative data
models were developed to meet the needs of high concur-
rency with low latency, efficient data storage and scalability.
These systems were built with the belief that complex query
logics must be left to applications, which simplifies the way
the database operates over data and results in predictable
query performance [19].

Redis [25] is a very powerful in-memory key-value store
known for its performance and is often used as a cache
store. It supports various data structures such as strings,
hashes, lists, sets, sorted sets with range queries, bitmaps
and geospatial indices with radius queries. Aerospike [26],
originally called Citrusleaf, is a distributed key-value store
optimised for flash/SSD storage and scalability. It tries to
offer the traditional database reliability, including imme-
diate consistency and ACID, as well as the flexibility and
operational efficiency of modern databases. An experimen-
tal release with geospatial store, indexing, and query ca-
pabilities is also available. Although the above mentioned
databases’ performance characteristics are impressive, it is
not sufficient to handle the large volume of queries triggered
by HERE route planning applications, where during a single
route calculation, millions of queries per second may hit the
database. Even these databases can take advantage of multi-
threading or multiple cores, they cannot provide the nec-
essary throughput to perform high performance route cal-
culations. Such applications cannot afford additional laten-
cies introduced by query languages, communication or other
computational overheads. They require optimal throughput
rates, which are only possible through direct memory access.
Moreover, we envision a system where adding additional ap-
plication processes can improve the throughput in a near-
linear way without the database becoming the bottleneck.

In fact, we are now moving from generic database mod-
els to application specific models, where database systems
are carefully evaluated according to the application require-
ments in terms of performance, scalability, transactional se-
mantics, consistency or durability. In some cases, very spe-
cific problems demand for new technologies designed from
the ground up to be optimised in order to solve the problem
in question.

3. MOTIVATION AND REQUIREMENTS

The HERE location cloud offers a number of routing and
navigation services that rely on real-time traffic data. While
these services offer different products, have different modes
of operation and specific requirements, all of them require
access to the freshest traffic information. An application
calculating a route from location A to location B should
be aware of the traffic events impacting the route. It can
use the real-time or predictive traffic conditions on the road
network to calculate the optimal path. Moreover, web-based
or mobile applications need to have the capability to down-
load traffic data with minimum latency and in appropriate
formats (e.g. raster images, JSON or TPEG [9]).
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Figure 2 shows a central repository containing live traffic
feeds that need to be accessed by the different traffic-aware
services. One option is to have this repository as a central
database cluster shared between all the services. When a
service receives a request from an external client, it uses the
network to query the database, receive the query results and
respond to the client. However, a Routing Server processing
a request to compute a route between two locations demands
rapid access to the real-time, predictive or historical traffic
conditions for a given street segment. If the application
utilised the network to query the database, the execution
of a routing algorithm would be extremely slow (for short
routes, network connectivity latency can easily be longer
than the route calculation itself). To ensure performance is
not impacted, some caching mechanisms need to be put in
place within the Routing Server instances to avoid queries to
the database. Moreover, in order to simplify and maintain
the network infrastructure, it is easier to have each Routing
Server serving requests for the whole world, than to have
machines serving requests based on particular scheme (e.g.
geographical, where one machine serves routes in Americas,
another in Australia, etc.). It then becomes crucial that traf-
fic and map data information be easily accessible by CPUs,
preferably with direct access and minimum latency, which
makes main memory as the primary target. Traffic Render-
ing Servers and Traffic Data Servers also benefit from the
performance of an in-memory database. A rendering process
that already contains the traffic information in memory and
can perform a spatial query to get all the locations within
the bounding box of the requested tile, will process requests
faster and increase the throughput. Additionally, a database
storing spatial information about traffic data geometries can
serve vector data that only need to be serialised on client
request.

Routing Servers

“CLT

HERE
Traffic Feeds

Traffic Data Servers

Tile Rendering Servers

Figure 2: Traffic-enabled services available in the
HERE location cloud.

3.1 Tile Rendering Service

The majority of the web mapping technologies available
today are raster based. Web-based maps, such as HERE
Maps (hitps://maps.here.com), consist of several map tiles
usually structured in a Quadtree [24] pyramidal scheme,
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where the world map is split in several quad tiles? depend-
ing on the zoom level. Such tiles are rendered on servers
and loaded by the web-browser. Creating raster imagery
can be CPU and memory consuming, and in many cases
the tiles can be rendered in advance, cached and then just
streamed from the server. However, since traffic is a very
dynamic process, constantly changing over time, real-time
rendering is a strong requirement in order to provide fresh
traffic information.

Our architecture consists of hundreds of Rendering Servers.
Each instance spawns several rendering processes. lIdeally,
we should spawn as many rendering processes as CPUs avail-
able on the instance to make efficient use of the available re-
sources. However, each rendering processes needs to access
the traffic database. Upon a tile request, each process needs
to retrieve all the traffic data within the tile; querying an
external database would have detrimental effects on the ren-
dering processes’ performance. In order to rapidly process
requests, traffic information needs to be readily available in
main memory. However, storing the real-time traffic, predic-
tive and historical traffic patterns for each rendering process
would require an excessive amount of memory. So we would
need to reduce the number of rendering processes in order to
remain within the boundaries set by the memory capacity.
For example, given an instance with 32 CPUs and 30 GB of
memory, if the traffic data takes up to 5 GB, one can only
spawn 6 rendering processes; this leaves the other 26 CPUs
idle; an example of inefficient usage of available resources.
Therefore, having a single in-memory database per instance
that can be efficiently queried by the rendering processes,
would allow vertical scalability and contrary to the former
solution, resourceful use of memory and CPU.

3.2 Traffic Data Services

Traffic Data Services provide traffic information in differ-
ent output formats, such as JSON, XML, TPEG [9] and
other binary formats. Unlike Tile Rendering Services where
the data is utilised to render an image, the data is serialised
in a specified format and transferred to mobile devices or
vehicles to then be loaded into their HERE-powered appli-
cations. Vector tiles containing traffic information can also
be delivered though this server. The memory constraints of
Tile Rendering Servers also apply here, and an in-memory
database would improve the access time to traffic data and
increase the throughput of the service. Spatial indexing is
extremely important in order to provide fast retrieval of data
for the requested area.

3.3 Routing Services

Route Planning Services help people to find the best path
from one location to another; the ’best path’ being influ-
enced both by geometry and by dynamic conditions. In
order to provide accurate route planning for a given mo-
ment in time, current traffic conditions on the road network
must be taken into account. Route planning must be aware
of accidents, congestion and other dynamic events such as
weather conditions. Therefore, real-time, predictive or his-
torical traffic information is embedded into routing algo-
rithms to compute traffic-aware or traffic-optimised routes.

2https: //developer.here.com /rest-
apis/documentation/enterprise-map-tile/topics/key-
concepts.html



When a continental route from, for example, Porto to
Berlin is requested on a HERE mobile or web application,
the result is displayed to the user almost immediately. Ef-
ficient route planning algorithms demand immediate access
to the traffic database. During the execution of a routing
algorithm, the traffic conditions of a given road segment at
any point in time must be efficiently retrievable. Therefore,
it is a strong requirement to have the data in memory and
optimised for access by key.

Since a Routing Server instance also contains several route
calculation processes, we also have the same memory con-
straints as in the Tile Rendering Servers. The traffic database
should allow better use of the CPU resources available on
the instances and provide close to linear scalability.

The Routing Servers require constant-time data access to
road segments. The computation of a continental route from
Portugal to Germany needs to be performed in orders of
milliseconds. We need a database that can handle large
volumes of lookups by road segment.

3.4 Data Store Requirements

Given the description of the traffic-aware applications and
their main requirements, a traffic data store must be de-
signed with the following features in mind:

e High-Frequency Reading. The traffic-aware appli-
cations described above perform a very high frequency
of reads. The data store must be designed to provide
very fast key-value access, alongside geospatial queries.

Low-Frequency Writing. While traffic is a dynamic
process, usually the flow conditions on a given street
will not see a high frequency of changes, and for most
locations, they actually remain the same for an entire
day. Although a data store may contain millions of lo-
cations, their related traffic content is not regularly up-
dated; around every minute on average. Therefore, the
data store doesn’t expect a high frequency of writes.

Low-Latency Read Operations. Access to data
when reading must be as fast as possible, leaving main
memory as the only viable option. Accessing data on a
SSD drive is feasible, but I/O access has higher latency
and is less predictable than access to main memory.
Network access is even slower and less predictable.

Compacted Memory Usage. Storing real-time traf-
fic, predictive traffic and historical traffic patterns for
all road segments within a world-wide road network,
preferably on one physical machine, requires a signif-
icant amount of space. To ensure that the data store
remains within the memory constraints, the data must
be efficiently compacted and organised.

Direct Data Access, No Query Language. Using
a query language that caches, wraps or converts values
from data storage introduces a significant overhead for
our applications. Ideally, the data store should store
the data in the exact form in which it is going to be
used; no mapping from raw data objects to a relational
representation or another data model. Through appro-
priate internal data representation and operating as an
in-memory data store that works with objects directly,
we eliminate the overhead of duplicated data sets and
the process of copying data between locations.
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e Consistent Data. Routing algorithms require a con-
sistent view of the traffic data during the whole route
calculation, without being affected by potential ongo-
ing updates that could put the data to inconsistent
state.

Resilience. In the case that any process attached to
the data store was to crash, such failure should not cor-
rupt data within the data store, prevent from serving
separate requests or affect its availability.

Scalability. Within a single instance, while adding
additional memory or CPUs, we should be able to in-
crease the number of applications accessing the data
store without issue. As we multiply the number of
applications by a factor N, then the number of oper-
ations the service can process should also increase by
the same factor N. Accessing the data store should
not be the bottleneck of the system, which translates
to limiting use of any locks as much as possible, with
the perfect case being no use of locks at all.

No Persistence. Traffic content is dynamic and highly
volatile. Since our traffic data is updated every minute,
disk persistence is not a requirement. For example,
when recovering from a crash, the persisted content
would probably be outdated. Therefore, new traffic
content can be downloaded from the source after re-
covering.

Geospatial Features and Indexing. While routing
servers expect fast key-value queries, tile-rendering or
data servers mostly perform geospatial queries, search-
ing all the traffic events within a specific bounding box
or with a position and radius. The data store must
therefore provide instant access in response to geospa-
tial queries. It should be easy to enable or disable
spatial indexing and storage of road geometries. This
should result in a reduction of memory usage and time
required to load and prepare traffic data.

Testability. It should be easy to test as a whole and
on a modular basis. Allowing all types of testing, such
as functional, performance and integration to be seam-
less.

4. TRAFFICDB ARCHITECTURE

This section describes the architecture details and core
functionalities of TrafficDB. Figure 3 illustrates TrafficDB
embedded within a Tile Rendering Service. In this exam-
ple, each available instance contains a HT'TP front-end that
distributes requests across a group of rendering processes to
ensure the work is properly distributed. While processing
external client requests, rendering processes perform queries
to the TrafficDB data store, acting as application processes.
TrafficDB is a central in-memory data store, shared by all
the application processes in the system.

In order to process the incoming database queries from the
application processes, a central database process could han-
dle those requests, query the in-memory data and serialise
the response back to the application processes. However, this
approach introduces an extra overhead to access the data
that is actually in memory, and additionally, as the number
of application processes increase this request handler would
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Figure 3: Representation of Tile Rendering Server
instances (virtual or physical machines), where each
instance contains a TrafficDB data store shared
across several application processes.

potentially become the system’s bottleneck. Therefore, no
central process is utilised to translate the application queries
into database-specific queries; instead, the application pro-
cesses are directly “connected” to the shared memory data
store.

4.1 Shared Memory Storage

TrafficDB was designed for fast read access; directly ac-
cessing the memory location of stored objects is crucial for
the performance of applications, such as the Route Plan-
ning Service. Therefore, data must be stored in a region
of RAM that can be shared and efficiently accessed by sev-
eral different application processes. POSIX [13] provides a
standardised API that allows processes to communicate by
sharing a region of memory. Figure 4 shows the interaction
between the shared memory region that stores the data and
the application processes using it. The daemon is a back-
ground process responsible for managing the shared memory
region, which includes creating, updating and deleting the
entire data store. Being the core of TrafficDB, the daemon
is connected to an external service that injects new traffic
content. It is the only process allowed to update the data
store.

Shared Memory

Daemon

Figure 4: Representation of the shared-memory
data store updated by the daemon process and ac-
cessed by application processes.
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In the further discussion, the word “lock” is not used in
the traditional sense, rather it will be used to mean two
things: attaching shared memory segments into process vir-
tual address space and increasing the kernel’s internal counter
of attached processes. The latter is preventing the kernel
from destroying shared memory until it is closed (detached).

With a producer — consumer approach (deamon — appli-
cation process respectively), when a consumer performs a
set of queries, the data store must be locked for reading,
so updates (done by producer) must wait until all the op-
erations are performed in order to gain write access. This
prevents the data from being modified whilst reading is in
progress and creating possible inconsistencies, but limiting
concurrent access to the data store by the application pro-
cesses and the daemon. This is not to mention that possible
starvation and performance degradation could occur due to
lock contention, because the update process can take a few
seconds and during this time no consumer cannot access the
database.

To solve the above mentioned problem, TrafficDB was
designed to take advantage of the double buffering scheme
widely used on rendering graphics [12]. Moreover, TrafficDB
utilises the Linux kernel’s Shared Memory Object Manage-
ment for automatic management of the objects lifetime. The
daemon allocates a main segment in shared memory referred
to as the header. The singleton header contains meta-data,
such as the capacity and size of internal data structures, and
any static traffic information that is known not to change
(e.g. street geometry). Exluding information regarding the
active object, only data appending inside header is allowed.
There is also another Shared Memory Object — the Traffic
Object (object for short). The object contains the actual
traffic conditions for a given moment. It contains all the
dynamic content, everything that may change periodically
as the real-time traffic conditions change. Having separate
shared memory objects to store the dynamic content, al-
lows one object to be constantly available for the application
processes to read and another for the daemon process to up-
date. Both, header and objects are allocated to the full size
upon creation of shared memory, thus eliminating memory
fragmentation or a need for memory reallocation and copy-
ing.

4.1.1 Daemon

When the daemon starts for the first time the database
does not exist. The daemon will create the header segment
and allocate its internal data structures; loading any static
data according to the database settings. If the header al-
ready exists, it attaches to it. Then the daemon enters an
internal loop, waiting for traffic data updates. Whenever
new traffic data is available, a new Traffic Object is created
and the database is updated. Since only the daemon has ac-
cess to this newly created object, it can write data without
need for synchronisation mechanisms. The same applies to
the header. Since new static information is appended and
required only by the newly created object, updates can hap-
pen directly. Moreover, setting proper access rights (write
for daemon, read-only for others ), prevents application pro-
cesses from writing to shared memory. Additional perfor-
mance enhancements could also be achieved by using shared
memory with huge pages support (SHM_HUGETLB) en-
abled [21]. Once the update stage is completed the daemon
updates the active object field in the header meta-data with
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Figure 5: Shared memory double buffering sequence

the address of the new object. This object is now pub-
lished and subsequent application processes connecting to
the database will connect to the newly created object. The
old object is marked to be destroyed. Figure 5 shows the
sequence diagram of the daemon creating, updating and de-
stroying objects. Since new traffic content is available around
every minute, the daemon sleeps until new content is avail-
able and then the same process is executed again. The state
machine diagram shown in figure 6 illustrates the daemon’s
behaviour.

4.1.2 Clients

Each client (or application process) retrieving traffic infor-
mation from the data store needs to access the currently ac-
tive object. Accessing consists of multiple steps that are rep-
resented by figure 7. Initially the connection to the header
must be established in order to obtain the id of an active
object (in case of shared memory it is a call to map it to the
current process address space). After the id is retrieved the
client can perform any kind of read operation on the data
by simply attaching to the active object and querying the
data. Given the client would need to execute this two step
process for each operation, a negative performance impact
and consistency issues would be observed. The former is
caused by the fact that the attaching system call consumes

— > Create Object

Fetch Data and
Update Object

Publish Object

Delete OLD object

Figure 6: State machine diagram modelling the be-
haviour of TrafficDB extitdaemon process.

the majority of the computation required to complete the
query. The other issue is with consistency because between
two queries the active object can change. As a result, the
same road segment may return logically inconsistent data
(e.g. two different speed values). In order to overcome the
previously mentioned issues the transaction concept is used,
by introducing locking of Traffic Objects. Each client can
lock an object and execute several read operations without
the overhead of reattaching, whilst having a consistent view
of the traffic data until the object is unlocked (Figure 8).

One should note that the Linux ’Shared Memory Object’
offers a very useful feature: Once shared-memory is marked
for destruction by the daemon, it will only be deleted by the
kernel once the number of attached (connected) clients is
zero. Thus, if there is a client still connected to this partic-
ular object (through query execution or a lock operation),
the Shared Memory Object will remain in memory and ex-
ist until all clients have disconnected. Moreover, the same
shared memory key can be reused by the daemon to create
a new object, as the kernel is aware of the corresponding
shared memory that was marked for destruction.

4.1.3 Availability and Fault Tolerance

After the database is created and published by the dae-
mon, its availability is ensured by the kernel, i.e. if the
daemon is stopped, objects remain in memory and can be
accessed by clients. As previously mentioned a Shared Mem-
ory Object is only removed when explicitly destroyed by the
daemon (clients are not permitted to do so). Moreover, if a
client crashes, this event will not pose a threat to TrafficDB,
because whenever a process crashes, the kernel will automat-
ically close all connections and detach from all Shared Mem-
ory Objects. There is also an issue with the clients keeping
the lock indefinitely, by executing very long operations or by
simply having a bug in code, which is not handled by Traf-
ficDB, i.e. no time-out mechanism exists. This protection is
handled by the monitoring which can check the behaviour
of client processes. In the case of an unexpected failure,
monitoring restarts the daemon, which initially checks the
consistency of the header and available objects. In the case
that it detects any issues it will automatically destroy cor-
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Figure 7: TrafficDB clients to Traffic Object commu-
nication

rupted objects and continue normal operation. Additional
functionality can be implemented by a simple external ap-
plication or the daemon itself to dump the database before
deleting it to a permanent storage. This would create a
working snapshot, which could be loaded and published to
shared memory later e.g. in case of a crash and postmortem
investigation.

4.1.4  Scalability

As the amount of traffic data increases over time, we need
to keep in mind that what the system can handle today,
might not be the case in half a year. Although our goal
was to increase vertical scalability by utilising one machine
resource as much as possible, thanks to TrafficDB horizontal
scalability is not an issue even in the short term. However, it
is possible to distribute the data geographically, for example
with instances serving data for a certain continent only. In
this case the load balancer would direct requests to instances
having corresponding traffic data for specific regions.

4.2 Shared Memory Data Structures

Shared memory allows multiple processes or multiple threads

within a process to share the same data store. When the
daemon creates a new object it receives a pointer to the be-
ginning of the region where the data is going to be stored.
Data structures must be carefully designed as everything
must fit into the shared memory regions. When an applica-
tion process attaches to the traffic object, it needs to know
the starting addresses and dimensions of the internal data
structures. The header contains this meta-data informa-
tion like addresses, sizes and capacities. Once the process
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Figure 8: State machine diagram modelling the be-
haviour of client applications accessing TrafficDB
objects.

attaches to the object, it reads this meta-data in order to as-
sign its internal pointers to the correct addresses in shared
memory region. TrafficDB provides a high level API that
hides the complexity of its internal data structures, storage
engine and memory management.

4.2.1 Key-Value Store

Figure 9 illustrates the internal structure of a Traffic Ob-
ject in the database. Each object contains a key-value store
that provides fast access by key to locations and its traffic
data, it also contains a spatial index data-structure, location
related information such as the road segments’ attributes
and their geometry as well as the actual traffic data.

Since everything has to fit inside a contiguous memory re-
gion, our key-value store uses a hash table optimised to be
stored efficiently within that region. First, we have a table
with a number of NV entries and then a region that contains
a set of buckets. Each entry in the table points to the first
bucket within a linked-list of buckets. Besides the key and
a pointer to the next bucket (if any), to make reads faster,
each bucket also contains data that is common to all loca-
tions, such as their bounding box, location type and pointers
to Location Information and Traffic Data sections. The per-
formance of the hash table is strongly influenced by the hash
function used to match a key to an entry on the table. Each
location on a road network has a unique identifier that we
use as a key to access our store. Since we know how these
identifiers are generated and have full control on them, our
hash function was optimised to distribute the hashed val-
ues uniformly over the table and reduce the size of chaining
buckets. This allows us to not only have a hash table with
an average constant-time O(1) lookup performance, but also
very good ”worst case” performance.

4.2.2 Geospatial Indexing

For spatial indexing, we use an RTree [15] data-structure
also optimised to be stored in the contiguous shared-memory
region. It consists of a contiguous set of nodes, where the
first node is the root. Each node contains its minimum
bounding rectangle and a set of pointers to other child nodes
(if any). The leaf nodes contain pointers to the locations
present in the hash table (buckets), as illustrated in figure 9.
The performance of geospatial queries strongly depends on
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Figure 9: The internal structure of shared memory objects. The header that contains the database meta-data
and static data is illustrated on the left side. The Traffic Object and its internal data structures is illustrated

on the right side.

the balancing of the tree. Therefore, the construction of
the spatial index only occurs right before the object is pub-
lished. We traverse all the locations available in the hash
table in advance, organise them and perform bulk insertion
optimised to create a well balanced tree. This is performed
by the daemon without modifying the currently active ob-
ject or affecting clients.

4.2.3 Location & Traffic Data Stores

The Traffic Data section illustrated in figure 9 contains a
blob of traffic content per location stored in the database.
Each blob contains information related to the real-time con-
gestion, incidents and predictions over the next hours for
each road segment. This data is organised in such a way that
enables application processes to perform efficient queries and
check the traffic information for a specific location and at
a specific time. Each location bucket within the hash ta-
ble contains a pointer to the address of its traffic data blob.
Blobs may have different sizes, but the data respects a spe-
cific binary schema. Due to the homogeneity of our data,
we do not benefit from having a schema-less data store.

The Location Information section contains the shape co-
ordinates and other location attributes. Although Location
Data and Traffic Data have a 1-to-1 relation we separate
them into two separate regions because we want the cache
of locations to persist between objects. Locations can be
affected by some traffic conditions on object A, but different
traffic conditions on object B. Although traffic conditions
change, the locations themselves do not change very often;
they can remain within the cache for the subsequent objects.
The entire location region is copied from the old to the new
object, followed by the traffic data region being cleared from
one object to another. Copying locations to the new object
and resetting their traffic data pointers is an instantaneous
process performed by the daemon without affecting other
processes accessing the active object.

4.3 C(lient APIs

TrafficDB does not offer a query language, but provides
a rich C++ API to directly access the data in memory in-
stead. This API offers read-only methods to connect to the

database, lock and unlock objects, perform spatial queries or
retrieve locations by key. Listing 1 provides a code snippet
of an application using the C++ API. The example demon-
strates an application connecting to the database and vis-
iting all the locations within the bounding box, serialising
them to JSON format. It also retrieves the congestion level
for the location with the key 12345.

Listing 1: Code snippet using the TrafficDB C++
client API

#include <trafficdb/TrafficDBClient.h>
#include

GeoJSONSerializerVisitor serializer;
BBox bbox( 41.10, -8.58, 41.01, -8.65 );

TrafficDBClient client;

if ( client.lock_traffic_object( ) )
{

client.apply_spatial_visitor ( bbox,
serializer );

const Location* loc = client.
get_location( 12345 );
int level = loc->get_congestion( );

client.unlock_traffic_object( );

}

Besides C++4, we also provide bindings for the Python
language. These bindings have been useful for the integra-
tion of TrafficDB with other frameworks. We implemented
several tools to collect statistics, perform real-time analysis,
monitor the shared-memory data store, as well as to im-
plement functional or performance tests. We also have im-
plemented a REST [11] Interface Service that allows other
external clients to directly query TrafficDB using a REST
API. This is useful for real-time monitoring and debugging
the traffic information content.
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S. EVALUATION

Database performance is typically made up of two main
metrics: throughput and latency. Throughput is the num-
ber of operations the database can process within a given
period of time. The database throughput is bounded by sev-
eral factors: memory and CPU, the type and size of stored
data, and the operations performed on the database. One
immediate sign that the database has reached its through-
put limit is an increase on the average latency of queries.
Latency is the time it takes for an operation to complete.
In a distributed system there are many kinds of latencies to
consider, each reflecting a perspective of the different com-
ponents in play. However, since TrafficDB clients run in
the same machine as TrafficDB and directly access the in-
memory data-structures, latency is mainly affected by the
presence of synchronisation mechanisms to control the ac-
cess to a specific memory region. Of course, memory, CPU
performance and caching, type of data and operations also
impact the latency of TrafficDB queries.

Another important metric to consider is vertical scalabil-
ity. As the number of applications accessing the database
increases, the number of operations performed against the
database also increases, and therefore we expect the through-
put to increase without affecting the latency of queries.

This section provides results of experiments that are tai-
lored to analyse the throughput, latency and wvertical scal-
ability of TrafficDB. The goal is to evaluate the benefits
and limitations of using the shared memory architecture de-
scribed in section 4, and measure the impact of lock, read
and write operations on our traffic-aware applications.

5.1 Read Operations

In this experiment we want to evaluate the performance
of the main client operations: locking, get-value queries and
spatial queries. Using the TrafficDB C++ client API, we
implemented a client application to measure the throughput
and latency of read operations. In order to launch several
clients in parallel we used OpenMP [5], a multi-platform
standard library for parallel programming on shared mem-
ory systems. It simplifies the parallelism and synchronisa-
tion of clients with a relatively high level of abstraction.

To reproduce a production-like scenario, the database was
updated with a real snapshot of the traffic content used in
production, containing congestion information and incident
events for approximately 40 million road segments world-
wide and requiring approximately 5GB of RAM.

Since performance of cloud-based virtual-instances is some-
times unpredictable [16] and we want to have full control
of our experimental environment to better understand the
results, these experiments were performed on a multi-core
machine with an Intel® Xeon® ES-1650 v2 3.5GHz proces-
sor, with 6 cores (12 threads) and 16GB of RAM. In order
to achieve high confidence level in results, each experiment
was performed multiple times.

5.1.1 Key-Value Queries

The objective of this experiment is to measure the through-
put and latency of GET operations. The performance of
these operations is strongly dependent on the performance
of the internal hash table implementation and its hash func-
tion. In order to perform a fair evaluation, we need to test
all the possible keys, and thus all the available locations in
the database must be queried. Moreover, to reproduce a
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Figure 10: Throughput of GET operations and spa-
tial queries with a radius of 2Km, 5Km, 10Km, 20Km
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Figure 11: Latency of GET operations and spatial
queries with a radius of 2Km, 5Km, 10Km, 20Km
and 50Km.

random behaviour of queries and to avoid taking advantage
of CPU caching, each client should query for the locations
in a random order. Therefore, as a pre-stage, we get all
the keys available in the database, each client shuffles those
keys in a random order, locks the Traffic Object and after a
synchronisation point, the experiment is started.

In Figure 10 we can observe that if we increase the num-
ber of clients accessing the database, the throughput of GET
operations the database can handle also increases in a near-
linear fashion. Additionally, Figure 11 shows that the la-
tency remains constant with an increasing number of clients.
This result demonstrates that GET operations scale very
well with the shared-memory architecture of TrafficDB. This
is particularly important for applications that perform high
rates of GET operations, such as the traffic-aware Route
Planning Service. Since routing processes do not affect each
other while performing high rates of GET operations on the
database, we can spawn multiple routing processes to in-



crease the system’s throughput and efficiently use the avail-
able resources.
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Figure 12: TrafficDB and Redis throughput com-
parison of GET operations on a single instance de-
ployment.

Figure 12 shows a performance comparison between Traf-
ficDB and Redis for GET operations. The purpose of this
experiment is to demonstrate why existing in-memory data
stores do not fulfil the performance and scalability require-
ments of HERE traffic-aware services. For comparison, we
have chosen Redis as an example due to its reputable perfor-
mance. As TrafficDB operates as a single daemon process,
in order to perform a fair experiment, we also launch a sin-
gle Redis process to handle all the requests coming from
an increasing number of clients. Although Redis has an
impressive performance, handling approximately 130 thou-
sand operations per second, the shared memory architecture
of TrafficDB brings our services to another level, making it
possible to build a high performing route planning applica-
tion that performs approximately 20 million operations per
second. If we add another application process, it will be able
to perform the same number of operations, which would dou-
ble the system’s throughput. While in TrafficDB we see a
near-linear scaleup due to its shared-memory architecture,
Redis does not allow to increase the system’s throughput
when adding more application processes.

5.1.2  Spatial Queries

A spatial query allows applications to efficiently search for
locations in a specific region of the map. The performance
of this operation depends on the performance of the internal
R-Tree [15] index and on how the tree is efficiently balanced.
Thus, in order to accurately measure the average through-
put and latency of queries, we must query for locations in
different regions of the map. In this experiment we split the
world map into a grid of tiles, where each tile has an N x N
size. Then, in random order, each client performs a query
for the bounding box of each tile. We tested tiles with 2km,
5km, 10km, 20km and 50km values for N.

As we observe in Figures 10 and 11, spatial queries are nat-
urally slower than the GET queries. Querying the database
for large bounding boxes is also slower than querying for
small bounding boxes, resulting in worse throughput for
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large bounding boxes. However, we can also see that the
throughput increases linearly with the number of clients ac-
cessing the database, and the latency remains constant for
all sizes. This validates the main goal of having Traffic Ob-
jects available for read-only operations. Since these oper-
ations do not require synchronisation mechanisms between
concurrent clients accessing the Traffic Object, the system’s
throughput increases in a near-linear fashion with the num-
ber of clients.

5.1.3  Attaching/Locking Traffic Objects

As described in section 4, once a Traffic Object is pub-
lished in the database, application clients are able to access
it. The first action must be to attach to the object and
lock it, guaranteeing the object is not removed until all the
read operations are finished. Since this attaching operation
happens at the kernel level when a process attaches to the
shared memory segment, we wanted to measure its impact
on accessing the database.

In this experiment our client application performed as
many attaching operations as possible per second. Then
we tried with several clients performing attaching opera-
tions at the same time, until a maximum of 6 clients. Fig-
ure 13 shows that attaching a Traffic Object is an expensive
operation. When the shared memory segment is success-
fully attached, the system requires mutual exclusion mech-
anisms to update some internal variables. As we can ob-
serve, contention strongly increases latency when having
more than one client performing attaching operations, af-
fecting the overall performance of the system. Therefore,
applications should perform as many read operations as pos-
sible after attaching to an object, instead of attaching every
time a read operation needs to be performed.
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Figure 13: Throughput and Latency of attaching
operations.

5.2 Scalability of Read Operations

Scaleup refers to the ability of processing more operations
in the same amount of time but using more resources. In this
experiment we want to evaluate the impact on the system
if we increase the number of clients accessing the database.
In equation 1, scaleup is calculated as follows:



N(1) «T(1)

Scaleup(P) = P « N(P)+ T(P)

(1)

N(1) represents the number of operations executed by a
single processor and N(P) the number of operations ex-
ecuted P processors. T'(1) represents the execution time
taken by a single processor and T(P) represents the exe-
cution time taken using P processors. As we multiply the
number of processors P, the number of operations that can
be executed in a given time should also increase by the same
factor. Let’s consider the following example: Assume it
takes 1 second to perform 1 million operations using a single
processor. If the number of operations increases to 3 million
and P also increases to 3, then the elapsed time should be
the same. If the scaleup = 1 it means the elapsed time is the
same and the system achieved a linear scaleup. If, for some
reason it takes more time to process and thus, the scaleup
is less than 1, the system has sub-linear scaleup.
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Figure 14: Number of operations per second for spa-
tial queries with a radius of 2Km, 5Km, 10Km, 20Km
and 50Km.

Figure 14 illustrates the scaleup of database operations
for a maximum of 6 processors. We can see a near-linear
scaleup for GET and spatial queries, which is explained by
the advantage of not having synchronisation mechanisms.
However, we see that locking operations do not scale and if
used intensively the overall scalability of the system can be
affected, strengthening the results shown in Figure 13.

5.3 Write Operations

As described in the previous section, write operations are
performed by the TrafficDB daemon process only. During
its life cycle, the performance of insert and update opera-
tions affects the time required to create new Traffic Objects.
We performed some experiments using the production like
traffic data to measure the throughput of these operations.
Looking at Table 1, the daemon can perform approximately
3 million operations per second, which results in 14 seconds
to publish a new Traffic Object containing approximately 40
million locations. However, when the locations are already
present in the previous object (in cache), the daemon needs
only approximately 5 seconds to publish a new object.
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Since traffic coverage is almost the same for every Traf-
fic Object created, most locations are already in the cache.
However, it is also possible that some locations are affected
by traffic on object A but not on object B and so on. In
this case, locations that are not affected by traffic for more
than a configurable time, are removed from the cache. We
have observed a cache hit ratio of 90% in production.

Operations || Throughput Latency
Insertions 3,067,995 0.32 us
Updates 8,965,017 0.11 ps

Table 1: Throughput and Latency of writes.

5.4 TrafficDB in Production

Currently TrafficDB is becoming the main in-memory stor-
age for the traffic-aware services available in the HERE lo-
cation cloud. It has been successfully running in production
in five regions on hundreds of nodes world-wide. The inte-
gration with Tile Rendering Services was the first success-
ful production deployment. To provide fast response times
when tiles are rendered, both world-size map and traffic data
must be kept in main memory. Previously, each rendering
process had a copy of the traffic content in its own memory,
and spawning additional processes required large amounts
of memory. In fact, we were using instances with 32 CPUs
and 30GB of memory, but due to memory constraints, we
could only spawn 7 or 8 rendering processes. This gave us 20
free CPUs which we were paying for but could not use. Due
to the fact that TrafficDB stores traffic content in shared-
memory, we are now able to run 30 rendering processes on
instances with 32 CPUs in production. Since we are now
using full instance capacity and each instance is now able to
process 60% more requests, we could reduce the number of
instances required to maintain the service live. This allowed
us to strongly reduce our infrastructure costs.

Route Planning Services are also running with TrafficDB
in production. In order to compute traffic-aware or traffic-
optimised routes, Routing Servers now access the shared-
memory database to get the traffic congestion level of road
segments. Using TrafficDB, these route calculations are on
average 55% faster than in the previous version, which in-
creased the number of requests each Routing Server can pro-
cess per second.

6. CONCLUSIONS

This paper described the main motivation behind a new
database designed to solve the strong performance require-
ments of HERE traffic-enabled services. We presented Traf-
ficDB, a shared memory key-value store optimised for traffic
data storage, high frequency reading, with geospatial fea-
tures. It was designed to scale on modern multi-core archi-
tectures, where several application processes can be spawned
to improve the system’s throughput. The main architec-
ture, modes of operation and design choices were described
in detail, together with a careful evaluation on the main
performance metrics impacting our use cases: throughput,
latency and scalability. Our results show that TrafficDB is
able to process millions of reads per second and scales in
a near-linear manner when increasing the number of clients
without noticeable degradation on the latency of queries.
Today, TrafficDB is running in production at HERE in five



regions on hundreds of nodes world-wide, with very success-
ful results in terms of performance improvements, efficient
use of machine resources through better scalability, and a
strong reduction on infrastructure costs. Additionally, Traf-
ficDB is used across different traffic-related services, being
the core of traffic features. This move to a unified architec-
ture brought consistency across our different services and
strongly improved our development and testing phases dur-
ing the implementation of new features.
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