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ABSTRACT
Comdb2 is a distributed database system designed for geo-
graphical replication and high availability. In contrast with
the latest trends in this field, Comdb2 o↵ers full transac-
tional support, a standard relational model, and the expres-
sivity of SQL. Moreover, the system allows for rich stored
procedures using a dialect of Lua. Comdb2 implements a
serializable system in which reads from any node always
return current values. Comdb2 provides transparent High
Availability through built-in service discovery and sophisti-
cated retry logic embedded in the standard API.

In addition to the relational data model, Comdb2 im-
plements queues for publisher-to-subscriber message deliv-
ery. Queues can be combined with table triggers for time-
consistent log distribution, providing functionality commonly
needed in modern OLTP.

In this paper we give an overview of our last twelve years
of work. We focus on the design choices that have made
Comdb2 the primary database solution within our company,
Bloomberg LP (BLP).

1. INTRODUCTION
In recent years there has been a renewed interest in devel-

oping large-scale relational databases. This trend was later
named NewSQL [1] to contrast with the NoSQL [19] designs,
which sacrifice full transactional support and consistency for
maximum scalability.

In [31] Stonebraker et al. summarized the limits of NoSQL
architectures, remarking how ACID properties are still a
strong requirement in all mission critical scenarios. These
include financial and in-order processing applications.

BLP has served the financial industry world wide since
the early 80s and presents one example. The company has
dealt with large volumes of data since before RDBMS were
being commercialized and has a long history of building its
own database systems in-house.
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The latest version, named Comdb2, has been used in pro-
duction since 2004 and shares many of its features with the
latest enterprise solutions. The purpose of this paper is to
give a detailed overview of Comdb2 and start a healthy col-
laboration with the academic and the open-source commu-
nities 1.

A crucial point in the design of Comdb2 was the early
adoption of Optimistic Concurrency Control (OCC) [18].
OCC is a lock-less protocol that guarantees a higher de-
gree of parallelism in low-contention workloads frequently
found with large datasets. The performance gain occurs
from locking rows only at the time of commit rather than
for the duration of the entire transaction. In a distributed
scenario this means that every machine in the cluster can
fully serve a transaction without coordinating with others.
Only at the time of commit does validation occur in order to
guarantee consistency. OCC matches the needs of modern
Online Transaction Processing (OLTP) and is a recurrent
theme in the latest research work from academics [8, 3] and
professionals [29, 23, 6, 30]. OCC works well in distributed
systems since the lock managers found in locking based sys-
tems often prove di�cult to distribute.

While high performance was obviously one of the goals in
developing Comdb2, high-availability was and still remains
the main concern. At BLP it is essential to have a database
that can: (1) synchronously replicate across data-centers,
and (2) remain available during any type of outage or main-
tenance. It is important to remark that while the disruptive-
ness of schema changes is often used an argument for NoSQL
architectures [28], a relational system need not su↵er from
such disruption. Comdb2 is able to perform every form of
schema change live and with a minimum performance drop.
In many cases it also supports instantaneous schema changes
allowing for in-place updates of rows without rebuilds.

This paper is organized as follows: In Section 2 we de-
scribe the company and what drove us to build our custom
RDBMS. In Section 3 we proceed with a high level descrip-
tion of the system design. In Section 4 we describe the
details of our implementation. In Section 5 we discuss com-
mon performance tuning options of the system. In section
6 we show a direct comparison of performance with another
system. In Section 7 we discuss ongoing challenges faced
by the Comdb2 system and work in progress. We conclude
with a final discussion in Section 8 and acknowledgments in
Section 9.

1Comdb2 will be published under an open source license in
2016
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2. BACKGROUND
Bloomberg is considered the world’s most trusted source

of information for financial professionals. At BLP, the cen-
tral product is The Terminal, a proprietary software plat-
form which gives subscribers real-time access to financial
data, news, and analytics. Users can obtain price quotes and
send trade-compliant emails and instant messages. Institu-
tional investors use The Terminal as a trading platform to
move billions of dollars on a daily basis. BLP also provides a
real-time market data feed, delivered using a highly-resilient
custom architecture.

In 1981, when the company was founded, BLP chose a
Perkin-Elmer system running OS/32 as its computing plat-
form. At the time, there was no database software available
for this architecture. Over the years BLP has developed sev-
eral versions of a database system referred to as the Com-
mon DataBase (Comdb). We began work on Comdb2 in
2004 when it became apparent that to meet the needs of the
industry we needed a more scalable and resilient DBMS. We
built Comdb2 with the following concerns in mind: scalabil-
ity, high availability, and a relational and fully transactional
model.

Scalability was a concern when designing Comdb2 as we
found scaling vertically had become impossible. Instead of
relying on high-capacity mainframes, we chose to engineer
large clusters of commodity hardware. For a database, this
implied replication over multiple machines, posing the prob-
lem of latency vs consistency. Many recent projects adopt
eventual consistency (EC) [34, 35] in order to minimize write
latency. This model states that every machine in the cluster
will show updates to a row in the order that they occurred,
and that in the absence of new updates at some point in
time all machines will converge to the same value. BLP
has built its reputation upon accuracy and timeliness. Nei-
ther of these qualities is guaranteed by EC. An example of
why this does not work for us is the possibility of showing
two di↵erent prices of a stock to two di↵erent customers at
the same time. At BLP, databases that work as sources of
truth must support strict consistency, leaving the decision
to lower the consistency requirements to the final user when
appropriate.

High availability is also fundamental. Discontinuities
directly impact the daily routine of the financial markets
[13]. Databases must replicate across several data-centers
and their deployment must be elastic. Clusters can grow,
shrink, and even migrate from one architecture to another
without going o✏ine.

While many migrated away from the relational model
to NoSQL architectures, we have gone the other way. Ear-
lier versions of Comdb stored data in a key-value fashion,
where keys and values are any tuple of primitive types. Stor-
ing data this way left the programmer with the burden of
fetching data e�ciently even when this demanded following
cross-references or running sub-queries. Modern query plan-
ners perform this job more e�ciently while preventing users
from rewriting the same algorithm multiple times.

Lastly, Comdb2 o↵ers full transactional support whereas
NoSQL usually o↵ers only micro-transactions (MT). The
MT philosophy is to enforce atomicity of write operations
only at the row or column level [32, 7, 4, 24]. Some other
systems, such as [28], o↵er transactional support over col-
lections of hierarchically related documents. These models
do not fit our workloads which often deal with the need to

Figure 1: Interconnected nodes of a Comdb2 cluster

transactionally update multiple rows in multiple tables.

3. DESIGN
Comdb2 was designed from the onset to be a highly avail-

able relational database system. Many decisions were made
with this in mind. Optimistic Concurrency Control was
chosen for its low overhead and high performance in a dis-
tributed environment. Synchronous replication was chosen
for its ability to present the illusion of a single system im-
age. A coherency model was developed along those lines
accounting for failures of nodes and guaranteeing consistent
reads of latest values.

A Comdb2 cluster consists of a master node and several
interconnected replicant nodes. Clusters are built for geo-
graphical replication. Nodes in a cluster are partitioned into
rooms which map to datacenters. Communication between
applications and the database occurs within a data center,
and communication between data centers occurs only at the
time of transaction commit.

3.1 High Availability SQL
Comdb2 provides a highly available experience to applica-

tion programs similar to [9]2. Service discovery is provided
through the standard APIs which abstract the physical lo-
cation of the data. The same mechanism provides the abil-
ity for an application to reconnect to alternate locations in
cases of failure. The HASQL mechanism allows for seam-
less masking of failures for in-flight SQL transactions. At
the beginning of a transaction, the server sends the client a
point-in-time token corresponding to the transaction’s start-
ing Log Sequence Number (LSN), described in detail later in
this paper.

The API retains its point-in-time token, and uses it when
seamlessly reconnecting to alternate nodes under failure. It
instructs the new node to construct a snapshot correspond-
ing to the point in time contained in the token, and then
executes the SELECT which was executing at the time of
the failure. By keeping track of the number of rows already
traversed, the API is able to return the next row in the result
set. Writes inside an open transaction are bu↵ered inside the
client API and shipped to the new node transparently upon

2Unlike Comdb2, Oracle TAF does not support writes
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reconnect, allowing for transparent failure masking of IN-
SERT, UPDATE, and DELETE statements. Transactions
are supported as well. The OCC system does not perform
any actual updates until a transaction commits, so retrying
is possible before commit. Global sequencing is used from
the client to server allowing for retries and detections of re-
plays. The system does not return errors to applications
when a node in a cluster fails. Instead all forms of errors
resulting from node failures are masked by transparent re-
tries.

3.2 Isolation Levels
Comdb2 allows applications to chose from a weaker ver-

sion of ANSI read committed to an ANSI-compliant se-
rializable implementation depending on their correctness
and performance requirements.

Block is the weakest isolation level in Comdb2. This is the
only isolation level available to non-SQL clients. In this
isolation level, only committed data can be seen. Comdb2
never o↵ers the ability to see uncommitted data. This iso-
lation level makes no e↵ort to mask the underlying OCC
nature of Comdb2, and as such, reads within a transaction
are unable to see uncommitted writes that have occurred
within the same transaction. Many applications are able
to function properly with the phenomena present in this
level.

Read Committed behaves like block, but additionally al-
lows clients to read rows which have been written within
the current transaction. Reads merge committed data with
the current transaction’s uncommitted changes. Changes
local to the transaction are stored in data structures de-
scribed in Section 4.

Snapshot Isolation implements Snapshot Isolation as de-
fined in [2]. Private copies of rows are synthesized as needed
when pages are read which have been modified after the
start LSN of the transaction.

Serializable implements a fully serializable system. As an
OCC system, any transaction which would result in a non
serializable history is aborted at commit time and returns a
non-serializable error. Transactions do not block or dead-
lock. Serializable isolation adds additional validation to
Snapshot Isolation in the form of read-write conflict detec-
tion.

3.3 Optimistic Concurrency Control
Concurrency control models fall into two categories: op-

timistic and pessimistic. An optimistic model anticipates
a workload where resource contention will not often occur,
whereas a pessimistic model anticipates a workload filled
with contention.

Most commercialized database engines adopt a pessimistic
approach whereby rows are manipulated under a safe lock,
specifically: (1) a read operation will block a write, (2) a
write will block a read, and (3) multiple reads will hold a
“shared” lock that blocks any write to the same row. In a
classical two-phase locking (2PL) scheme every acquired lock
is held until the transaction is committed or aborted, hence
blocking every transaction that tries to work on the data
under a lock. Even MVCC based systems acquire transac-
tion duration write locks on rows being modified while an
OCC system never obtains long term write locks.

In an OCC system, transactions are executed concurrently
without having to wait for each other to access the rows.
Read operations, in particular, will have no restrictions as
they cannot compromise the integrity of the data. Write
operations will operate on temporary copies of rows. Since
persisting the transactions as they are executed would likely
violate the ACID properties, the execution of each transac-
tion has to be validated against the others.

Comdb2 uses a form of Backwards Optimistic Concur-
rency Control (BOCC) [14] with concurrent validation. Two
distinct validation phases prevent anomalies such as over-
writing uncommitted data, unrepeatable reads and write skew.
This is a hybrid system using locking for some functions,
while adhering to a more traditional OCC approach for oth-
ers.

In order to detect Write-Write conflicts, Comdb2 uses a
form of deferred 2PL to allow for concurrent validation with-
out a critical section [33]. This is based on the notion of a
genid - GENeration IDentifier - associated with each row.
Every modification to a row changes its genid, and
genids can never be reused. Genids are latched - i.e.
remembered - during the execution of a transaction when
rows are modified, and later validated at commit time using
2PL on the rows. The structure used to record such modi-
fications is referred to as the Block Processor Log (bplog).

As the genid forms a key into the data internally, the
existence of a genid in the system is su�cient to assert the
existence and stability of a row before committing. Comdb2
incurs no extra overhead in recording all overlapping write
sets for validation, as a standard Write-Ahead Log (WAL)
protocol demands that write sets be logged already.

Read-Write conflicts are addressed by non-durably record-
ing the read set of a transaction as degenerate predicates
consisting of rows, ranges and tables. During the validation
phase the overlapping write sets from the WAL are checked
for conflicts against the transaction’s read set. Validation
runs backwards in several phases.

The ultimate commit operation occurs in a critical sec-
tion but pre-validation ensures that duration will be brief.
Replicants running a transaction are able to begin validation
concurrently up to the LSN present on that node. The vali-
dation burden then moves to the master in a repeated cycle
of validations outside the critical section. The critical sec-
tion is entered for final validation once pre validation is near
enough to the current LSN as determined by a tunable.

3.4 Replication
A transaction in Comdb2 goes through several distinct

phases on various nodes of the cluster, as shown in Fig. 2. In
the initial phase, the client connects to a geographically close
replicant (Fig. 2a), typically in the same data center. The
interactive phase of the transaction (SELECT, INSERT,
UPDATE, DELETE operations (Fig. 2b)) occurs entirely
on that replicant. We will refer to this as the OCC phase
of the transaction lifecycle as no locks are acquired. During
the execution of this phase write operations are recorded for
purposes of later execution and validation. This recording
occurs on the bplog which is continually shipped to the mas-
ter and bu↵ered. When the client application finally COM-
MITs, the master begins the second phase of the transaction
lifecycle (Fig. 2c). This is a 2PL phase in which operations
are both written and validated to detect OCC read-write or
write-write conflicts (Fig. 2d). The master generates phys-
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Figure 2: Life cycle of a transaction

iological log records describing changes it makes to B-tree
pages. It then duplexes this log to both its local log file (for
local durability) and to the network (for high availability)
(Fig. 2e). At the end of processing the transaction de-
scribed in the bplog (after local commit and after releasing
locks), the master then synchronously waits for all replicants
to acknowledge that they have successfully processed this
transaction (Fig. 2f). Each makes the changes described.
There is no consensus at this stage, only a set of replicants
driven by a master. At this point, the originating appli-
cation will remain blocked. Only after the master receives
acknowledgement of cluster-wide durability will it respond
to the blocked session on the original database node. That
node will then respond to the originating application with a
successful return code (Fig. 2g).

Techniques described later allow safe forward progress
without endless blocking on all nodes being correctly oper-
ating and available. Additional techniques are used to make
this form of synchronous replication lighter weight than it
first appears.

3.5 Distributed SQL
Comdb2 allows for remote access of any database instance

in the Comdb2 cloud to be transparently used as if the re-
mote table were a local table. Extensive changes were made
to SQLite [15, 17] to allow for e�cient predicate filters to
be pushed to remote nodes. The planner pushes generated
SQL to remote nodes for execution, and results stream back
in parallel for local processing. The system operates without
any pre configuration, dynamically learning schemas and in-
dex statistics from remote databases as the statements are
parsed. The remote information is versioned and locally
cached, and re-acquired when remote servers update it. The
planner has access to both local and cached remote schema
and associated index statistics to select a properly optimized
execution plan. In e↵ect all tables in all the Comdb2 in-
stances in a single Comdb2 deployment operate as a single
large database.

Tables in Comdb2 exist in a global namespace of the for-
mat <databasename>.<tablename> though support for pre-
configured “aliases” allows the database administrator to
permanently map a remote table into the namespace of a
local database.

3.6 Stored Procedures, Triggers, and Queues
The stored procedure language in Comdb2 is a customized

dialect of the Lua programming language. Extensions in-
clude among others, numerous additional base data types
matching all database provided types, a strong typing sys-
tem, pthread-like thread support, and parsers for JSON.

Stored procedures run on the server side rather than the
client. The Lua engine has full access to the relational en-
gine and can operate on rows in the same way a client can
using SQL. Moreover, a stored procedure can return rows to
a client the same way a SELECT statement would.

Stored procedures can be used in combination with trig-
gers to handle table events such as: add, update, and delete
of a row. Update events can be filtered based on the columns
that have been updated. If a table has columns a,b and c the
trigger can be set to fire only when column b has changed.
When a trigger fires an internal queue is written to from
inside the relevant transaction. A stored procedure is called
to consume this event. The execution of the procedure is
a transaction which includes consumption from the queue,
guaranteeing at most once execution of the procedure for
each event.

Triggers can also be external in that they feed calling SQL
applications rather than an internal stored procedure. This
functionality is used for an application needing more in-
volved logic than can be readily placed inside the database.
The system provides High Availability by allowing for mul-
tiple consuming SQL statements to be issued on the same
condition from multiple client machines while providing at
most once delivery.

Triggers, stored procedures, and queues can be combined
to create a form of asynchronous eventually consistent repli-
cation. Logical logging is used to describe all changes to
rows, which are enqueued and multicast once the transaction
has become durable within the cluster. Any interested party
picks up this multicast stream and feeds a local Comdb2 in-
stance, which essentially acts as a local cache of the real
database.

4. IMPLEMENTATION
In this section we present the building blocks of Comdb2.

Each module has responsibilities within the single database
instance and within the cluster.

4.1 Storage Layer
Comdb2 storage is based on an extensively modified ver-

sion of BerkeleyDB 4.2. In particular: the memory pool
(mpool), for paginated file access, and the B-tree implemen-
tation.

Throughout the years we integrated the latest solutions
for I/O and concurrency into the mpool. Extensions in-
clude direct I/O support, parallel and coalesced writes, and
an optional double bu↵ering scheme to prevent torn pages
[26]. Mpool can trigger cluster-wide page faults under cer-
tain circumstances as explained later in this section.
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Figure 3 Figure 4 Figure 5

Comdb2 uses B-trees to store every type of data: rows, in-
dexes and blobs. However the B-tree layer from BerkeleyDB
knows nothing of these. From the storage perspective a B-
tree simply maps a key to a value, both as a raw sequence
of bytes. Each B-tree is stored in a separate file and mul-
tiple B-trees form a table as explained later in the paper.
Some relevant changes that have been added to the original
implementation of BerkeleyDB are as follows:

4.1.1 Row Locks
The original version of BerkeleyDB used page locks in-

stead of row locks. We added support for row level locking
implementing an ARIES style system [22] using logical undo
logging and page level micro transactions.

4.1.2 Prefaulting
Even though solid-state drives (SSD) have essentially elim-

inated the seek time penalty, the speed gap between main
and secondary memory is still disproportionate. Every page-
fault sacrifices thousands of CPU cycles. One way of tack-
ling this problem is to anticipate foreseeable access to stor-
age so that data can be available before being requested.
This practice is commonly known as prefaulting or reada-
head.

B-tree readahead is triggered whenever a B-tree is tra-
versed sequentially: pages are read in advance in order to
anticipate future requests. This is not trivial in a B-tree im-
plementation that normally does not have upwards pointers
to parents from leaf nodes. Each cursor that moves on the
tree maintains partial information about its descent to the
leaf nodes. This enables preloading of hundreds of pages
in parallel without the need to lock inner nodes of the B-
tree. Pages are versioned so the cursor is able to identify any
inconsistency caused by later changes to the tree structure.

Local prefaulting occurs during transaction execution.
High level bplog operation such as “update” or “add” which
operate on a row are decomposed into low level operations
which “form” and “find” the keys required by the indexes
in the background concurrently. These B-tree read requests
have the e↵ect of faulting in index pages in parallel, racing
with the original transaction.

Remote prefaulting occurs on the master node at time
of committing a transaction and propagates through the
cluster over a lossy channel (UDP). It transmits the sequence
of pages accessed while writing the data. This allows repli-
cants to load pages into memory before they are requested
by the replication stream.

4.1.3 Lock avoidance
Root pages in a tree are traversed during every descent

to the leaf level. Consequently they easily become a con-
currency bottleneck. Taking advantage of the fact that root
pages of large B-trees change rarely, each working thread
maintains it’s own private copy that can be accessed with-
out holding locks. We use a simple protocol for invalidation
when the original page changes. Fig. 5 shows the perfor-
mance improvement in a read-only scenario where on the
x-axis we see the number of reading threads and on the y-
axis the overall throughput. As more readers are added, the
contention becomes evident, until the system saturates in
the right side of the chart.

4.1.4 Compression
Comdb2 B-trees support both page and value compression

which allows a trade-o↵ of CPU cycles for less disk I/O. The
compression algorithms used are: (1) zLib [10], (2) Lz4 [5],
(3) Comdb2 Run-length Encoding (CRLE). Each algorithm
o↵ers a di↵erent performance to compression ratio. The
database is able to sample the data and suggest the ideal
compression type. CRLE is novel in that it is hand built to
understand the binary representation of Comdb2 datatypes,
and captures common patterns which occur when multiple
consecutive columns are set to the same value. Page com-
pression occurs on indexes using a form of prefix compres-
sion. The compression allows for items to be individually ex-
tracted without decompressing an entire page or operating
on a “stream”, as was added in later versions of BerkeleyDB.
The remaining su�x entries are then further compressed in-
dividually with CRLE.

4.1.5 Concurrent I/O
The bu↵er pool layer of BerkeleyDB was modified to allow

for concurrent writes for the purpose of higher throughout
when flushing to disk. Under a sustained heavy write work-
load, the bu↵er pool can become completely dirty and the
rate limiting step becomes the rate of flushing dirty pages.
Multithreaded flushing works in tandem with filesystem sup-
port for DirectIO to concurrently write to the same file. Ad-
ditionally, Comdb2 merges adjacent pages when writing to
issue fewer system calls of larger writes.

4.2 Replication
In Comdb2, the replication logic exists solely at the stor-

age layer. This is possible because validation and commit-
ting are coordinated by a single master that always attempts
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to modify its version of the storage before ordering the repli-
cants to do the same. Changes are forwarded to the entire
cluster as a list of logical descriptions of the modified pages.
The progress that each machine has made with respect to
the master is measured by Log Sequence Number (LSN), a
monotonically increasing number that advances as changes
are performed to the storage. Upon receiving a new seg-
ment of the replication stream the replicant: (1) applies the
changes and (2) acknowledges its progress with its latest
LSN.

By default, the master waits for every node to acknowl-
edge the latest LSN before considering the changes perma-
nent, although consensus and its quorum can be tuned as
explained in Sec. 5. Only after these nodes acknowledge
this transaction does the blocked calling application receive
a successful response.

Comdb2 provides for a globally consistent reads-follows-
writes model. This means that after a write has been re-
ported committed to the originating client application, the
write will be immediately visible to that application, as
well as any other application reading from any node in the
Comdb2 cluster. Unlike a 2PC model, which provides simi-
lar distributed semantics, the Comdb2 model proceeds safely
in cases of failure of one or more nodes in the cluster during
commit without blocking.

As a single master system, the final stage of a commit
happens in only one place. Unlike 2PC, no consensus is ac-
tually required to commit: by the time the other nodes are
involved, the commit has already happened. This allows for
decoupling of the nodes in a manner looser than 2PC, but
causes two potential problems. We first needed to solve the
problem of ensuring that only the latest values can be read
on all nodes, especially during failures. A more subtle prob-
lem encountered during the development of Comdb2 was
the possibility of dirty reads under certain failure scenarios
despite each node locally disallowing this phenomenon.

4.2.1 Replication stream delivery
Using synchronous replication as the basis for reads-follows-

writes semantics presents performance concerns. In the most
straightforward implementation, this would mean a transac-
tion has been both durably logged and applied to become
visible before it can be acknowledged. In practice, both of
these techniques result in poor performance. By default
Comdb2 considers a transaction durable without writing
anything to disk, although this behavior can be changed
upon the user’s requirements. We consider this a form of
network commit in that durability for practical purposes
is achieved by in-memory replication to multiple machines
in geographically distributed locations. In addition, the ac-
knowledgement occurs before any parts of the transaction
have actually been applied, even in-memory. We call this
optimization early ack because it allows a replicant to ac-
knowledge a transaction before processing the data typically
needed to ensure reads-follows-writes consistency. The sys-
tem obtains all locks needed to guard against the possibility
of a client reading the previous state of the database before
acknowledgment. The replication stream contains all locks
needed and presents them in the commit record. Comdb2
asynchronously writes the log files and asynchronously up-
dates in-memory structures while still ensuring that only the
most recent value is ever visible to any client after a suc-
cessful write. Fig. 4 shows the performance improvement

obtained using early-ack in a write intensive scenario. As
expected, when more rows are modified by the transactions
(x-axis) the gains of early-ack become more apparent.

A second performance problem that a synchronous log
based replication system encounters comes from the very
nature of logging. Logging converts a concurrent set of in-
puts into a sequential output where every event happens in
a strict order. In essence, parallelism is converted into serial
execution. Feeding replicants the log stream has the e↵ect
of replicants running much slower than the master as the
concurrency has been eliminated when processing the log
entries in order. Comdb2 solves this by processing the
log concurrently. Using the same set of locks embedded
in the commit record previously described, Comdb2 allows
concurrent transactions for execution on replicants when no
conflicts are possible. Concurrency within a transaction is
also extracted. For example, an INSERT on a table with
two indexes can safely modify the one data and the two in-
dex structures concurrently without conflicts. Fig. 3 shows
the benefit of processing the log concurrently in a work-
load benefitting from this technique. In this simplistic case
rows were being written to many di↵erent tables. As more
replication worker threads are added (x-axis) the the overall
throughput continues to increase.

4.2.2 Coherency: global reads-follows-writes model
Comdb2 ensures that the latest value can be read from

any database node after a successful write from any appli-
cation. We refer to this as our coherency model. All nodes
are in one of two states, either coherent or incoherent. A co-
herent node is allowed to begin new transactions (including
serving a simple read) while an incoherent node rejects all
requests. The arbiter of this state is the master. The master
treats nodes di↵erently based on the coherency state, wait-
ing for acknowledgement from coherent nodes only. A node
transitions between coherent and incoherent when a wait for
acknowledgement has failed or when the master deems the
performance of that node to be sub par. The underlying
mechanism is one of short term leases which are continu-
ously issued by the master. The lease is an absolute times-
tamp at a point in the future well beyond any allowed time
skew between nodes. Transitioning a node to an incoherent
state requires revoking a lease, which is accomplished by no
longer issuing a lease to the errant node, and blocking com-
mits for longer than the lease time. This ensures that the
lease has expired. This mechanism is fail-safe in that a node
that is no longer in contact with a master will not be able
to serve stale reads, as it will no longer be receiving leases.
A similar reverse protocol exists to dynamically transition
nodes that have become healthy back into the coherent state
and allow them to be safely used.

4.2.3 Eliminating dirty reads
Allowing for failures during commit exposes a potential

for dirty reads even with all nodes in a cluster running with
serializability locally. Let us consider the scenario where the
commit of a transaction t1 from client C1 to master M is
acknowledged by machine S1, but has not yet reached nodes
S2, S3, S4, S5. Concurrently application C2 issues a read
to S1 which reads the latest update from t1. A failure of
nodes M and S1 at this point results in S2..S5 electing a
new master amongst themselves. After a new master has
been elected the cluster will no longer contain the result of
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transaction t1 even though C2 has read this data and may
have made decisions based upon it. Comdb2 introduces the
notion of a durable LSN in the cluster to handle this.

When a transaction begins on the replicant it begins at
the point in time of the current LSN on that node. It is
possible that at that instant the LSN is ahead of the LSN of
some other nodes. In essence this node is running slightly in
the future, though obviously not ahead of the master. The
goal is ensuring that this transaction does not begin in a
future which will never occur if a failure causes a loss of
data which committed to some nodes. The begin operation
stalls until the durable LSN received is greater than or equal
to the start LSN of the transaction to ensure the read is from
durable storage.

In Comdb2 master failures and election are handled in
a standard Paxos fashion. When a master is lost the repli-
cants agree on what the latest LSN is and elect a new master
among those having the latest version of the storage. Heart-
beats are used to detect loss of master.

4.3 Cdb2 Layer
In Comdb2, the SQL engine sees tables and indexes as

whole entities and knows nothing of concurrency. The cdb2
layer does all the heavy lifting needed to hide the physical
representation of data and the artifacts caused by concur-
rency.

4.3.1 Data organization
The cdb2 interface exposes the basic functionalities for

search, scan, and update on a table. Each table is stored
across many files, each of which contains a B-tree. For the
sake of simplicity we will first assume that a table has one
B-tree to store its rows in addition to one B-tree per index.
We will further refer to these respectively as data and index
files.

As is common with conventional row-store databases, a
data file stores the rows of a table indexed by a primary-key,
and index files map the values contained in some selected
columns to a primary key to reference a row.

In Comdb2 however, the primary key is always system
assigned. Specifically, it is the 64 bit genid that forms the
basis of OCC in Comdb2. The most significant part of a
genid is always used as the primary key of a row, with high
bits masked out before storage. The binary structure of a
genid is the following:

counter(48) update-id(12) stripe-id(4)

The 48 most significant bits are a monotonically increasing
counter. This is not a point of contention as allocations are
not transactional. They can be lost, and no e↵ort is made to
record allocations. Recovery can trivially begin at the next
value by seeking to the highest values in the data B-trees.

The next 12 bit section is the update-id, which is actually
stored in the payload, and not the key, of a data B-tree. The
keys of a data B-tree have the update-id masked o↵ to avoid
the e↵ect of an update causing a physical relocation of the
entry in the B-tree. After 212 updates to a row, a new genid
is allocated and relocation occurs.

The last 4 bits identify the stripe of the data, explained
later in this section.

In a data file, the payload consists of a 56 bit row header

followed by the row itself 3. The structure of the row header
is the following:

length(28) update id(12) schema version(8) flags(8)

The length represents the uncompressed length, used to
ease memory allocation burdens. The schema version indi-
cates the format of the schema used to store the payload.
Comdb2 supports instant schema changes meaning that the
table structure can be changed without converting the data
stored in it. Whenever a row is read from a data file the
database checks if the schema is current. If not, the sys-
tem internally converts the row in memory before using it,
optionally triggering an asynchronous rebuild of the row on
disk. The flags record options such as the type of compres-
sion used.

The columns themselves are encoded within a row in a
machine-agnostic format which allows for memcmp compar-
isons to be performed on any schema. For performance rea-
sons and design simplicity the comparison routine of the
B-tree has no knowledge of schemas or data types.

The payload of an index file is simply a genid. Each index
entry points to one data entry, with duplicate index values
handled by internal su�xes on keys to di↵erentiate entries.
Indexes must contain full genids including the update-id por-
tions to allow for proper OCC validation of plans that op-
erate on covering indexes without reading data.

In practice, data files are split into multiple B-trees (typ-
ically eight) which we refer to as stripes. This alleviates a
concurrency hotspot when writing to the right side of the
B-tree. In order to o↵er a uniform view of the storage, cdb2
implements its own abstraction of a tree, allowing it to trans-
parently merge underlying B-tree structures.

4.3.2 Isolation Levels
The cdb2 trees implement isolation by merging temporary

tree structures referred to as shadow trees. These are:

dt-shadow contains the rows that the transaction should
see, either because the transaction has added the rows to
the system or because the rows were present in the system
when the transaction started and the isolation level was
snapshot or higher.

skip-shadow contains the rows that the transaction should
not see, either because the transaction deleted the rows or
because the rows were added to the system after the trans-
action started using snapshot isolation.

ix-shadow contains the shadow trees of the indexes. There
is no need for index skip trees as indexes use the data skip
tree for this purpose.

These temporary data structures are kept empty in the
block isolation level as it does not allow for transactions
to read the results of their own uncommitted data. In
read committed they are filled by the transaction itself,
which is allowed to look at the temporary storage as well
as the already persisted data. In snapshot isolation the
shadow trees are filled both by the transaction and replica-
tion stream.

Fig. 6 o↵ers a graphical example. On the left side we see
the interleaved serializable execution of transactions T1 and

3Excluding its blobs that are stored in a dedicated B-tree
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Figure 6: Two interleaved transactions represented internally

T2. On the right side we see how storage and shadow-trees
are modified over time. When the transactions begin (time
1 to 2) the storage is untouched and the shadow trees are
empty. At time 3, T1 inserts ’RED’ causing its dt-shadow
to store the value to reflect the change in T1’s own view of
the storage. Analogously, at time 4, T2 deletes ’BLACK’
filling its skip-shadow with it. Note this last operation does
not cause any change on T1’s shadow trees. Only at time 5
when T2 commits, causing the storage to change, does T1
need to insert ’BLACK’ in its skip tree in order to maintain
its snapshot. T1 proceeds removing ’GREEN’ and finally
committing at time 7 making the changes e↵ective on the
storage.

This process is costly but optimized by deferring work un-
til a query visits a modified portion of the storage. Comdb2
tracks the LSN at the time the transaction began. When it
reads a page of the storage, the LSN on the page is com-
pared with the one associated with the transaction. If the
page contains a higher LSN the replication log is used to log-
ically undo all changes on that page by processing the undo
records into shadow structures. Auxiliary data structures
allow the processing of only the necessary undo records for
that page.

The serializable isolation level uses all the shadow trees
presented in this section and additional more complex data
structures for e�cient predicate validation.

4.3.3 BPLog
The bplog is a logical log which is emitted during the OCC

phase of transaction execution. For example, an “INSERT”
results in an “add record” being logged, and a “DELETE”
results in a “delete genid” being logged. The log is a non-
durable stream of events (recorded transiently on the initiat-
ing node) which is shipped to the master for both execution
and validation. The master node executes the steps in the
bplog using 2PL, and performs validation of all mentioned
genids to assure transactions commit changes to the same
rows initially referenced. Execution of the bplog in turn gen-
erates the WAL feeding the replication process of Comdb2.
The time in which locks are held through 2PL in this model
is minimized. While an application may keep a transac-
tion open and continue to write, no locks are being held,
as Comdb2 is in its OCC phase. Only once the application
commits and relinquishes control does the 2PL phase begin,
running as fast as the system will allow.

The bplog is resilient to master swings. If a new master
is elected while a transaction is being executed, the bplog is
resent to the new master by the replicant that generated it

and the execution process will be restarted. Internal usage
of globally unique identifiers allows for safe replay detection,
resulting in at most once execution when resending bplogs.

4.3.4 Schema changes
In contrast to many other RDBMS, schema changes are

implemented in Comdb2 so that the table being modified
is always available for reads and writes regardless of the
type of change. No machine in the cluster has to go of-
fline. In many cases schema changes are applied instantly
with no physical rebuild. The system prefers non schema
change transactions when conflicts occur, aiming for little
to no impact to the production workload when a schema
change is underway. A unique feature of Comdb2 is the
notion of declarative schema change. As opposed to the
low-level model presented through most pure SQL systems,
Comdb2 takes the approach of allowing the user to specify
a complete new schema (including many changes such as
adding, removing, changing data types of columns, and the
same for any number of indexes and constraints) and hav-
ing the “planner” determine the most e�cient way to get
from the current schema to the new schema. A schema in
Comdb2 DDL includes a full definition of the table including
all columns, indexes, and constraints.

Tables do not need to be rebuilt when columns are added
or when columns are promoted to compatible larger types.
Some compatible type conversions are a short integer to a
long integer, or any type of number to a string. Incompatible
conversions are a long integer to a short integer or a string to
any integer. The reason for this restriction is that it would
be too late for a constraint check to fail the schema change
after the database has already agreed to it. Every time
the schema change is compatible with the current schema,
the database will just record that a new schema has been
applied. Rows will maintain the old format on disk until the
first time they are updated.

Whenever a table or index has to be rebuilt, the process is
done in background working on new hidden versions of the
original structures. Only portions of the table (individual
indexes, data, etc) which need to be rebuilt will be. The
database will keep serving both read and write requests and
the hidden structures will be replicated to the replicants as
would any other write. Reads occur against the original
table while writes are performed on both the regular and
the hidden version of the table. The amount of concurrency
and priority of the rebuild process is dynamically adapted
based on contention with the concurrent workload.

At the end of the schema change, access to the table
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is blocked for a fraction of a second as the master simply
switches pointers between the old and new B-trees, and logs
the event, causing replicants to do the same.

Replicating and logging the schema change allows for a
novel feature of Comdb2. A schema change operates as a
phoenix transaction [12] and literally comes back from the
dead at exactly where it left o↵ during any master swing.
This feature is invaluable in practice as it allows for long
running changes on very large tables to occur in the face of
both hardware failures and maintenance.

4.4 SQL

4.4.1 Transport
Clients and servers communicate with two types of trans-

port: (1) a proprietary IPC protocol used in the Bloomberg
cloud and (2) a combination of TCP and Protocol Bu↵ers
[11]. The former has the advantage of blending naturally
with our infrastructure and taking advantage of features and
optimizations built throughout the years including caching
and routing. The latter is compatible with more operating
systems and languages, and forms the building blocks for
our ODBC and JDBC drivers.

4.4.2 Data Model
The database o↵ers a standard relational schema. Tables

might have: multiple indexes, unique constrains, null con-
straints, and foreign key constraints. The datatypes listed in
Tab. 1, are similar to the ANSI SQL standard and are also
closely coupled with Bloomberg’s C++ standard library,
BDE [20]. Full support for decimal floating point types
are useful for avoiding rounding errors when operating on
financial data. The blob and vutf8 datatypes are notable
for being variable length but allowing the user to “hint” a
size to the database. The database uses this hint to store
a certain number of bytes on the page containing the row
rather than in an auxiliary B-tree as is used in Comdb2 for
variable length columns. Proper hinting can result in large
performance gains. On disk every datatype is normalized
so that every field can be ordered using a normal memory
comparison rather than a dedicated function. A header pre-
fixed to every column allows for NULL to be represented
distinctly from any other value.

short, u short 2 bytes signed/unsigned integer

int, u int 4 bytes signed/unsigned integer

long 8 byte signed integer

float 4 byte IEEE 754 floating point

double 8 byte IEEE 754 floating point

decimal132 4 byte IEEE 754-2008 decimal floating point

decimal164 8 byte IEEE 754-2008 decimal floating point

decimal128 16 byte IEEE 754-2008 decimal floating point

datetime ms precision timestamp (-10K BC to 10K AD)

interval distance between two timestamps

byte[n] fixed length unsigned byte array

blob variable length unsigned byte array

cstring[n] fixed length character array ending with null

vutf8 variable length utf8 string (validating)

Table 1: The list of Comdb2 datatypes

4.4.3 SQLite
SQLite is an embedded database developed by Hwaci [16].

It is publicly available as an open-source product. BLP has

maintained a close relationship with the developers of this
product for 10 years. A long-standing member of the SQLite
consortium, BLP contributed to the development the statis-
tics based query planner and other initiatives. Comdb2
shares its SQL engine with SQLite, which takes care of pars-
ing an SQL statement and creating a query plan. In SQLite
a query plan is compiled into a bytecode program that is ex-
ecuted by a virtual machine, named Virtual DataBase En-
gine (VDBE). The VDBE o↵ers the basic functionalities of
a register-based machine and other supplementary functions
needed to operate on database tables.

In the original SQLite implementation the VDBE operates
on the real B-trees of the database, allowing little to no con-
currency. The VDBE acquires locks on an entire database,
and releases only at commit time.

In contrast the Comdb2 VDBE operates on the cdb2 ab-
straction of a table during the OCC phase of transaction
execution. Every write is recorded and produces an entry
into the bplog as explained previously. The VDBE is un-
aware of the shadow-trees, auxiliary B-trees for stripes, and
variable length columns. These are all handled in the cdb2
layer.

Every Comdb2 instance runs an arbitrary number of VDBE
instances depending on the hardware in use. VDBE engines
are pre-created and bound to threads in advance. Each
VDBE is unaware of the others, since they cannot change
the storage. The only time a VDBE may potentially block is
when accessing a row under modification by the replication
processing.

5. TUNING

5.1 Replication
When building a geographically replicated database the

main concern is always latency. Comdb2 allows the user
to trade performance with consistency by changing the con-
tract of its replication protocol. Some of the options avail-
able are:

Size By default every machine in the cluster has to ac-
knowledge that it has successfully received and applied the
changes sent by the master. The size of the consensus can
be reduced to half + 1 nodes in the cluster.

Type Replication values are normal, which involves every
node in the cluster; room which requires consensus only
within the datacenter and replicates asynchronously out-
side of it; and none which is asynchronous replication.

Incoherent nodes It is possible to fine tune when a node
becomes incoherent. The algorithm used is timeout based,
causing the master to give up waiting on node when either
a) It has waited a given percentage longer for that node
than for other node to commit a given transaction or b) the
node is consistently a given percentage slower than other
nodes.

Asynchronous Logging For durability purposes every time
a page of the storage is modified in main memory the
change has to be logged on durable storage into the WAL.
This practice allows a database to recover from a crash
by reapplying any changes not yet applied to the storage.
This introduces the cost of an extra I/O operation for every
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transaction committed. In a replicated environment this ef-
fect is magnified. Comdb2 allows flushing of the WAL to
be tuned from forcing flush on every transaction commit to
lazily flushing periodically. By default the WAL is flushed
every 10 seconds. While in theory this exposes a crashed
node to data loss, in practice this does not happen. The
crashed node upon recovery is able to retransmit from the
rest of the cluster before it serves requests. Failure of an
entire cluster simultaneously could indeed result in the loss
of committed data, though at BLP we defend against this
with a truly shared nothing architecture.

5.2 Handling network failures
Network partitions are a serious problem for a distributed

system. Comdb2 favors consistency over availability under
a partitioned situation. A node disconnected from a master
for a prolonged time (ie longer than lease) is unable to serve
any type of request. Further, a network partition leaving no
group as a majority results in a cluster with no master and
all nodes unable to serve any requests.

We found during the development of Comdb2 that it was
possible to reduce the possibility of network partitions by
building independent networks which share nothing. Comb2
was designed to transparently support multiple network in-
terfaces for its intra-cluster communication. At BLP we
run every database node with multiple independent ether-
net cards attached to independent switches running to in-
dependent routers, ultimately spanning independent fiber
runs between data centers. In reality, network partitions no
longer occur as it requires simultaneous loss of multiple inde-
pendent networks which share nothing. Additionally BLP
runs Comdb2 clusters across more than 2 data centers to
eliminate lack on consensus from loss of a data center.

6. BENCHMARKS
In this section we present an overview of the overall per-

formance of our system in a 6 node cluster spread across 2
datacenters. Nodes are interconnected by 10Gb/s links, and
latency is respectively 0.14ms and 1.16ms inside and outside
the datacenter. Each node contains 16 3.30GHz Intel Xeon
E5-2667 cores equipped with 25MB of cache, 256GB of main
memory, and uses an array of 6 SSDs as storage. Databases
are configured to use 32GB of cache that is emptied before
every single test.

Fig. 7 compares Comdb2 and Percona XtraDB Cluster
at a benchmark that measures the aggregate number of ran-
dom rows/second which can be served from a cluster. The
results present the number of clients as the x-axis and the
rows/second as the y-axis. In this benchmark Comdb2 scales
reads faster than Percona however, as can be seen on the
right side of the chart, it runs out of hardware capacity
faster. Both systems scale essentially linearly at this read
benchmark as more nodes are added to a cluster

Fig. 8 compares Comdb2 and Percona XtraDB Cluster
with a benchmark measuring the number of rows/second
we are able to insert into the system. The results present
the number of clients as the x-axis and the rows/second
as the y-axis. In this benchmark Comdb2 scales faster at
lower concurrency, to be briefly eclipsed by Percona around
160 concurrent clients. As concurrency increases further,
both systems appear to plateau in a similar range. There
is a clear upper limit to write throughput present in both
architectures.

7. CURRENT WORK
A significant limitation in the current Comdb2 system is

the lack of ability to write to tables that exist in remote
databases. The current production implementation is read
only. Work is underway to lift this restriction by building
a system that will coordinate across multiple database in-
stances using standard 2PC. The design is such that any
node of any database instance can become a coordinator
with no pre designation. Within a single database replica-
tion group, we have deliberately chosen to use a form of
synchronous single copy replication rather than 2PC as the
2PC protocol is well known for reducing availability rather
than increasing it. As a cluster becomes larger the probabil-
ity of an errant node causing 2PC to be unable to commit
(and block) becomes more likely. We don’t believe this will
be a problem in our usage of 2PC across database replica-
tion groups. As each database instance is already massively
replicated and designed to be highly available, we will not
face an availability problem committing with 2PC. Rather
than an unavailable node making commit block, it would
take an unavailable cluster; which should not happen today
with Comdb2.

Comdb2 is also limited today in its ability to scale writes.
While reads scale in a nearly linear manner as cluster size in-
creases, writes have a more conservative level of scaling with
an absolute limit. The o✏oading of portions of work (essen-
tially all the WHERE clause predicate evaluations) across
the cluster does help scale writes beyond what a single ma-
chine can do. Ultimately, this architecture does saturate on
a single machine’s ability to process the low level bplogs.
Solutions to this problem come in the form of multi-master
systems or partitioned data sets. We have chosen to pur-
sue the latter in Comdb2 in the form of range and hash
partitioned tables. The current system supports a form of
partitioned tables using time of insertion, allowing applica-
tions to define automatic retention polices. Building on that
we will allow for more arbitrary partitioning of tables. Un-
der our design, each portion of the table has its own master
(getting many of the benefits of a multi-master system) and
is able to write to the portion it owns without coordinating
with partitions uninvolved in the transaction. We expect to
be able to scale writes (for workloads which do not need to
coordinate among many masters) well with such a system.

8. FINAL DISCUSSION
The HA features of Comdb2 rely heavily on discipline used

in physical deployment. For one, we require clocks to have
some minimum allowable tolerance of skew between data
centers. At BLP we maintain GPS clocks in each data cen-
ter for this purpose. The system needs to be tuned to know
that allowance, and to wait significantly longer for lease ex-
piration. Higher allowance does not e↵ect performance of
a Comdb2 deployment except for pauses caused during er-
ror handling for lease expiration. We also depend on the
physical nodes of a cluster being truly independent for our
HA claims. At BLP this means each node is physically lo-
cated away from another (within a data center) sharing as
little common physical infrastructure as possible. We also
distribute nodes of a cluster across multiple (more than 2)
geographically distant data centers. Furthermore, we run
multiple independent dedicated networks (sharing no hard-
ware) between all nodes and between each data center. HA
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Figure 7 Figure 8

works when failures are isolated to one or some nodes, but
clearly no software can mask physical failures of entire clus-
ters. Along the same lines, we run each node with “unre-
liable” commodity SSD with no RAID, understanding that
decisions that lower MTBF of an individual node are well
handled with our architecture.

BLP has many years of experience using virtually every
major commercial and open source RDBMS in a production
setting. Usage is heavily skewed towards Comdb2 within
the firm predominantly because of seamless high availabil-
ity. Application programs in BLP are held to a very high
standard of availability. When faced with the option of pro-
viding this level of service by integrating an RDBMS which
requires the application to handle many forms of failures
by taking appropriate actions, most chose the system which
masks the issue from the application. Outliers are typically
applications requiring an advanced feature not present in
Comdb2.

The closest comparable architecture to Comdb2 being used
inside BLP is Percona XtraDB Cluster. As such we have
spent time studying and benchmarking that system. On the
same hardware in a cluster, we see similar scaling of both
read and write workloads. Both systems scale read work-
loads as nodes are added to a cluster but exhibit a cap on
write scaling. We hope that our work on fine grained parti-
tioning of tables will improve our ability to scale writes.

Systems that o↵er a coherency model similar to Comdb2
are of great interest to us. The Percona system currently
o↵ers a similar but weaker model, where “causal reads” (as
referred to in Percona documentation) are not a global guar-
antee, but only enforced locally to the application which
wrote the data. We are aware of active development in
the PostgreSQL community exploring a coherency model
inspired by Comdb2[25], divulged at the CHAR(14) Post-
greSQL conference [27]. It is also based on the “short term
lease” concept. We see this as evidence of real demand for a
strong coherency model where all programs are guaranteed
to read latest values in accordance with most real applica-
tions’ expectations.

9. CONCLUSION
In this paper we described Comdb2, the primary database

solution used at Bloomberg. Throughout the paper we tried
to give insight into the last twelve years of development while
highlighting details that made this project successful inside
our company. We look forward to publishing this project un-
der an open source license in order give it the visibility that
we think it deserves and to begin more open collaboration.

Finally, we would like to thank Richard Hipp for his in-
valuable assistance on this system.
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