
Nitro: A Fast, Scalable InMemory Storage Engine for
NoSQL Global Secondary Index

Sarath Lakshman
Couchbase, Inc.

sarath@couchbase.com

Sriram Melkote
Couchbase, Inc.

siri@couchbase.com

John Liang
Couchbase, Inc.

john.liang@couchbase.com
Ravi Mayuram
Couchbase, Inc.

ravi@couchbase.com

ABSTRACT
We present Nitro, a high-performance in-memory key-value
storage engine used in Couchbase 4.5 Global Secondary In-
dexes. The Nitro storage engine is well suited for the recent
hardware trends like large amounts of memory and many
CPU cores. The storage engine leverages latch-free data
structures and tries to achieve linear scalability for the in-
dex read-write operations. The Nitro storage engine offers
concurrent readers and writers, lightweight database snap-
shots, stable scan, backup and recovery operations.
We integrated Nitro into the Couchbase Global Secondary

Indexes (GSI) and observed significant improvement in per-
formance compared to our disk oriented storage engine con-
figured with the same amount of memory for buffer cache.
On a 32 core machine, we observed an end-to-end GSI server
insertion throughput of 1,650,000 entries/sec and index up-
date throughput of 822,000 entries/sec. A single instance of
Nitro data structure running on a 40 core machine achieved
a peak insertion throughput of 4 million index entries/sec
and entry lookup throughput of 10 million lookups/sec.

1. INTRODUCTION
The digital economy businesses are growing rapidly and

they generate a huge volume of documents every day. High
performance databases are required to serve the needs of
such massive OLTP applications. Databases depend on sec-
ondary indexes to reduce access times to lookup or query a
subset of documents from a large collection of documents.
Disk-oriented index structures such as B+Tree variants are
most commonly used for implementing indexes. However,
it is now feasible to obtain commodity hardware with suf-
ficient capacities of DRAM and fit indexes entirely in main
memory for many use cases. Modern databases are moving
towards this trend [2, 20, 4].
The disk oriented storage engines were traditionally de-

signed for optimizing disk block access as they expect disk

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/byncnd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 13
Copyright 2016 VLDB Endowment 21508097/16/09.

access as the performance bottleneck. B+Tree [6] indexes
are not effective for highly concurrent workloads. If a thread
is trying to modify an intermediate node, it has to hold a
latch to prevent other threads from traversing the subtree
of that node to guarantee correctness. The data structures
used for page management such as buffer managers heavily
use latches and often becomes a limiting factor for the par-
allelism [19]. These limitations make it difficult to achieve
linear scaling for single index performance.

In this paper, we present Nitro, an in-memory storage en-
gine designed for utilizing multi-core CPUs and large DRAM
capacities. Nitro leverages lock-free data structures and tries
to achieve linear throughput scaling for index operations.
Nitro offers concurrent readers and writers, stable index scan
cursor, fast and cheap database snapshots, fast backup and
recovery.

Couchbase is a scale-out NoSQL distributed database [2].
Couchbase Global Secondary Indexes (GSI) can be parti-
tioned independently from the primary database and can
be placed on a separate set of nodes. Hence, a single index
on a node needs to process document updates from many
other database nodes. This demands a high-performance
index storage engine which can scale the single index per-
formance with the available CPU cores. We designed Nitro
to meet our requirements for the scale-out global secondary
indexes.

On the topic of record stores optimized for main memory
and multicore systems, several key ideas can be traced back
to general latch-free index implementation scheme OLFIT
for linearly scalable index presented by Cha et al [18]. It
was further adopted by P*TIME [5] and its transactional
variant SAP HANA [9]. Similar Optimistic Concurrency
Control has been used in BWTree [8] by Microsoft Hekaton
[7]. Masstree [14] presented a highly concurrent and per-
forming in-memory tree for multicores followed by a trans-
actional variant SILO [10]. Variants of MVCC techniques
were applied for transactional properties.

In our work on Nitro, we build a storage engine based on a
lock-free skiplist inspired by techniques proposed by Sundell
and Tsigas [21]. The key contributions of Nitro are new pro-
tocols for safe concurrent garbage collection, non-intrusive
backup, and fast concurrent recovery that take advantage
of MVCC, and optimizations for lookup data structure and
storage in the Global Secondary Indexes Engine leading to
a unique implementation of a highly concurrent in-memory
centralized secondary index integrated with MVCC.

1413



This paper is organized into two parts. The first part of
the paper outlines the design of Nitro storage engine and
Nitro performance. The second part of the paper explores
Couchbase Memory Optimized Indexes (MOI) design using
Nitro storage engine and its performance.
Nitro storage engine uses the lock-free skiplist as the core

index data structure. Simplicity, scalable performance and
predictable memory consumption make it our choice for in-
memory indexes. Nitro storage engine has the following
components:
MVCC Layer: We build the necessary features for the

storage engine by implementing a multi-version concurrency
control (MVCC) layer on top of the lock-free skiplist. The
MVCC model leverages immutability and every item up-
date operation creates a new version of the item instead of
updating in-place.
Garbage Collector: As the versions of the items become

unused, they become stale and needs to be removed. We
implement a high-performance concurrent garbage collector
for collecting stale items.
Snapshot manager: Nitro implements database snap-

shots using the MVCC model. Snapshots can be used for
performing stable index scans.
Recovery manager: Durability is required for the stor-

age engine to recover from crashes. Nitro offers concurrent
backup and restore.

2. LOCKFREE SKIPLIST OVERVIEW

Figure 1: Skiplist

Skiplist is a probabilistic balanced ordered search data
structure [17]. We could describe skiplist as a group of sorted
singly linked lists arranged in levels to facilitate the binary
search. The lowest level (level 0) is a singly linked list of
nodes that hold data. The upper levels of the skiplist work
as the index into the lower levels. Each level in the skiplist
has approximately n/f nodes, where n is the number nodes
in the next lower level. The fanout factor, f determines the
multiplication factor of index nodes in the skiplist. This
constant factor can be tuned for allowing the tradeoff be-
tween memory and CPU usage. Each node in the skiplist
has a level which is assigned probabilistically. For a level
3 skiplist node, there will be three forward node pointers.
Theoretically, skiplists consume only 1.33 forward pointers
per node.
Skiplist supports operations for insert, lookup, and delete

with an average case complexity of O(log(n)). Skiplist lookup
algorithm is similar to the binary search on a sorted array.
For example, to find a node with key 4 from the Skiplist in
the Figure 1, the search starts from the level 4 (top level)
head node and checks if the node pointed by the forward
pointer has a key less than 4. If so, move to the next node
on the same level. Repeat until a node with a key greater
than or equal to key 4 is found. When a node with a greater
or equal key is encountered (key 5 in this example), search

level is decremented by 1. This is repeated until level 0
is reached. A sequential search is performed in the level 0
linked list. In this example, level 0 is reached with a node
with key 3. The next node in the level 0 is the node with
key 4. The lookup algorithm can be extended to implement
insert and delete.

The skiplist operations can be modified by proper us-
age of atomic instructions to make them thread-safe and
avoid any usage of locks for synchronization. The techniques
for implementing Insert and Delete operations for lock-free
skiplist are discussed by Sundell and Tsigas [21] and a sim-
plified variant in book, The Art of Multiprocessor Program-
ming [12]. The lock-free insert and delete operations on the
skiplist involve two phases. The first phase for the insert
involves adding the new node into the level 0 (data level)
linked list. During the second phase, the new node is linked
to all the upper levels (index levels) linked lists. Similarly,
the first phase of delete involves unlinking the node from
all the upper levels (index levels) and during second phase
node is unlinked from level 0 (data level). The first and sec-
ond phase do not require any synchronization. This is an
important property of skiplist that facilitates easier imple-
mentation of lock-free operations.

The lock-free operations for skiplist are implemented on
the basis of lock-free linked list algorithms [22]. The atomic
CompareAndSwap (CAS) operation is used to make sure
that no two threads modify the same next node pointer. If
multiple threads are trying to update the same next pointer,
only one thread succeeds and others fail. Failed threads have
to restart the operation by restarting the algorithm.

Figure 2: Lockfree list insert/delete operations

The example in Figure 2 illustrates lock-free insert and
delete algorithms for a linked list. The insertion into a linked
list is straightforward using CAS. But the delete operation is
more involved when multiple threads operate concurrently.
Let us consider a case with two threads A and B operating
concurrently. Thread A is trying to delete node 4 by per-
forming a CAS on the next pointer of the node 1. Thread B
is trying to insert a node 6 between node 4 and node 8. It is
possible that both Thread A and Thread B succeeds their
operations since the two threads are performing CAS on
two different pointers belonging to different nodes. The in-
sertion operation of node 6 can succeed while its predecessor
node has been removed. Even though the insert operation
for node 6 has succeeded, it will not appear in the skiplist
leading to incorrectness.

When the insert for node 6 is processed by updating the
predecessor and the predecessor node is currently being deleted,
the operation should fail in order to ensure correctness. A
two-step delete approach can be used to perform the safe
delete by adding an atomically markable flag to the pointer.
First, the next pointer of the node that needs to be deleted
is atomically marked as deleted. In the second step, the
next pointer of the predecessor node is atomically swapped
with a pointer to the next node. An insert operation on the

1414



node being deleted would fail since the predecessor node’s
next pointer is marked as deleted. This mark flag demands
additional flag to be compared atomically during CAS op-
eration. That is, a pair of pointer and flag needs to be
compared using a DoubleCAS operation. Instead of us-
ing CAS(prev next, new next), now we need to use Double-
CAS([prev next, prev isdeleted], [new next, new isdeleted]).
DoubleCAS instruction is not available on all hardware plat-
forms.
We used a different approach to achieve DoubleCAS with-

out any hardware support. Instead of next pointers, we de-
fined a new object type for pointer next reference. The refer-
ence object holds two values, a node pointer and a isdeleted
mark flag. Instead of doing CompareAndSwap on the node
pointer, we perform CompareAndSwap on a pointer to this
next reference object. Thus, every time the reference object
is swapped, two values are atomically swapped. For a non-
garbage collected language, other approaches such as tagged
pointers can be used. The least 48 bits of the 64-bit virtual
addresses are only used in practice. The MSB bit of the
64-bit pointer address can be used to indicate isdeleted flag.
This tagging method can avoid the extra memory overhead
of pointer reference object.
In addition to the insert, delete and lookup operations, we

required the ability to do skiplist iterations for range queries.
We implemented capability for lock-free skiplist iteration.
To traverse a range of nodes in the skiplist, the start node is
located using lookup operation. The subsequent seek to the
next nodes are performed by atomically loading next node
pointer. If the next pointer has its isdeleted flag marked, the
iterator has to stop and refresh the next pointer by doing
a lookup to the current item and continue. Iterator also
implements co-operative delete of nodes if it encounters a
node with next pointer marked as deleted.

3. NITRO MVCC DESIGN
The multi-version concurrency control system is the core

of Nitro. We implement multi-version concurrency control
as a layer on top of the lock-free skiplist. The MVCC sys-
tem provides the transactional properties for the lock-free
skiplist.
We designed MVCC layer to provide following features:
Immutable snapshots: Concurrent writers add or re-

move items into the skiplist. A snapshot of the current items
can be created to provide a point-in-time view of the skiplist.
This is useful for providing repeatable stable scans. Users
can create and manage multiple snapshots. If an applica-
tion requires atomicity for a batch of skiplist operations, it
can apply a batch of operations and create a new snapshot.
Changes would be invisible until a new snapshot is created.
Fast and low overhead snapshots: Readers of the

skiplist use a snapshot handle to perform all lookup and
range queries. An indexer application typically requires
many snapshots to be created every second for servicing in-
dex queries. So the overhead of creating and maintaining
a snapshot should be minimal for servicing the high rate of
snapshot generation. Nitro snapshots are very cheap and is
an O(1) operation.
Avoid phantom reads: A query operation using a snap-

shot will always return the same results. Items being re-
moved or added will not be visible to the query. A query
operation using a snapshot is repeatable.

Memory efficiency: Disk oriented data structures such
as append only copy-on-write B+Tree process updates in
the unit of disk page sizes [13]. This approach introduces
significant storage overhead per item. For a single entry
update, the entire residing page needs to be copied. Nitro
allocates the only exact amount of space required to hold
an item. This is also important for predictable capacity
planning.

Fast and scalable garbage collection: For a system
that generates hundred immutable snapshots per second,
there could be a hundred snapshots becoming unused every
second. MVCC Garbage collector should be efficient enough
to keep up with higher rates of garbage generation. Nitro
garbage collector is concurrent and scales with the number
of concurrent writers used by the system.

3.1 Structural modifications
In this section, we describe how multi-version based In-

sert, Delete, CreateSnapshot, DeleteSnapshot functionalities
are implemented.

Once an item is added into the MVCC skiplist, it becomes
immutable. If an item needs to be updated, the previous
node for the item is marked as deleted and a new node is
inserted. Thus, multiple versions of the same item key can
exist in the MVCC skiplist. If two versions of the same
key exist, the latest version is considered as a higher value
than the previous version according to the Nitro’s skiplist
sort order. For implementing the MVCC system, we add a
metadata attribute to every node in the skiplist. We call
this node metadata, lifetime. Lifetime is denoted using a
tuple (bornSn, deadSn). We call it born snapshot number
and dead snapshot number. The storage engine maintains
a current snapshot number, termSn for the database. The
termSn is incremented during every snapshot create opera-
tion. These three primitives are used to implement all the
MVCC operations.

Figure 3: Snapshotting based on versions of items

The storage engine initially starts with termSn=1. When
a node is inserted into the skiplist, the bornSn of the node
is set to the current snapshot number, termSn and deadSn
to 0. The zero value of the deadSn denotes that the node is
never marked as dead. The skiplist uses a key comparator
that additionally considers the bornSn for determining the
sort order. If there are two items in the skiplist with same
key, it will consider bornSn to decide the sort order. When
an item needs to be deleted, a skiplist lookup is performed
and sets deadSn as the current termSn for the node to be
deleted. The node is not immediately removed from the
skiplist. Unlinking of the node is performed by the garbage

1415



collector as it becomes unused by all the consumers in the
system. The bornSn and deadSn are immutable once they
are set. Given a termSn, we can easily answer the question
whether an item is valid with respect to a termSn by looking
at the bornSn and deadSn.
An immutable snapshot is created by atomically incre-

menting the global termSn by 1. Creating a snapshot is
an O(1) operation and hence very inexpensive. A snapshot
descriptor representing the snapshot is allocated as part of
snapshot creation. Snapshot descriptor manages reference
counting for the snapshot accessors. Consumers of the im-
mutable snapshot (e.g., index application scan requests), in-
crements the reference count of the snapshot and decrements
the reference count once it has finished using the snapshot.
Once the reference count for a snapshot becomes zero, the
snapshot is eligible for deletion and the garbage collector
can be notified to remove the dead nodes from the snap-
shot. The memory consumption for maintaining a snapshot
is minimal. Memory required for maintaining a snapshot is
equal to the number of items in a snapshot and few bytes of
snapshot metadata. This makes the Nitro MVCC system a
good fit for an in-memory index use case.
Items belonging to different snapshots co-exist in the same

skiplist ordered by (key, bornSn). As an optimization, if
bornSn and deadSn are same as the current termSn, we im-
mediately unlink the node from the skiplist rather than wait-
ing for the garbage collector as the item is invisible until an
immutable snapshot is created. The Figure 3 shows level 0
nodes of the lock-free linked list in the sorted order. Each
node has an MVCC lifetime metadata attached to it.

3.2 Snapshot Iteration
The MVCC skiplist snapshot iterator is built on top of

the lock-free skiplist iterator. The MVCC snapshot itera-
tor is aware of the bornSn and deadSn lifetime metadata
of the skiplist nodes. A snapshot iterator is created from
a snapshot descriptor. An iterator initialization operation
increments the snapshot reference count to prevent the snap-
shot from getting garbage collected while iteration operation
is in progress. An iterator is associated with the snapshot
number (termSn) obtained from the snapshot descriptor. It-
erator implements SeekFirst(), Seek(), Next(), Valid() APIs.
When Next() is called, it obtains the next node in the skiplist
and evaluates whether the items are visible with respect to
the iterator termSn. The iterator will filter all the items in
the skiplist with bornSn > termSn and deadSn ≥ termSn.
Even though many versions of the items are visited during
the lock-free skiplist iteration, the MVCC skiplist iterator
returns only the necessary items which are alive with respect
to the snapshot termSn. The complexity of item lookup in
the skiplist is O(log(n)). Every subsequent sequential seek
to the next item has an amortized complexity of O(1). The
MVCC skiplist snapshot iterator can be used to implement
operations such as key lookup and range queries.
The Figure 4 illustrates the visibility of items in the skiplist

for different iterators assigned with Sn=1, Sn=2, and Sn=3.
An iterator with Sn=1 will only observe items V=10 and
V=12. Since others were born after the termSn=1, they are
hidden by the iterator.
An iterator with Sn=2 will observe nodes with V=10,

V=11, V=12 and V=100. An iterator with Sn=3 will not
observe items with V=12 and V=101 as they are marked as
dead during termSn=3.

Figure 4: Iterator operation on a snapshot

3.3 Comparison with CopyOnWrite B+Tree
Disk-oriented storage systems like CouchDB [13], Btrfs

[16] use append-only Copy-On-Write (COW) B+tree as the
core data structure for storage. They inherently support
multi-versioning and snapshotting. We evaluated this ap-
proach while designing our in-memory storage engine. Copy-
on-write append only B+Tree operates in the chunks of
pages and it requires periodic compaction operations to re-
move stale blocks and keep the storage used under control.
Typically, they assume that 2x storage is available. Memory
is a limited resource and we wanted to reduce memory usage
as much as possible.

The concurrent structural modification operations on a
B+Tree requires serialization of access to the B+Tree pages
and it is very difficult to achieve parallelism. Coarse-grained
data access in B+Tree may require many latches for con-
current operation implementation. Scaling with many cores
with B+Tree is a difficult problem.

Figure 5: Copy-on-write B+Tree snapshot

Copy-On-Write append only B+Trees have very high stor-
age requirement for keeping multiple snapshots alive as the
data is only stored in leaf nodes and they have intermediate
nodes. Any modification operation of an item has to touch
at least a page block. A single item insert may require copy-
ing of logB(n) pages. As shown in the diagram, if an item
is modified or added into KV3, it has to copy a leaf node
(KV3), an intermediate node (KP2) and root node (Root).
This is extremely inefficient for an in-memory system.

It is a common technique to amortize the storage re-
quirement by accumulating insert and delete operations in
a batch and perform a bulk update. This may cause the
commit operation to stall for a long time. In an application
where hundreds of snapshots are generated per second, we
expect few dozens of live snapshots at any point in time and
efficiency of creating snapshots is the key to throughput,
latency, and predictability of the system. These characteris-
tics are not acceptable in a write-heavy in-memory storage
system which needs to scale with a number of cores.

1416



4. GARBAGE COLLECTION
In an MVCC system, a high-performance garbage collec-

tor is required for the cleaning stale objects and to keep the
memory usage under control. A write-heavy application can
create hundreds of snapshots per second. The applications
manage the snapshots being used by incrementing the refer-
ence count of the snapshot descriptor. When the application
decides that a snapshot is no longer required, it decrements
the reference count. When a snapshot’s reference count be-
comes zero, the dead items or deleted items in that snapshot
are eligible for unlinking from the skiplist.
During each snapshot term, items are getting inserted and

few other items are getting marked as deleted. A skiplist
node is qualified for garbage collection if nobody is inter-
ested in reading from snapshots with termSn less than the
deadSn of the node. As you know that nodes in the skiplist
are immutable, every update results in marking an old node
as deleted and the addition of a new node. This can generate
multiple versions of the same item in the skiplist. The Nitro
delete operation succeeds by logically deleting an item by
setting deadSn field in the skiplist node. Keeping many log-
ically deleted nodes in the skiplist for longer duration can
cause performance degradation. They hold up additional
memory and increase the memory footprint of the system.
All the items are linked in level 0 linked list of the skiplist. If
there are many deleted items in the list, an iterator travers-
ing the skiplist may have to unnecessarily go through many
stale nodes and skip them. The cost of sequential seeks can
exceed O(1).
Whenever a snapshot’s reference count becomes zero, it is

not sufficient to trigger garbage collection of that snapshot.
Each snapshot Sn(x), is dependent on the snapshot Sn(x-
1). Consider an example of termSn=1 where itemX and
itemY were inserted. In a snapshot with termSn=2, itemX
was deleted. Assume that snapshot with termSn=1 is cur-
rently being used by an application. But the snapshot with
termSn=2 is unused and its reference count becomes zero.
If we decide to remove items which are marked as deleted
in termSn=2, we would end up removing itemX. But the
termSn=1 is being used an application and it may notice
missing of itemX while performing a range query or itera-
tion. This will break the scan stability property offered by
the Nitro snapshots. Garbage collection of snapshots can
only be performed in the sequential order of the snapshot
termSn. This condition has to be met before garbage col-
lecting a snapshot.
A simple approach for implementing garbage collection is

to dedicate a thread that traverses the entire skiplist and
performs removal of the nodes from the skiplist. Periodi-
cally the least unreferenced termSn can be determined and
collector thread can remove the nodes with deadSn ≤ least
unused termSn. But, the single thread approach is not scal-
able. Depending on the workload, may be only a few percent
of the skiplist items are being modified while other items re-
main the same. Scanning the entire skiplist for finding the
small percent of dead nodes is inefficient. The storage engine
supports many concurrent writers in the lock-free skiplist.
Each writer can delete items from skiplist independently.
A single thread for garbage collection can never keep up
with the rate of garbage generated by the multiple writers.
We need garbage collection workers equal to the number of
writer workers.

Nitro supports concurrent writers for inserting or remov-
ing items in the skiplist. Each writer maintains a deadList
data structure to help the garbage collector. Whenever a
node is marked as deleted by a Nitro writer, the marked
node is added into the deadList. Thus, each writer has a list
of skiplist nodes marked as deleted. Whenever the applica-
tion invokes CreateSnapshot() API, it collects the local lists
from each of the writers and stitches them together. This
global list has reference to all the skiplist nodes which are
marked as deleted during the snapshot period. This dead-
List is attached to the snapshot descriptor. As part of a
snapshot garbage collection, garbage collection workers uses
this deadList of a snapshot to perform physical node removal
from the skiplist.

5. BACKUP AND RECOVERY
The durability of data is important for any storage sys-

tem. As Nitro keeps all data in memory, backing up data
on disk enables it to recover from crashes or application
restarts using local data. Nitro is optimized for indexes dis-
joint from main document store and assumes indexes can
be rebuilt from older persisted snapshots. Nitro supports
creating a backup on disk from a given snapshot. If an
application can create a snapshot periodically at consistent
checkpoints, they can be used for creating backups on disk.
The recovery mechanism reads the backup files and recon-
structs the immutable snapshot. We have designed Nitro
backup and recovery to be concurrent and scalable with the
available CPU cores.

5.1 Backing up snapshot to Disk
A disk backup can be created from a Nitro snapshot. A

Nitro backup is the dump of items in a snapshot to a set of
files. The idea is to traverse level 0 linked list of the lock-free
skiplist and write out the entries into data files. During this
traversal, all the entries not belonging to the given snapshot
are ignored. A simple binary data file format with a length
prefix for the item is used for backup files. We do not store
any node lifetime metadata in the backup files as they can
be recreated during recovery. As the items in the level 0
linked list of the skiplist are sort ordered, the data written
on the disk is also ordered in nature. The disk space re-
quirement for the snapshot file is exactly equal to the total
size of items and an additional two bytes per item for stor-
ing item length. This simple format can also make the best
use of data compression. Since the items are sort ordered,
compression algorithms can reduce the size of backup files
significantly. Compression will require additional CPU cy-
cles to be spent. But, a fast data compression library such
as snappy can be used for reducing the storage required for
the backups. Backup involves sequential writes to the disk,
which is known to be beneficial for both Hard Disk (HDD)
and Solid State Devices (SSD).

A backup task is started by incrementing the reference
count for the snapshot descriptor and the reference count is
decremented once the backup task has finished. This is to
prevent the snapshot from being garbage collected during
the backup traversal. The downside of the backup process
is that it can eventually halt the garbage collector until the
backup task is finished.

Linked lists are cache unfriendly due to poor spatial local-
ity. Traversing the level 0 linked list can be time-consuming

1417



for a large skiplist. During the backup period, memory us-
age can increase due to pausing of the garbage collector in
order to prevent nodes from getting garbage collected. We
implemented a concurrent visitor for the lock-free skiplist.
The visitor is able to run worker threads equal to the num-
ber of cores. If there are a number of skiplist instances in
the system, we assign workers proportional to the number
of items in each skiplist. If a skiplist has n items and k
workers, each worker has to scan approximately n/k items.
This is only possible if each worker is provided with start
node of n/kth segments in the skiplist. Reaching n/k(i) th
element in the skiplist requires traversing O(n) items and
it is impractical. We used a different approach to approxi-
mately determine n/k(i) nodes. Since we have used fanout
factor for the skiplist as 4, every level in the skiplist has
approximately n/4 nodes, where n is the number of nodes
in the next lower level. If there are four nodes at level 3,
that means each of them approximately divides the skiplist
into four segments. We maintain a skiplist statistics about
the number of nodes in each level. Based on this informa-
tion, we can find out the level with at least k nodes. This
statistics can be used to split the level 0 list into k range
partitions. These range partition information is used to lo-
cate start and end nodes for each of the workers. We also
shard the data files for the backups based on these range
partitions which helps to utilize parallel channels found on
modern SSDs. Sharded files also facilitate to apply parallel
rebuild algorithms during recovery. As the disk writes are
efficient when large blocks are used, backup flusher workers
accumulate records in larger chunks for each batch of write.

5.2 Recovering from Disk Backup
During index recovery, we spawn concurrent worker threads

equal to the number of backup shard files. Each worker as-
sociated with a backup shard file performs restore operation
for the items from its file. The simple approach for rebuild-
ing the skiplist is to concurrently perform skiplist insert op-
eration for the items read from each file. This approach is
inefficient since the concurrent writers may observe Com-
pareAndSwap conflicts and need to repeat the insert opera-
tion by spending many CPU cycles. Disk-oriented databases
with B+Tree as underlying data structure commonly uses
bulk loading technique to build an efficient B+Tree bottom-
up from a large set of sorted items. We use a similar ap-
proach for recovering Nitro from backup.
As the backup shard files are partitioned by sort ordered

ranges, they are well suited for reconstructing the skiplist
using the concurrent bottom-up build technique. The idea
of the skiplist bottom-up build is to construct the sorted
level 0 singly linked list and simultaneously add higher levels
of linked lists in the skiplist. During the addition of each
item, the level of that node is determined probabilistically.
A temporary level buffer array, Buf[MaxLevel] is used to
store previous node pointers in each level. Initially node
pointers for all levels are set to nil in Buf. When a node
at level x is added, Buf array indexes 0 to x-1 are updated
with a pointer to the current node. The next pointers of the
previous nodes stored by Buf array indexes 0 to x-1 are set
to the new node. Entire skiplist can be build at a complexity
of O(n).
Let us walk through an example of how we could build

the skiplist in the Figure 1. Buf[0-3] is set to nil. Now, a
node 1 with probabilistically determined level 4 needs to be

added. Buf[0-3] is set to a pointer to the node 1. Next, we
need to add node 2 at level 2. So the next pointer of nodes
pointed by Buf[0-1] (node 1) are set to node 2. Buf[0-1] are
updated with pointers to the node 2. To add node 3 with
level 4, the next pointer of nodes in Buf[0-4] are set to node
3, i.e., second and third level next pointer of node 1 points
to node 3 and the zero and first level next pointers of node 2
points to node 3. Similarly, the entire skiplist can be build.

The skiplist bottom-up build algorithm can be concur-
rently executed by having each worker thread that builds
skiplist segment for a shard file. Once all the workers have
finished building skiplist segments, all the segments can be
stitched together to form the global skiplist. Shard files are
named appropriately to keep the sort order by its minimum
item key. Next pointers of the tail nodes from each skiplist
segment can be set to point to the head nodes of next skiplist
segment as per the shard file order. Once the build is com-
plete, a new snapshot descriptor representing the restored
snapshot is created. In this method, the skiplist segment
builds can proceed without any synchronization and scales
linearly with the number of cores.

5.3 Nonintrusive backup
The regular backup algorithm has the disadvantage that it

needs to hold the snapshot to prevent it from getting garbage
collected until the backup is complete. This would eventu-
ally halt garbage collection happening during the backup if
it takes longer to complete. The non-intrusive backup fa-
cilitates to perform the backup operation without halting
the garbage collection operation and it can operate in the
background without increasing the memory usage.

When a backup operation is in-progress, items in the
backup snapshot may get marked as deleted due to the latest
modifications happening in the skiplist. When the garbage
collection runs, it unlinks those items from the skiplist if the
snapshot refcount is 0 and the backup task may miss items
from the snapshot. However, the backup task will never ob-
serve any new items outside of the snapshot. The key idea
of the non-intrusive backup is to collect the possible missing
items in the backup with the help of garbage collector to
reconstruct the backup snapshot. The items in the backup
snapshot would be the union of partial snapshot items ob-
served by the backup task and the items which were removed
by the garbage collector. The delta of deleted items can be
obtained from the garbage collector workers since they are
responsible for physical removal of nodes from the skiplist.

When a backup task is started, it sets the state to INIT
and notifies garbage collection workers that it is going to
start backup on snapshot termSn. Garbage collection work-
ers acknowledge the notification, copies termSn to its local
config and initializes per-worker delta backup files. Backup
task moves to ACTIVE state and initializes concurrent flush-
ers for writing delta files. During ACTIVE state, garbage
collection workers check if a node belongs to the backup
termSn by comparing bornSn and deadSn before performing
unlink from the skiplist and eligible items are written into
the corresponding delta data file. Once the main backup
task finishes scanning the skiplist, it moves to TERMINAT-
ING state and waits for garbage collector workers to ac-
knowledge. Garbage collection workers close the delta file,
clears the backup termSn and backup task finishes its op-
eration. Now we have two set of data files. The first set of
files containing unique sort ordered items written by backup

1418



task and the second set of files containing the set of items
possibly missed by the main backup task. Delta files may
contain duplicate items which could be present in main data
files. This method of backup is non-intrusive as the Nitro
garbage collector can operate without pausing. Delta file
writers use append-only write pattern which is efficient for
SSDs and disks.
During the recovery, the snapshot restore task needs to

process these delta files. Recovery happens in two phases.
The first phase involves concurrent bottom-up skiplist re-
build from the main backup files. During the second phase,
concurrent delta restore worker threads equal to the num-
ber of delta files are started. Each worker reads items from
the delta file sequentially and performs insertion into the
skiplist. The delta insert operations can fail if the same
items exist in the skiplist as they were restored from the
main backup files during the first phase.
The tradeoff for this method is that the delta files can

contain the duplicate items which are already written by
main backup task and may require extra disk storage space.
The extra storage requirement can be estimated based on
the expected rate of delete operations. Since the delta files
have unordered items, they cannot be populated into the
skiplist using bottom-up build method. The time for re-
covery can be higher since it executes an additional delta
recovery phase.

6. SAFE MEMORY RECLAMATION
The MVCC model for lock-free skiplist described in the

earlier section facilitates to remove nodes from the skiplist
belonging to a snapshot once they become unused. Re-
moval of the node only involves unlinking the node from
the skiplist. The freeing of the node cannot be performed
immediately since there could be active threads such as iter-
ators may be holding valid references to an unlinked node.
While lock-free data structure provides high performance
and scalability, the reclamation of removed nodes from the
data structure becomes complex due to a number of threads
independently accessing the nodes in the data structures
concurrently without any synchronization. When a node
is removed, we cannot free the node immediately since we
do not know if a thread is still referencing the node [15,
11]. If we decide to reuse a node after unlinking from the
lock-free data structure, it may lead to nasty bugs and incor-
rectness. Applications using garbage collected programming
languages can usually avoid this concern since the language
runtime takes care of safe reclamation. Reference counting
every node is the simplest approach for solving this prob-
lem where blocking synchronization can be used and it is
expensive. Our initial implementation depends on Golang’s
mark and sweep garbage collector for safe reclamation. But,
testing showed unacceptable performance and lack of pre-
dictable memory usage. We describe a novel algorithm for
safe memory reclamation for Nitro to overcome the limita-
tions of language runtime based safe reclamation.
We implement a safe memory reclamation technique tak-

ing advantage of our MVCC system. We wanted an SMR
system that performs very well without causing any per-
formance degradation for Nitro. The algorithm builds on
few simple ideas and assumptions. The safety conditions for
Nitro reclamation are as follows:

1. Any thread accessing the lock-free skiplist is called an
accessor.

2. If there are no accessors currently present in the skiplist
for a node unlinked from the skiplist, it is safe to free
the node.

3. If a node n is unlinked at a time, t0. Any accessors
that came after t0 will not be able to access the node
n or hold a reference to node n.

4. If there are k accessors in the skiplist after a node n is
unlinked, from (3) we know that it is safe to free node
n once k accessors finish their operation.

5. If x nodes are unlinked, it is safe to unlink these x
nodes once all the accessors which were present in the
skiplist during xth node unlink leave the skiplist.

We introduced few abstractions in our system for easy
implementation of safe reclamation algorithm.

AccessBarrier: Nitro skiplist has a global data structure
called AccessBarrier that controls access to the skiplist. Any
thread requiring access to the skiplist needs to be passed
through a gate which tracks the safety conditions for freeing
nodes. Accessor needs to acquire an access token from the
access barrier. Once the thread has finished operation on
the skiplist, it has to release the access token. An access
barrier holds a reference to barrier session object.

BarrierSession: Barrier session tracks the number of
live accessors currently operating on the skiplist. AccessBar-
rier holds the latest barrier session. Barrier session object
holds a 32 bit counter called liveCount, which is initialized
to zero.

BarrierSessionClose: When a barrier session close is in-
voked, current barrier session is made immutable. No more
accessor will be added to the current barrier session. Ac-
cessBarrier will initialize a new barrier session. A barrier
session is said to be terminated when all the accessors in
the barrier session finish the operation.

In this algorithm, the unit of safety period is a barrier
session. All the live accessors of the skiplist are tracked
in a barrier session. Whenever a skiplist delete or group
of deletes are performed, current barrier session is closed
and a new barrier session is started. The closed barrier
is responsible for safe reclamation of deleted node(s). The
closed barrier session has a record of all accessors belonging
to that session. The right time to safely reclaim the node(s)
is when all the accessors become dead. This makes sure that
unlinked nodes will be invisible to any new accessors. The
accessors in the barrier session can co-operatively detect and
mark when each of them terminates. When the last accessor
in a barrier session terminates, it can take the action to call
the destructor for the node(s).

6.1 Accessor operation
When an accessor enters the skiplist, it acquires an access

token which is a reference to barrier session held by the ac-
cess barrier. As part of returning access token, liveCount is
atomically incremented by 1. When the accessor leaves the
skiplist, liveCount in the token is atomically decremented
by 1. When a node removal or group of deletes are per-
formed, BarrierSessionClose is initialized. BarrierSession-
Close atomically swaps the access barrier’s BarrierSession

1419



with a new empty session. Thus, any further incoming ac-
cessors would mark them in the new session. The old session
becomes immutable and no new accessor would add itself to
the closed session. There could be race conditions caus-
ing accessors to accidentally add them to the closed session
soon after a session is closed. We have a detect and recover
mechanism to unregister accessor by itself from the barrier
session. We will describe the details in the next section.

6.2 BarrierSessionClose operation
After a node is removed from the skiplist, immediately

barrier session close is initiated. As part of the session close,
it notes down the list of nodes to be freed. We assume that a
maximum number of accessors in a session is always less than
MaxInt32/2. During session close, an offset MaxInt32/2 is
atomically added to the liveCount of the current session.
A liveCount greater than or equal to MaxInt32/2 indicates
that the session is closed. Now, the current barrier session
in the access barrier is swapped with a new barrier session.
All the accessors accidentally entering the barrier session
can detect if it is a closed session by checking the return
value of atomic increment of liveCount to see if it is greater
than MaxInt32/2. Otherwise, it will atomically decrement
and retry to register them for the new session. Once all
the accessors of the session finish operation, liveCount is
decremented and finally it becomes MaxInt32/2. The last
leaving accessor can execute the freeing of nodes, which were
noted down during the barrier session close initialization.

6.3 Garbage collector integration
Every Nitro operation such as Insert, Delete and Iteration

goes through the access barrier. We have dedicated SMR
free worker threads equal to the number of garbage collec-
tion workers. The garbage collector processes the skiplist
nodes removal in the batches of deadList from the snap-
shots. Each dead snapshot has a deadList. When a garbage
collector worker finishes processing a dead snapshot, it ini-
tializes a barrier session close with snapshot’s unlinked nodes
list. Once the barrier session becomes terminated, it invokes
session destructor by passing the deadList of nodes. The reg-
istered destructor hands off the deadList to one of the free
workers. The free worker is responsible for executing node
freeing for all the nodes in the received list.

6.4 Long running iterators
Index iterators can be running for a longer period of time

since they are often used for large range queries or full
dataset scan. For example, during snapshot backup to disks,
an iterator is going to live for a long time. That means it
will take a long time for a barrier session to get terminated.
Unless they are terminated, nodes are not going to be freed
and it can increase the memory usage by the indexer. We
solve this problem by refreshing iterators periodically. When
an iterator traverses a certain number of items, we close the
current iterator and reopen the iterator from the offset node
where it left off. This would make sure that iterator accessor
is not holding a barrier session by preventing its termination
for too long.

7. NITRO PERFORMANCE
The focus of our performance evaluation is to showcase

the throughput scalability of Insert and Get operations.

Setup: The performance tests have been conducted on a
machine having Intel(R) Xeon(R) CPU E5-2650 v3 2.30GHz
with 40 virtual cores and 128 GB of DRAM. We installed
Debian Linux 7 on this node. We used randomly generated
small keys of size 8 bytes to 128 bytes for the tests. The
skiplist was populated with a total of 20 million items in
each of the tests.

0.0

500.0 k

1.0 M

1.5 M

2.0 M

2.5 M

3.0 M

3.5 M

4.0 M

4.5 M

0 5 10 15 20 25 30 35 40

T
h
ro
u
g
h
p
u
t
(i
te
m
s/
s)

Number of cores

Insert 8 bytes
Insert 16 bytes
Insert 32 bytes
Insert 64 bytes

Insert 128 bytes

Figure 6: Insert throughput

0

1 M

2 M

3 M

4 M

5 M

6 M

7 M

8 M

9 M

10 M

0 5 10 15 20 25 30 35 40

T
h
ro
u
g
h
p
u
t
(i
te
m
s/
s)

Number of cores

Get 8 bytes
Get 16 bytes
Get 32 bytes
Get 64 bytes

Get 128 bytes

Figure 7: Get throughput

Experiment 1: We ran a test against a Nitro instance
with varying number of insert workers. Each worker was
responsible for populating an equal number of items. Fixed
size keys were generated randomly by each of the workers.
We repeated the experiment with different key sizes from 8
bytes to 128 bytes. In Figure 6, we show that the insert
throughput is linearly scalable with the number of cores
used. We observed that the throughput per core remains
approximately 100,000 items/sec. A maximum insertion
throughput of 4 million inserts/sec was observed with 40
cores.

1420



0

1 M

2 M

3 M

4 M

5 M

6 M

7 M

8 M

9 M

10 M

0 5 10 15 20 25 30 35 40

T
h
ro
u
g
h
p
u
t
(i
te
m
s/
s)

Number of cores

Get 16 bytes
Get with background inserts

Figure 8: Get with mutations throughput

1 M

2 M

3 M

4 M

5 M

6 M

7 M

8 M

1 2 3 4

T
h
ro
u
g
h
p
u
t
(i
te
m
s/
s)

Number of Partitions

Insert 16 bytes items/sec

Figure 9: Scaling with number of partitions

Experiment 2: In this experiment, we evaluated the
scalability of lookup operations. Similar to the Experiment
1, we used a varying number of lookup workers for the test.
Each lookup worker performed an equal number of lookups.
The Figure 7 shows a maximum throughput of 10 million
lookups/sec with 40 cores and the lookup throughput scales
linearly.
Experiment 3: In a real world workload, it is common

to have both insert and lookup operations happening con-
currently against a datastore. We ran a test to evaluate
the effect of background inserts on the lookup throughput.
The test was conducted with an equal number of insert and
lookup workers operating on a 20M items skiplist. Figure 8
shows the pattern of throughput scaling for this test.
Experiment 4: Partitioning is a common approach to

scale performance. If the throughput of a data structure
does not scale with a single instance, multiple instances
can be used and workload can be sharded between the in-
stances. We evaluated whether Nitro shows any improve-
ment in insertion throughput by varying the number of Nitro

instances. The Figure 9 shows that the data structure does
not require any partitioning to improve performance. Parti-
tioned instances of Nitro delivers almost the same through-
put as a single instance with 40 cores.

Memory requirements: The predictable memory re-
quirements of Nitro storage engine makes it easier for appli-
cations to calculate memory usage. The approximate mem-
ory usage for an item inserted into the skiplist is 64 bytes
+ itemSize bytes. The memory used by the multiple live
snapshots is (64 + AvgitemSize)*numberOfLiveSnapshots.

Observations: In all of the above throughput tests, Ni-
tro saturated all 40 CPU cores. The CPU profiling shows
that the CPU was mostly spent in atomic load and compare-
and-swap operations. Therefore, we are not able to saturate
the available memory bandwidth.

8. COUCHBASE GSI OVERVIEW

Figure 10: GSI architecture

Couchbase is a high performance distributed NoSQL doc-
ument database. Couchbase uses JSON as the document
format and it supports creating secondary indexes on JSON
fields. Couchbase leverages scale-out architecture and has
the ability to independently scale different set of services on
a separate group of server nodes. We call the document stor-
age system of Couchbase as Data Service and index storage
system as Index Service [1].

The data service uniformly distributes the documents to
many nodes by hashing on the primary key of the document
in order to ensure that resource consumption is balanced
throughout the cluster. For a local secondary index, it is
impossible to scan a range of records/documents from the
index using a secondary key without having to visit every
single node in the cluster. Local secondary indexes are of-
ten designed to be updated synchronously during the pri-
mary key update. If there are a number of secondary in-
dexes, it can eventually affect the throughput of the primary
key update. To design a scale-out secondary index, the in-
dex needs to be partitioned independently from the primary
key. Couchbase Global Secondary Index (GSI) is designed
by considering these aspects.

The independent placing of indexes on a separate set of
nodes introduces few challenges. The indexes are updated
asynchronously with respect to the data services. The pre-
ferred deployment model for GSI indexes is to host many
indexes on a single large node. This avoids the needs for
contacting multiple index nodes for performing index scan.
As index node receives document changes from many data
services nodes and it has to maintain many indexes, the sin-
gle index performance matters. If there are 5 data service

1421



nodes in the cluster, and each of the nodes receives docu-
ments at a rate x, the index node will receive documents
at a rate 5x. A high-performance index storage engine is
required to keep up with the high mutation rate. The doc-
uments are sent over to the index nodes via the network
protocol called Database Change Protocol (DCP) [3].

8.1 Index update operations
The GSI index engine needs to maintain two data struc-

tures for its operation. An index data structure and a lookup
data structure. The index data structure stores the sec-
ondary key index and is used by index scans. The lookup
data structure, called as reverse-map is a supporting data
structure for index update operations. We will walk through
the sequence of index engine operations to understand these
data structures in detail.
Consider an example of secondary indexing on JSON doc-

uments. A document with a primary key, ”employee-1” has
a JSON body {”id”: 1022, ”city”: ”Bangalore”, ”title”:
”Software Engineer”}. If a secondary index is created on the
field ”city”, an index scan can be performed by specifying a
range on ”city”. For the above document, the city-index will
have an entry {key: ”Bangalore”, primary: ”employee-1”}.
If the document is updated by changing the city from ”Ban-
galore” to ”MountainView”, the corresponding city-index
entry should be updated as {key:”MountainView”, primary:
”employee-1”}. That means we need to delete the previous
index entry for the primary key, ”employee-1” before insert-
ing the new index entry. For that, we should be able to
retrieve the previous secondary index entry for a given pri-
mary key. We maintain a reverse-map data structure for
this purpose. It maps primary key to the current secondary
index entry. The index update pipeline performs the follow-
ing operations for every document. First, the reverse-map
is queried to see if an entry exists. If it exists, we remove
that entry from the index and an insert of new entry into the
index is performed. Finally, the reverse-map data structure
is updated with mapping to the new index entry.
The index engine periodically creates snapshots of the in-

dex for serving scan operation. A query can read items only
using an index snapshot. The index snapshot interval af-
fects the latency of consistent index queries since indexes are
updated asynchronously with respect to the primary docu-
ment.

8.2 Index service recovery
Documents in the Couchbase data service are hash parti-

tioned into a fixed set of hash buckets. Document changes
are processed sequentially for each hash bucket. Each doc-
ument update is assigned an incrementing sequence number
per hash bucket. The set of sequence numbers for all the
buckets forms a vector clock. When the index update en-
gine periodically creates index snapshots, this vector clock is
stored as metadata of the snapshot. When an indexer crash
occurs, a recently persisted index snapshot is recovered by
using the underlying storage engine. The reverse-map data
structure also needs to be recovered. The indexer reads the
vector clock from the snapshot metadata and requests the
data service to restart the mutation stream from the given
vector clock. The data service is capable of restarting the
document changes stream from the given sequence numbers
for each hash bucket. When an index is created for the first
time, it requests data service with a zero vector clock value.

9. NITRO INTEGRATION FOR GSI
In this section, we look at how we integrated Nitro into

the GSI index engine for Memory Optimized Index (MOI).
The primary goal of using Nitro for GSI was to make use
of all the CPU cores and deliver index operations with high
throughput with low latency. We had to make our index
update pipeline tuned for concurrency to push maximum
operations into Nitro. Using Nitro as the core index data
structure also helps us significantly reduce storage require-
ment and CPU cycles required for maintaining the reverse-
map data structure.

Partitioning: If the index update throughput has to
scale with a number of cores, we need to parallelize in-
dex updates operations and distribute load uniformly across
each core. We used a partitioning approach for index up-
date pipeline. Simple round-robin partitioning can break
the sequential order of document updates and can cause
the index to become inconsistent. For example, two opera-
tions {delete, docid} and {insert, docid, key} can arrive into
the index update pipeline. If we decide to evenly distribute
them among two concurrent worker threads, {delete, docid}
and {insert, docid, key} operations can occur in any or-
der. If the {insert, docid, key} operation was applied before
{delete, docid}, this can lead to incorrectness. According
to the correct order, a delete should occur before an insert.
So, we need to ensure that ordering of document updates
for a document primary key is always preserved. Out-of-
order execution of operations for documents with different
primary key will not cause such incorrectness as Couchbase
operations are document scoped. We implemented parti-
tioning using the CRC32 hash of the document primary key
to ensure that the upstream mutation order is preserved.

Optimizations for reverse-map data structure: The
index pipeline has concurrent index update worker threads
equal to the number of cores. For index pipeline to be con-
current, both index data structure and reverse-map data
structure should support thread-safe concurrent access. The
straightforward solution is to use Nitro for the index as well
as reverse-map data structure. A similar approach has been
used in Couchbase 4.0 with regular indexes. We used the
same B+Tree based storage engine for index and reverse-
map. The purpose of reverse-map data structure is to re-
trieve the current index entry corresponding to a primary
key, so that the previous entry can be removed before in-
serting a new index entry. The reverse-map data structure
is only used in the update pipeline and so it does not require
snapshotting capability. As we have partitioned documents
uniformly into index update worker threads, a document
with the same primary key will uniquely map to one of the
worker threads. This property helps to further optimize the
reverse-map data structure. We can partition the reverse-
map so that each worker can keep a local reverse-map. This
scheme also enforces sequential access to the reverse-map
and prevent any concurrent access. This enables us to use
a simple in-memory hash table for the reverse-map data
structure.

Storage Optimization: We store the primary key to
secondaryKey mapping in the reverse-map and {secondaryKey,
primaryKey} in the index. They essentially store the same
data in a different format leading to duplicating of data.
The hash table implementation can be modified to avoid
duplication of data and instead use a pointer to the cor-
responding skiplist node. Instead of storing key and value

1422



in the hash table, hash table keeps a 64-bit pointer to the
skiplist node containing corresponding index item. A helper
function can be used to extract key and value in the for-
mat required by reverse-map from the skiplist node pointer.
This optimization reduces the memory required for main-
taining an in-memory secondary index by approximately 50
percent. We use reverse-map data structure to obtain the
current index key for removing it from index before any up-
date. Once the index key is retrieved, we need to mark the
skiplist node as deleted according to the MVCC model. Re-
trieving a skiplist node is an O(log(n)) operation. Since we
have a direct indirection from the hash table to the skiplist
node, we avoid the need for this O(log(n)) lookup operation.
Marking the node as deleted is just an O(1) operation.
Durability: Durability of GSI indexes are important for

recovering from any failures. Since the data service is in-
dependent of the index storage, any data loss in the index
storage does not affect the data service. Indexes can re-
cover from last known consistent index snapshot and request
for additional document changes by providing the sequence
number vector clock to the data service. As Nitro index
data structures are completely maintained in the memory,
any crash would require the index to be rebuilt from scratch
by requesting the entire set of documents from the data ser-
vice. Backing up the reverse-map data structure and index
data structure to the disk periodically enables to recover
more quickly from crashes and restarts. Since the reverse-
map data structure maintains the mapping from primary
key to the skiplist node, reverse-map data structure can be
concurrently rebuilt on-the-fly during Nitro index recovery.
Hence, a backup for reverse-map is not required. This op-
timization significantly reduces the storage required for the
index backup.

10. GSI PERFORMANCE
We evaluated the performance of Nitro based GSI Mem-

ory Optimized Indexes (MOI) and compared with the per-
formance of our disk oriented Regular GSI indexes.
Setup: A Couchbase 4.5 cluster having 4 data service

nodes and 1 index service node was used for the experi-
ments. The experiments used machines having 32 virtual
cores (Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz) run-
ning Debian Linux 7. The data service nodes had a DRAM
capacity of 64GB and index node with DRAM capacity of
128GB. All the machines use SSD for storage. The exper-
iments used JSON documents with a primary key of the
format doc-n, with a sequential number n and a secondary
index field having a random string of 25 bytes in size. The in-
dex scan throughput was measured across the network from
a different machine using cbindexperf tool packaged with the
Couchbase server. The experiments were conducted against
Memory Optimized Index (MOI) and Regular Index with
110GB of memory configured for its operation. The Regu-
lar Index would use the configured memory mainly for the
block cache management.
Experiment 1: We loaded 20 million JSON documents

into Couchbase cluster and created an index on it. For
testing update and delete workload, we used 4 client ma-
chines against the cluster to drive a maximum update rate
of 252,000 docs/sec and delete rate of 290,000 docs/sec. For
the second lookup test, a background update workload of
65,000 docs/sec was generated to simulate a real world sce-
nario. This test evaluates single index performance. The

Figure 11 shows that the Memory Optimized Indexes (MOI)
have approximately 50x better insertion throughput than
Regular indexes. For create, update and delete workload,
the clients could not saturate the indexer and hence the
throughput is same as the rate of front-end load. An in-
dex scan is performed using a request-response GSI binary
protocol over the network. Compared to the individual Ni-
tro scan test, the GSI index scan throughput is lower. This
is because of the additional work performed in index snap-
shot management, network protocol, and connection man-
agement in the GSI indexer. The high performance of MOI
attributes to the in-memory oriented design for multicore
scalability and the use of lock-free data structures.

0

100 k

200 k

300 k

400 k

500 k

600 k

MOI Index Regular index

T
h
ro
u
g
h
p
u
t
(i
te
m
s/
se
c)

Insert
Update
Delete

Lookup
Lookup with updates

Figure 11: Single index performance

Experiment 2: We loaded 33 million JSON documents
into Couchbase cluster. We created 15 GSI indexes each hav-
ing 33 million items (total of 500 million) to drive enough
load into the indexer server. This experiment aims at mea-
suring index server throughput.

Table 1: GSI index server performance (items/sec)
Operation MOI Indexes Regular Indexes
Create Documents 1,658,031 88,102
Update Documents 822,680 70,802
Delete Documents 1,578,316 80,578

The Table-1 shows that a maximum insertion throughput
of 1.65 million items/sec was achieved using Memory Opti-
mized Indexes. This is an order of magnitude improvement
compared to the throughput of regular indexes. Document
update workload has half the throughput of the document
create workload. This is due to the fact that an update
translates to a delete and insert operation in the index up-
date engine.

Experiment 3: We measured the time taken for index
backup and recovery of GSI Memory Optimized Indexes.
When this test was performed, there were no background
index update or scan in progress. We conducted the exper-
iment with indexes of size 100M, 200M, and 300M items.
We observed that the MOI backup performance was limited

1423



0

10

20

30

40

50

60

70

100M 200M 300M

T
im

e
ta
k
en

(s
)

Count of items in the index

Backup
Restore

Figure 12: Index recovery performance

by the saturation of SSD write throughput while MOI in-
dex recovery performance was limited by saturation of CPU
cores.

11. CONCLUSION
In this paper, we presented the design of a high perfor-

mance in-memory index storage engine. We discussed im-
plementation details of lock-free skiplist, Nitro multi-version
concurrency control model, garbage collection, backup and
recovery, and the performance of Nitro operations. We also
proposed a novel algorithm for safe memory reclamation
of nodes in the lock-free skiplist. We discussed the design
overview of Couchbase global secondary indexes and the de-
tails on the implementation of Memory Optimized Indexes
using Nitro. Finally, we walked through the performance of
Couchbase GSI Memory Optimized Indexes.

12. ACKNOWLEDGMENTS
We thank our colleagues Pratap Chakravarthy, Deepkaran

Salooja and Prathibha Bisarahalli for the encouragement
and support. We also thank Prof. Michael J. Carey for
providing the early feedback for the paper.

13. REFERENCES
[1] Couchbase Multidimensional Scaling Overview.

http://www.couchbase.com/multi-dimensional-
scalability-overview.

[2] Couchbase NoSQL Database.
http://www.couchbase.com/.

[3] Database Change Protocol.
http://docs.couchbase.com/admin/admin/Concepts/dcp.html.

[4] MemSQL distributed database.
http://www.memsql.com/.

[5] S. K. Cha and C. Song. P*TIME: highly scalable
OLTP DBMS for managing update-intensive stream
workload. Proceedings of the Thirtieth international
conference on Very large data bases, pages 1033–1044,
2004.

[6] D. Comer. Ubiquitous B-Tree. ACM Computing
Surveys, 11(2):121–137, 1979.

[7] E. I. P.-. L. P. M. R. S. N. V. M. Z. Cristian Diaconu,
Craig Freedman. Hekaton: SQL Servers
Memory-Optimized OLTP Engine. Proceedings of the
2013 ACM SIGMOD International Conference on
Management of Data, pages 1243–1254, 2013.

[8] S. S. David B. Lomet and J. J. Levandoski. The
Bw-Tree: A B-tree for new hardware platforms.
Proceedings of the 2013 IEEE International
Conference on Data Engineering (ICDE 2013), pages
302–313, 2013.

[9] J. P.-C. B. S. S. Franz Farber, Sang Kyun Cha and
W. Lehner. SAP HANA Database - Data
Management for Modern Business Applications. ACM
SIGMOD Record, pages 45–51, December.

[10] J. P.-C. B. S. S. Franz Farber, Sang Kyun Cha and
W. Lehner. Speedy transactions in multicore
in-memory databases. Proceedings of the
Twenty-Fourth ACM Symposium on Operating
Systems Principles, pages 18–32, 2013.

[11] K. Fraser. Practical lock-freedom. PhD thesis,
University of Cambridge, 2004.

[12] M. Herlihy and N. Shavit. The Art of Multiprocessor
Programming. Morgan Kaufmann, ”2012”.

[13] J. L. J. Chris Anderson and N. Slater. CouchDB: The
Definitive Guide Time to Relax. O’Reilly Media, Inc,
”2010”.

[14] E. Kohler and R. T. Morris. Cache craftiness for fast
multicore key-value storage. Proceedings of the 7th
ACM european conference on Computer Systems,
pages 183–196, 2012.

[15] M. M. Michael. Hazard Pointers: Safe Memory
Reclamation for Lock-Free Objects. IEEE
Transactions on Parallel and Distributed Systems,
15(6):491–504, 2004.

[16] C. M. Ohad Rodeh, Josef Bacik. BTRFS: The Linux
B-Tree Filesystem. ACM Transactions on Storage,
9(3), August 2013.

[17] W. Pugh. Skip lists: a probabilistic alternative to
balanced trees. Communications of the ACM,
33(6):668–676, June 1990.

[18] K. K. Sang K. Cha, Sangyong Hwang and K. Kwon.
Cache-Conscious Concurrency Control of
Main-Memory Indexes on Shared-Memory
Multiprocessor Systems. Proceedings of the 27th
International Conference on Very Large Data Bases,
pages 181–190, 2001.

[19] S. M. Stavros Harizopoulos, Daniel J. Abadi and
M. Stonebraker. OLTP Through the Looking Glass,
and What We Found There. Proceedings of the 2008
ACM SIGMOD international conference on
Management of data, pages 981–992, 2008.

[20] M. Stonebraker and A. Weisberg. The VoltDB Main
Memory DBMS. IEEE Data Eng. Bull., 36(2):21–27,
2013.

[21] H. Sundell and P. Tsigas. Fast and lock-free
concurrent priority queues for multi-thread systems.
Journal of Parallel and Distributed Computing,
65(5):609–627, May 2005.

[22] J. D. Valois. Lock-free linked lists using
compare-and-swap. Proceedings of the fourteenth
annual ACM symposium on Principles of distributed
computing, pages 214–222, 1995.

1424


