
Sapphire: Querying RDF Data Made Simple

Ahmed El-Roby1 Khaled Ammar1 Ashraf Aboulnaga2 Jimmy Lin1

1University of Waterloo
2Qatar Computing Research Institute, HBKU

{aelroby, kammar, jimmylin}@uwaterloo.ca aaboulnaga@qf.org.qa

ABSTRACT
There is currently a large amount of publicly accessible struc-
tured data available as RDF data sets. For example, the
Linked Open Data (LOD) cloud now consists of thousands
of RDF data sets with over 30 billion triples, and the num-
ber and size of the data sets is continuously growing. Many
of the data sets in the LOD cloud provide public SPARQL
endpoints to allow issuing queries over them. These end-
points enable users to retrieve data using precise and highly
expressive SPARQL queries. However, in order to do so, the
user must have sufficient knowledge about the data sets that
she wishes to query, that is, the structure of data, the vocab-
ulary used within the data set, the exact values of literals,
their data types, etc. Thus, while SPARQL is powerful, it
is not easy to use. An alternative to SPARQL that does
not require as much prior knowledge of the data is some
form of keyword search over the structured data. Keyword
search queries are easy to use, but inherently ambiguous in
describing structured queries.

This demonstration introduces Sapphire, a system for que-
rying RDF data that strikes a middle ground between am-
biguous keyword search and difficult-to-use SPARQL. Our
system does not replace either, but utilizes both where they
are most effective. Sapphire helps the user construct expres-
sive SPARQL queries that represent her information needs
without requiring detailed knowledge about the queried data
sets. These queries are then executed over public SPARQL
endpoints from the LOD cloud. Sapphire guides the user in
the query writing process by showing suggestions of query
terms based on the queried data, and by recommending
changes to the query based on a predictive user model.

1. INTRODUCTION
A large amount of publicly accessible structured data is

available on the web in the RDF data sets that make up
the Linked Open Data (LOD) cloud1. This is valuable data

1http://lod-cloud.net/

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 13
Copyright 2016 VLDB Endowment 2150-8097/16/09.

(a)
SELECT ?name ?movies WHERE {
?movie name "Godfather".

?movie directedBy ?person.

?person name ?name.

?movies directedBy ?person.}

(b)
PREFIX dbp: <http://dbpedia.org/property/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?directorName ?movies WHERE {
?movie dbp:name "The Godfather"@en.

?movie dbp:director ?director.

?director foaf:name ?directorName.

?movies dbp:director ?director.}

Figure 1: (a) A query written by the user to find the name
of the director of the movie “Godfather” along with other
movies he/she directed. (b) The correct SPARQL query
that retrieves the required information from DBpedia.

that can be useful in many different application domains.
To enable users to retrieve this data, many of the data sets
in the LOD cloud have SPARQL [8] endpoints that allow
users to issue structured queries. In order to use these end-
points, a user must know the structure and vocabulary of
the data set being queried, and the exact values of literals
and their data types. At the scale of the LOD cloud, it
is not convenient, and sometimes not possible, to have the
level of knowledge of the schema elements and the data that
is required to compose a SPARQL query over a data set.
Thus, while SPARQL is powerful, it is not easy to use. An
alternative to SPARQL that does not require as much prior
knowledge of the data is some form of keyword search over
the structured data. There has been a significant amount
of research on querying information using keywords in both
relational databases [1, 4] and RDF [5, 10]. Keyword search
is very simple to use, but there is inherent ambiguity in
using an unstructured keyword query to convey complex in-
formation needs. Keyword search cannot precisely specify
structural properties required by the user, and cannot ex-
press commonly used functions provided by SPARQL such
as ordering and aggregation.

In this demonstration, we introduce Sapphire, a system
that strikes a balance between keyword search and SPARQL.
Specifically, Sapphire helps the user construct SPARQL
queries that represent her information needs, and uses tech-
niques similar to keyword search to help her specify the ele-
ments of her query. To illustrate with an example, consider
the queries in Figure 1. Figure 1(a) shows a SPARQL-like

1481

http://lod-cloud.net/


SPARQL 
Endpoint

SPARQL 
Endpoint

SPARQL 
Endpoint

Query 
Completion

Cached Predicates 
and Literals

Query Suggestion

Federated Query Processor

Query Terms

Term Suggestions

User

Query

Answers

Query

Query Suggestions

Client Sapphire Server Web

Predictive User Model

Figure 2: Architecture of Sapphire.

query that aims to find the director of the movie “Godfa-
ther” along with other movies that he/she directed. Fig-
ure 1(b) shows the correct SPARQL query that needs to be
issued against DBpedia2 to find this information. The goal
of Sapphire is to start with a query as in Figure 1(a) and help
the user construct the query in Figure 1(b). For example,
the user knows that she needs to find the names of persons
who are directors, but does not know the vocabulary used
for these concepts (foaf:name and dbp:director). The user
also knows that she is looking for the movie “Godfather”,
but does not know that the correct literal is “The Godfa-
ther”@en. Sapphire would provide this missing information.
Sapphire would also execute the query over public SPARQL
endpoints of LOD cloud data sets using a federated query
processing engine so that answers from multiple data sets
can be retrieved.

There has been prior work on helping users construct
SPARQL queries. However, the focus of that work has been
on users who cannot (or do not want to) directly express
their information needs in SPARQL. For example, some
work [3, 9] requires the user to issue keyword queries and
uses these queries to create candidate SPARQL subqueries
that are shown to the user to choose from and incrementally
build the query she has in mind. The user is restricted to
the subqueries that are automatically generated by the sys-
tem, and needs multiple interactions to construct her query.
Other work [6] requires the user to specify examples of data
that should be in the query answer and creates a SPARQL
query based on these examples. This approach requires the
user to know enough about the data to specify example an-
swers, and can only create SPARQL queries of limited com-
plexity. In contrast, Sapphire is aimed at users who can ex-
press their information needs as SPARQL queries, but need
help with specifying the details of these queries based on the
data being queried.

Sapphire uses a predictive user model (PUM) that makes
data-driven suggestions to the user as she writes the query.
These suggestions are based on the keywords the user writes
in the query. This can be described as issuing a keyword
search (albeit with incomplete query terms) to find entities
or relationships that the user is interested in. These sugges-
tions are based on the similarity between query terms (af-
ter being enriched with synonyms and taxonomical relation-
ships) and the actual data that the user is querying. When
the user writes a valid query, Sapphire not only retrieves
the answers to this query, but also uses its PUM to find and

2http://dbpedia.org/sparql

suggest changes to the issued query that may be relevant.
By allowing the user to express structured queries while
not necessarily being aware of the details of the structure
and vocabulary of the queried data set, Sapphire bridges
the gap between ambiguous keyword search approaches de-
scribing structured queries and complex query languages like
SPARQL. Next, we present an overview of Sapphire and
then discuss the demonstration scenario in Section 3.

2. OVERVIEW OF SAPPHIRE

2.1 System Architecture
Figure 2 shows the system architecture of Sapphire. To

initialize the system, the user inputs a set of SPARQL end-
points that she wishes to query. Sapphire goes through an
initialization step in which it caches a subset of the predi-
cates and literals from these endpoints on the server (Sec-
tion 2.2). The Predictive User Model (PUM) module (Sec-
tion 2.3) consists of the Query Completion Module (QCM)
and the Query Suggestion Module (QSM). The QCM pro-
vides auto-complete suggestions while the user is typing a
query. The suggestions are fetched from the cache of pred-
icates and literals. The QSM suggests alternative queries
that can replace the query input by the user. Another mod-
ule in Sapphire is the Federated Query Processor, which
executes queries over the available SPARQL endpoints and
returns the answers (Section 2.4). The returned answers can
be manipulated for easier consumption (Section 2.5).

2.2 Initialization
Prior to accepting queries, Sapphire goes through an ini-

tialization step in which it loads a subset of the predicates
and literals from the data sets that will be queried. This
subset is loaded locally into server memory so that it can be
used by the QCM to provide suggestions to the user to com-
plete the query. The subset is selected based on statistics
over the length of the literals to avoid literals that are too
short or too long and therefore unlikely to be part of a user
query. The set of literals is partitioned by length into bins
for faster search. The selected predicates and literals are
loaded into memory at the Sapphire server for near-instant
response when finding matches for input that the user pro-
vides for different parts of the query (e.g., in query form text
boxes). This will be discussed in Section 2.3.

The initialization step is fast and the size of the cached
predicates and literals is small compared to the size of the
queried data set. For example, on approximately 18 GB

1482

http://dbpedia.org/sparql


Figure 3: Auto-complete suggestions using the QCM.

of DBpedia data, the initialization step takes less than 9
minutes, and the size of the cached predicates and literals is
less than 4% of the size of the data set. Thus, Sapphire has
low setup time and maintainability effort.

2.3 Predictive User Model
Query Completion Module. Sapphire helps users to con-
struct SPARQL queries by providing almost-instant auto-
complete suggestions and query answers. In Sapphire, the
user is not required to write anything in the SELECT clause
of the SPARQL query. The user inputs the triples that rep-
resent her information needs in the WHERE clause, and
when the system detects one or more valid statements, it
executes the query written so far and returns answers for
all the variables in the query. The user can then continue
writing other statements in the query or manipulate the an-
swer table as discussed in Section 2.5. Providing a SELECT
clause or adding modifiers to the query is optional, for ex-
ample if the user needs to use aggregates like COUNT in
the SELECT clause or query modifiers like GROUP BY.

In Sapphire, the user inputs the query via a web form,
and as the user starts typing in a text box of this form,
suggestions are shown to her instantly based on what she
has typed so far. For example, if the user types “?person
?job 35th pr”, suggestions that complete this pattern are
shown almost instantly (see Figure 3). These suggestions
are retrieved as follows: As the user types in the query,
the term written so far is sent to the QCM, which searches
in the cached set of predicates and literals for approximate
matches. The set of cached literals is partitioned by length,
so the search can eliminate partitions with literals that are
too short or too long which improves performance signifi-
cantly. The matcher uses Jaro-Winkler distance [2]. Any
match with a score above a threshold θ is considered to be
a candidate and the top k are shown to the user.

As the user types the query, answers that match the ba-
sic graph pattern that is written so far are displayed im-
mediately. For example, as soon as the user chooses “35th
President of the United States”@en, a table showing the
values for the variables ?person and ?job are displayed.

For later triples in the query, choices made in previous
triples are considered when returning suggestions to the
user. For example, if the user chooses the highlighted sug-
gestion in Figure 3, auto-complete suggestions for the next
query triple that do not conform to this choice are given
lower rank, and suggestions that conform to it are ranked
higher. It is possible that the user may make incorrect
choices and thus get incorrect answers. The Query Sug-
gestion Module (QSM) that is described in the next section
addresses this challenge.

Query Suggestion Module. After the user inputs a query,
the query is validated and executed. Whenever a query is
executed, the QSM tries to find alternatives to the query
that was constructed by the user. Figure 4 shows an ex-

ample of how the QSM suggests changes to the executed
query. In this example, the user wants to find all people
with the surname “Kennedys” (in plural form), which was
one of the suggestions displayed by the QCM. However, no
answers were found using this surname. The QSM suggests
a modification that will result in finding 1,051 answers, by
changing “Kennedys” to “Kennedy”. If the user accepts this
suggestion and updates the query, the new query is executed
and the answers are displayed in the answer table (Figure 5).
New suggestions are now displayed to the user in case these
answers still do not satisfy her information needs.

The query alternatives are shown to the user in the form of
suggestions to change one term at a time. For example, one
suggestion could be “In the triple (subject, predicate,

object), did you mean predicate’, instead of predicate?
There are N answers available.”. This approach avoids
showing the user a completely rewritten SPARQL query in
one step, which would make the suggestions difficult to un-
derstand, especially for large and complex queries. The sug-
gested queries are also executed in the background using
the Federated Query Processor and answers are prefetched
so that when the user decides to choose one of the alter-
natives, the query is not re-executed, and the answers are
displayed almost-instantaneously.

The QSM finds a set of possible alternatives for each URI
or literal in the query. We enrich the terms in the query with
synonyms (obtained from WordNet3) to be able to find more
alternatives. During the search, we also consider taxonomi-
cal differences (e.g., hypernyms and hyponyms) in order to
discover structural differences between the query and the
schema of the queried data set. Each match found for each
URI or literal creates a new query. This results in a set
of candidate queries that can be suggested as alternatives
to the current query. This set is ranked based on: (1) The
similarity score between the term in the query and the al-
ternative term. The higher the similarity, the higher the
rank of the candidate query. (2) The number of answers in
the alternative query. The more the answers, the higher the
rank of the candidate query. A weighted average is used to
combine these two ranking criteria.

2.4 Federated Query Processor
The goal of Sapphire is to help users issue queries over

a large number of RDF data sets without having complete
knowledge about them. Therefore, when a valid SPARQL
query is expressed, it is executed over all available data sets.
This is done through the Federated Query Processor mod-
ule, which splits the query and executes subqueries over
relevant data sets through their respective SPARQL end-
points. It combines the answers from different sources and
shows them to the user. Sapphire uses FedX [7] as the fed-
erated query processor. However, Sapphire does not use any
features specific to FedX and can use any federated query
processing system.

2.5 Manipulating Answers
When the answers to a query are displayed to the user,

she has the ability to manipulate them in the answer table,
as shown in Figure 5. Supported operations include the fol-
lowing: the user can search the answer table using a keyword
search box, order the answers by any column, show and hide

3https://wordnet.princeton.edu/

1483

https://wordnet.princeton.edu/


Query suggestion and
query processor exe-
cutes automatically if all
query triples are valid.

All variables are automatically included in the selection by de-
fault. A user can hide unnecessary columns if desired.

A user can update
a query triple and
execute the updated
query using this
option.

Query modifiers, such as group by, order by, limit, etc, can
be added here if desired.

Figure 4: Showing a suggestion to modify the current query that returned no answers.

Controls the visibility
of columns. Prepare a printable version.

Search capability
allows users to filter
results using key-
word search.

Sort answers by any column.

Figure 5: The answer table after applying the query suggestion in Figure 4. In this example, the 1,051 answers to the query
are filtered via a keyword search on “john”, and the filtered answers are ordered by the “person” column.

columns, and drag and drop answers from the answer table
to the query text boxes for additional queries.

3. DEMONSTRATION SCENARIO
For the purpose of the demonstration, we will have Sap-

phire working with a set of SPARQL endpoints of different
data sets from the LOD cloud (e.g., DBpedia, Geonames,
LinkedMDB, etc.). The demonstration participants will be
able to compose SPARQL queries that represent questions
they have in mind. For example, “Capitals of all countries
in Africa”, “Construction date of the Statue of Liberty”,
“Number of inhabitants of the largest city in Canada”, etc.
In addition, we will also have a set of such questions that
participants can choose from. These questions will be based
on the Question Answering over Linked Data benchmarks4.
With no prior knowledge of the queried data sets, and even
without knowing what data sets should be queried, the par-
ticipants should be able to write valid SPARQL queries and
get answers for their questions, manipulate the returned an-
swers, explore the data, and ask new questions.

4. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer:

Enabling keyword search over relational databases.
SIGMOD, 2002.

4http://qald.sebastianwalter.org/

[2] W. Cohen, P. Ravikumar, and S. Fienberg. A
comparison of string metrics for matching names and
records. IJCAI, 2003.

[3] E. Demidova, X. Zhou, and W. Nejdl. A probabilistic
scheme for keyword-based incremental query
construction. TKDE, 24(3), 2012.

[4] V. Hristidis and Y. Papakonstantinou. Discover:
Keyword search in relational databases. VLDB, 2002.

[5] E. Kaufmann and A. Bernstein. How useful are
natural language interfaces to the semantic web for
casual end-users? ISWC, 2007.

[6] J. Lehmann and L. Bühmann. AutoSPARQL: Let
users query your knowledge base. ESWC, 2011.

[7] A. Schwarte, P. Haase, K. Hose, R. Schenkel, and
M. Schmidt. FedX: Optimization techniques for
federated query processing on linked data. ISWC,
2011.

[8] SPARQL 1.1 query language.
http://www.w3.org/tr/sparql11-query/.

[9] G. Zenz, X. Zhou, E. Minack, W. Siberski, and
W. Nejdl. From keywords to semantic
queries-Incremental query construction on the
semantic web. Web Semantics: Science, Services and
Agents on the World Wide Web, 7(3), 2009.

[10] Q. Zhou, C. Wang, M. Xiong, H. Wang, and Y. Yu.
Spark: Adapting keyword query to semantic search.
ISWC, 2007.

1484

http://qald.sebastianwalter.org/

	Introduction
	Overview of Sapphire
	System Architecture
	Initialization
	Predictive User Model
	Federated Query Processor
	Manipulating Answers

	Demonstration Scenario
	References

